xref: /freebsd-12.1/contrib/llvm/lib/IR/Value.cpp (revision b5893f02)
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Value, ValueHandle, and User classes.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Value.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DerivedUser.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/Statepoint.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/IR/ValueSymbolTable.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 
39 using namespace llvm;
40 
41 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
42     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
43     cl::desc("Maximum size for the name of non-global values."));
44 
45 //===----------------------------------------------------------------------===//
46 //                                Value Class
47 //===----------------------------------------------------------------------===//
checkType(Type * Ty)48 static inline Type *checkType(Type *Ty) {
49   assert(Ty && "Value defined with a null type: Error!");
50   return Ty;
51 }
52 
Value(Type * ty,unsigned scid)53 Value::Value(Type *ty, unsigned scid)
54     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid),
55       HasValueHandle(0), SubclassOptionalData(0), SubclassData(0),
56       NumUserOperands(0), IsUsedByMD(false), HasName(false) {
57   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58   // FIXME: Why isn't this in the subclass gunk??
59   // Note, we cannot call isa<CallInst> before the CallInst has been
60   // constructed.
61   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
62     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
63            "invalid CallInst type!");
64   else if (SubclassID != BasicBlockVal &&
65            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
66     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
67            "Cannot create non-first-class values except for constants!");
68   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
69                 "Value too big");
70 }
71 
~Value()72 Value::~Value() {
73   // Notify all ValueHandles (if present) that this value is going away.
74   if (HasValueHandle)
75     ValueHandleBase::ValueIsDeleted(this);
76   if (isUsedByMetadata())
77     ValueAsMetadata::handleDeletion(this);
78 
79 #ifndef NDEBUG      // Only in -g mode...
80   // Check to make sure that there are no uses of this value that are still
81   // around when the value is destroyed.  If there are, then we have a dangling
82   // reference and something is wrong.  This code is here to print out where
83   // the value is still being referenced.
84   //
85   if (!use_empty()) {
86     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
87     for (auto *U : users())
88       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
89   }
90 #endif
91   assert(use_empty() && "Uses remain when a value is destroyed!");
92 
93   // If this value is named, destroy the name.  This should not be in a symtab
94   // at this point.
95   destroyValueName();
96 }
97 
deleteValue()98 void Value::deleteValue() {
99   switch (getValueID()) {
100 #define HANDLE_VALUE(Name)                                                     \
101   case Value::Name##Val:                                                       \
102     delete static_cast<Name *>(this);                                          \
103     break;
104 #define HANDLE_MEMORY_VALUE(Name)                                              \
105   case Value::Name##Val:                                                       \
106     static_cast<DerivedUser *>(this)->DeleteValue(                             \
107         static_cast<DerivedUser *>(this));                                     \
108     break;
109 #define HANDLE_INSTRUCTION(Name)  /* nothing */
110 #include "llvm/IR/Value.def"
111 
112 #define HANDLE_INST(N, OPC, CLASS)                                             \
113   case Value::InstructionVal + Instruction::OPC:                               \
114     delete static_cast<CLASS *>(this);                                         \
115     break;
116 #define HANDLE_USER_INST(N, OPC, CLASS)
117 #include "llvm/IR/Instruction.def"
118 
119   default:
120     llvm_unreachable("attempting to delete unknown value kind");
121   }
122 }
123 
destroyValueName()124 void Value::destroyValueName() {
125   ValueName *Name = getValueName();
126   if (Name)
127     Name->Destroy();
128   setValueName(nullptr);
129 }
130 
hasNUses(unsigned N) const131 bool Value::hasNUses(unsigned N) const {
132   return hasNItems(use_begin(), use_end(), N);
133 }
134 
hasNUsesOrMore(unsigned N) const135 bool Value::hasNUsesOrMore(unsigned N) const {
136   return hasNItemsOrMore(use_begin(), use_end(), N);
137 }
138 
isUsedInBasicBlock(const BasicBlock * BB) const139 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
140   // This can be computed either by scanning the instructions in BB, or by
141   // scanning the use list of this Value. Both lists can be very long, but
142   // usually one is quite short.
143   //
144   // Scan both lists simultaneously until one is exhausted. This limits the
145   // search to the shorter list.
146   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
147   const_user_iterator UI = user_begin(), UE = user_end();
148   for (; BI != BE && UI != UE; ++BI, ++UI) {
149     // Scan basic block: Check if this Value is used by the instruction at BI.
150     if (is_contained(BI->operands(), this))
151       return true;
152     // Scan use list: Check if the use at UI is in BB.
153     const auto *User = dyn_cast<Instruction>(*UI);
154     if (User && User->getParent() == BB)
155       return true;
156   }
157   return false;
158 }
159 
getNumUses() const160 unsigned Value::getNumUses() const {
161   return (unsigned)std::distance(use_begin(), use_end());
162 }
163 
getSymTab(Value * V,ValueSymbolTable * & ST)164 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
165   ST = nullptr;
166   if (Instruction *I = dyn_cast<Instruction>(V)) {
167     if (BasicBlock *P = I->getParent())
168       if (Function *PP = P->getParent())
169         ST = PP->getValueSymbolTable();
170   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
171     if (Function *P = BB->getParent())
172       ST = P->getValueSymbolTable();
173   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
174     if (Module *P = GV->getParent())
175       ST = &P->getValueSymbolTable();
176   } else if (Argument *A = dyn_cast<Argument>(V)) {
177     if (Function *P = A->getParent())
178       ST = P->getValueSymbolTable();
179   } else {
180     assert(isa<Constant>(V) && "Unknown value type!");
181     return true;  // no name is setable for this.
182   }
183   return false;
184 }
185 
getValueName() const186 ValueName *Value::getValueName() const {
187   if (!HasName) return nullptr;
188 
189   LLVMContext &Ctx = getContext();
190   auto I = Ctx.pImpl->ValueNames.find(this);
191   assert(I != Ctx.pImpl->ValueNames.end() &&
192          "No name entry found!");
193 
194   return I->second;
195 }
196 
setValueName(ValueName * VN)197 void Value::setValueName(ValueName *VN) {
198   LLVMContext &Ctx = getContext();
199 
200   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
201          "HasName bit out of sync!");
202 
203   if (!VN) {
204     if (HasName)
205       Ctx.pImpl->ValueNames.erase(this);
206     HasName = false;
207     return;
208   }
209 
210   HasName = true;
211   Ctx.pImpl->ValueNames[this] = VN;
212 }
213 
getName() const214 StringRef Value::getName() const {
215   // Make sure the empty string is still a C string. For historical reasons,
216   // some clients want to call .data() on the result and expect it to be null
217   // terminated.
218   if (!hasName())
219     return StringRef("", 0);
220   return getValueName()->getKey();
221 }
222 
setNameImpl(const Twine & NewName)223 void Value::setNameImpl(const Twine &NewName) {
224   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
225   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
226     return;
227 
228   // Fast path for common IRBuilder case of setName("") when there is no name.
229   if (NewName.isTriviallyEmpty() && !hasName())
230     return;
231 
232   SmallString<256> NameData;
233   StringRef NameRef = NewName.toStringRef(NameData);
234   assert(NameRef.find_first_of(0) == StringRef::npos &&
235          "Null bytes are not allowed in names");
236 
237   // Name isn't changing?
238   if (getName() == NameRef)
239     return;
240 
241   // Cap the size of non-GlobalValue names.
242   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
243     NameRef =
244         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
245 
246   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
247 
248   // Get the symbol table to update for this object.
249   ValueSymbolTable *ST;
250   if (getSymTab(this, ST))
251     return;  // Cannot set a name on this value (e.g. constant).
252 
253   if (!ST) { // No symbol table to update?  Just do the change.
254     if (NameRef.empty()) {
255       // Free the name for this value.
256       destroyValueName();
257       return;
258     }
259 
260     // NOTE: Could optimize for the case the name is shrinking to not deallocate
261     // then reallocated.
262     destroyValueName();
263 
264     // Create the new name.
265     setValueName(ValueName::Create(NameRef));
266     getValueName()->setValue(this);
267     return;
268   }
269 
270   // NOTE: Could optimize for the case the name is shrinking to not deallocate
271   // then reallocated.
272   if (hasName()) {
273     // Remove old name.
274     ST->removeValueName(getValueName());
275     destroyValueName();
276 
277     if (NameRef.empty())
278       return;
279   }
280 
281   // Name is changing to something new.
282   setValueName(ST->createValueName(NameRef, this));
283 }
284 
setName(const Twine & NewName)285 void Value::setName(const Twine &NewName) {
286   setNameImpl(NewName);
287   if (Function *F = dyn_cast<Function>(this))
288     F->recalculateIntrinsicID();
289 }
290 
takeName(Value * V)291 void Value::takeName(Value *V) {
292   ValueSymbolTable *ST = nullptr;
293   // If this value has a name, drop it.
294   if (hasName()) {
295     // Get the symtab this is in.
296     if (getSymTab(this, ST)) {
297       // We can't set a name on this value, but we need to clear V's name if
298       // it has one.
299       if (V->hasName()) V->setName("");
300       return;  // Cannot set a name on this value (e.g. constant).
301     }
302 
303     // Remove old name.
304     if (ST)
305       ST->removeValueName(getValueName());
306     destroyValueName();
307   }
308 
309   // Now we know that this has no name.
310 
311   // If V has no name either, we're done.
312   if (!V->hasName()) return;
313 
314   // Get this's symtab if we didn't before.
315   if (!ST) {
316     if (getSymTab(this, ST)) {
317       // Clear V's name.
318       V->setName("");
319       return;  // Cannot set a name on this value (e.g. constant).
320     }
321   }
322 
323   // Get V's ST, this should always succed, because V has a name.
324   ValueSymbolTable *VST;
325   bool Failure = getSymTab(V, VST);
326   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
327 
328   // If these values are both in the same symtab, we can do this very fast.
329   // This works even if both values have no symtab yet.
330   if (ST == VST) {
331     // Take the name!
332     setValueName(V->getValueName());
333     V->setValueName(nullptr);
334     getValueName()->setValue(this);
335     return;
336   }
337 
338   // Otherwise, things are slightly more complex.  Remove V's name from VST and
339   // then reinsert it into ST.
340 
341   if (VST)
342     VST->removeValueName(V->getValueName());
343   setValueName(V->getValueName());
344   V->setValueName(nullptr);
345   getValueName()->setValue(this);
346 
347   if (ST)
348     ST->reinsertValue(this);
349 }
350 
assertModuleIsMaterializedImpl() const351 void Value::assertModuleIsMaterializedImpl() const {
352 #ifndef NDEBUG
353   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
354   if (!GV)
355     return;
356   const Module *M = GV->getParent();
357   if (!M)
358     return;
359   assert(M->isMaterialized());
360 #endif
361 }
362 
363 #ifndef NDEBUG
contains(SmallPtrSetImpl<ConstantExpr * > & Cache,ConstantExpr * Expr,Constant * C)364 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
365                      Constant *C) {
366   if (!Cache.insert(Expr).second)
367     return false;
368 
369   for (auto &O : Expr->operands()) {
370     if (O == C)
371       return true;
372     auto *CE = dyn_cast<ConstantExpr>(O);
373     if (!CE)
374       continue;
375     if (contains(Cache, CE, C))
376       return true;
377   }
378   return false;
379 }
380 
contains(Value * Expr,Value * V)381 static bool contains(Value *Expr, Value *V) {
382   if (Expr == V)
383     return true;
384 
385   auto *C = dyn_cast<Constant>(V);
386   if (!C)
387     return false;
388 
389   auto *CE = dyn_cast<ConstantExpr>(Expr);
390   if (!CE)
391     return false;
392 
393   SmallPtrSet<ConstantExpr *, 4> Cache;
394   return contains(Cache, CE, C);
395 }
396 #endif // NDEBUG
397 
doRAUW(Value * New,ReplaceMetadataUses ReplaceMetaUses)398 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
399   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
400   assert(!contains(New, this) &&
401          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
402   assert(New->getType() == getType() &&
403          "replaceAllUses of value with new value of different type!");
404 
405   // Notify all ValueHandles (if present) that this value is going away.
406   if (HasValueHandle)
407     ValueHandleBase::ValueIsRAUWd(this, New);
408   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
409     ValueAsMetadata::handleRAUW(this, New);
410 
411   while (!materialized_use_empty()) {
412     Use &U = *UseList;
413     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
414     // constant because they are uniqued.
415     if (auto *C = dyn_cast<Constant>(U.getUser())) {
416       if (!isa<GlobalValue>(C)) {
417         C->handleOperandChange(this, New);
418         continue;
419       }
420     }
421 
422     U.set(New);
423   }
424 
425   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
426     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
427 }
428 
replaceAllUsesWith(Value * New)429 void Value::replaceAllUsesWith(Value *New) {
430   doRAUW(New, ReplaceMetadataUses::Yes);
431 }
432 
replaceNonMetadataUsesWith(Value * New)433 void Value::replaceNonMetadataUsesWith(Value *New) {
434   doRAUW(New, ReplaceMetadataUses::No);
435 }
436 
437 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
438 // This routine leaves uses within BB.
replaceUsesOutsideBlock(Value * New,BasicBlock * BB)439 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
440   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
441   assert(!contains(New, this) &&
442          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
443   assert(New->getType() == getType() &&
444          "replaceUses of value with new value of different type!");
445   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
446 
447   use_iterator UI = use_begin(), E = use_end();
448   for (; UI != E;) {
449     Use &U = *UI;
450     ++UI;
451     auto *Usr = dyn_cast<Instruction>(U.getUser());
452     if (Usr && Usr->getParent() == BB)
453       continue;
454     U.set(New);
455   }
456 }
457 
458 namespace {
459 // Various metrics for how much to strip off of pointers.
460 enum PointerStripKind {
461   PSK_ZeroIndices,
462   PSK_ZeroIndicesAndAliases,
463   PSK_ZeroIndicesAndAliasesAndInvariantGroups,
464   PSK_InBoundsConstantIndices,
465   PSK_InBounds
466 };
467 
468 template <PointerStripKind StripKind>
stripPointerCastsAndOffsets(const Value * V)469 static const Value *stripPointerCastsAndOffsets(const Value *V) {
470   if (!V->getType()->isPointerTy())
471     return V;
472 
473   // Even though we don't look through PHI nodes, we could be called on an
474   // instruction in an unreachable block, which may be on a cycle.
475   SmallPtrSet<const Value *, 4> Visited;
476 
477   Visited.insert(V);
478   do {
479     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
480       switch (StripKind) {
481       case PSK_ZeroIndicesAndAliases:
482       case PSK_ZeroIndicesAndAliasesAndInvariantGroups:
483       case PSK_ZeroIndices:
484         if (!GEP->hasAllZeroIndices())
485           return V;
486         break;
487       case PSK_InBoundsConstantIndices:
488         if (!GEP->hasAllConstantIndices())
489           return V;
490         LLVM_FALLTHROUGH;
491       case PSK_InBounds:
492         if (!GEP->isInBounds())
493           return V;
494         break;
495       }
496       V = GEP->getPointerOperand();
497     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
498                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
499       V = cast<Operator>(V)->getOperand(0);
500     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
501       if (StripKind == PSK_ZeroIndices || GA->isInterposable())
502         return V;
503       V = GA->getAliasee();
504     } else {
505       if (const auto *Call = dyn_cast<CallBase>(V)) {
506         if (const Value *RV = Call->getReturnedArgOperand()) {
507           V = RV;
508           continue;
509         }
510         // The result of launder.invariant.group must alias it's argument,
511         // but it can't be marked with returned attribute, that's why it needs
512         // special case.
513         if (StripKind == PSK_ZeroIndicesAndAliasesAndInvariantGroups &&
514             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
515              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
516           V = Call->getArgOperand(0);
517           continue;
518         }
519       }
520       return V;
521     }
522     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
523   } while (Visited.insert(V).second);
524 
525   return V;
526 }
527 } // end anonymous namespace
528 
stripPointerCasts() const529 const Value *Value::stripPointerCasts() const {
530   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
531 }
532 
stripPointerCastsNoFollowAliases() const533 const Value *Value::stripPointerCastsNoFollowAliases() const {
534   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
535 }
536 
stripInBoundsConstantOffsets() const537 const Value *Value::stripInBoundsConstantOffsets() const {
538   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
539 }
540 
stripPointerCastsAndInvariantGroups() const541 const Value *Value::stripPointerCastsAndInvariantGroups() const {
542   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliasesAndInvariantGroups>(
543       this);
544 }
545 
546 const Value *
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset) const547 Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
548                                                  APInt &Offset) const {
549   if (!getType()->isPointerTy())
550     return this;
551 
552   assert(Offset.getBitWidth() == DL.getIndexSizeInBits(cast<PointerType>(
553                                      getType())->getAddressSpace()) &&
554          "The offset bit width does not match the DL specification.");
555 
556   // Even though we don't look through PHI nodes, we could be called on an
557   // instruction in an unreachable block, which may be on a cycle.
558   SmallPtrSet<const Value *, 4> Visited;
559   Visited.insert(this);
560   const Value *V = this;
561   do {
562     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
563       if (!GEP->isInBounds())
564         return V;
565       APInt GEPOffset(Offset);
566       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
567         return V;
568       Offset = GEPOffset;
569       V = GEP->getPointerOperand();
570     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
571       V = cast<Operator>(V)->getOperand(0);
572     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
573       V = GA->getAliasee();
574     } else {
575       if (const auto *Call = dyn_cast<CallBase>(V))
576         if (const Value *RV = Call->getReturnedArgOperand()) {
577           V = RV;
578           continue;
579         }
580 
581       return V;
582     }
583     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
584   } while (Visited.insert(V).second);
585 
586   return V;
587 }
588 
stripInBoundsOffsets() const589 const Value *Value::stripInBoundsOffsets() const {
590   return stripPointerCastsAndOffsets<PSK_InBounds>(this);
591 }
592 
getPointerDereferenceableBytes(const DataLayout & DL,bool & CanBeNull) const593 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
594                                                bool &CanBeNull) const {
595   assert(getType()->isPointerTy() && "must be pointer");
596 
597   uint64_t DerefBytes = 0;
598   CanBeNull = false;
599   if (const Argument *A = dyn_cast<Argument>(this)) {
600     DerefBytes = A->getDereferenceableBytes();
601     if (DerefBytes == 0 && (A->hasByValAttr() || A->hasStructRetAttr())) {
602       Type *PT = cast<PointerType>(A->getType())->getElementType();
603       if (PT->isSized())
604         DerefBytes = DL.getTypeStoreSize(PT);
605     }
606     if (DerefBytes == 0) {
607       DerefBytes = A->getDereferenceableOrNullBytes();
608       CanBeNull = true;
609     }
610   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
611     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
612     if (DerefBytes == 0) {
613       DerefBytes =
614           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
615       CanBeNull = true;
616     }
617   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
618     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
619       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
620       DerefBytes = CI->getLimitedValue();
621     }
622     if (DerefBytes == 0) {
623       if (MDNode *MD =
624               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
625         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
626         DerefBytes = CI->getLimitedValue();
627       }
628       CanBeNull = true;
629     }
630   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
631     if (!AI->isArrayAllocation()) {
632       DerefBytes = DL.getTypeStoreSize(AI->getAllocatedType());
633       CanBeNull = false;
634     }
635   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
636     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
637       // TODO: Don't outright reject hasExternalWeakLinkage but set the
638       // CanBeNull flag.
639       DerefBytes = DL.getTypeStoreSize(GV->getValueType());
640       CanBeNull = false;
641     }
642   }
643   return DerefBytes;
644 }
645 
getPointerAlignment(const DataLayout & DL) const646 unsigned Value::getPointerAlignment(const DataLayout &DL) const {
647   assert(getType()->isPointerTy() && "must be pointer");
648 
649   unsigned Align = 0;
650   if (auto *GO = dyn_cast<GlobalObject>(this)) {
651     // Don't make any assumptions about function pointer alignment. Some
652     // targets use the LSBs to store additional information.
653     if (isa<Function>(GO))
654       return 0;
655     Align = GO->getAlignment();
656     if (Align == 0) {
657       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
658         Type *ObjectType = GVar->getValueType();
659         if (ObjectType->isSized()) {
660           // If the object is defined in the current Module, we'll be giving
661           // it the preferred alignment. Otherwise, we have to assume that it
662           // may only have the minimum ABI alignment.
663           if (GVar->isStrongDefinitionForLinker())
664             Align = DL.getPreferredAlignment(GVar);
665           else
666             Align = DL.getABITypeAlignment(ObjectType);
667         }
668       }
669     }
670   } else if (const Argument *A = dyn_cast<Argument>(this)) {
671     Align = A->getParamAlignment();
672 
673     if (!Align && A->hasStructRetAttr()) {
674       // An sret parameter has at least the ABI alignment of the return type.
675       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
676       if (EltTy->isSized())
677         Align = DL.getABITypeAlignment(EltTy);
678     }
679   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
680     Align = AI->getAlignment();
681     if (Align == 0) {
682       Type *AllocatedType = AI->getAllocatedType();
683       if (AllocatedType->isSized())
684         Align = DL.getPrefTypeAlignment(AllocatedType);
685     }
686   } else if (const auto *Call = dyn_cast<CallBase>(this))
687     Align = Call->getAttributes().getRetAlignment();
688   else if (const LoadInst *LI = dyn_cast<LoadInst>(this))
689     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
690       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
691       Align = CI->getLimitedValue();
692     }
693 
694   return Align;
695 }
696 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB) const697 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
698                                      const BasicBlock *PredBB) const {
699   auto *PN = dyn_cast<PHINode>(this);
700   if (PN && PN->getParent() == CurBB)
701     return PN->getIncomingValueForBlock(PredBB);
702   return this;
703 }
704 
getContext() const705 LLVMContext &Value::getContext() const { return VTy->getContext(); }
706 
reverseUseList()707 void Value::reverseUseList() {
708   if (!UseList || !UseList->Next)
709     // No need to reverse 0 or 1 uses.
710     return;
711 
712   Use *Head = UseList;
713   Use *Current = UseList->Next;
714   Head->Next = nullptr;
715   while (Current) {
716     Use *Next = Current->Next;
717     Current->Next = Head;
718     Head->setPrev(&Current->Next);
719     Head = Current;
720     Current = Next;
721   }
722   UseList = Head;
723   Head->setPrev(&UseList);
724 }
725 
isSwiftError() const726 bool Value::isSwiftError() const {
727   auto *Arg = dyn_cast<Argument>(this);
728   if (Arg)
729     return Arg->hasSwiftErrorAttr();
730   auto *Alloca = dyn_cast<AllocaInst>(this);
731   if (!Alloca)
732     return false;
733   return Alloca->isSwiftError();
734 }
735 
736 //===----------------------------------------------------------------------===//
737 //                             ValueHandleBase Class
738 //===----------------------------------------------------------------------===//
739 
AddToExistingUseList(ValueHandleBase ** List)740 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
741   assert(List && "Handle list is null?");
742 
743   // Splice ourselves into the list.
744   Next = *List;
745   *List = this;
746   setPrevPtr(List);
747   if (Next) {
748     Next->setPrevPtr(&Next);
749     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
750   }
751 }
752 
AddToExistingUseListAfter(ValueHandleBase * List)753 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
754   assert(List && "Must insert after existing node");
755 
756   Next = List->Next;
757   setPrevPtr(&List->Next);
758   List->Next = this;
759   if (Next)
760     Next->setPrevPtr(&Next);
761 }
762 
AddToUseList()763 void ValueHandleBase::AddToUseList() {
764   assert(getValPtr() && "Null pointer doesn't have a use list!");
765 
766   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
767 
768   if (getValPtr()->HasValueHandle) {
769     // If this value already has a ValueHandle, then it must be in the
770     // ValueHandles map already.
771     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
772     assert(Entry && "Value doesn't have any handles?");
773     AddToExistingUseList(&Entry);
774     return;
775   }
776 
777   // Ok, it doesn't have any handles yet, so we must insert it into the
778   // DenseMap.  However, doing this insertion could cause the DenseMap to
779   // reallocate itself, which would invalidate all of the PrevP pointers that
780   // point into the old table.  Handle this by checking for reallocation and
781   // updating the stale pointers only if needed.
782   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
783   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
784 
785   ValueHandleBase *&Entry = Handles[getValPtr()];
786   assert(!Entry && "Value really did already have handles?");
787   AddToExistingUseList(&Entry);
788   getValPtr()->HasValueHandle = true;
789 
790   // If reallocation didn't happen or if this was the first insertion, don't
791   // walk the table.
792   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
793       Handles.size() == 1) {
794     return;
795   }
796 
797   // Okay, reallocation did happen.  Fix the Prev Pointers.
798   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
799        E = Handles.end(); I != E; ++I) {
800     assert(I->second && I->first == I->second->getValPtr() &&
801            "List invariant broken!");
802     I->second->setPrevPtr(&I->second);
803   }
804 }
805 
RemoveFromUseList()806 void ValueHandleBase::RemoveFromUseList() {
807   assert(getValPtr() && getValPtr()->HasValueHandle &&
808          "Pointer doesn't have a use list!");
809 
810   // Unlink this from its use list.
811   ValueHandleBase **PrevPtr = getPrevPtr();
812   assert(*PrevPtr == this && "List invariant broken");
813 
814   *PrevPtr = Next;
815   if (Next) {
816     assert(Next->getPrevPtr() == &Next && "List invariant broken");
817     Next->setPrevPtr(PrevPtr);
818     return;
819   }
820 
821   // If the Next pointer was null, then it is possible that this was the last
822   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
823   // map.
824   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
825   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
826   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
827     Handles.erase(getValPtr());
828     getValPtr()->HasValueHandle = false;
829   }
830 }
831 
ValueIsDeleted(Value * V)832 void ValueHandleBase::ValueIsDeleted(Value *V) {
833   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
834 
835   // Get the linked list base, which is guaranteed to exist since the
836   // HasValueHandle flag is set.
837   LLVMContextImpl *pImpl = V->getContext().pImpl;
838   ValueHandleBase *Entry = pImpl->ValueHandles[V];
839   assert(Entry && "Value bit set but no entries exist");
840 
841   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
842   // and remove themselves from the list without breaking our iteration.  This
843   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
844   // Note that we deliberately do not the support the case when dropping a value
845   // handle results in a new value handle being permanently added to the list
846   // (as might occur in theory for CallbackVH's): the new value handle will not
847   // be processed and the checking code will mete out righteous punishment if
848   // the handle is still present once we have finished processing all the other
849   // value handles (it is fine to momentarily add then remove a value handle).
850   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
851     Iterator.RemoveFromUseList();
852     Iterator.AddToExistingUseListAfter(Entry);
853     assert(Entry->Next == &Iterator && "Loop invariant broken.");
854 
855     switch (Entry->getKind()) {
856     case Assert:
857       break;
858     case Weak:
859     case WeakTracking:
860       // WeakTracking and Weak just go to null, which unlinks them
861       // from the list.
862       Entry->operator=(nullptr);
863       break;
864     case Callback:
865       // Forward to the subclass's implementation.
866       static_cast<CallbackVH*>(Entry)->deleted();
867       break;
868     }
869   }
870 
871   // All callbacks, weak references, and assertingVHs should be dropped by now.
872   if (V->HasValueHandle) {
873 #ifndef NDEBUG      // Only in +Asserts mode...
874     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
875            << "\n";
876     if (pImpl->ValueHandles[V]->getKind() == Assert)
877       llvm_unreachable("An asserting value handle still pointed to this"
878                        " value!");
879 
880 #endif
881     llvm_unreachable("All references to V were not removed?");
882   }
883 }
884 
ValueIsRAUWd(Value * Old,Value * New)885 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
886   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
887   assert(Old != New && "Changing value into itself!");
888   assert(Old->getType() == New->getType() &&
889          "replaceAllUses of value with new value of different type!");
890 
891   // Get the linked list base, which is guaranteed to exist since the
892   // HasValueHandle flag is set.
893   LLVMContextImpl *pImpl = Old->getContext().pImpl;
894   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
895 
896   assert(Entry && "Value bit set but no entries exist");
897 
898   // We use a local ValueHandleBase as an iterator so that
899   // ValueHandles can add and remove themselves from the list without
900   // breaking our iteration.  This is not really an AssertingVH; we
901   // just have to give ValueHandleBase some kind.
902   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
903     Iterator.RemoveFromUseList();
904     Iterator.AddToExistingUseListAfter(Entry);
905     assert(Entry->Next == &Iterator && "Loop invariant broken.");
906 
907     switch (Entry->getKind()) {
908     case Assert:
909     case Weak:
910       // Asserting and Weak handles do not follow RAUW implicitly.
911       break;
912     case WeakTracking:
913       // Weak goes to the new value, which will unlink it from Old's list.
914       Entry->operator=(New);
915       break;
916     case Callback:
917       // Forward to the subclass's implementation.
918       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
919       break;
920     }
921   }
922 
923 #ifndef NDEBUG
924   // If any new weak value handles were added while processing the
925   // list, then complain about it now.
926   if (Old->HasValueHandle)
927     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
928       switch (Entry->getKind()) {
929       case WeakTracking:
930         dbgs() << "After RAUW from " << *Old->getType() << " %"
931                << Old->getName() << " to " << *New->getType() << " %"
932                << New->getName() << "\n";
933         llvm_unreachable(
934             "A weak tracking value handle still pointed to the  old value!\n");
935       default:
936         break;
937       }
938 #endif
939 }
940 
941 // Pin the vtable to this file.
anchor()942 void CallbackVH::anchor() {}
943