1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
12 // is common code shared among the LegalizeTypes*.cpp files.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "LegalizeTypes.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "legalize-types"
28 
29 static cl::opt<bool>
30 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
31 
32 /// Do extensive, expensive, sanity checking.
PerformExpensiveChecks()33 void DAGTypeLegalizer::PerformExpensiveChecks() {
34   // If a node is not processed, then none of its values should be mapped by any
35   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
36 
37   // If a node is processed, then each value with an illegal type must be mapped
38   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
39   // Values with a legal type may be mapped by ReplacedValues, but not by any of
40   // the other maps.
41 
42   // Note that these invariants may not hold momentarily when processing a node:
43   // the node being processed may be put in a map before being marked Processed.
44 
45   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
46   // occur in two ways.  Firstly, a node may be created during legalization but
47   // never passed to the legalization core.  This is usually due to the implicit
48   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
49   // node may be passed to the legalization core, but when analyzed may morph
50   // into a different node, leaving the original node as a NewNode in the DAG.
51   // A node may morph if one of its operands changes during analysis.  Whether
52   // it actually morphs or not depends on whether, after updating its operands,
53   // it is equivalent to an existing node: if so, it morphs into that existing
54   // node (CSE).  An operand can change during analysis if the operand is a new
55   // node that morphs, or it is a processed value that was mapped to some other
56   // value (as recorded in ReplacedValues) in which case the operand is turned
57   // into that other value.  If a node morphs then the node it morphed into will
58   // be used instead of it for legalization, however the original node continues
59   // to live on in the DAG.
60   // The conclusion is that though there may be nodes marked NewNode in the DAG,
61   // all uses of such nodes are also marked NewNode: the result is a fungus of
62   // NewNodes growing on top of the useful nodes, and perhaps using them, but
63   // not used by them.
64 
65   // If a value is mapped by ReplacedValues, then it must have no uses, except
66   // by nodes marked NewNode (see above).
67 
68   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
69   // Note that ReplacedValues should be applied iteratively.
70 
71   // Note that the ReplacedValues map may also map deleted nodes (by iterating
72   // over the DAG we never dereference deleted nodes).  This means that it may
73   // also map nodes marked NewNode if the deallocated memory was reallocated as
74   // another node, and that new node was not seen by the LegalizeTypes machinery
75   // (for example because it was created but not used).  In general, we cannot
76   // distinguish between new nodes and deleted nodes.
77   SmallVector<SDNode*, 16> NewNodes;
78   for (SDNode &Node : DAG.allnodes()) {
79     // Remember nodes marked NewNode - they are subject to extra checking below.
80     if (Node.getNodeId() == NewNode)
81       NewNodes.push_back(&Node);
82 
83     for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
84       SDValue Res(&Node, i);
85       EVT VT = Res.getValueType();
86       bool Failed = false;
87       // Don't create a value in map.
88       auto ResId = (ValueToIdMap.count(Res)) ? ValueToIdMap[Res] : 0;
89 
90       unsigned Mapped = 0;
91       if (ResId && (ReplacedValues.find(ResId) != ReplacedValues.end())) {
92         Mapped |= 1;
93         // Check that remapped values are only used by nodes marked NewNode.
94         for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
95              UI != UE; ++UI)
96           if (UI.getUse().getResNo() == i)
97             assert(UI->getNodeId() == NewNode &&
98                    "Remapped value has non-trivial use!");
99 
100         // Check that the final result of applying ReplacedValues is not
101         // marked NewNode.
102         auto NewValId = ReplacedValues[ResId];
103         auto I = ReplacedValues.find(NewValId);
104         while (I != ReplacedValues.end()) {
105           NewValId = I->second;
106           I = ReplacedValues.find(NewValId);
107         }
108         SDValue NewVal = getSDValue(NewValId);
109         (void)NewVal;
110         assert(NewVal.getNode()->getNodeId() != NewNode &&
111                "ReplacedValues maps to a new node!");
112       }
113       if (ResId && PromotedIntegers.find(ResId) != PromotedIntegers.end())
114         Mapped |= 2;
115       if (ResId && SoftenedFloats.find(ResId) != SoftenedFloats.end())
116         Mapped |= 4;
117       if (ResId && ScalarizedVectors.find(ResId) != ScalarizedVectors.end())
118         Mapped |= 8;
119       if (ResId && ExpandedIntegers.find(ResId) != ExpandedIntegers.end())
120         Mapped |= 16;
121       if (ResId && ExpandedFloats.find(ResId) != ExpandedFloats.end())
122         Mapped |= 32;
123       if (ResId && SplitVectors.find(ResId) != SplitVectors.end())
124         Mapped |= 64;
125       if (ResId && WidenedVectors.find(ResId) != WidenedVectors.end())
126         Mapped |= 128;
127       if (ResId && PromotedFloats.find(ResId) != PromotedFloats.end())
128         Mapped |= 256;
129 
130       if (Node.getNodeId() != Processed) {
131         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132         // marked NewNode too, since a deleted node may have been reallocated as
133         // another node that has not been seen by the LegalizeTypes machinery.
134         if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135             (Node.getNodeId() != NewNode && Mapped != 0)) {
136           dbgs() << "Unprocessed value in a map!";
137           Failed = true;
138         }
139       } else if (isTypeLegal(VT) || IgnoreNodeResults(&Node)) {
140         if (Mapped > 1) {
141           dbgs() << "Value with legal type was transformed!";
142           Failed = true;
143         }
144       } else {
145         // If the value can be kept in HW registers, softening machinery can
146         // leave it unchanged and don't put it to any map.
147         if (Mapped == 0 &&
148             !(getTypeAction(VT) == TargetLowering::TypeSoftenFloat &&
149               isLegalInHWReg(VT))) {
150           dbgs() << "Processed value not in any map!";
151           Failed = true;
152         } else if (Mapped & (Mapped - 1)) {
153           dbgs() << "Value in multiple maps!";
154           Failed = true;
155         }
156       }
157 
158       if (Failed) {
159         if (Mapped & 1)
160           dbgs() << " ReplacedValues";
161         if (Mapped & 2)
162           dbgs() << " PromotedIntegers";
163         if (Mapped & 4)
164           dbgs() << " SoftenedFloats";
165         if (Mapped & 8)
166           dbgs() << " ScalarizedVectors";
167         if (Mapped & 16)
168           dbgs() << " ExpandedIntegers";
169         if (Mapped & 32)
170           dbgs() << " ExpandedFloats";
171         if (Mapped & 64)
172           dbgs() << " SplitVectors";
173         if (Mapped & 128)
174           dbgs() << " WidenedVectors";
175         if (Mapped & 256)
176           dbgs() << " PromotedFloats";
177         dbgs() << "\n";
178         llvm_unreachable(nullptr);
179       }
180     }
181   }
182 
183   // Checked that NewNodes are only used by other NewNodes.
184   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
185     SDNode *N = NewNodes[i];
186     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
187          UI != UE; ++UI)
188       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
189   }
190 }
191 
192 /// This is the main entry point for the type legalizer. This does a top-down
193 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
194 /// any changes.
run()195 bool DAGTypeLegalizer::run() {
196   bool Changed = false;
197 
198   // Create a dummy node (which is not added to allnodes), that adds a reference
199   // to the root node, preventing it from being deleted, and tracking any
200   // changes of the root.
201   HandleSDNode Dummy(DAG.getRoot());
202   Dummy.setNodeId(Unanalyzed);
203 
204   // The root of the dag may dangle to deleted nodes until the type legalizer is
205   // done.  Set it to null to avoid confusion.
206   DAG.setRoot(SDValue());
207 
208   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
209   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
210   // non-leaves.
211   for (SDNode &Node : DAG.allnodes()) {
212     if (Node.getNumOperands() == 0) {
213       AddToWorklist(&Node);
214     } else {
215       Node.setNodeId(Unanalyzed);
216     }
217   }
218 
219   // Now that we have a set of nodes to process, handle them all.
220   while (!Worklist.empty()) {
221 #ifndef EXPENSIVE_CHECKS
222     if (EnableExpensiveChecks)
223 #endif
224       PerformExpensiveChecks();
225 
226     SDNode *N = Worklist.back();
227     Worklist.pop_back();
228     assert(N->getNodeId() == ReadyToProcess &&
229            "Node should be ready if on worklist!");
230 
231     LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
232     if (IgnoreNodeResults(N)) {
233       LLVM_DEBUG(dbgs() << "Ignoring node results\n");
234       goto ScanOperands;
235     }
236 
237     // Scan the values produced by the node, checking to see if any result
238     // types are illegal.
239     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
240       EVT ResultVT = N->getValueType(i);
241       LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
242                         << "\n");
243       switch (getTypeAction(ResultVT)) {
244       case TargetLowering::TypeLegal:
245         LLVM_DEBUG(dbgs() << "Legal result type\n");
246         break;
247       // The following calls must take care of *all* of the node's results,
248       // not just the illegal result they were passed (this includes results
249       // with a legal type).  Results can be remapped using ReplaceValueWith,
250       // or their promoted/expanded/etc values registered in PromotedIntegers,
251       // ExpandedIntegers etc.
252       case TargetLowering::TypePromoteInteger:
253         PromoteIntegerResult(N, i);
254         Changed = true;
255         goto NodeDone;
256       case TargetLowering::TypeExpandInteger:
257         ExpandIntegerResult(N, i);
258         Changed = true;
259         goto NodeDone;
260       case TargetLowering::TypeSoftenFloat:
261         Changed = SoftenFloatResult(N, i);
262         if (Changed)
263           goto NodeDone;
264         // If not changed, the result type should be legally in register.
265         assert(isLegalInHWReg(ResultVT) &&
266                "Unchanged SoftenFloatResult should be legal in register!");
267         goto ScanOperands;
268       case TargetLowering::TypeExpandFloat:
269         ExpandFloatResult(N, i);
270         Changed = true;
271         goto NodeDone;
272       case TargetLowering::TypeScalarizeVector:
273         ScalarizeVectorResult(N, i);
274         Changed = true;
275         goto NodeDone;
276       case TargetLowering::TypeSplitVector:
277         SplitVectorResult(N, i);
278         Changed = true;
279         goto NodeDone;
280       case TargetLowering::TypeWidenVector:
281         WidenVectorResult(N, i);
282         Changed = true;
283         goto NodeDone;
284       case TargetLowering::TypePromoteFloat:
285         PromoteFloatResult(N, i);
286         Changed = true;
287         goto NodeDone;
288       }
289     }
290 
291 ScanOperands:
292     // Scan the operand list for the node, handling any nodes with operands that
293     // are illegal.
294     {
295     unsigned NumOperands = N->getNumOperands();
296     bool NeedsReanalyzing = false;
297     unsigned i;
298     for (i = 0; i != NumOperands; ++i) {
299       if (IgnoreNodeResults(N->getOperand(i).getNode()))
300         continue;
301 
302       const auto Op = N->getOperand(i);
303       LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
304       EVT OpVT = Op.getValueType();
305       switch (getTypeAction(OpVT)) {
306       case TargetLowering::TypeLegal:
307         LLVM_DEBUG(dbgs() << "Legal operand\n");
308         continue;
309       // The following calls must either replace all of the node's results
310       // using ReplaceValueWith, and return "false"; or update the node's
311       // operands in place, and return "true".
312       case TargetLowering::TypePromoteInteger:
313         NeedsReanalyzing = PromoteIntegerOperand(N, i);
314         Changed = true;
315         break;
316       case TargetLowering::TypeExpandInteger:
317         NeedsReanalyzing = ExpandIntegerOperand(N, i);
318         Changed = true;
319         break;
320       case TargetLowering::TypeSoftenFloat:
321         NeedsReanalyzing = SoftenFloatOperand(N, i);
322         Changed = true;
323         break;
324       case TargetLowering::TypeExpandFloat:
325         NeedsReanalyzing = ExpandFloatOperand(N, i);
326         Changed = true;
327         break;
328       case TargetLowering::TypeScalarizeVector:
329         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
330         Changed = true;
331         break;
332       case TargetLowering::TypeSplitVector:
333         NeedsReanalyzing = SplitVectorOperand(N, i);
334         Changed = true;
335         break;
336       case TargetLowering::TypeWidenVector:
337         NeedsReanalyzing = WidenVectorOperand(N, i);
338         Changed = true;
339         break;
340       case TargetLowering::TypePromoteFloat:
341         NeedsReanalyzing = PromoteFloatOperand(N, i);
342         Changed = true;
343         break;
344       }
345       break;
346     }
347 
348     // The sub-method updated N in place.  Check to see if any operands are new,
349     // and if so, mark them.  If the node needs revisiting, don't add all users
350     // to the worklist etc.
351     if (NeedsReanalyzing) {
352       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
353 
354       N->setNodeId(NewNode);
355       // Recompute the NodeId and correct processed operands, adding the node to
356       // the worklist if ready.
357       SDNode *M = AnalyzeNewNode(N);
358       if (M == N)
359         // The node didn't morph - nothing special to do, it will be revisited.
360         continue;
361 
362       // The node morphed - this is equivalent to legalizing by replacing every
363       // value of N with the corresponding value of M.  So do that now.
364       assert(N->getNumValues() == M->getNumValues() &&
365              "Node morphing changed the number of results!");
366       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
367         // Replacing the value takes care of remapping the new value.
368         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
369       assert(N->getNodeId() == NewNode && "Unexpected node state!");
370       // The node continues to live on as part of the NewNode fungus that
371       // grows on top of the useful nodes.  Nothing more needs to be done
372       // with it - move on to the next node.
373       continue;
374     }
375 
376     if (i == NumOperands) {
377       LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
378                  dbgs() << "\n");
379     }
380     }
381 NodeDone:
382 
383     // If we reach here, the node was processed, potentially creating new nodes.
384     // Mark it as processed and add its users to the worklist as appropriate.
385     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
386     N->setNodeId(Processed);
387 
388     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
389          UI != E; ++UI) {
390       SDNode *User = *UI;
391       int NodeId = User->getNodeId();
392 
393       // This node has two options: it can either be a new node or its Node ID
394       // may be a count of the number of operands it has that are not ready.
395       if (NodeId > 0) {
396         User->setNodeId(NodeId-1);
397 
398         // If this was the last use it was waiting on, add it to the ready list.
399         if (NodeId-1 == ReadyToProcess)
400           Worklist.push_back(User);
401         continue;
402       }
403 
404       // If this is an unreachable new node, then ignore it.  If it ever becomes
405       // reachable by being used by a newly created node then it will be handled
406       // by AnalyzeNewNode.
407       if (NodeId == NewNode)
408         continue;
409 
410       // Otherwise, this node is new: this is the first operand of it that
411       // became ready.  Its new NodeId is the number of operands it has minus 1
412       // (as this node is now processed).
413       assert(NodeId == Unanalyzed && "Unknown node ID!");
414       User->setNodeId(User->getNumOperands() - 1);
415 
416       // If the node only has a single operand, it is now ready.
417       if (User->getNumOperands() == 1)
418         Worklist.push_back(User);
419     }
420   }
421 
422 #ifndef EXPENSIVE_CHECKS
423   if (EnableExpensiveChecks)
424 #endif
425     PerformExpensiveChecks();
426 
427   // If the root changed (e.g. it was a dead load) update the root.
428   DAG.setRoot(Dummy.getValue());
429 
430   // Remove dead nodes.  This is important to do for cleanliness but also before
431   // the checking loop below.  Implicit folding by the DAG.getNode operators and
432   // node morphing can cause unreachable nodes to be around with their flags set
433   // to new.
434   DAG.RemoveDeadNodes();
435 
436   // In a debug build, scan all the nodes to make sure we found them all.  This
437   // ensures that there are no cycles and that everything got processed.
438 #ifndef NDEBUG
439   for (SDNode &Node : DAG.allnodes()) {
440     bool Failed = false;
441 
442     // Check that all result types are legal.
443     // A value type is illegal if its TypeAction is not TypeLegal,
444     // and TLI.RegClassForVT does not have a register class for this type.
445     // For example, the x86_64 target has f128 that is not TypeLegal,
446     // to have softened operators, but it also has FR128 register class to
447     // pass and return f128 values. Hence a legalized node can have f128 type.
448     if (!IgnoreNodeResults(&Node))
449       for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
450         if (!isTypeLegal(Node.getValueType(i)) &&
451             !TLI.isTypeLegal(Node.getValueType(i))) {
452           dbgs() << "Result type " << i << " illegal: ";
453           Node.dump(&DAG);
454           Failed = true;
455         }
456 
457     // Check that all operand types are legal.
458     for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
459       if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
460           !isTypeLegal(Node.getOperand(i).getValueType()) &&
461           !TLI.isTypeLegal(Node.getOperand(i).getValueType())) {
462         dbgs() << "Operand type " << i << " illegal: ";
463         Node.getOperand(i).dump(&DAG);
464         Failed = true;
465       }
466 
467     if (Node.getNodeId() != Processed) {
468        if (Node.getNodeId() == NewNode)
469          dbgs() << "New node not analyzed?\n";
470        else if (Node.getNodeId() == Unanalyzed)
471          dbgs() << "Unanalyzed node not noticed?\n";
472        else if (Node.getNodeId() > 0)
473          dbgs() << "Operand not processed?\n";
474        else if (Node.getNodeId() == ReadyToProcess)
475          dbgs() << "Not added to worklist?\n";
476        Failed = true;
477     }
478 
479     if (Failed) {
480       Node.dump(&DAG); dbgs() << "\n";
481       llvm_unreachable(nullptr);
482     }
483   }
484 #endif
485 
486   return Changed;
487 }
488 
489 /// The specified node is the root of a subtree of potentially new nodes.
490 /// Correct any processed operands (this may change the node) and calculate the
491 /// NodeId. If the node itself changes to a processed node, it is not remapped -
492 /// the caller needs to take care of this. Returns the potentially changed node.
AnalyzeNewNode(SDNode * N)493 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
494   // If this was an existing node that is already done, we're done.
495   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
496     return N;
497 
498   // Okay, we know that this node is new.  Recursively walk all of its operands
499   // to see if they are new also.  The depth of this walk is bounded by the size
500   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
501   // about revisiting of nodes.
502   //
503   // As we walk the operands, keep track of the number of nodes that are
504   // processed.  If non-zero, this will become the new nodeid of this node.
505   // Operands may morph when they are analyzed.  If so, the node will be
506   // updated after all operands have been analyzed.  Since this is rare,
507   // the code tries to minimize overhead in the non-morphing case.
508 
509   std::vector<SDValue> NewOps;
510   unsigned NumProcessed = 0;
511   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
512     SDValue OrigOp = N->getOperand(i);
513     SDValue Op = OrigOp;
514 
515     AnalyzeNewValue(Op); // Op may morph.
516 
517     if (Op.getNode()->getNodeId() == Processed)
518       ++NumProcessed;
519 
520     if (!NewOps.empty()) {
521       // Some previous operand changed.  Add this one to the list.
522       NewOps.push_back(Op);
523     } else if (Op != OrigOp) {
524       // This is the first operand to change - add all operands so far.
525       NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
526       NewOps.push_back(Op);
527     }
528   }
529 
530   // Some operands changed - update the node.
531   if (!NewOps.empty()) {
532     SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
533     if (M != N) {
534       // The node morphed into a different node.  Normally for this to happen
535       // the original node would have to be marked NewNode.  However this can
536       // in theory momentarily not be the case while ReplaceValueWith is doing
537       // its stuff.  Mark the original node NewNode to help sanity checking.
538       N->setNodeId(NewNode);
539       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
540         // It morphed into a previously analyzed node - nothing more to do.
541         return M;
542 
543       // It morphed into a different new node.  Do the equivalent of passing
544       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
545       // to remap the operands, since they are the same as the operands we
546       // remapped above.
547       N = M;
548     }
549   }
550 
551   // Calculate the NodeId.
552   N->setNodeId(N->getNumOperands() - NumProcessed);
553   if (N->getNodeId() == ReadyToProcess)
554     Worklist.push_back(N);
555 
556   return N;
557 }
558 
559 /// Call AnalyzeNewNode, updating the node in Val if needed.
560 /// If the node changes to a processed node, then remap it.
AnalyzeNewValue(SDValue & Val)561 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
562   Val.setNode(AnalyzeNewNode(Val.getNode()));
563   if (Val.getNode()->getNodeId() == Processed)
564     // We were passed a processed node, or it morphed into one - remap it.
565     RemapValue(Val);
566 }
567 
568 /// If the specified value was already legalized to another value,
569 /// replace it by that value.
RemapValue(SDValue & V)570 void DAGTypeLegalizer::RemapValue(SDValue &V) {
571   auto Id = getTableId(V);
572   V = getSDValue(Id);
573 }
574 
RemapId(TableId & Id)575 void DAGTypeLegalizer::RemapId(TableId &Id) {
576   auto I = ReplacedValues.find(Id);
577   if (I != ReplacedValues.end()) {
578     assert(Id != I->second && "Id is mapped to itself.");
579     // Use path compression to speed up future lookups if values get multiply
580     // replaced with other values.
581     RemapId(I->second);
582     Id = I->second;
583 
584     // Note that N = IdToValueMap[Id] it is possible to have
585     // N.getNode()->getNodeId() == NewNode at this point because it is possible
586     // for a node to be put in the map before being processed.
587   }
588 }
589 
590 namespace {
591   /// This class is a DAGUpdateListener that listens for updates to nodes and
592   /// recomputes their ready state.
593   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
594     DAGTypeLegalizer &DTL;
595     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
596   public:
NodeUpdateListener(DAGTypeLegalizer & dtl,SmallSetVector<SDNode *,16> & nta)597     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
598                                 SmallSetVector<SDNode*, 16> &nta)
599       : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
600         DTL(dtl), NodesToAnalyze(nta) {}
601 
NodeDeleted(SDNode * N,SDNode * E)602     void NodeDeleted(SDNode *N, SDNode *E) override {
603       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
604              N->getNodeId() != DAGTypeLegalizer::Processed &&
605              "Invalid node ID for RAUW deletion!");
606       // It is possible, though rare, for the deleted node N to occur as a
607       // target in a map, so note the replacement N -> E in ReplacedValues.
608       assert(E && "Node not replaced?");
609       DTL.NoteDeletion(N, E);
610 
611       // In theory the deleted node could also have been scheduled for analysis.
612       // So remove it from the set of nodes which will be analyzed.
613       NodesToAnalyze.remove(N);
614 
615       // In general nothing needs to be done for E, since it didn't change but
616       // only gained new uses.  However N -> E was just added to ReplacedValues,
617       // and the result of a ReplacedValues mapping is not allowed to be marked
618       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
619       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
620         NodesToAnalyze.insert(E);
621     }
622 
NodeUpdated(SDNode * N)623     void NodeUpdated(SDNode *N) override {
624       // Node updates can mean pretty much anything.  It is possible that an
625       // operand was set to something already processed (f.e.) in which case
626       // this node could become ready.  Recompute its flags.
627       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
628              N->getNodeId() != DAGTypeLegalizer::Processed &&
629              "Invalid node ID for RAUW deletion!");
630       N->setNodeId(DAGTypeLegalizer::NewNode);
631       NodesToAnalyze.insert(N);
632     }
633   };
634 }
635 
636 
637 /// The specified value was legalized to the specified other value.
638 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
ReplaceValueWith(SDValue From,SDValue To)639 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
640   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
641 
642   // If expansion produced new nodes, make sure they are properly marked.
643   AnalyzeNewValue(To);
644 
645   // Anything that used the old node should now use the new one.  Note that this
646   // can potentially cause recursive merging.
647   SmallSetVector<SDNode*, 16> NodesToAnalyze;
648   NodeUpdateListener NUL(*this, NodesToAnalyze);
649   do {
650 
651     // The old node may be present in a map like ExpandedIntegers or
652     // PromotedIntegers. Inform maps about the replacement.
653     auto FromId = getTableId(From);
654     auto ToId = getTableId(To);
655 
656     if (FromId != ToId)
657       ReplacedValues[FromId] = ToId;
658     DAG.ReplaceAllUsesOfValueWith(From, To);
659 
660     // Process the list of nodes that need to be reanalyzed.
661     while (!NodesToAnalyze.empty()) {
662       SDNode *N = NodesToAnalyze.back();
663       NodesToAnalyze.pop_back();
664       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
665         // The node was analyzed while reanalyzing an earlier node - it is safe
666         // to skip.  Note that this is not a morphing node - otherwise it would
667         // still be marked NewNode.
668         continue;
669 
670       // Analyze the node's operands and recalculate the node ID.
671       SDNode *M = AnalyzeNewNode(N);
672       if (M != N) {
673         // The node morphed into a different node.  Make everyone use the new
674         // node instead.
675         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
676         assert(N->getNumValues() == M->getNumValues() &&
677                "Node morphing changed the number of results!");
678         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
679           SDValue OldVal(N, i);
680           SDValue NewVal(M, i);
681           if (M->getNodeId() == Processed)
682             RemapValue(NewVal);
683           // OldVal may be a target of the ReplacedValues map which was marked
684           // NewNode to force reanalysis because it was updated.  Ensure that
685           // anything that ReplacedValues mapped to OldVal will now be mapped
686           // all the way to NewVal.
687           auto OldValId = getTableId(OldVal);
688           auto NewValId = getTableId(NewVal);
689           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
690           if (OldValId != NewValId)
691             ReplacedValues[OldValId] = NewValId;
692         }
693         // The original node continues to exist in the DAG, marked NewNode.
694       }
695     }
696     // When recursively update nodes with new nodes, it is possible to have
697     // new uses of From due to CSE. If this happens, replace the new uses of
698     // From with To.
699   } while (!From.use_empty());
700 }
701 
SetPromotedInteger(SDValue Op,SDValue Result)702 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
703   assert(Result.getValueType() ==
704          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
705          "Invalid type for promoted integer");
706   AnalyzeNewValue(Result);
707 
708   auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
709   assert((OpIdEntry == 0) && "Node is already promoted!");
710   OpIdEntry = getTableId(Result);
711 
712   DAG.transferDbgValues(Op, Result);
713 }
714 
SetSoftenedFloat(SDValue Op,SDValue Result)715 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
716   // f128 of x86_64 could be kept in SSE registers,
717   // but sometimes softened to i128.
718   assert((Result.getValueType() ==
719           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) ||
720           Op.getValueType() ==
721           TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
722          "Invalid type for softened float");
723   AnalyzeNewValue(Result);
724 
725   auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
726   // Allow repeated calls to save f128 type nodes
727   // or any node with type that transforms to itself.
728   // Many operations on these types are not softened.
729   assert(((OpIdEntry == 0) ||
730           Op.getValueType() ==
731               TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType())) &&
732          "Node is already converted to integer!");
733   OpIdEntry = getTableId(Result);
734 }
735 
SetPromotedFloat(SDValue Op,SDValue Result)736 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
737   assert(Result.getValueType() ==
738          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
739          "Invalid type for promoted float");
740   AnalyzeNewValue(Result);
741 
742   auto &OpIdEntry = PromotedFloats[getTableId(Op)];
743   assert((OpIdEntry == 0) && "Node is already promoted!");
744   OpIdEntry = getTableId(Result);
745 }
746 
SetScalarizedVector(SDValue Op,SDValue Result)747 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
748   // Note that in some cases vector operation operands may be greater than
749   // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
750   // a constant i8 operand.
751   assert(Result.getValueSizeInBits() >= Op.getScalarValueSizeInBits() &&
752          "Invalid type for scalarized vector");
753   AnalyzeNewValue(Result);
754 
755   auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
756   assert((OpIdEntry == 0) && "Node is already scalarized!");
757   OpIdEntry = getTableId(Result);
758 }
759 
GetExpandedInteger(SDValue Op,SDValue & Lo,SDValue & Hi)760 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
761                                           SDValue &Hi) {
762   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
763   assert((Entry.first != 0) && "Operand isn't expanded");
764   Lo = getSDValue(Entry.first);
765   Hi = getSDValue(Entry.second);
766 }
767 
SetExpandedInteger(SDValue Op,SDValue Lo,SDValue Hi)768 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
769                                           SDValue Hi) {
770   assert(Lo.getValueType() ==
771          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
772          Hi.getValueType() == Lo.getValueType() &&
773          "Invalid type for expanded integer");
774   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
775   AnalyzeNewValue(Lo);
776   AnalyzeNewValue(Hi);
777 
778   // Transfer debug values. Don't invalidate the source debug value until it's
779   // been transferred to the high and low bits.
780   if (DAG.getDataLayout().isBigEndian()) {
781     DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
782     DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
783                           Lo.getValueSizeInBits());
784   } else {
785     DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
786     DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
787                           Hi.getValueSizeInBits());
788   }
789 
790   // Remember that this is the result of the node.
791   std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
792   assert((Entry.first == 0) && "Node already expanded");
793   Entry.first = getTableId(Lo);
794   Entry.second = getTableId(Hi);
795 }
796 
GetExpandedFloat(SDValue Op,SDValue & Lo,SDValue & Hi)797 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
798                                         SDValue &Hi) {
799   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
800   assert((Entry.first != 0) && "Operand isn't expanded");
801   Lo = getSDValue(Entry.first);
802   Hi = getSDValue(Entry.second);
803 }
804 
SetExpandedFloat(SDValue Op,SDValue Lo,SDValue Hi)805 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
806                                         SDValue Hi) {
807   assert(Lo.getValueType() ==
808          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
809          Hi.getValueType() == Lo.getValueType() &&
810          "Invalid type for expanded float");
811   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
812   AnalyzeNewValue(Lo);
813   AnalyzeNewValue(Hi);
814 
815   std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
816   assert((Entry.first == 0) && "Node already expanded");
817   Entry.first = getTableId(Lo);
818   Entry.second = getTableId(Hi);
819 }
820 
GetSplitVector(SDValue Op,SDValue & Lo,SDValue & Hi)821 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
822                                       SDValue &Hi) {
823   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
824   Lo = getSDValue(Entry.first);
825   Hi = getSDValue(Entry.second);
826   assert(Lo.getNode() && "Operand isn't split");
827   ;
828 }
829 
SetSplitVector(SDValue Op,SDValue Lo,SDValue Hi)830 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
831                                       SDValue Hi) {
832   assert(Lo.getValueType().getVectorElementType() ==
833          Op.getValueType().getVectorElementType() &&
834          2*Lo.getValueType().getVectorNumElements() ==
835          Op.getValueType().getVectorNumElements() &&
836          Hi.getValueType() == Lo.getValueType() &&
837          "Invalid type for split vector");
838   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
839   AnalyzeNewValue(Lo);
840   AnalyzeNewValue(Hi);
841 
842   // Remember that this is the result of the node.
843   std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
844   assert((Entry.first == 0) && "Node already split");
845   Entry.first = getTableId(Lo);
846   Entry.second = getTableId(Hi);
847 }
848 
SetWidenedVector(SDValue Op,SDValue Result)849 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
850   assert(Result.getValueType() ==
851          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
852          "Invalid type for widened vector");
853   AnalyzeNewValue(Result);
854 
855   auto &OpIdEntry = WidenedVectors[getTableId(Op)];
856   assert((OpIdEntry == 0) && "Node already widened!");
857   OpIdEntry = getTableId(Result);
858 }
859 
860 
861 //===----------------------------------------------------------------------===//
862 // Utilities.
863 //===----------------------------------------------------------------------===//
864 
865 /// Convert to an integer of the same size.
BitConvertToInteger(SDValue Op)866 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
867   unsigned BitWidth = Op.getValueSizeInBits();
868   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
869                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
870 }
871 
872 /// Convert to a vector of integers of the same size.
BitConvertVectorToIntegerVector(SDValue Op)873 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
874   assert(Op.getValueType().isVector() && "Only applies to vectors!");
875   unsigned EltWidth = Op.getScalarValueSizeInBits();
876   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
877   auto EltCnt = Op.getValueType().getVectorElementCount();
878   return DAG.getNode(ISD::BITCAST, SDLoc(Op),
879                      EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
880 }
881 
CreateStackStoreLoad(SDValue Op,EVT DestVT)882 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
883                                                EVT DestVT) {
884   SDLoc dl(Op);
885   // Create the stack frame object.  Make sure it is aligned for both
886   // the source and destination types.
887   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
888   // Emit a store to the stack slot.
889   SDValue Store =
890       DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr, MachinePointerInfo());
891   // Result is a load from the stack slot.
892   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo());
893 }
894 
895 /// Replace the node's results with custom code provided by the target and
896 /// return "true", or do nothing and return "false".
897 /// The last parameter is FALSE if we are dealing with a node with legal
898 /// result types and illegal operand. The second parameter denotes the type of
899 /// illegal OperandNo in that case.
900 /// The last parameter being TRUE means we are dealing with a
901 /// node with illegal result types. The second parameter denotes the type of
902 /// illegal ResNo in that case.
CustomLowerNode(SDNode * N,EVT VT,bool LegalizeResult)903 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
904   // See if the target wants to custom lower this node.
905   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
906     return false;
907 
908   SmallVector<SDValue, 8> Results;
909   if (LegalizeResult)
910     TLI.ReplaceNodeResults(N, Results, DAG);
911   else
912     TLI.LowerOperationWrapper(N, Results, DAG);
913 
914   if (Results.empty())
915     // The target didn't want to custom lower it after all.
916     return false;
917 
918   // When called from DAGTypeLegalizer::ExpandIntegerResult, we might need to
919   // provide the same kind of custom splitting behavior.
920   if (Results.size() == N->getNumValues() + 1 && LegalizeResult) {
921     // We've legalized a return type by splitting it. If there is a chain,
922     // replace that too.
923     SetExpandedInteger(SDValue(N, 0), Results[0], Results[1]);
924     if (N->getNumValues() > 1)
925       ReplaceValueWith(SDValue(N, 1), Results[2]);
926     return true;
927   }
928 
929   // Make everything that once used N's values now use those in Results instead.
930   assert(Results.size() == N->getNumValues() &&
931          "Custom lowering returned the wrong number of results!");
932   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
933     ReplaceValueWith(SDValue(N, i), Results[i]);
934   }
935   return true;
936 }
937 
938 
939 /// Widen the node's results with custom code provided by the target and return
940 /// "true", or do nothing and return "false".
CustomWidenLowerNode(SDNode * N,EVT VT)941 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
942   // See if the target wants to custom lower this node.
943   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
944     return false;
945 
946   SmallVector<SDValue, 8> Results;
947   TLI.ReplaceNodeResults(N, Results, DAG);
948 
949   if (Results.empty())
950     // The target didn't want to custom widen lower its result after all.
951     return false;
952 
953   // Update the widening map.
954   assert(Results.size() == N->getNumValues() &&
955          "Custom lowering returned the wrong number of results!");
956   for (unsigned i = 0, e = Results.size(); i != e; ++i) {
957     // If this is a chain output just replace it.
958     if (Results[i].getValueType() == MVT::Other)
959       ReplaceValueWith(SDValue(N, i), Results[i]);
960     else
961       SetWidenedVector(SDValue(N, i), Results[i]);
962   }
963   return true;
964 }
965 
DisintegrateMERGE_VALUES(SDNode * N,unsigned ResNo)966 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
967   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
968     if (i != ResNo)
969       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
970   return SDValue(N->getOperand(ResNo));
971 }
972 
973 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
974 /// given value.
GetPairElements(SDValue Pair,SDValue & Lo,SDValue & Hi)975 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
976                                        SDValue &Lo, SDValue &Hi) {
977   SDLoc dl(Pair);
978   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
979   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
980                    DAG.getIntPtrConstant(0, dl));
981   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
982                    DAG.getIntPtrConstant(1, dl));
983 }
984 
985 /// Build an integer with low bits Lo and high bits Hi.
JoinIntegers(SDValue Lo,SDValue Hi)986 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
987   // Arbitrarily use dlHi for result SDLoc
988   SDLoc dlHi(Hi);
989   SDLoc dlLo(Lo);
990   EVT LVT = Lo.getValueType();
991   EVT HVT = Hi.getValueType();
992   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
993                               LVT.getSizeInBits() + HVT.getSizeInBits());
994 
995   EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
996   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
997   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
998   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
999                    DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1000   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1001 }
1002 
1003 /// Convert the node into a libcall with the same prototype.
LibCallify(RTLIB::Libcall LC,SDNode * N,bool isSigned)1004 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
1005                                      bool isSigned) {
1006   unsigned NumOps = N->getNumOperands();
1007   SDLoc dl(N);
1008   if (NumOps == 0) {
1009     return TLI.makeLibCall(DAG, LC, N->getValueType(0), None, isSigned,
1010                            dl).first;
1011   } else if (NumOps == 1) {
1012     SDValue Op = N->getOperand(0);
1013     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Op, isSigned,
1014                            dl).first;
1015   } else if (NumOps == 2) {
1016     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
1017     return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned,
1018                            dl).first;
1019   }
1020   SmallVector<SDValue, 8> Ops(NumOps);
1021   for (unsigned i = 0; i < NumOps; ++i)
1022     Ops[i] = N->getOperand(i);
1023 
1024   return TLI.makeLibCall(DAG, LC, N->getValueType(0), Ops, isSigned, dl).first;
1025 }
1026 
1027 /// Expand a node into a call to a libcall. Similar to ExpandLibCall except that
1028 /// the first operand is the in-chain.
1029 std::pair<SDValue, SDValue>
ExpandChainLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)1030 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC, SDNode *Node,
1031                                      bool isSigned) {
1032   SDValue InChain = Node->getOperand(0);
1033 
1034   TargetLowering::ArgListTy Args;
1035   TargetLowering::ArgListEntry Entry;
1036   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1037     EVT ArgVT = Node->getOperand(i).getValueType();
1038     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1039     Entry.Node = Node->getOperand(i);
1040     Entry.Ty = ArgTy;
1041     Entry.IsSExt = isSigned;
1042     Entry.IsZExt = !isSigned;
1043     Args.push_back(Entry);
1044   }
1045   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1046                                          TLI.getPointerTy(DAG.getDataLayout()));
1047 
1048   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1049 
1050   TargetLowering::CallLoweringInfo CLI(DAG);
1051   CLI.setDebugLoc(SDLoc(Node))
1052       .setChain(InChain)
1053       .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
1054                     std::move(Args))
1055       .setSExtResult(isSigned)
1056       .setZExtResult(!isSigned);
1057 
1058   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1059 
1060   return CallInfo;
1061 }
1062 
1063 /// Promote the given target boolean to a target boolean of the given type.
1064 /// A target boolean is an integer value, not necessarily of type i1, the bits
1065 /// of which conform to getBooleanContents.
1066 ///
1067 /// ValVT is the type of values that produced the boolean.
PromoteTargetBoolean(SDValue Bool,EVT ValVT)1068 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1069   SDLoc dl(Bool);
1070   EVT BoolVT = getSetCCResultType(ValVT);
1071   ISD::NodeType ExtendCode =
1072       TargetLowering::getExtendForContent(TLI.getBooleanContents(ValVT));
1073   return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1074 }
1075 
1076 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
SplitInteger(SDValue Op,EVT LoVT,EVT HiVT,SDValue & Lo,SDValue & Hi)1077 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1078                                     EVT LoVT, EVT HiVT,
1079                                     SDValue &Lo, SDValue &Hi) {
1080   SDLoc dl(Op);
1081   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1082          Op.getValueSizeInBits() && "Invalid integer splitting!");
1083   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1084   unsigned ReqShiftAmountInBits =
1085       Log2_32_Ceil(Op.getValueType().getSizeInBits());
1086   MVT ShiftAmountTy =
1087       TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1088   if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1089     ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1090   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1091                    DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1092   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1093 }
1094 
1095 /// Return the lower and upper halves of Op's bits in a value type half the
1096 /// size of Op's.
SplitInteger(SDValue Op,SDValue & Lo,SDValue & Hi)1097 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1098                                     SDValue &Lo, SDValue &Hi) {
1099   EVT HalfVT =
1100       EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1101   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1102 }
1103 
1104 
1105 //===----------------------------------------------------------------------===//
1106 //  Entry Point
1107 //===----------------------------------------------------------------------===//
1108 
1109 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1110 /// natively supported by the target. Returns "true" if it made any changes.
1111 ///
1112 /// Note that this is an involved process that may invalidate pointers into
1113 /// the graph.
LegalizeTypes()1114 bool SelectionDAG::LegalizeTypes() {
1115   return DAGTypeLegalizer(*this).run();
1116 }
1117