1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/CodeGen/ISDOpcodes.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineJumpTableInfo.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/RuntimeLibcalls.h"
26 #include "llvm/CodeGen/SelectionDAG.h"
27 #include "llvm/CodeGen/SelectionDAGNodes.h"
28 #include "llvm/CodeGen/TargetFrameLowering.h"
29 #include "llvm/CodeGen/TargetLowering.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/ValueTypes.h"
32 #include "llvm/IR/CallingConv.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MachineValueType.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstdint>
51 #include <tuple>
52 #include <utility>
53
54 using namespace llvm;
55
56 #define DEBUG_TYPE "legalizedag"
57
58 namespace {
59
60 /// Keeps track of state when getting the sign of a floating-point value as an
61 /// integer.
62 struct FloatSignAsInt {
63 EVT FloatVT;
64 SDValue Chain;
65 SDValue FloatPtr;
66 SDValue IntPtr;
67 MachinePointerInfo IntPointerInfo;
68 MachinePointerInfo FloatPointerInfo;
69 SDValue IntValue;
70 APInt SignMask;
71 uint8_t SignBit;
72 };
73
74 //===----------------------------------------------------------------------===//
75 /// This takes an arbitrary SelectionDAG as input and
76 /// hacks on it until the target machine can handle it. This involves
77 /// eliminating value sizes the machine cannot handle (promoting small sizes to
78 /// large sizes or splitting up large values into small values) as well as
79 /// eliminating operations the machine cannot handle.
80 ///
81 /// This code also does a small amount of optimization and recognition of idioms
82 /// as part of its processing. For example, if a target does not support a
83 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
84 /// will attempt merge setcc and brc instructions into brcc's.
85 class SelectionDAGLegalize {
86 const TargetMachine &TM;
87 const TargetLowering &TLI;
88 SelectionDAG &DAG;
89
90 /// The set of nodes which have already been legalized. We hold a
91 /// reference to it in order to update as necessary on node deletion.
92 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93
94 /// A set of all the nodes updated during legalization.
95 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96
getSetCCResultType(EVT VT) const97 EVT getSetCCResultType(EVT VT) const {
98 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
99 }
100
101 // Libcall insertion helpers.
102
103 public:
SelectionDAGLegalize(SelectionDAG & DAG,SmallPtrSetImpl<SDNode * > & LegalizedNodes,SmallSetVector<SDNode *,16> * UpdatedNodes=nullptr)104 SelectionDAGLegalize(SelectionDAG &DAG,
105 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
106 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
107 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
108 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109
110 /// Legalizes the given operation.
111 void LegalizeOp(SDNode *Node);
112
113 private:
114 SDValue OptimizeFloatStore(StoreSDNode *ST);
115
116 void LegalizeLoadOps(SDNode *Node);
117 void LegalizeStoreOps(SDNode *Node);
118
119 /// Some targets cannot handle a variable
120 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
121 /// is necessary to spill the vector being inserted into to memory, perform
122 /// the insert there, and then read the result back.
123 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
124 const SDLoc &dl);
125 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
126 const SDLoc &dl);
127
128 /// Return a vector shuffle operation which
129 /// performs the same shuffe in terms of order or result bytes, but on a type
130 /// whose vector element type is narrower than the original shuffle type.
131 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
132 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
133 SDValue N1, SDValue N2,
134 ArrayRef<int> Mask) const;
135
136 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
137 bool &NeedInvert, const SDLoc &dl);
138
139 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
140 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
141 unsigned NumOps, bool isSigned, const SDLoc &dl);
142
143 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
144 SDNode *Node, bool isSigned);
145 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
146 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
147 RTLIB::Libcall Call_F128,
148 RTLIB::Libcall Call_PPCF128);
149 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
150 RTLIB::Libcall Call_I8,
151 RTLIB::Libcall Call_I16,
152 RTLIB::Libcall Call_I32,
153 RTLIB::Libcall Call_I64,
154 RTLIB::Libcall Call_I128);
155 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
156 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157
158 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
159 const SDLoc &dl);
160 SDValue ExpandBUILD_VECTOR(SDNode *Node);
161 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
162 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
163 SmallVectorImpl<SDValue> &Results);
164 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
165 SDValue Value) const;
166 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
167 SDValue NewIntValue) const;
168 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
169 SDValue ExpandFABS(SDNode *Node) const;
170 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT,
171 const SDLoc &dl);
172 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
173 const SDLoc &dl);
174 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
175 const SDLoc &dl);
176
177 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
178 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
179
180 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
181 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
182 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
183
184 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
185 SDValue ExpandConstant(ConstantSDNode *CP);
186
187 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
188 bool ExpandNode(SDNode *Node);
189 void ConvertNodeToLibcall(SDNode *Node);
190 void PromoteNode(SDNode *Node);
191
192 public:
193 // Node replacement helpers
194
ReplacedNode(SDNode * N)195 void ReplacedNode(SDNode *N) {
196 LegalizedNodes.erase(N);
197 if (UpdatedNodes)
198 UpdatedNodes->insert(N);
199 }
200
ReplaceNode(SDNode * Old,SDNode * New)201 void ReplaceNode(SDNode *Old, SDNode *New) {
202 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
203 dbgs() << " with: "; New->dump(&DAG));
204
205 assert(Old->getNumValues() == New->getNumValues() &&
206 "Replacing one node with another that produces a different number "
207 "of values!");
208 DAG.ReplaceAllUsesWith(Old, New);
209 if (UpdatedNodes)
210 UpdatedNodes->insert(New);
211 ReplacedNode(Old);
212 }
213
ReplaceNode(SDValue Old,SDValue New)214 void ReplaceNode(SDValue Old, SDValue New) {
215 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
216 dbgs() << " with: "; New->dump(&DAG));
217
218 DAG.ReplaceAllUsesWith(Old, New);
219 if (UpdatedNodes)
220 UpdatedNodes->insert(New.getNode());
221 ReplacedNode(Old.getNode());
222 }
223
ReplaceNode(SDNode * Old,const SDValue * New)224 void ReplaceNode(SDNode *Old, const SDValue *New) {
225 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
226
227 DAG.ReplaceAllUsesWith(Old, New);
228 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
229 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
230 New[i]->dump(&DAG));
231 if (UpdatedNodes)
232 UpdatedNodes->insert(New[i].getNode());
233 }
234 ReplacedNode(Old);
235 }
236 };
237
238 } // end anonymous namespace
239
240 /// Return a vector shuffle operation which
241 /// performs the same shuffle in terms of order or result bytes, but on a type
242 /// whose vector element type is narrower than the original shuffle type.
243 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
ShuffleWithNarrowerEltType(EVT NVT,EVT VT,const SDLoc & dl,SDValue N1,SDValue N2,ArrayRef<int> Mask) const244 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
245 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
246 ArrayRef<int> Mask) const {
247 unsigned NumMaskElts = VT.getVectorNumElements();
248 unsigned NumDestElts = NVT.getVectorNumElements();
249 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
250
251 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
252
253 if (NumEltsGrowth == 1)
254 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
255
256 SmallVector<int, 8> NewMask;
257 for (unsigned i = 0; i != NumMaskElts; ++i) {
258 int Idx = Mask[i];
259 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
260 if (Idx < 0)
261 NewMask.push_back(-1);
262 else
263 NewMask.push_back(Idx * NumEltsGrowth + j);
264 }
265 }
266 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
267 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
268 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
269 }
270
271 /// Expands the ConstantFP node to an integer constant or
272 /// a load from the constant pool.
273 SDValue
ExpandConstantFP(ConstantFPSDNode * CFP,bool UseCP)274 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
275 bool Extend = false;
276 SDLoc dl(CFP);
277
278 // If a FP immediate is precise when represented as a float and if the
279 // target can do an extending load from float to double, we put it into
280 // the constant pool as a float, even if it's is statically typed as a
281 // double. This shrinks FP constants and canonicalizes them for targets where
282 // an FP extending load is the same cost as a normal load (such as on the x87
283 // fp stack or PPC FP unit).
284 EVT VT = CFP->getValueType(0);
285 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
286 if (!UseCP) {
287 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
288 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
289 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
290 }
291
292 APFloat APF = CFP->getValueAPF();
293 EVT OrigVT = VT;
294 EVT SVT = VT;
295
296 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
297 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
298 if (!APF.isSignaling()) {
299 while (SVT != MVT::f32 && SVT != MVT::f16) {
300 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
301 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
302 // Only do this if the target has a native EXTLOAD instruction from
303 // smaller type.
304 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
305 TLI.ShouldShrinkFPConstant(OrigVT)) {
306 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
307 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
308 VT = SVT;
309 Extend = true;
310 }
311 }
312 }
313
314 SDValue CPIdx =
315 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
316 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
317 if (Extend) {
318 SDValue Result = DAG.getExtLoad(
319 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
320 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
321 Alignment);
322 return Result;
323 }
324 SDValue Result = DAG.getLoad(
325 OrigVT, dl, DAG.getEntryNode(), CPIdx,
326 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
327 return Result;
328 }
329
330 /// Expands the Constant node to a load from the constant pool.
ExpandConstant(ConstantSDNode * CP)331 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
332 SDLoc dl(CP);
333 EVT VT = CP->getValueType(0);
334 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
335 TLI.getPointerTy(DAG.getDataLayout()));
336 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
337 SDValue Result = DAG.getLoad(
338 VT, dl, DAG.getEntryNode(), CPIdx,
339 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
340 return Result;
341 }
342
343 /// Some target cannot handle a variable insertion index for the
344 /// INSERT_VECTOR_ELT instruction. In this case, it
345 /// is necessary to spill the vector being inserted into to memory, perform
346 /// the insert there, and then read the result back.
PerformInsertVectorEltInMemory(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)347 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
348 SDValue Val,
349 SDValue Idx,
350 const SDLoc &dl) {
351 SDValue Tmp1 = Vec;
352 SDValue Tmp2 = Val;
353 SDValue Tmp3 = Idx;
354
355 // If the target doesn't support this, we have to spill the input vector
356 // to a temporary stack slot, update the element, then reload it. This is
357 // badness. We could also load the value into a vector register (either
358 // with a "move to register" or "extload into register" instruction, then
359 // permute it into place, if the idx is a constant and if the idx is
360 // supported by the target.
361 EVT VT = Tmp1.getValueType();
362 EVT EltVT = VT.getVectorElementType();
363 SDValue StackPtr = DAG.CreateStackTemporary(VT);
364
365 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
366
367 // Store the vector.
368 SDValue Ch = DAG.getStore(
369 DAG.getEntryNode(), dl, Tmp1, StackPtr,
370 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
371
372 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
373
374 // Store the scalar value.
375 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
376 // Load the updated vector.
377 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
378 DAG.getMachineFunction(), SPFI));
379 }
380
ExpandINSERT_VECTOR_ELT(SDValue Vec,SDValue Val,SDValue Idx,const SDLoc & dl)381 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
382 SDValue Idx,
383 const SDLoc &dl) {
384 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
385 // SCALAR_TO_VECTOR requires that the type of the value being inserted
386 // match the element type of the vector being created, except for
387 // integers in which case the inserted value can be over width.
388 EVT EltVT = Vec.getValueType().getVectorElementType();
389 if (Val.getValueType() == EltVT ||
390 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
391 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
392 Vec.getValueType(), Val);
393
394 unsigned NumElts = Vec.getValueType().getVectorNumElements();
395 // We generate a shuffle of InVec and ScVec, so the shuffle mask
396 // should be 0,1,2,3,4,5... with the appropriate element replaced with
397 // elt 0 of the RHS.
398 SmallVector<int, 8> ShufOps;
399 for (unsigned i = 0; i != NumElts; ++i)
400 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
401
402 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
403 }
404 }
405 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
406 }
407
OptimizeFloatStore(StoreSDNode * ST)408 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
409 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
410 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
411 // FIXME: We shouldn't do this for TargetConstantFP's.
412 // FIXME: move this to the DAG Combiner! Note that we can't regress due
413 // to phase ordering between legalized code and the dag combiner. This
414 // probably means that we need to integrate dag combiner and legalizer
415 // together.
416 // We generally can't do this one for long doubles.
417 SDValue Chain = ST->getChain();
418 SDValue Ptr = ST->getBasePtr();
419 unsigned Alignment = ST->getAlignment();
420 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
421 AAMDNodes AAInfo = ST->getAAInfo();
422 SDLoc dl(ST);
423 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
424 if (CFP->getValueType(0) == MVT::f32 &&
425 TLI.isTypeLegal(MVT::i32)) {
426 SDValue Con = DAG.getConstant(CFP->getValueAPF().
427 bitcastToAPInt().zextOrTrunc(32),
428 SDLoc(CFP), MVT::i32);
429 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
430 MMOFlags, AAInfo);
431 }
432
433 if (CFP->getValueType(0) == MVT::f64) {
434 // If this target supports 64-bit registers, do a single 64-bit store.
435 if (TLI.isTypeLegal(MVT::i64)) {
436 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
437 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
438 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
439 Alignment, MMOFlags, AAInfo);
440 }
441
442 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
443 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
444 // stores. If the target supports neither 32- nor 64-bits, this
445 // xform is certainly not worth it.
446 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
447 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
448 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
449 if (DAG.getDataLayout().isBigEndian())
450 std::swap(Lo, Hi);
451
452 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
453 MMOFlags, AAInfo);
454 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
455 DAG.getConstant(4, dl, Ptr.getValueType()));
456 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
457 ST->getPointerInfo().getWithOffset(4),
458 MinAlign(Alignment, 4U), MMOFlags, AAInfo);
459
460 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
461 }
462 }
463 }
464 return SDValue(nullptr, 0);
465 }
466
LegalizeStoreOps(SDNode * Node)467 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
468 StoreSDNode *ST = cast<StoreSDNode>(Node);
469 SDValue Chain = ST->getChain();
470 SDValue Ptr = ST->getBasePtr();
471 SDLoc dl(Node);
472
473 unsigned Alignment = ST->getAlignment();
474 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
475 AAMDNodes AAInfo = ST->getAAInfo();
476
477 if (!ST->isTruncatingStore()) {
478 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
479 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
480 ReplaceNode(ST, OptStore);
481 return;
482 }
483
484 SDValue Value = ST->getValue();
485 MVT VT = Value.getSimpleValueType();
486 switch (TLI.getOperationAction(ISD::STORE, VT)) {
487 default: llvm_unreachable("This action is not supported yet!");
488 case TargetLowering::Legal: {
489 // If this is an unaligned store and the target doesn't support it,
490 // expand it.
491 EVT MemVT = ST->getMemoryVT();
492 unsigned AS = ST->getAddressSpace();
493 unsigned Align = ST->getAlignment();
494 const DataLayout &DL = DAG.getDataLayout();
495 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
496 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
497 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
498 ReplaceNode(SDValue(ST, 0), Result);
499 } else
500 LLVM_DEBUG(dbgs() << "Legal store\n");
501 break;
502 }
503 case TargetLowering::Custom: {
504 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
505 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
506 if (Res && Res != SDValue(Node, 0))
507 ReplaceNode(SDValue(Node, 0), Res);
508 return;
509 }
510 case TargetLowering::Promote: {
511 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
512 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
513 "Can only promote stores to same size type");
514 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
515 SDValue Result =
516 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
517 Alignment, MMOFlags, AAInfo);
518 ReplaceNode(SDValue(Node, 0), Result);
519 break;
520 }
521 }
522 return;
523 }
524
525 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
526 SDValue Value = ST->getValue();
527 EVT StVT = ST->getMemoryVT();
528 unsigned StWidth = StVT.getSizeInBits();
529 auto &DL = DAG.getDataLayout();
530
531 if (StWidth != StVT.getStoreSizeInBits()) {
532 // Promote to a byte-sized store with upper bits zero if not
533 // storing an integral number of bytes. For example, promote
534 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
535 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
536 StVT.getStoreSizeInBits());
537 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
538 SDValue Result =
539 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
540 Alignment, MMOFlags, AAInfo);
541 ReplaceNode(SDValue(Node, 0), Result);
542 } else if (StWidth & (StWidth - 1)) {
543 // If not storing a power-of-2 number of bits, expand as two stores.
544 assert(!StVT.isVector() && "Unsupported truncstore!");
545 unsigned RoundWidth = 1 << Log2_32(StWidth);
546 assert(RoundWidth < StWidth);
547 unsigned ExtraWidth = StWidth - RoundWidth;
548 assert(ExtraWidth < RoundWidth);
549 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
550 "Store size not an integral number of bytes!");
551 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
552 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
553 SDValue Lo, Hi;
554 unsigned IncrementSize;
555
556 if (DL.isLittleEndian()) {
557 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
558 // Store the bottom RoundWidth bits.
559 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
560 RoundVT, Alignment, MMOFlags, AAInfo);
561
562 // Store the remaining ExtraWidth bits.
563 IncrementSize = RoundWidth / 8;
564 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
565 DAG.getConstant(IncrementSize, dl,
566 Ptr.getValueType()));
567 Hi = DAG.getNode(
568 ISD::SRL, dl, Value.getValueType(), Value,
569 DAG.getConstant(RoundWidth, dl,
570 TLI.getShiftAmountTy(Value.getValueType(), DL)));
571 Hi = DAG.getTruncStore(
572 Chain, dl, Hi, Ptr,
573 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
574 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
575 } else {
576 // Big endian - avoid unaligned stores.
577 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
578 // Store the top RoundWidth bits.
579 Hi = DAG.getNode(
580 ISD::SRL, dl, Value.getValueType(), Value,
581 DAG.getConstant(ExtraWidth, dl,
582 TLI.getShiftAmountTy(Value.getValueType(), DL)));
583 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
584 RoundVT, Alignment, MMOFlags, AAInfo);
585
586 // Store the remaining ExtraWidth bits.
587 IncrementSize = RoundWidth / 8;
588 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
589 DAG.getConstant(IncrementSize, dl,
590 Ptr.getValueType()));
591 Lo = DAG.getTruncStore(
592 Chain, dl, Value, Ptr,
593 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
594 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
595 }
596
597 // The order of the stores doesn't matter.
598 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
599 ReplaceNode(SDValue(Node, 0), Result);
600 } else {
601 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
602 default: llvm_unreachable("This action is not supported yet!");
603 case TargetLowering::Legal: {
604 EVT MemVT = ST->getMemoryVT();
605 unsigned AS = ST->getAddressSpace();
606 unsigned Align = ST->getAlignment();
607 // If this is an unaligned store and the target doesn't support it,
608 // expand it.
609 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
610 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
611 ReplaceNode(SDValue(ST, 0), Result);
612 }
613 break;
614 }
615 case TargetLowering::Custom: {
616 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
617 if (Res && Res != SDValue(Node, 0))
618 ReplaceNode(SDValue(Node, 0), Res);
619 return;
620 }
621 case TargetLowering::Expand:
622 assert(!StVT.isVector() &&
623 "Vector Stores are handled in LegalizeVectorOps");
624
625 SDValue Result;
626
627 // TRUNCSTORE:i16 i32 -> STORE i16
628 if (TLI.isTypeLegal(StVT)) {
629 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
630 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
631 Alignment, MMOFlags, AAInfo);
632 } else {
633 // The in-memory type isn't legal. Truncate to the type it would promote
634 // to, and then do a truncstore.
635 Value = DAG.getNode(ISD::TRUNCATE, dl,
636 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
637 Value);
638 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
639 StVT, Alignment, MMOFlags, AAInfo);
640 }
641
642 ReplaceNode(SDValue(Node, 0), Result);
643 break;
644 }
645 }
646 }
647
LegalizeLoadOps(SDNode * Node)648 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
649 LoadSDNode *LD = cast<LoadSDNode>(Node);
650 SDValue Chain = LD->getChain(); // The chain.
651 SDValue Ptr = LD->getBasePtr(); // The base pointer.
652 SDValue Value; // The value returned by the load op.
653 SDLoc dl(Node);
654
655 ISD::LoadExtType ExtType = LD->getExtensionType();
656 if (ExtType == ISD::NON_EXTLOAD) {
657 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
658 MVT VT = Node->getSimpleValueType(0);
659 SDValue RVal = SDValue(Node, 0);
660 SDValue RChain = SDValue(Node, 1);
661
662 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
663 default: llvm_unreachable("This action is not supported yet!");
664 case TargetLowering::Legal: {
665 EVT MemVT = LD->getMemoryVT();
666 unsigned AS = LD->getAddressSpace();
667 unsigned Align = LD->getAlignment();
668 const DataLayout &DL = DAG.getDataLayout();
669 // If this is an unaligned load and the target doesn't support it,
670 // expand it.
671 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
672 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
673 }
674 break;
675 }
676 case TargetLowering::Custom:
677 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
678 RVal = Res;
679 RChain = Res.getValue(1);
680 }
681 break;
682
683 case TargetLowering::Promote: {
684 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
685 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
686 "Can only promote loads to same size type");
687
688 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
689 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
690 RChain = Res.getValue(1);
691 break;
692 }
693 }
694 if (RChain.getNode() != Node) {
695 assert(RVal.getNode() != Node && "Load must be completely replaced");
696 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
697 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
698 if (UpdatedNodes) {
699 UpdatedNodes->insert(RVal.getNode());
700 UpdatedNodes->insert(RChain.getNode());
701 }
702 ReplacedNode(Node);
703 }
704 return;
705 }
706
707 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
708 EVT SrcVT = LD->getMemoryVT();
709 unsigned SrcWidth = SrcVT.getSizeInBits();
710 unsigned Alignment = LD->getAlignment();
711 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
712 AAMDNodes AAInfo = LD->getAAInfo();
713
714 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
715 // Some targets pretend to have an i1 loading operation, and actually
716 // load an i8. This trick is correct for ZEXTLOAD because the top 7
717 // bits are guaranteed to be zero; it helps the optimizers understand
718 // that these bits are zero. It is also useful for EXTLOAD, since it
719 // tells the optimizers that those bits are undefined. It would be
720 // nice to have an effective generic way of getting these benefits...
721 // Until such a way is found, don't insist on promoting i1 here.
722 (SrcVT != MVT::i1 ||
723 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
724 TargetLowering::Promote)) {
725 // Promote to a byte-sized load if not loading an integral number of
726 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
727 unsigned NewWidth = SrcVT.getStoreSizeInBits();
728 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
729 SDValue Ch;
730
731 // The extra bits are guaranteed to be zero, since we stored them that
732 // way. A zext load from NVT thus automatically gives zext from SrcVT.
733
734 ISD::LoadExtType NewExtType =
735 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
736
737 SDValue Result =
738 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
739 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
740
741 Ch = Result.getValue(1); // The chain.
742
743 if (ExtType == ISD::SEXTLOAD)
744 // Having the top bits zero doesn't help when sign extending.
745 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
746 Result.getValueType(),
747 Result, DAG.getValueType(SrcVT));
748 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
749 // All the top bits are guaranteed to be zero - inform the optimizers.
750 Result = DAG.getNode(ISD::AssertZext, dl,
751 Result.getValueType(), Result,
752 DAG.getValueType(SrcVT));
753
754 Value = Result;
755 Chain = Ch;
756 } else if (SrcWidth & (SrcWidth - 1)) {
757 // If not loading a power-of-2 number of bits, expand as two loads.
758 assert(!SrcVT.isVector() && "Unsupported extload!");
759 unsigned RoundWidth = 1 << Log2_32(SrcWidth);
760 assert(RoundWidth < SrcWidth);
761 unsigned ExtraWidth = SrcWidth - RoundWidth;
762 assert(ExtraWidth < RoundWidth);
763 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
764 "Load size not an integral number of bytes!");
765 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
766 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
767 SDValue Lo, Hi, Ch;
768 unsigned IncrementSize;
769 auto &DL = DAG.getDataLayout();
770
771 if (DL.isLittleEndian()) {
772 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
773 // Load the bottom RoundWidth bits.
774 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
775 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
776 AAInfo);
777
778 // Load the remaining ExtraWidth bits.
779 IncrementSize = RoundWidth / 8;
780 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
781 DAG.getConstant(IncrementSize, dl,
782 Ptr.getValueType()));
783 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
784 LD->getPointerInfo().getWithOffset(IncrementSize),
785 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
786 AAInfo);
787
788 // Build a factor node to remember that this load is independent of
789 // the other one.
790 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
791 Hi.getValue(1));
792
793 // Move the top bits to the right place.
794 Hi = DAG.getNode(
795 ISD::SHL, dl, Hi.getValueType(), Hi,
796 DAG.getConstant(RoundWidth, dl,
797 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
798
799 // Join the hi and lo parts.
800 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
801 } else {
802 // Big endian - avoid unaligned loads.
803 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
804 // Load the top RoundWidth bits.
805 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
806 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
807 AAInfo);
808
809 // Load the remaining ExtraWidth bits.
810 IncrementSize = RoundWidth / 8;
811 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
812 DAG.getConstant(IncrementSize, dl,
813 Ptr.getValueType()));
814 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
815 LD->getPointerInfo().getWithOffset(IncrementSize),
816 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
817 AAInfo);
818
819 // Build a factor node to remember that this load is independent of
820 // the other one.
821 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
822 Hi.getValue(1));
823
824 // Move the top bits to the right place.
825 Hi = DAG.getNode(
826 ISD::SHL, dl, Hi.getValueType(), Hi,
827 DAG.getConstant(ExtraWidth, dl,
828 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
829
830 // Join the hi and lo parts.
831 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
832 }
833
834 Chain = Ch;
835 } else {
836 bool isCustom = false;
837 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
838 SrcVT.getSimpleVT())) {
839 default: llvm_unreachable("This action is not supported yet!");
840 case TargetLowering::Custom:
841 isCustom = true;
842 LLVM_FALLTHROUGH;
843 case TargetLowering::Legal:
844 Value = SDValue(Node, 0);
845 Chain = SDValue(Node, 1);
846
847 if (isCustom) {
848 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
849 Value = Res;
850 Chain = Res.getValue(1);
851 }
852 } else {
853 // If this is an unaligned load and the target doesn't support it,
854 // expand it.
855 EVT MemVT = LD->getMemoryVT();
856 unsigned AS = LD->getAddressSpace();
857 unsigned Align = LD->getAlignment();
858 const DataLayout &DL = DAG.getDataLayout();
859 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) {
860 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
861 }
862 }
863 break;
864
865 case TargetLowering::Expand: {
866 EVT DestVT = Node->getValueType(0);
867 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
868 // If the source type is not legal, see if there is a legal extload to
869 // an intermediate type that we can then extend further.
870 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
871 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
872 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
873 // If we are loading a legal type, this is a non-extload followed by a
874 // full extend.
875 ISD::LoadExtType MidExtType =
876 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
877
878 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
879 SrcVT, LD->getMemOperand());
880 unsigned ExtendOp =
881 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
882 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
883 Chain = Load.getValue(1);
884 break;
885 }
886
887 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
888 // normal undefined upper bits behavior to allow using an in-reg extend
889 // with the illegal FP type, so load as an integer and do the
890 // from-integer conversion.
891 if (SrcVT.getScalarType() == MVT::f16) {
892 EVT ISrcVT = SrcVT.changeTypeToInteger();
893 EVT IDestVT = DestVT.changeTypeToInteger();
894 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
895
896 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
897 Chain, Ptr, ISrcVT,
898 LD->getMemOperand());
899 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
900 Chain = Result.getValue(1);
901 break;
902 }
903 }
904
905 assert(!SrcVT.isVector() &&
906 "Vector Loads are handled in LegalizeVectorOps");
907
908 // FIXME: This does not work for vectors on most targets. Sign-
909 // and zero-extend operations are currently folded into extending
910 // loads, whether they are legal or not, and then we end up here
911 // without any support for legalizing them.
912 assert(ExtType != ISD::EXTLOAD &&
913 "EXTLOAD should always be supported!");
914 // Turn the unsupported load into an EXTLOAD followed by an
915 // explicit zero/sign extend inreg.
916 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
917 Node->getValueType(0),
918 Chain, Ptr, SrcVT,
919 LD->getMemOperand());
920 SDValue ValRes;
921 if (ExtType == ISD::SEXTLOAD)
922 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
923 Result.getValueType(),
924 Result, DAG.getValueType(SrcVT));
925 else
926 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
927 Value = ValRes;
928 Chain = Result.getValue(1);
929 break;
930 }
931 }
932 }
933
934 // Since loads produce two values, make sure to remember that we legalized
935 // both of them.
936 if (Chain.getNode() != Node) {
937 assert(Value.getNode() != Node && "Load must be completely replaced");
938 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
939 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
940 if (UpdatedNodes) {
941 UpdatedNodes->insert(Value.getNode());
942 UpdatedNodes->insert(Chain.getNode());
943 }
944 ReplacedNode(Node);
945 }
946 }
947
948 /// Return a legal replacement for the given operation, with all legal operands.
LegalizeOp(SDNode * Node)949 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
950 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
951
952 // Allow illegal target nodes and illegal registers.
953 if (Node->getOpcode() == ISD::TargetConstant ||
954 Node->getOpcode() == ISD::Register)
955 return;
956
957 #ifndef NDEBUG
958 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
959 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
960 TargetLowering::TypeLegal ||
961 TLI.isTypeLegal(Node->getValueType(i))) &&
962 "Unexpected illegal type!");
963
964 for (const SDValue &Op : Node->op_values())
965 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
966 TargetLowering::TypeLegal ||
967 TLI.isTypeLegal(Op.getValueType()) ||
968 Op.getOpcode() == ISD::TargetConstant ||
969 Op.getOpcode() == ISD::Register) &&
970 "Unexpected illegal type!");
971 #endif
972
973 // Figure out the correct action; the way to query this varies by opcode
974 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
975 bool SimpleFinishLegalizing = true;
976 switch (Node->getOpcode()) {
977 case ISD::INTRINSIC_W_CHAIN:
978 case ISD::INTRINSIC_WO_CHAIN:
979 case ISD::INTRINSIC_VOID:
980 case ISD::STACKSAVE:
981 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
982 break;
983 case ISD::GET_DYNAMIC_AREA_OFFSET:
984 Action = TLI.getOperationAction(Node->getOpcode(),
985 Node->getValueType(0));
986 break;
987 case ISD::VAARG:
988 Action = TLI.getOperationAction(Node->getOpcode(),
989 Node->getValueType(0));
990 if (Action != TargetLowering::Promote)
991 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
992 break;
993 case ISD::FP_TO_FP16:
994 case ISD::SINT_TO_FP:
995 case ISD::UINT_TO_FP:
996 case ISD::EXTRACT_VECTOR_ELT:
997 Action = TLI.getOperationAction(Node->getOpcode(),
998 Node->getOperand(0).getValueType());
999 break;
1000 case ISD::FP_ROUND_INREG:
1001 case ISD::SIGN_EXTEND_INREG: {
1002 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1003 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1004 break;
1005 }
1006 case ISD::ATOMIC_STORE:
1007 Action = TLI.getOperationAction(Node->getOpcode(),
1008 Node->getOperand(2).getValueType());
1009 break;
1010 case ISD::SELECT_CC:
1011 case ISD::SETCC:
1012 case ISD::BR_CC: {
1013 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1014 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1015 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1016 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1017 ISD::CondCode CCCode =
1018 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1019 Action = TLI.getCondCodeAction(CCCode, OpVT);
1020 if (Action == TargetLowering::Legal) {
1021 if (Node->getOpcode() == ISD::SELECT_CC)
1022 Action = TLI.getOperationAction(Node->getOpcode(),
1023 Node->getValueType(0));
1024 else
1025 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1026 }
1027 break;
1028 }
1029 case ISD::LOAD:
1030 case ISD::STORE:
1031 // FIXME: Model these properly. LOAD and STORE are complicated, and
1032 // STORE expects the unlegalized operand in some cases.
1033 SimpleFinishLegalizing = false;
1034 break;
1035 case ISD::CALLSEQ_START:
1036 case ISD::CALLSEQ_END:
1037 // FIXME: This shouldn't be necessary. These nodes have special properties
1038 // dealing with the recursive nature of legalization. Removing this
1039 // special case should be done as part of making LegalizeDAG non-recursive.
1040 SimpleFinishLegalizing = false;
1041 break;
1042 case ISD::EXTRACT_ELEMENT:
1043 case ISD::FLT_ROUNDS_:
1044 case ISD::MERGE_VALUES:
1045 case ISD::EH_RETURN:
1046 case ISD::FRAME_TO_ARGS_OFFSET:
1047 case ISD::EH_DWARF_CFA:
1048 case ISD::EH_SJLJ_SETJMP:
1049 case ISD::EH_SJLJ_LONGJMP:
1050 case ISD::EH_SJLJ_SETUP_DISPATCH:
1051 // These operations lie about being legal: when they claim to be legal,
1052 // they should actually be expanded.
1053 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1054 if (Action == TargetLowering::Legal)
1055 Action = TargetLowering::Expand;
1056 break;
1057 case ISD::INIT_TRAMPOLINE:
1058 case ISD::ADJUST_TRAMPOLINE:
1059 case ISD::FRAMEADDR:
1060 case ISD::RETURNADDR:
1061 case ISD::ADDROFRETURNADDR:
1062 case ISD::SPONENTRY:
1063 // These operations lie about being legal: when they claim to be legal,
1064 // they should actually be custom-lowered.
1065 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1066 if (Action == TargetLowering::Legal)
1067 Action = TargetLowering::Custom;
1068 break;
1069 case ISD::READCYCLECOUNTER:
1070 // READCYCLECOUNTER returns an i64, even if type legalization might have
1071 // expanded that to several smaller types.
1072 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1073 break;
1074 case ISD::READ_REGISTER:
1075 case ISD::WRITE_REGISTER:
1076 // Named register is legal in the DAG, but blocked by register name
1077 // selection if not implemented by target (to chose the correct register)
1078 // They'll be converted to Copy(To/From)Reg.
1079 Action = TargetLowering::Legal;
1080 break;
1081 case ISD::DEBUGTRAP:
1082 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1083 if (Action == TargetLowering::Expand) {
1084 // replace ISD::DEBUGTRAP with ISD::TRAP
1085 SDValue NewVal;
1086 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1087 Node->getOperand(0));
1088 ReplaceNode(Node, NewVal.getNode());
1089 LegalizeOp(NewVal.getNode());
1090 return;
1091 }
1092 break;
1093 case ISD::STRICT_FADD:
1094 case ISD::STRICT_FSUB:
1095 case ISD::STRICT_FMUL:
1096 case ISD::STRICT_FDIV:
1097 case ISD::STRICT_FREM:
1098 case ISD::STRICT_FSQRT:
1099 case ISD::STRICT_FMA:
1100 case ISD::STRICT_FPOW:
1101 case ISD::STRICT_FPOWI:
1102 case ISD::STRICT_FSIN:
1103 case ISD::STRICT_FCOS:
1104 case ISD::STRICT_FEXP:
1105 case ISD::STRICT_FEXP2:
1106 case ISD::STRICT_FLOG:
1107 case ISD::STRICT_FLOG10:
1108 case ISD::STRICT_FLOG2:
1109 case ISD::STRICT_FRINT:
1110 case ISD::STRICT_FNEARBYINT:
1111 case ISD::STRICT_FMAXNUM:
1112 case ISD::STRICT_FMINNUM:
1113 case ISD::STRICT_FCEIL:
1114 case ISD::STRICT_FFLOOR:
1115 case ISD::STRICT_FROUND:
1116 case ISD::STRICT_FTRUNC:
1117 // These pseudo-ops get legalized as if they were their non-strict
1118 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
1119 // is also legal, but if ISD::FSQRT requires expansion then so does
1120 // ISD::STRICT_FSQRT.
1121 Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
1122 Node->getValueType(0));
1123 break;
1124 case ISD::SADDSAT:
1125 case ISD::UADDSAT:
1126 case ISD::SSUBSAT:
1127 case ISD::USUBSAT: {
1128 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1129 break;
1130 }
1131 case ISD::SMULFIX: {
1132 unsigned Scale = Node->getConstantOperandVal(2);
1133 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1134 Node->getValueType(0), Scale);
1135 break;
1136 }
1137 case ISD::MSCATTER:
1138 Action = TLI.getOperationAction(Node->getOpcode(),
1139 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1140 break;
1141 case ISD::MSTORE:
1142 Action = TLI.getOperationAction(Node->getOpcode(),
1143 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1144 break;
1145 default:
1146 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1147 Action = TargetLowering::Legal;
1148 } else {
1149 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1150 }
1151 break;
1152 }
1153
1154 if (SimpleFinishLegalizing) {
1155 SDNode *NewNode = Node;
1156 switch (Node->getOpcode()) {
1157 default: break;
1158 case ISD::SHL:
1159 case ISD::SRL:
1160 case ISD::SRA:
1161 case ISD::ROTL:
1162 case ISD::ROTR: {
1163 // Legalizing shifts/rotates requires adjusting the shift amount
1164 // to the appropriate width.
1165 SDValue Op0 = Node->getOperand(0);
1166 SDValue Op1 = Node->getOperand(1);
1167 if (!Op1.getValueType().isVector()) {
1168 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1169 // The getShiftAmountOperand() may create a new operand node or
1170 // return the existing one. If new operand is created we need
1171 // to update the parent node.
1172 // Do not try to legalize SAO here! It will be automatically legalized
1173 // in the next round.
1174 if (SAO != Op1)
1175 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1176 }
1177 }
1178 break;
1179 case ISD::FSHL:
1180 case ISD::FSHR:
1181 case ISD::SRL_PARTS:
1182 case ISD::SRA_PARTS:
1183 case ISD::SHL_PARTS: {
1184 // Legalizing shifts/rotates requires adjusting the shift amount
1185 // to the appropriate width.
1186 SDValue Op0 = Node->getOperand(0);
1187 SDValue Op1 = Node->getOperand(1);
1188 SDValue Op2 = Node->getOperand(2);
1189 if (!Op2.getValueType().isVector()) {
1190 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1191 // The getShiftAmountOperand() may create a new operand node or
1192 // return the existing one. If new operand is created we need
1193 // to update the parent node.
1194 if (SAO != Op2)
1195 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1196 }
1197 break;
1198 }
1199 }
1200
1201 if (NewNode != Node) {
1202 ReplaceNode(Node, NewNode);
1203 Node = NewNode;
1204 }
1205 switch (Action) {
1206 case TargetLowering::Legal:
1207 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1208 return;
1209 case TargetLowering::Custom:
1210 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1211 // FIXME: The handling for custom lowering with multiple results is
1212 // a complete mess.
1213 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1214 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1215 return;
1216
1217 if (Node->getNumValues() == 1) {
1218 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1219 // We can just directly replace this node with the lowered value.
1220 ReplaceNode(SDValue(Node, 0), Res);
1221 return;
1222 }
1223
1224 SmallVector<SDValue, 8> ResultVals;
1225 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1226 ResultVals.push_back(Res.getValue(i));
1227 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1228 ReplaceNode(Node, ResultVals.data());
1229 return;
1230 }
1231 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1232 LLVM_FALLTHROUGH;
1233 case TargetLowering::Expand:
1234 if (ExpandNode(Node))
1235 return;
1236 LLVM_FALLTHROUGH;
1237 case TargetLowering::LibCall:
1238 ConvertNodeToLibcall(Node);
1239 return;
1240 case TargetLowering::Promote:
1241 PromoteNode(Node);
1242 return;
1243 }
1244 }
1245
1246 switch (Node->getOpcode()) {
1247 default:
1248 #ifndef NDEBUG
1249 dbgs() << "NODE: ";
1250 Node->dump( &DAG);
1251 dbgs() << "\n";
1252 #endif
1253 llvm_unreachable("Do not know how to legalize this operator!");
1254
1255 case ISD::CALLSEQ_START:
1256 case ISD::CALLSEQ_END:
1257 break;
1258 case ISD::LOAD:
1259 return LegalizeLoadOps(Node);
1260 case ISD::STORE:
1261 return LegalizeStoreOps(Node);
1262 }
1263 }
1264
ExpandExtractFromVectorThroughStack(SDValue Op)1265 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1266 SDValue Vec = Op.getOperand(0);
1267 SDValue Idx = Op.getOperand(1);
1268 SDLoc dl(Op);
1269
1270 // Before we generate a new store to a temporary stack slot, see if there is
1271 // already one that we can use. There often is because when we scalarize
1272 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1273 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1274 // the vector. If all are expanded here, we don't want one store per vector
1275 // element.
1276
1277 // Caches for hasPredecessorHelper
1278 SmallPtrSet<const SDNode *, 32> Visited;
1279 SmallVector<const SDNode *, 16> Worklist;
1280 Visited.insert(Op.getNode());
1281 Worklist.push_back(Idx.getNode());
1282 SDValue StackPtr, Ch;
1283 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1284 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1285 SDNode *User = *UI;
1286 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1287 if (ST->isIndexed() || ST->isTruncatingStore() ||
1288 ST->getValue() != Vec)
1289 continue;
1290
1291 // Make sure that nothing else could have stored into the destination of
1292 // this store.
1293 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1294 continue;
1295
1296 // If the index is dependent on the store we will introduce a cycle when
1297 // creating the load (the load uses the index, and by replacing the chain
1298 // we will make the index dependent on the load). Also, the store might be
1299 // dependent on the extractelement and introduce a cycle when creating
1300 // the load.
1301 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1302 ST->hasPredecessor(Op.getNode()))
1303 continue;
1304
1305 StackPtr = ST->getBasePtr();
1306 Ch = SDValue(ST, 0);
1307 break;
1308 }
1309 }
1310
1311 EVT VecVT = Vec.getValueType();
1312
1313 if (!Ch.getNode()) {
1314 // Store the value to a temporary stack slot, then LOAD the returned part.
1315 StackPtr = DAG.CreateStackTemporary(VecVT);
1316 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1317 MachinePointerInfo());
1318 }
1319
1320 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1321
1322 SDValue NewLoad;
1323
1324 if (Op.getValueType().isVector())
1325 NewLoad =
1326 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1327 else
1328 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1329 MachinePointerInfo(),
1330 VecVT.getVectorElementType());
1331
1332 // Replace the chain going out of the store, by the one out of the load.
1333 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1334
1335 // We introduced a cycle though, so update the loads operands, making sure
1336 // to use the original store's chain as an incoming chain.
1337 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1338 NewLoad->op_end());
1339 NewLoadOperands[0] = Ch;
1340 NewLoad =
1341 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1342 return NewLoad;
1343 }
1344
ExpandInsertToVectorThroughStack(SDValue Op)1345 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1346 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1347
1348 SDValue Vec = Op.getOperand(0);
1349 SDValue Part = Op.getOperand(1);
1350 SDValue Idx = Op.getOperand(2);
1351 SDLoc dl(Op);
1352
1353 // Store the value to a temporary stack slot, then LOAD the returned part.
1354 EVT VecVT = Vec.getValueType();
1355 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1356 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1357 MachinePointerInfo PtrInfo =
1358 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1359
1360 // First store the whole vector.
1361 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1362
1363 // Then store the inserted part.
1364 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1365
1366 // Store the subvector.
1367 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1368
1369 // Finally, load the updated vector.
1370 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1371 }
1372
ExpandVectorBuildThroughStack(SDNode * Node)1373 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1374 // We can't handle this case efficiently. Allocate a sufficiently
1375 // aligned object on the stack, store each element into it, then load
1376 // the result as a vector.
1377 // Create the stack frame object.
1378 EVT VT = Node->getValueType(0);
1379 EVT EltVT = VT.getVectorElementType();
1380 SDLoc dl(Node);
1381 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1382 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1383 MachinePointerInfo PtrInfo =
1384 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1385
1386 // Emit a store of each element to the stack slot.
1387 SmallVector<SDValue, 8> Stores;
1388 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1389 // Store (in the right endianness) the elements to memory.
1390 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1391 // Ignore undef elements.
1392 if (Node->getOperand(i).isUndef()) continue;
1393
1394 unsigned Offset = TypeByteSize*i;
1395
1396 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1397 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1398
1399 // If the destination vector element type is narrower than the source
1400 // element type, only store the bits necessary.
1401 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1402 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1403 Node->getOperand(i), Idx,
1404 PtrInfo.getWithOffset(Offset), EltVT));
1405 } else
1406 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1407 Idx, PtrInfo.getWithOffset(Offset)));
1408 }
1409
1410 SDValue StoreChain;
1411 if (!Stores.empty()) // Not all undef elements?
1412 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1413 else
1414 StoreChain = DAG.getEntryNode();
1415
1416 // Result is a load from the stack slot.
1417 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1418 }
1419
1420 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1421 /// containing the sign bit if the target has no integer value capable of
1422 /// holding all bits of the floating-point value.
getSignAsIntValue(FloatSignAsInt & State,const SDLoc & DL,SDValue Value) const1423 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1424 const SDLoc &DL,
1425 SDValue Value) const {
1426 EVT FloatVT = Value.getValueType();
1427 unsigned NumBits = FloatVT.getSizeInBits();
1428 State.FloatVT = FloatVT;
1429 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1430 // Convert to an integer of the same size.
1431 if (TLI.isTypeLegal(IVT)) {
1432 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1433 State.SignMask = APInt::getSignMask(NumBits);
1434 State.SignBit = NumBits - 1;
1435 return;
1436 }
1437
1438 auto &DataLayout = DAG.getDataLayout();
1439 // Store the float to memory, then load the sign part out as an integer.
1440 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1441 // First create a temporary that is aligned for both the load and store.
1442 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1443 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1444 // Then store the float to it.
1445 State.FloatPtr = StackPtr;
1446 MachineFunction &MF = DAG.getMachineFunction();
1447 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1448 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1449 State.FloatPointerInfo);
1450
1451 SDValue IntPtr;
1452 if (DataLayout.isBigEndian()) {
1453 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1454 // Load out a legal integer with the same sign bit as the float.
1455 IntPtr = StackPtr;
1456 State.IntPointerInfo = State.FloatPointerInfo;
1457 } else {
1458 // Advance the pointer so that the loaded byte will contain the sign bit.
1459 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1460 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1461 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1462 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1463 ByteOffset);
1464 }
1465
1466 State.IntPtr = IntPtr;
1467 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1468 State.IntPointerInfo, MVT::i8);
1469 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1470 State.SignBit = 7;
1471 }
1472
1473 /// Replace the integer value produced by getSignAsIntValue() with a new value
1474 /// and cast the result back to a floating-point type.
modifySignAsInt(const FloatSignAsInt & State,const SDLoc & DL,SDValue NewIntValue) const1475 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1476 const SDLoc &DL,
1477 SDValue NewIntValue) const {
1478 if (!State.Chain)
1479 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1480
1481 // Override the part containing the sign bit in the value stored on the stack.
1482 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1483 State.IntPointerInfo, MVT::i8);
1484 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1485 State.FloatPointerInfo);
1486 }
1487
ExpandFCOPYSIGN(SDNode * Node) const1488 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1489 SDLoc DL(Node);
1490 SDValue Mag = Node->getOperand(0);
1491 SDValue Sign = Node->getOperand(1);
1492
1493 // Get sign bit into an integer value.
1494 FloatSignAsInt SignAsInt;
1495 getSignAsIntValue(SignAsInt, DL, Sign);
1496
1497 EVT IntVT = SignAsInt.IntValue.getValueType();
1498 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1499 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1500 SignMask);
1501
1502 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1503 EVT FloatVT = Mag.getValueType();
1504 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1505 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1506 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1507 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1508 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1509 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1510 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1511 }
1512
1513 // Transform Mag value to integer, and clear the sign bit.
1514 FloatSignAsInt MagAsInt;
1515 getSignAsIntValue(MagAsInt, DL, Mag);
1516 EVT MagVT = MagAsInt.IntValue.getValueType();
1517 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1518 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1519 ClearSignMask);
1520
1521 // Get the signbit at the right position for MagAsInt.
1522 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1523 EVT ShiftVT = IntVT;
1524 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1525 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1526 ShiftVT = MagVT;
1527 }
1528 if (ShiftAmount > 0) {
1529 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1530 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1531 } else if (ShiftAmount < 0) {
1532 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1533 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1534 }
1535 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1536 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1537 }
1538
1539 // Store the part with the modified sign and convert back to float.
1540 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1541 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1542 }
1543
ExpandFABS(SDNode * Node) const1544 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1545 SDLoc DL(Node);
1546 SDValue Value = Node->getOperand(0);
1547
1548 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1549 EVT FloatVT = Value.getValueType();
1550 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1551 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1552 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1553 }
1554
1555 // Transform value to integer, clear the sign bit and transform back.
1556 FloatSignAsInt ValueAsInt;
1557 getSignAsIntValue(ValueAsInt, DL, Value);
1558 EVT IntVT = ValueAsInt.IntValue.getValueType();
1559 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1560 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1561 ClearSignMask);
1562 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1563 }
1564
ExpandDYNAMIC_STACKALLOC(SDNode * Node,SmallVectorImpl<SDValue> & Results)1565 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1566 SmallVectorImpl<SDValue> &Results) {
1567 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1568 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1569 " not tell us which reg is the stack pointer!");
1570 SDLoc dl(Node);
1571 EVT VT = Node->getValueType(0);
1572 SDValue Tmp1 = SDValue(Node, 0);
1573 SDValue Tmp2 = SDValue(Node, 1);
1574 SDValue Tmp3 = Node->getOperand(2);
1575 SDValue Chain = Tmp1.getOperand(0);
1576
1577 // Chain the dynamic stack allocation so that it doesn't modify the stack
1578 // pointer when other instructions are using the stack.
1579 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1580
1581 SDValue Size = Tmp2.getOperand(1);
1582 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1583 Chain = SP.getValue(1);
1584 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1585 unsigned StackAlign =
1586 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1587 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1588 if (Align > StackAlign)
1589 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1590 DAG.getConstant(-(uint64_t)Align, dl, VT));
1591 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1592
1593 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1594 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1595
1596 Results.push_back(Tmp1);
1597 Results.push_back(Tmp2);
1598 }
1599
1600 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1601 /// target.
1602 ///
1603 /// If the SETCC has been legalized using AND / OR, then the legalized node
1604 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1605 /// will be set to false.
1606 ///
1607 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1608 /// then the values of LHS and RHS will be swapped, CC will be set to the
1609 /// new condition, and NeedInvert will be set to false.
1610 ///
1611 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1612 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1613 /// will be set to true. The caller must invert the result of the SETCC with
1614 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1615 /// of a true/false result.
1616 ///
1617 /// \returns true if the SetCC has been legalized, false if it hasn't.
LegalizeSetCCCondCode(EVT VT,SDValue & LHS,SDValue & RHS,SDValue & CC,bool & NeedInvert,const SDLoc & dl)1618 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
1619 SDValue &RHS, SDValue &CC,
1620 bool &NeedInvert,
1621 const SDLoc &dl) {
1622 MVT OpVT = LHS.getSimpleValueType();
1623 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1624 NeedInvert = false;
1625 bool NeedSwap = false;
1626 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1627 default: llvm_unreachable("Unknown condition code action!");
1628 case TargetLowering::Legal:
1629 // Nothing to do.
1630 break;
1631 case TargetLowering::Expand: {
1632 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1633 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1634 std::swap(LHS, RHS);
1635 CC = DAG.getCondCode(InvCC);
1636 return true;
1637 }
1638 // Swapping operands didn't work. Try inverting the condition.
1639 InvCC = getSetCCInverse(CCCode, OpVT.isInteger());
1640 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1641 // If inverting the condition is not enough, try swapping operands
1642 // on top of it.
1643 InvCC = ISD::getSetCCSwappedOperands(InvCC);
1644 NeedSwap = true;
1645 }
1646 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1647 CC = DAG.getCondCode(InvCC);
1648 NeedInvert = true;
1649 if (NeedSwap)
1650 std::swap(LHS, RHS);
1651 return true;
1652 }
1653
1654 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1655 unsigned Opc = 0;
1656 switch (CCCode) {
1657 default: llvm_unreachable("Don't know how to expand this condition!");
1658 case ISD::SETO:
1659 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1660 && "If SETO is expanded, SETOEQ must be legal!");
1661 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1662 case ISD::SETUO:
1663 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1664 && "If SETUO is expanded, SETUNE must be legal!");
1665 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1666 case ISD::SETOEQ:
1667 case ISD::SETOGT:
1668 case ISD::SETOGE:
1669 case ISD::SETOLT:
1670 case ISD::SETOLE:
1671 case ISD::SETONE:
1672 case ISD::SETUEQ:
1673 case ISD::SETUNE:
1674 case ISD::SETUGT:
1675 case ISD::SETUGE:
1676 case ISD::SETULT:
1677 case ISD::SETULE:
1678 // If we are floating point, assign and break, otherwise fall through.
1679 if (!OpVT.isInteger()) {
1680 // We can use the 4th bit to tell if we are the unordered
1681 // or ordered version of the opcode.
1682 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1683 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1684 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1685 break;
1686 }
1687 // Fallthrough if we are unsigned integer.
1688 LLVM_FALLTHROUGH;
1689 case ISD::SETLE:
1690 case ISD::SETGT:
1691 case ISD::SETGE:
1692 case ISD::SETLT:
1693 case ISD::SETNE:
1694 case ISD::SETEQ:
1695 // If all combinations of inverting the condition and swapping operands
1696 // didn't work then we have no means to expand the condition.
1697 llvm_unreachable("Don't know how to expand this condition!");
1698 }
1699
1700 SDValue SetCC1, SetCC2;
1701 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1702 // If we aren't the ordered or unorder operation,
1703 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1704 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1705 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1706 } else {
1707 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1708 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1709 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1710 }
1711 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1712 RHS = SDValue();
1713 CC = SDValue();
1714 return true;
1715 }
1716 }
1717 return false;
1718 }
1719
1720 /// Emit a store/load combination to the stack. This stores
1721 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1722 /// a load from the stack slot to DestVT, extending it if needed.
1723 /// The resultant code need not be legal.
EmitStackConvert(SDValue SrcOp,EVT SlotVT,EVT DestVT,const SDLoc & dl)1724 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1725 EVT DestVT, const SDLoc &dl) {
1726 // Create the stack frame object.
1727 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1728 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1729 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1730
1731 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1732 int SPFI = StackPtrFI->getIndex();
1733 MachinePointerInfo PtrInfo =
1734 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1735
1736 unsigned SrcSize = SrcOp.getValueSizeInBits();
1737 unsigned SlotSize = SlotVT.getSizeInBits();
1738 unsigned DestSize = DestVT.getSizeInBits();
1739 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1740 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1741
1742 // Emit a store to the stack slot. Use a truncstore if the input value is
1743 // later than DestVT.
1744 SDValue Store;
1745
1746 if (SrcSize > SlotSize)
1747 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo,
1748 SlotVT, SrcAlign);
1749 else {
1750 assert(SrcSize == SlotSize && "Invalid store");
1751 Store =
1752 DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1753 }
1754
1755 // Result is a load from the stack slot.
1756 if (SlotSize == DestSize)
1757 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1758
1759 assert(SlotSize < DestSize && "Unknown extension!");
1760 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1761 DestAlign);
1762 }
1763
ExpandSCALAR_TO_VECTOR(SDNode * Node)1764 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1765 SDLoc dl(Node);
1766 // Create a vector sized/aligned stack slot, store the value to element #0,
1767 // then load the whole vector back out.
1768 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1769
1770 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1771 int SPFI = StackPtrFI->getIndex();
1772
1773 SDValue Ch = DAG.getTruncStore(
1774 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1775 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1776 Node->getValueType(0).getVectorElementType());
1777 return DAG.getLoad(
1778 Node->getValueType(0), dl, Ch, StackPtr,
1779 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1780 }
1781
1782 static bool
ExpandBVWithShuffles(SDNode * Node,SelectionDAG & DAG,const TargetLowering & TLI,SDValue & Res)1783 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1784 const TargetLowering &TLI, SDValue &Res) {
1785 unsigned NumElems = Node->getNumOperands();
1786 SDLoc dl(Node);
1787 EVT VT = Node->getValueType(0);
1788
1789 // Try to group the scalars into pairs, shuffle the pairs together, then
1790 // shuffle the pairs of pairs together, etc. until the vector has
1791 // been built. This will work only if all of the necessary shuffle masks
1792 // are legal.
1793
1794 // We do this in two phases; first to check the legality of the shuffles,
1795 // and next, assuming that all shuffles are legal, to create the new nodes.
1796 for (int Phase = 0; Phase < 2; ++Phase) {
1797 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1798 NewIntermedVals;
1799 for (unsigned i = 0; i < NumElems; ++i) {
1800 SDValue V = Node->getOperand(i);
1801 if (V.isUndef())
1802 continue;
1803
1804 SDValue Vec;
1805 if (Phase)
1806 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1807 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1808 }
1809
1810 while (IntermedVals.size() > 2) {
1811 NewIntermedVals.clear();
1812 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1813 // This vector and the next vector are shuffled together (simply to
1814 // append the one to the other).
1815 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1816
1817 SmallVector<int, 16> FinalIndices;
1818 FinalIndices.reserve(IntermedVals[i].second.size() +
1819 IntermedVals[i+1].second.size());
1820
1821 int k = 0;
1822 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1823 ++j, ++k) {
1824 ShuffleVec[k] = j;
1825 FinalIndices.push_back(IntermedVals[i].second[j]);
1826 }
1827 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1828 ++j, ++k) {
1829 ShuffleVec[k] = NumElems + j;
1830 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1831 }
1832
1833 SDValue Shuffle;
1834 if (Phase)
1835 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1836 IntermedVals[i+1].first,
1837 ShuffleVec);
1838 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1839 return false;
1840 NewIntermedVals.push_back(
1841 std::make_pair(Shuffle, std::move(FinalIndices)));
1842 }
1843
1844 // If we had an odd number of defined values, then append the last
1845 // element to the array of new vectors.
1846 if ((IntermedVals.size() & 1) != 0)
1847 NewIntermedVals.push_back(IntermedVals.back());
1848
1849 IntermedVals.swap(NewIntermedVals);
1850 }
1851
1852 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1853 "Invalid number of intermediate vectors");
1854 SDValue Vec1 = IntermedVals[0].first;
1855 SDValue Vec2;
1856 if (IntermedVals.size() > 1)
1857 Vec2 = IntermedVals[1].first;
1858 else if (Phase)
1859 Vec2 = DAG.getUNDEF(VT);
1860
1861 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1862 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1863 ShuffleVec[IntermedVals[0].second[i]] = i;
1864 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1865 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1866
1867 if (Phase)
1868 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1869 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1870 return false;
1871 }
1872
1873 return true;
1874 }
1875
1876 /// Expand a BUILD_VECTOR node on targets that don't
1877 /// support the operation, but do support the resultant vector type.
ExpandBUILD_VECTOR(SDNode * Node)1878 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1879 unsigned NumElems = Node->getNumOperands();
1880 SDValue Value1, Value2;
1881 SDLoc dl(Node);
1882 EVT VT = Node->getValueType(0);
1883 EVT OpVT = Node->getOperand(0).getValueType();
1884 EVT EltVT = VT.getVectorElementType();
1885
1886 // If the only non-undef value is the low element, turn this into a
1887 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1888 bool isOnlyLowElement = true;
1889 bool MoreThanTwoValues = false;
1890 bool isConstant = true;
1891 for (unsigned i = 0; i < NumElems; ++i) {
1892 SDValue V = Node->getOperand(i);
1893 if (V.isUndef())
1894 continue;
1895 if (i > 0)
1896 isOnlyLowElement = false;
1897 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1898 isConstant = false;
1899
1900 if (!Value1.getNode()) {
1901 Value1 = V;
1902 } else if (!Value2.getNode()) {
1903 if (V != Value1)
1904 Value2 = V;
1905 } else if (V != Value1 && V != Value2) {
1906 MoreThanTwoValues = true;
1907 }
1908 }
1909
1910 if (!Value1.getNode())
1911 return DAG.getUNDEF(VT);
1912
1913 if (isOnlyLowElement)
1914 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1915
1916 // If all elements are constants, create a load from the constant pool.
1917 if (isConstant) {
1918 SmallVector<Constant*, 16> CV;
1919 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1920 if (ConstantFPSDNode *V =
1921 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1922 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1923 } else if (ConstantSDNode *V =
1924 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1925 if (OpVT==EltVT)
1926 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1927 else {
1928 // If OpVT and EltVT don't match, EltVT is not legal and the
1929 // element values have been promoted/truncated earlier. Undo this;
1930 // we don't want a v16i8 to become a v16i32 for example.
1931 const ConstantInt *CI = V->getConstantIntValue();
1932 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1933 CI->getZExtValue()));
1934 }
1935 } else {
1936 assert(Node->getOperand(i).isUndef());
1937 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1938 CV.push_back(UndefValue::get(OpNTy));
1939 }
1940 }
1941 Constant *CP = ConstantVector::get(CV);
1942 SDValue CPIdx =
1943 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1944 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1945 return DAG.getLoad(
1946 VT, dl, DAG.getEntryNode(), CPIdx,
1947 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1948 Alignment);
1949 }
1950
1951 SmallSet<SDValue, 16> DefinedValues;
1952 for (unsigned i = 0; i < NumElems; ++i) {
1953 if (Node->getOperand(i).isUndef())
1954 continue;
1955 DefinedValues.insert(Node->getOperand(i));
1956 }
1957
1958 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1959 if (!MoreThanTwoValues) {
1960 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1961 for (unsigned i = 0; i < NumElems; ++i) {
1962 SDValue V = Node->getOperand(i);
1963 if (V.isUndef())
1964 continue;
1965 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1966 }
1967 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1968 // Get the splatted value into the low element of a vector register.
1969 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1970 SDValue Vec2;
1971 if (Value2.getNode())
1972 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1973 else
1974 Vec2 = DAG.getUNDEF(VT);
1975
1976 // Return shuffle(LowValVec, undef, <0,0,0,0>)
1977 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1978 }
1979 } else {
1980 SDValue Res;
1981 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
1982 return Res;
1983 }
1984 }
1985
1986 // Otherwise, we can't handle this case efficiently.
1987 return ExpandVectorBuildThroughStack(Node);
1988 }
1989
1990 // Expand a node into a call to a libcall. If the result value
1991 // does not fit into a register, return the lo part and set the hi part to the
1992 // by-reg argument. If it does fit into a single register, return the result
1993 // and leave the Hi part unset.
ExpandLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)1994 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1995 bool isSigned) {
1996 TargetLowering::ArgListTy Args;
1997 TargetLowering::ArgListEntry Entry;
1998 for (const SDValue &Op : Node->op_values()) {
1999 EVT ArgVT = Op.getValueType();
2000 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2001 Entry.Node = Op;
2002 Entry.Ty = ArgTy;
2003 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2004 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2005 Args.push_back(Entry);
2006 }
2007 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2008 TLI.getPointerTy(DAG.getDataLayout()));
2009
2010 EVT RetVT = Node->getValueType(0);
2011 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2012
2013 // By default, the input chain to this libcall is the entry node of the
2014 // function. If the libcall is going to be emitted as a tail call then
2015 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2016 // node which is being folded has a non-entry input chain.
2017 SDValue InChain = DAG.getEntryNode();
2018
2019 // isTailCall may be true since the callee does not reference caller stack
2020 // frame. Check if it's in the right position and that the return types match.
2021 SDValue TCChain = InChain;
2022 const Function &F = DAG.getMachineFunction().getFunction();
2023 bool isTailCall =
2024 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2025 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2026 if (isTailCall)
2027 InChain = TCChain;
2028
2029 TargetLowering::CallLoweringInfo CLI(DAG);
2030 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2031 CLI.setDebugLoc(SDLoc(Node))
2032 .setChain(InChain)
2033 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2034 std::move(Args))
2035 .setTailCall(isTailCall)
2036 .setSExtResult(signExtend)
2037 .setZExtResult(!signExtend)
2038 .setIsPostTypeLegalization(true);
2039
2040 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2041
2042 if (!CallInfo.second.getNode()) {
2043 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump());
2044 // It's a tailcall, return the chain (which is the DAG root).
2045 return DAG.getRoot();
2046 }
2047
2048 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump());
2049 return CallInfo.first;
2050 }
2051
2052 /// Generate a libcall taking the given operands as arguments
2053 /// and returning a result of type RetVT.
ExpandLibCall(RTLIB::Libcall LC,EVT RetVT,const SDValue * Ops,unsigned NumOps,bool isSigned,const SDLoc & dl)2054 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
2055 const SDValue *Ops, unsigned NumOps,
2056 bool isSigned, const SDLoc &dl) {
2057 TargetLowering::ArgListTy Args;
2058 Args.reserve(NumOps);
2059
2060 TargetLowering::ArgListEntry Entry;
2061 for (unsigned i = 0; i != NumOps; ++i) {
2062 Entry.Node = Ops[i];
2063 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
2064 Entry.IsSExt = isSigned;
2065 Entry.IsZExt = !isSigned;
2066 Args.push_back(Entry);
2067 }
2068 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2069 TLI.getPointerTy(DAG.getDataLayout()));
2070
2071 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2072
2073 TargetLowering::CallLoweringInfo CLI(DAG);
2074 CLI.setDebugLoc(dl)
2075 .setChain(DAG.getEntryNode())
2076 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2077 std::move(Args))
2078 .setSExtResult(isSigned)
2079 .setZExtResult(!isSigned)
2080 .setIsPostTypeLegalization(true);
2081
2082 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
2083
2084 return CallInfo.first;
2085 }
2086
2087 // Expand a node into a call to a libcall. Similar to
2088 // ExpandLibCall except that the first operand is the in-chain.
2089 std::pair<SDValue, SDValue>
ExpandChainLibCall(RTLIB::Libcall LC,SDNode * Node,bool isSigned)2090 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2091 SDNode *Node,
2092 bool isSigned) {
2093 SDValue InChain = Node->getOperand(0);
2094
2095 TargetLowering::ArgListTy Args;
2096 TargetLowering::ArgListEntry Entry;
2097 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2098 EVT ArgVT = Node->getOperand(i).getValueType();
2099 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2100 Entry.Node = Node->getOperand(i);
2101 Entry.Ty = ArgTy;
2102 Entry.IsSExt = isSigned;
2103 Entry.IsZExt = !isSigned;
2104 Args.push_back(Entry);
2105 }
2106 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2107 TLI.getPointerTy(DAG.getDataLayout()));
2108
2109 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2110
2111 TargetLowering::CallLoweringInfo CLI(DAG);
2112 CLI.setDebugLoc(SDLoc(Node))
2113 .setChain(InChain)
2114 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2115 std::move(Args))
2116 .setSExtResult(isSigned)
2117 .setZExtResult(!isSigned);
2118
2119 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2120
2121 return CallInfo;
2122 }
2123
ExpandFPLibCall(SDNode * Node,RTLIB::Libcall Call_F32,RTLIB::Libcall Call_F64,RTLIB::Libcall Call_F80,RTLIB::Libcall Call_F128,RTLIB::Libcall Call_PPCF128)2124 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2125 RTLIB::Libcall Call_F32,
2126 RTLIB::Libcall Call_F64,
2127 RTLIB::Libcall Call_F80,
2128 RTLIB::Libcall Call_F128,
2129 RTLIB::Libcall Call_PPCF128) {
2130 if (Node->isStrictFPOpcode())
2131 Node = DAG.mutateStrictFPToFP(Node);
2132
2133 RTLIB::Libcall LC;
2134 switch (Node->getSimpleValueType(0).SimpleTy) {
2135 default: llvm_unreachable("Unexpected request for libcall!");
2136 case MVT::f32: LC = Call_F32; break;
2137 case MVT::f64: LC = Call_F64; break;
2138 case MVT::f80: LC = Call_F80; break;
2139 case MVT::f128: LC = Call_F128; break;
2140 case MVT::ppcf128: LC = Call_PPCF128; break;
2141 }
2142 return ExpandLibCall(LC, Node, false);
2143 }
2144
ExpandIntLibCall(SDNode * Node,bool isSigned,RTLIB::Libcall Call_I8,RTLIB::Libcall Call_I16,RTLIB::Libcall Call_I32,RTLIB::Libcall Call_I64,RTLIB::Libcall Call_I128)2145 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2146 RTLIB::Libcall Call_I8,
2147 RTLIB::Libcall Call_I16,
2148 RTLIB::Libcall Call_I32,
2149 RTLIB::Libcall Call_I64,
2150 RTLIB::Libcall Call_I128) {
2151 RTLIB::Libcall LC;
2152 switch (Node->getSimpleValueType(0).SimpleTy) {
2153 default: llvm_unreachable("Unexpected request for libcall!");
2154 case MVT::i8: LC = Call_I8; break;
2155 case MVT::i16: LC = Call_I16; break;
2156 case MVT::i32: LC = Call_I32; break;
2157 case MVT::i64: LC = Call_I64; break;
2158 case MVT::i128: LC = Call_I128; break;
2159 }
2160 return ExpandLibCall(LC, Node, isSigned);
2161 }
2162
2163 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2164 void
ExpandDivRemLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2165 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2166 SmallVectorImpl<SDValue> &Results) {
2167 unsigned Opcode = Node->getOpcode();
2168 bool isSigned = Opcode == ISD::SDIVREM;
2169
2170 RTLIB::Libcall LC;
2171 switch (Node->getSimpleValueType(0).SimpleTy) {
2172 default: llvm_unreachable("Unexpected request for libcall!");
2173 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2174 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2175 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2176 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2177 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2178 }
2179
2180 // The input chain to this libcall is the entry node of the function.
2181 // Legalizing the call will automatically add the previous call to the
2182 // dependence.
2183 SDValue InChain = DAG.getEntryNode();
2184
2185 EVT RetVT = Node->getValueType(0);
2186 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2187
2188 TargetLowering::ArgListTy Args;
2189 TargetLowering::ArgListEntry Entry;
2190 for (const SDValue &Op : Node->op_values()) {
2191 EVT ArgVT = Op.getValueType();
2192 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2193 Entry.Node = Op;
2194 Entry.Ty = ArgTy;
2195 Entry.IsSExt = isSigned;
2196 Entry.IsZExt = !isSigned;
2197 Args.push_back(Entry);
2198 }
2199
2200 // Also pass the return address of the remainder.
2201 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2202 Entry.Node = FIPtr;
2203 Entry.Ty = RetTy->getPointerTo();
2204 Entry.IsSExt = isSigned;
2205 Entry.IsZExt = !isSigned;
2206 Args.push_back(Entry);
2207
2208 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2209 TLI.getPointerTy(DAG.getDataLayout()));
2210
2211 SDLoc dl(Node);
2212 TargetLowering::CallLoweringInfo CLI(DAG);
2213 CLI.setDebugLoc(dl)
2214 .setChain(InChain)
2215 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2216 std::move(Args))
2217 .setSExtResult(isSigned)
2218 .setZExtResult(!isSigned);
2219
2220 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2221
2222 // Remainder is loaded back from the stack frame.
2223 SDValue Rem =
2224 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2225 Results.push_back(CallInfo.first);
2226 Results.push_back(Rem);
2227 }
2228
2229 /// Return true if sincos libcall is available.
isSinCosLibcallAvailable(SDNode * Node,const TargetLowering & TLI)2230 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2231 RTLIB::Libcall LC;
2232 switch (Node->getSimpleValueType(0).SimpleTy) {
2233 default: llvm_unreachable("Unexpected request for libcall!");
2234 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2235 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2236 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2237 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2238 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2239 }
2240 return TLI.getLibcallName(LC) != nullptr;
2241 }
2242
2243 /// Only issue sincos libcall if both sin and cos are needed.
useSinCos(SDNode * Node)2244 static bool useSinCos(SDNode *Node) {
2245 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2246 ? ISD::FCOS : ISD::FSIN;
2247
2248 SDValue Op0 = Node->getOperand(0);
2249 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2250 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2251 SDNode *User = *UI;
2252 if (User == Node)
2253 continue;
2254 // The other user might have been turned into sincos already.
2255 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2256 return true;
2257 }
2258 return false;
2259 }
2260
2261 /// Issue libcalls to sincos to compute sin / cos pairs.
2262 void
ExpandSinCosLibCall(SDNode * Node,SmallVectorImpl<SDValue> & Results)2263 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2264 SmallVectorImpl<SDValue> &Results) {
2265 RTLIB::Libcall LC;
2266 switch (Node->getSimpleValueType(0).SimpleTy) {
2267 default: llvm_unreachable("Unexpected request for libcall!");
2268 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2269 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2270 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2271 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2272 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2273 }
2274
2275 // The input chain to this libcall is the entry node of the function.
2276 // Legalizing the call will automatically add the previous call to the
2277 // dependence.
2278 SDValue InChain = DAG.getEntryNode();
2279
2280 EVT RetVT = Node->getValueType(0);
2281 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2282
2283 TargetLowering::ArgListTy Args;
2284 TargetLowering::ArgListEntry Entry;
2285
2286 // Pass the argument.
2287 Entry.Node = Node->getOperand(0);
2288 Entry.Ty = RetTy;
2289 Entry.IsSExt = false;
2290 Entry.IsZExt = false;
2291 Args.push_back(Entry);
2292
2293 // Pass the return address of sin.
2294 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2295 Entry.Node = SinPtr;
2296 Entry.Ty = RetTy->getPointerTo();
2297 Entry.IsSExt = false;
2298 Entry.IsZExt = false;
2299 Args.push_back(Entry);
2300
2301 // Also pass the return address of the cos.
2302 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2303 Entry.Node = CosPtr;
2304 Entry.Ty = RetTy->getPointerTo();
2305 Entry.IsSExt = false;
2306 Entry.IsZExt = false;
2307 Args.push_back(Entry);
2308
2309 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2310 TLI.getPointerTy(DAG.getDataLayout()));
2311
2312 SDLoc dl(Node);
2313 TargetLowering::CallLoweringInfo CLI(DAG);
2314 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2315 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2316 std::move(Args));
2317
2318 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2319
2320 Results.push_back(
2321 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2322 Results.push_back(
2323 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2324 }
2325
2326 /// This function is responsible for legalizing a
2327 /// INT_TO_FP operation of the specified operand when the target requests that
2328 /// we expand it. At this point, we know that the result and operand types are
2329 /// legal for the target.
ExpandLegalINT_TO_FP(bool isSigned,SDValue Op0,EVT DestVT,const SDLoc & dl)2330 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0,
2331 EVT DestVT,
2332 const SDLoc &dl) {
2333 EVT SrcVT = Op0.getValueType();
2334
2335 // TODO: Should any fast-math-flags be set for the created nodes?
2336 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2337 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2338 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2339 "expansion\n");
2340
2341 // Get the stack frame index of a 8 byte buffer.
2342 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2343
2344 // word offset constant for Hi/Lo address computation
2345 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2346 StackSlot.getValueType());
2347 // set up Hi and Lo (into buffer) address based on endian
2348 SDValue Hi = StackSlot;
2349 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2350 StackSlot, WordOff);
2351 if (DAG.getDataLayout().isLittleEndian())
2352 std::swap(Hi, Lo);
2353
2354 // if signed map to unsigned space
2355 SDValue Op0Mapped;
2356 if (isSigned) {
2357 // constant used to invert sign bit (signed to unsigned mapping)
2358 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2359 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2360 } else {
2361 Op0Mapped = Op0;
2362 }
2363 // store the lo of the constructed double - based on integer input
2364 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2365 MachinePointerInfo());
2366 // initial hi portion of constructed double
2367 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2368 // store the hi of the constructed double - biased exponent
2369 SDValue Store2 =
2370 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2371 // load the constructed double
2372 SDValue Load =
2373 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2374 // FP constant to bias correct the final result
2375 SDValue Bias = DAG.getConstantFP(isSigned ?
2376 BitsToDouble(0x4330000080000000ULL) :
2377 BitsToDouble(0x4330000000000000ULL),
2378 dl, MVT::f64);
2379 // subtract the bias
2380 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2381 // final result
2382 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2383 return Result;
2384 }
2385 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2386 // Code below here assumes !isSigned without checking again.
2387
2388 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2389
2390 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2391 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2392 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2393 Four = DAG.getIntPtrConstant(4, dl);
2394 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2395 SignSet, Four, Zero);
2396
2397 // If the sign bit of the integer is set, the large number will be treated
2398 // as a negative number. To counteract this, the dynamic code adds an
2399 // offset depending on the data type.
2400 uint64_t FF;
2401 switch (SrcVT.getSimpleVT().SimpleTy) {
2402 default: llvm_unreachable("Unsupported integer type!");
2403 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2404 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2405 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2406 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2407 }
2408 if (DAG.getDataLayout().isLittleEndian())
2409 FF <<= 32;
2410 Constant *FudgeFactor = ConstantInt::get(
2411 Type::getInt64Ty(*DAG.getContext()), FF);
2412
2413 SDValue CPIdx =
2414 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2415 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2416 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2417 Alignment = std::min(Alignment, 4u);
2418 SDValue FudgeInReg;
2419 if (DestVT == MVT::f32)
2420 FudgeInReg = DAG.getLoad(
2421 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2422 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2423 Alignment);
2424 else {
2425 SDValue Load = DAG.getExtLoad(
2426 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2427 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2428 Alignment);
2429 HandleSDNode Handle(Load);
2430 LegalizeOp(Load.getNode());
2431 FudgeInReg = Handle.getValue();
2432 }
2433
2434 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2435 }
2436
2437 /// This function is responsible for legalizing a
2438 /// *INT_TO_FP operation of the specified operand when the target requests that
2439 /// we promote it. At this point, we know that the result and operand types are
2440 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2441 /// operation that takes a larger input.
PromoteLegalINT_TO_FP(SDValue LegalOp,EVT DestVT,bool isSigned,const SDLoc & dl)2442 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT,
2443 bool isSigned,
2444 const SDLoc &dl) {
2445 // First step, figure out the appropriate *INT_TO_FP operation to use.
2446 EVT NewInTy = LegalOp.getValueType();
2447
2448 unsigned OpToUse = 0;
2449
2450 // Scan for the appropriate larger type to use.
2451 while (true) {
2452 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2453 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2454
2455 // If the target supports SINT_TO_FP of this type, use it.
2456 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2457 OpToUse = ISD::SINT_TO_FP;
2458 break;
2459 }
2460 if (isSigned) continue;
2461
2462 // If the target supports UINT_TO_FP of this type, use it.
2463 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2464 OpToUse = ISD::UINT_TO_FP;
2465 break;
2466 }
2467
2468 // Otherwise, try a larger type.
2469 }
2470
2471 // Okay, we found the operation and type to use. Zero extend our input to the
2472 // desired type then run the operation on it.
2473 return DAG.getNode(OpToUse, dl, DestVT,
2474 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2475 dl, NewInTy, LegalOp));
2476 }
2477
2478 /// This function is responsible for legalizing a
2479 /// FP_TO_*INT operation of the specified operand when the target requests that
2480 /// we promote it. At this point, we know that the result and operand types are
2481 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2482 /// operation that returns a larger result.
PromoteLegalFP_TO_INT(SDValue LegalOp,EVT DestVT,bool isSigned,const SDLoc & dl)2483 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
2484 bool isSigned,
2485 const SDLoc &dl) {
2486 // First step, figure out the appropriate FP_TO*INT operation to use.
2487 EVT NewOutTy = DestVT;
2488
2489 unsigned OpToUse = 0;
2490
2491 // Scan for the appropriate larger type to use.
2492 while (true) {
2493 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2494 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2495
2496 // A larger signed type can hold all unsigned values of the requested type,
2497 // so using FP_TO_SINT is valid
2498 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2499 OpToUse = ISD::FP_TO_SINT;
2500 break;
2501 }
2502
2503 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2504 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2505 OpToUse = ISD::FP_TO_UINT;
2506 break;
2507 }
2508
2509 // Otherwise, try a larger type.
2510 }
2511
2512 // Okay, we found the operation and type to use.
2513 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2514
2515 // Truncate the result of the extended FP_TO_*INT operation to the desired
2516 // size.
2517 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2518 }
2519
2520 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
ExpandBITREVERSE(SDValue Op,const SDLoc & dl)2521 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2522 EVT VT = Op.getValueType();
2523 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2524 unsigned Sz = VT.getScalarSizeInBits();
2525
2526 SDValue Tmp, Tmp2, Tmp3;
2527
2528 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2529 // and finally the i1 pairs.
2530 // TODO: We can easily support i4/i2 legal types if any target ever does.
2531 if (Sz >= 8 && isPowerOf2_32(Sz)) {
2532 // Create the masks - repeating the pattern every byte.
2533 APInt MaskHi4(Sz, 0), MaskHi2(Sz, 0), MaskHi1(Sz, 0);
2534 APInt MaskLo4(Sz, 0), MaskLo2(Sz, 0), MaskLo1(Sz, 0);
2535 for (unsigned J = 0; J != Sz; J += 8) {
2536 MaskHi4 = MaskHi4 | (0xF0ull << J);
2537 MaskLo4 = MaskLo4 | (0x0Full << J);
2538 MaskHi2 = MaskHi2 | (0xCCull << J);
2539 MaskLo2 = MaskLo2 | (0x33ull << J);
2540 MaskHi1 = MaskHi1 | (0xAAull << J);
2541 MaskLo1 = MaskLo1 | (0x55ull << J);
2542 }
2543
2544 // BSWAP if the type is wider than a single byte.
2545 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2546
2547 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2548 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2549 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2550 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2551 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2552 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2553
2554 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2555 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2556 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2557 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2558 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2559 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2560
2561 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2562 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2563 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2564 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2565 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2566 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2567 return Tmp;
2568 }
2569
2570 Tmp = DAG.getConstant(0, dl, VT);
2571 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2572 if (I < J)
2573 Tmp2 =
2574 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2575 else
2576 Tmp2 =
2577 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2578
2579 APInt Shift(Sz, 1);
2580 Shift <<= J;
2581 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2582 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2583 }
2584
2585 return Tmp;
2586 }
2587
2588 /// Open code the operations for BSWAP of the specified operation.
ExpandBSWAP(SDValue Op,const SDLoc & dl)2589 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2590 EVT VT = Op.getValueType();
2591 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2592 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2593 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2594 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2595 case MVT::i16:
2596 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2597 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2598 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2599 case MVT::i32:
2600 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2601 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2602 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2603 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2604 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2605 DAG.getConstant(0xFF0000, dl, VT));
2606 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2607 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2608 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2609 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2610 case MVT::i64:
2611 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2612 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2613 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2614 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2615 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2616 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2617 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2618 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2619 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2620 DAG.getConstant(255ULL<<48, dl, VT));
2621 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2622 DAG.getConstant(255ULL<<40, dl, VT));
2623 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2624 DAG.getConstant(255ULL<<32, dl, VT));
2625 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2626 DAG.getConstant(255ULL<<24, dl, VT));
2627 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2628 DAG.getConstant(255ULL<<16, dl, VT));
2629 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2630 DAG.getConstant(255ULL<<8 , dl, VT));
2631 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2632 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2633 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2634 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2635 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2636 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2637 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2638 }
2639 }
2640
ExpandNode(SDNode * Node)2641 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2642 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2643 SmallVector<SDValue, 8> Results;
2644 SDLoc dl(Node);
2645 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2646 bool NeedInvert;
2647 switch (Node->getOpcode()) {
2648 case ISD::ABS:
2649 if (TLI.expandABS(Node, Tmp1, DAG))
2650 Results.push_back(Tmp1);
2651 break;
2652 case ISD::CTPOP:
2653 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2654 Results.push_back(Tmp1);
2655 break;
2656 case ISD::CTLZ:
2657 case ISD::CTLZ_ZERO_UNDEF:
2658 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2659 Results.push_back(Tmp1);
2660 break;
2661 case ISD::CTTZ:
2662 case ISD::CTTZ_ZERO_UNDEF:
2663 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2664 Results.push_back(Tmp1);
2665 break;
2666 case ISD::BITREVERSE:
2667 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2668 break;
2669 case ISD::BSWAP:
2670 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2671 break;
2672 case ISD::FRAMEADDR:
2673 case ISD::RETURNADDR:
2674 case ISD::FRAME_TO_ARGS_OFFSET:
2675 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2676 break;
2677 case ISD::EH_DWARF_CFA: {
2678 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2679 TLI.getPointerTy(DAG.getDataLayout()));
2680 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2681 CfaArg.getValueType(),
2682 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2683 CfaArg.getValueType()),
2684 CfaArg);
2685 SDValue FA = DAG.getNode(
2686 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2687 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2688 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2689 FA, Offset));
2690 break;
2691 }
2692 case ISD::FLT_ROUNDS_:
2693 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2694 break;
2695 case ISD::EH_RETURN:
2696 case ISD::EH_LABEL:
2697 case ISD::PREFETCH:
2698 case ISD::VAEND:
2699 case ISD::EH_SJLJ_LONGJMP:
2700 // If the target didn't expand these, there's nothing to do, so just
2701 // preserve the chain and be done.
2702 Results.push_back(Node->getOperand(0));
2703 break;
2704 case ISD::READCYCLECOUNTER:
2705 // If the target didn't expand this, just return 'zero' and preserve the
2706 // chain.
2707 Results.append(Node->getNumValues() - 1,
2708 DAG.getConstant(0, dl, Node->getValueType(0)));
2709 Results.push_back(Node->getOperand(0));
2710 break;
2711 case ISD::EH_SJLJ_SETJMP:
2712 // If the target didn't expand this, just return 'zero' and preserve the
2713 // chain.
2714 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2715 Results.push_back(Node->getOperand(0));
2716 break;
2717 case ISD::ATOMIC_LOAD: {
2718 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2719 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2720 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2721 SDValue Swap = DAG.getAtomicCmpSwap(
2722 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2723 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2724 cast<AtomicSDNode>(Node)->getMemOperand());
2725 Results.push_back(Swap.getValue(0));
2726 Results.push_back(Swap.getValue(1));
2727 break;
2728 }
2729 case ISD::ATOMIC_STORE: {
2730 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2731 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2732 cast<AtomicSDNode>(Node)->getMemoryVT(),
2733 Node->getOperand(0),
2734 Node->getOperand(1), Node->getOperand(2),
2735 cast<AtomicSDNode>(Node)->getMemOperand());
2736 Results.push_back(Swap.getValue(1));
2737 break;
2738 }
2739 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2740 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2741 // splits out the success value as a comparison. Expanding the resulting
2742 // ATOMIC_CMP_SWAP will produce a libcall.
2743 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2744 SDValue Res = DAG.getAtomicCmpSwap(
2745 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2746 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2747 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2748
2749 SDValue ExtRes = Res;
2750 SDValue LHS = Res;
2751 SDValue RHS = Node->getOperand(1);
2752
2753 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2754 EVT OuterType = Node->getValueType(0);
2755 switch (TLI.getExtendForAtomicOps()) {
2756 case ISD::SIGN_EXTEND:
2757 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2758 DAG.getValueType(AtomicType));
2759 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2760 Node->getOperand(2), DAG.getValueType(AtomicType));
2761 ExtRes = LHS;
2762 break;
2763 case ISD::ZERO_EXTEND:
2764 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2765 DAG.getValueType(AtomicType));
2766 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2767 ExtRes = LHS;
2768 break;
2769 case ISD::ANY_EXTEND:
2770 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2771 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2772 break;
2773 default:
2774 llvm_unreachable("Invalid atomic op extension");
2775 }
2776
2777 SDValue Success =
2778 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2779
2780 Results.push_back(ExtRes.getValue(0));
2781 Results.push_back(Success);
2782 Results.push_back(Res.getValue(1));
2783 break;
2784 }
2785 case ISD::DYNAMIC_STACKALLOC:
2786 ExpandDYNAMIC_STACKALLOC(Node, Results);
2787 break;
2788 case ISD::MERGE_VALUES:
2789 for (unsigned i = 0; i < Node->getNumValues(); i++)
2790 Results.push_back(Node->getOperand(i));
2791 break;
2792 case ISD::UNDEF: {
2793 EVT VT = Node->getValueType(0);
2794 if (VT.isInteger())
2795 Results.push_back(DAG.getConstant(0, dl, VT));
2796 else {
2797 assert(VT.isFloatingPoint() && "Unknown value type!");
2798 Results.push_back(DAG.getConstantFP(0, dl, VT));
2799 }
2800 break;
2801 }
2802 case ISD::FP_ROUND:
2803 case ISD::BITCAST:
2804 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2805 Node->getValueType(0), dl);
2806 Results.push_back(Tmp1);
2807 break;
2808 case ISD::FP_EXTEND:
2809 Tmp1 = EmitStackConvert(Node->getOperand(0),
2810 Node->getOperand(0).getValueType(),
2811 Node->getValueType(0), dl);
2812 Results.push_back(Tmp1);
2813 break;
2814 case ISD::SIGN_EXTEND_INREG: {
2815 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2816 EVT VT = Node->getValueType(0);
2817
2818 // An in-register sign-extend of a boolean is a negation:
2819 // 'true' (1) sign-extended is -1.
2820 // 'false' (0) sign-extended is 0.
2821 // However, we must mask the high bits of the source operand because the
2822 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2823
2824 // TODO: Do this for vectors too?
2825 if (ExtraVT.getSizeInBits() == 1) {
2826 SDValue One = DAG.getConstant(1, dl, VT);
2827 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2828 SDValue Zero = DAG.getConstant(0, dl, VT);
2829 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2830 Results.push_back(Neg);
2831 break;
2832 }
2833
2834 // NOTE: we could fall back on load/store here too for targets without
2835 // SRA. However, it is doubtful that any exist.
2836 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2837 unsigned BitsDiff = VT.getScalarSizeInBits() -
2838 ExtraVT.getScalarSizeInBits();
2839 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2840 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2841 Node->getOperand(0), ShiftCst);
2842 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2843 Results.push_back(Tmp1);
2844 break;
2845 }
2846 case ISD::FP_ROUND_INREG: {
2847 // The only way we can lower this is to turn it into a TRUNCSTORE,
2848 // EXTLOAD pair, targeting a temporary location (a stack slot).
2849
2850 // NOTE: there is a choice here between constantly creating new stack
2851 // slots and always reusing the same one. We currently always create
2852 // new ones, as reuse may inhibit scheduling.
2853 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2854 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2855 Node->getValueType(0), dl);
2856 Results.push_back(Tmp1);
2857 break;
2858 }
2859 case ISD::UINT_TO_FP:
2860 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) {
2861 Results.push_back(Tmp1);
2862 break;
2863 }
2864 LLVM_FALLTHROUGH;
2865 case ISD::SINT_TO_FP:
2866 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2867 Node->getOperand(0), Node->getValueType(0), dl);
2868 Results.push_back(Tmp1);
2869 break;
2870 case ISD::FP_TO_SINT:
2871 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2872 Results.push_back(Tmp1);
2873 break;
2874 case ISD::FP_TO_UINT:
2875 if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG))
2876 Results.push_back(Tmp1);
2877 break;
2878 case ISD::VAARG:
2879 Results.push_back(DAG.expandVAArg(Node));
2880 Results.push_back(Results[0].getValue(1));
2881 break;
2882 case ISD::VACOPY:
2883 Results.push_back(DAG.expandVACopy(Node));
2884 break;
2885 case ISD::EXTRACT_VECTOR_ELT:
2886 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2887 // This must be an access of the only element. Return it.
2888 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2889 Node->getOperand(0));
2890 else
2891 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2892 Results.push_back(Tmp1);
2893 break;
2894 case ISD::EXTRACT_SUBVECTOR:
2895 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2896 break;
2897 case ISD::INSERT_SUBVECTOR:
2898 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2899 break;
2900 case ISD::CONCAT_VECTORS:
2901 Results.push_back(ExpandVectorBuildThroughStack(Node));
2902 break;
2903 case ISD::SCALAR_TO_VECTOR:
2904 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2905 break;
2906 case ISD::INSERT_VECTOR_ELT:
2907 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2908 Node->getOperand(1),
2909 Node->getOperand(2), dl));
2910 break;
2911 case ISD::VECTOR_SHUFFLE: {
2912 SmallVector<int, 32> NewMask;
2913 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2914
2915 EVT VT = Node->getValueType(0);
2916 EVT EltVT = VT.getVectorElementType();
2917 SDValue Op0 = Node->getOperand(0);
2918 SDValue Op1 = Node->getOperand(1);
2919 if (!TLI.isTypeLegal(EltVT)) {
2920 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2921
2922 // BUILD_VECTOR operands are allowed to be wider than the element type.
2923 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2924 // it.
2925 if (NewEltVT.bitsLT(EltVT)) {
2926 // Convert shuffle node.
2927 // If original node was v4i64 and the new EltVT is i32,
2928 // cast operands to v8i32 and re-build the mask.
2929
2930 // Calculate new VT, the size of the new VT should be equal to original.
2931 EVT NewVT =
2932 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2933 VT.getSizeInBits() / NewEltVT.getSizeInBits());
2934 assert(NewVT.bitsEq(VT));
2935
2936 // cast operands to new VT
2937 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2938 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2939
2940 // Convert the shuffle mask
2941 unsigned int factor =
2942 NewVT.getVectorNumElements()/VT.getVectorNumElements();
2943
2944 // EltVT gets smaller
2945 assert(factor > 0);
2946
2947 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2948 if (Mask[i] < 0) {
2949 for (unsigned fi = 0; fi < factor; ++fi)
2950 NewMask.push_back(Mask[i]);
2951 }
2952 else {
2953 for (unsigned fi = 0; fi < factor; ++fi)
2954 NewMask.push_back(Mask[i]*factor+fi);
2955 }
2956 }
2957 Mask = NewMask;
2958 VT = NewVT;
2959 }
2960 EltVT = NewEltVT;
2961 }
2962 unsigned NumElems = VT.getVectorNumElements();
2963 SmallVector<SDValue, 16> Ops;
2964 for (unsigned i = 0; i != NumElems; ++i) {
2965 if (Mask[i] < 0) {
2966 Ops.push_back(DAG.getUNDEF(EltVT));
2967 continue;
2968 }
2969 unsigned Idx = Mask[i];
2970 if (Idx < NumElems)
2971 Ops.push_back(DAG.getNode(
2972 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
2973 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
2974 else
2975 Ops.push_back(DAG.getNode(
2976 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
2977 DAG.getConstant(Idx - NumElems, dl,
2978 TLI.getVectorIdxTy(DAG.getDataLayout()))));
2979 }
2980
2981 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
2982 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2983 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2984 Results.push_back(Tmp1);
2985 break;
2986 }
2987 case ISD::EXTRACT_ELEMENT: {
2988 EVT OpTy = Node->getOperand(0).getValueType();
2989 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2990 // 1 -> Hi
2991 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2992 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
2993 TLI.getShiftAmountTy(
2994 Node->getOperand(0).getValueType(),
2995 DAG.getDataLayout())));
2996 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2997 } else {
2998 // 0 -> Lo
2999 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3000 Node->getOperand(0));
3001 }
3002 Results.push_back(Tmp1);
3003 break;
3004 }
3005 case ISD::STACKSAVE:
3006 // Expand to CopyFromReg if the target set
3007 // StackPointerRegisterToSaveRestore.
3008 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3009 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3010 Node->getValueType(0)));
3011 Results.push_back(Results[0].getValue(1));
3012 } else {
3013 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3014 Results.push_back(Node->getOperand(0));
3015 }
3016 break;
3017 case ISD::STACKRESTORE:
3018 // Expand to CopyToReg if the target set
3019 // StackPointerRegisterToSaveRestore.
3020 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3021 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3022 Node->getOperand(1)));
3023 } else {
3024 Results.push_back(Node->getOperand(0));
3025 }
3026 break;
3027 case ISD::GET_DYNAMIC_AREA_OFFSET:
3028 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3029 Results.push_back(Results[0].getValue(0));
3030 break;
3031 case ISD::FCOPYSIGN:
3032 Results.push_back(ExpandFCOPYSIGN(Node));
3033 break;
3034 case ISD::FNEG:
3035 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3036 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3037 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3038 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3039 Node->getOperand(0));
3040 Results.push_back(Tmp1);
3041 break;
3042 case ISD::FABS:
3043 Results.push_back(ExpandFABS(Node));
3044 break;
3045 case ISD::SMIN:
3046 case ISD::SMAX:
3047 case ISD::UMIN:
3048 case ISD::UMAX: {
3049 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3050 ISD::CondCode Pred;
3051 switch (Node->getOpcode()) {
3052 default: llvm_unreachable("How did we get here?");
3053 case ISD::SMAX: Pred = ISD::SETGT; break;
3054 case ISD::SMIN: Pred = ISD::SETLT; break;
3055 case ISD::UMAX: Pred = ISD::SETUGT; break;
3056 case ISD::UMIN: Pred = ISD::SETULT; break;
3057 }
3058 Tmp1 = Node->getOperand(0);
3059 Tmp2 = Node->getOperand(1);
3060 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3061 Results.push_back(Tmp1);
3062 break;
3063 }
3064 case ISD::FMINNUM:
3065 case ISD::FMAXNUM: {
3066 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3067 Results.push_back(Expanded);
3068 break;
3069 }
3070 case ISD::FSIN:
3071 case ISD::FCOS: {
3072 EVT VT = Node->getValueType(0);
3073 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3074 // fcos which share the same operand and both are used.
3075 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3076 isSinCosLibcallAvailable(Node, TLI))
3077 && useSinCos(Node)) {
3078 SDVTList VTs = DAG.getVTList(VT, VT);
3079 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3080 if (Node->getOpcode() == ISD::FCOS)
3081 Tmp1 = Tmp1.getValue(1);
3082 Results.push_back(Tmp1);
3083 }
3084 break;
3085 }
3086 case ISD::FMAD:
3087 llvm_unreachable("Illegal fmad should never be formed");
3088
3089 case ISD::FP16_TO_FP:
3090 if (Node->getValueType(0) != MVT::f32) {
3091 // We can extend to types bigger than f32 in two steps without changing
3092 // the result. Since "f16 -> f32" is much more commonly available, give
3093 // CodeGen the option of emitting that before resorting to a libcall.
3094 SDValue Res =
3095 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3096 Results.push_back(
3097 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3098 }
3099 break;
3100 case ISD::FP_TO_FP16:
3101 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3102 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3103 SDValue Op = Node->getOperand(0);
3104 MVT SVT = Op.getSimpleValueType();
3105 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3106 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3107 // Under fastmath, we can expand this node into a fround followed by
3108 // a float-half conversion.
3109 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3110 DAG.getIntPtrConstant(0, dl));
3111 Results.push_back(
3112 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3113 }
3114 }
3115 break;
3116 case ISD::ConstantFP: {
3117 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3118 // Check to see if this FP immediate is already legal.
3119 // If this is a legal constant, turn it into a TargetConstantFP node.
3120 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3121 Results.push_back(ExpandConstantFP(CFP, true));
3122 break;
3123 }
3124 case ISD::Constant: {
3125 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3126 Results.push_back(ExpandConstant(CP));
3127 break;
3128 }
3129 case ISD::FSUB: {
3130 EVT VT = Node->getValueType(0);
3131 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3132 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3133 const SDNodeFlags Flags = Node->getFlags();
3134 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3135 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3136 Results.push_back(Tmp1);
3137 }
3138 break;
3139 }
3140 case ISD::SUB: {
3141 EVT VT = Node->getValueType(0);
3142 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3143 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3144 "Don't know how to expand this subtraction!");
3145 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3146 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3147 VT));
3148 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3149 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3150 break;
3151 }
3152 case ISD::UREM:
3153 case ISD::SREM: {
3154 EVT VT = Node->getValueType(0);
3155 bool isSigned = Node->getOpcode() == ISD::SREM;
3156 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3157 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3158 Tmp2 = Node->getOperand(0);
3159 Tmp3 = Node->getOperand(1);
3160 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3161 SDVTList VTs = DAG.getVTList(VT, VT);
3162 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3163 Results.push_back(Tmp1);
3164 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3165 // X % Y -> X-X/Y*Y
3166 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3167 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3168 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3169 Results.push_back(Tmp1);
3170 }
3171 break;
3172 }
3173 case ISD::UDIV:
3174 case ISD::SDIV: {
3175 bool isSigned = Node->getOpcode() == ISD::SDIV;
3176 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3177 EVT VT = Node->getValueType(0);
3178 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3179 SDVTList VTs = DAG.getVTList(VT, VT);
3180 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3181 Node->getOperand(1));
3182 Results.push_back(Tmp1);
3183 }
3184 break;
3185 }
3186 case ISD::MULHU:
3187 case ISD::MULHS: {
3188 unsigned ExpandOpcode =
3189 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3190 EVT VT = Node->getValueType(0);
3191 SDVTList VTs = DAG.getVTList(VT, VT);
3192
3193 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3194 Node->getOperand(1));
3195 Results.push_back(Tmp1.getValue(1));
3196 break;
3197 }
3198 case ISD::UMUL_LOHI:
3199 case ISD::SMUL_LOHI: {
3200 SDValue LHS = Node->getOperand(0);
3201 SDValue RHS = Node->getOperand(1);
3202 MVT VT = LHS.getSimpleValueType();
3203 unsigned MULHOpcode =
3204 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3205
3206 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3207 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3208 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3209 break;
3210 }
3211
3212 SmallVector<SDValue, 4> Halves;
3213 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3214 assert(TLI.isTypeLegal(HalfType));
3215 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3216 HalfType, DAG,
3217 TargetLowering::MulExpansionKind::Always)) {
3218 for (unsigned i = 0; i < 2; ++i) {
3219 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3220 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3221 SDValue Shift = DAG.getConstant(
3222 HalfType.getScalarSizeInBits(), dl,
3223 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3224 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3225 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3226 }
3227 break;
3228 }
3229 break;
3230 }
3231 case ISD::MUL: {
3232 EVT VT = Node->getValueType(0);
3233 SDVTList VTs = DAG.getVTList(VT, VT);
3234 // See if multiply or divide can be lowered using two-result operations.
3235 // We just need the low half of the multiply; try both the signed
3236 // and unsigned forms. If the target supports both SMUL_LOHI and
3237 // UMUL_LOHI, form a preference by checking which forms of plain
3238 // MULH it supports.
3239 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3240 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3241 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3242 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3243 unsigned OpToUse = 0;
3244 if (HasSMUL_LOHI && !HasMULHS) {
3245 OpToUse = ISD::SMUL_LOHI;
3246 } else if (HasUMUL_LOHI && !HasMULHU) {
3247 OpToUse = ISD::UMUL_LOHI;
3248 } else if (HasSMUL_LOHI) {
3249 OpToUse = ISD::SMUL_LOHI;
3250 } else if (HasUMUL_LOHI) {
3251 OpToUse = ISD::UMUL_LOHI;
3252 }
3253 if (OpToUse) {
3254 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3255 Node->getOperand(1)));
3256 break;
3257 }
3258
3259 SDValue Lo, Hi;
3260 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3261 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3262 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3263 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3264 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3265 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3266 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3267 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3268 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3269 SDValue Shift =
3270 DAG.getConstant(HalfType.getSizeInBits(), dl,
3271 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3272 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3273 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3274 }
3275 break;
3276 }
3277 case ISD::FSHL:
3278 case ISD::FSHR:
3279 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3280 Results.push_back(Tmp1);
3281 break;
3282 case ISD::ROTL:
3283 case ISD::ROTR:
3284 if (TLI.expandROT(Node, Tmp1, DAG))
3285 Results.push_back(Tmp1);
3286 break;
3287 case ISD::SADDSAT:
3288 case ISD::UADDSAT:
3289 case ISD::SSUBSAT:
3290 case ISD::USUBSAT:
3291 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3292 break;
3293 case ISD::SMULFIX:
3294 Results.push_back(TLI.getExpandedFixedPointMultiplication(Node, DAG));
3295 break;
3296 case ISD::SADDO:
3297 case ISD::SSUBO: {
3298 SDValue LHS = Node->getOperand(0);
3299 SDValue RHS = Node->getOperand(1);
3300 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3301 ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3302 LHS, RHS);
3303 Results.push_back(Sum);
3304 EVT ResultType = Node->getValueType(1);
3305 EVT OType = getSetCCResultType(Node->getValueType(0));
3306
3307 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
3308
3309 // LHSSign -> LHS >= 0
3310 // RHSSign -> RHS >= 0
3311 // SumSign -> Sum >= 0
3312 //
3313 // Add:
3314 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3315 // Sub:
3316 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3317 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3318 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3319 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3320 Node->getOpcode() == ISD::SADDO ?
3321 ISD::SETEQ : ISD::SETNE);
3322
3323 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3324 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3325
3326 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3327 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType));
3328 break;
3329 }
3330 case ISD::UADDO:
3331 case ISD::USUBO: {
3332 SDValue LHS = Node->getOperand(0);
3333 SDValue RHS = Node->getOperand(1);
3334 bool IsAdd = Node->getOpcode() == ISD::UADDO;
3335 // If ADD/SUBCARRY is legal, use that instead.
3336 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
3337 if (TLI.isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
3338 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
3339 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
3340 { LHS, RHS, CarryIn });
3341 Results.push_back(SDValue(NodeCarry.getNode(), 0));
3342 Results.push_back(SDValue(NodeCarry.getNode(), 1));
3343 break;
3344 }
3345
3346 SDValue Sum = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
3347 LHS.getValueType(), LHS, RHS);
3348 Results.push_back(Sum);
3349
3350 EVT ResultType = Node->getValueType(1);
3351 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3352 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3353 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3354
3355 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType));
3356 break;
3357 }
3358 case ISD::UMULO:
3359 case ISD::SMULO: {
3360 EVT VT = Node->getValueType(0);
3361 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3362 SDValue LHS = Node->getOperand(0);
3363 SDValue RHS = Node->getOperand(1);
3364 SDValue BottomHalf;
3365 SDValue TopHalf;
3366 static const unsigned Ops[2][3] =
3367 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3368 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3369 bool isSigned = Node->getOpcode() == ISD::SMULO;
3370 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3371 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3372 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3373 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3374 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3375 RHS);
3376 TopHalf = BottomHalf.getValue(1);
3377 } else if (TLI.isTypeLegal(WideVT)) {
3378 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3379 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3380 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3381 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3382 DAG.getIntPtrConstant(0, dl));
3383 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3384 DAG.getIntPtrConstant(1, dl));
3385 } else {
3386 // We can fall back to a libcall with an illegal type for the MUL if we
3387 // have a libcall big enough.
3388 // Also, we can fall back to a division in some cases, but that's a big
3389 // performance hit in the general case.
3390 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3391 if (WideVT == MVT::i16)
3392 LC = RTLIB::MUL_I16;
3393 else if (WideVT == MVT::i32)
3394 LC = RTLIB::MUL_I32;
3395 else if (WideVT == MVT::i64)
3396 LC = RTLIB::MUL_I64;
3397 else if (WideVT == MVT::i128)
3398 LC = RTLIB::MUL_I128;
3399 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3400
3401 SDValue HiLHS;
3402 SDValue HiRHS;
3403 if (isSigned) {
3404 // The high part is obtained by SRA'ing all but one of the bits of low
3405 // part.
3406 unsigned LoSize = VT.getSizeInBits();
3407 HiLHS =
3408 DAG.getNode(ISD::SRA, dl, VT, LHS,
3409 DAG.getConstant(LoSize - 1, dl,
3410 TLI.getPointerTy(DAG.getDataLayout())));
3411 HiRHS =
3412 DAG.getNode(ISD::SRA, dl, VT, RHS,
3413 DAG.getConstant(LoSize - 1, dl,
3414 TLI.getPointerTy(DAG.getDataLayout())));
3415 } else {
3416 HiLHS = DAG.getConstant(0, dl, VT);
3417 HiRHS = DAG.getConstant(0, dl, VT);
3418 }
3419
3420 // Here we're passing the 2 arguments explicitly as 4 arguments that are
3421 // pre-lowered to the correct types. This all depends upon WideVT not
3422 // being a legal type for the architecture and thus has to be split to
3423 // two arguments.
3424 SDValue Ret;
3425 if(DAG.getDataLayout().isLittleEndian()) {
3426 // Halves of WideVT are packed into registers in different order
3427 // depending on platform endianness. This is usually handled by
3428 // the C calling convention, but we can't defer to it in
3429 // the legalizer.
3430 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3431 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3432 } else {
3433 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
3434 Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3435 }
3436 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
3437 "Ret value is a collection of constituent nodes holding result.");
3438 BottomHalf = Ret.getOperand(0);
3439 TopHalf = Ret.getOperand(1);
3440 }
3441
3442 if (isSigned) {
3443 Tmp1 = DAG.getConstant(
3444 VT.getSizeInBits() - 1, dl,
3445 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
3446 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3447 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1,
3448 ISD::SETNE);
3449 } else {
3450 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf,
3451 DAG.getConstant(0, dl, VT), ISD::SETNE);
3452 }
3453
3454 // Truncate the result if SetCC returns a larger type than needed.
3455 EVT RType = Node->getValueType(1);
3456 if (RType.getSizeInBits() < TopHalf.getValueSizeInBits())
3457 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, RType, TopHalf);
3458
3459 assert(RType.getSizeInBits() == TopHalf.getValueSizeInBits() &&
3460 "Unexpected result type for S/UMULO legalization");
3461
3462 Results.push_back(BottomHalf);
3463 Results.push_back(TopHalf);
3464 break;
3465 }
3466 case ISD::BUILD_PAIR: {
3467 EVT PairTy = Node->getValueType(0);
3468 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3469 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3470 Tmp2 = DAG.getNode(
3471 ISD::SHL, dl, PairTy, Tmp2,
3472 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3473 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3474 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3475 break;
3476 }
3477 case ISD::SELECT:
3478 Tmp1 = Node->getOperand(0);
3479 Tmp2 = Node->getOperand(1);
3480 Tmp3 = Node->getOperand(2);
3481 if (Tmp1.getOpcode() == ISD::SETCC) {
3482 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3483 Tmp2, Tmp3,
3484 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3485 } else {
3486 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3487 DAG.getConstant(0, dl, Tmp1.getValueType()),
3488 Tmp2, Tmp3, ISD::SETNE);
3489 }
3490 Results.push_back(Tmp1);
3491 break;
3492 case ISD::BR_JT: {
3493 SDValue Chain = Node->getOperand(0);
3494 SDValue Table = Node->getOperand(1);
3495 SDValue Index = Node->getOperand(2);
3496
3497 const DataLayout &TD = DAG.getDataLayout();
3498 EVT PTy = TLI.getPointerTy(TD);
3499
3500 unsigned EntrySize =
3501 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3502
3503 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3504 // This transformation needs to be done here since otherwise the MIPS
3505 // backend will end up emitting a three instruction multiply sequence
3506 // instead of a single shift and MSP430 will call a runtime function.
3507 if (llvm::isPowerOf2_32(EntrySize))
3508 Index = DAG.getNode(
3509 ISD::SHL, dl, Index.getValueType(), Index,
3510 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3511 else
3512 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3513 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3514 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3515 Index, Table);
3516
3517 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3518 SDValue LD = DAG.getExtLoad(
3519 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3520 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3521 Addr = LD;
3522 if (TLI.isJumpTableRelative()) {
3523 // For PIC, the sequence is:
3524 // BRIND(load(Jumptable + index) + RelocBase)
3525 // RelocBase can be JumpTable, GOT or some sort of global base.
3526 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3527 TLI.getPICJumpTableRelocBase(Table, DAG));
3528 }
3529
3530 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3531 Results.push_back(Tmp1);
3532 break;
3533 }
3534 case ISD::BRCOND:
3535 // Expand brcond's setcc into its constituent parts and create a BR_CC
3536 // Node.
3537 Tmp1 = Node->getOperand(0);
3538 Tmp2 = Node->getOperand(1);
3539 if (Tmp2.getOpcode() == ISD::SETCC) {
3540 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3541 Tmp1, Tmp2.getOperand(2),
3542 Tmp2.getOperand(0), Tmp2.getOperand(1),
3543 Node->getOperand(2));
3544 } else {
3545 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3546 if (Tmp2.isUndef() ||
3547 (Tmp2.getOpcode() == ISD::AND &&
3548 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3549 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3550 Tmp3 = Tmp2;
3551 else
3552 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3553 DAG.getConstant(1, dl, Tmp2.getValueType()));
3554 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3555 DAG.getCondCode(ISD::SETNE), Tmp3,
3556 DAG.getConstant(0, dl, Tmp3.getValueType()),
3557 Node->getOperand(2));
3558 }
3559 Results.push_back(Tmp1);
3560 break;
3561 case ISD::SETCC: {
3562 Tmp1 = Node->getOperand(0);
3563 Tmp2 = Node->getOperand(1);
3564 Tmp3 = Node->getOperand(2);
3565 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3566 Tmp3, NeedInvert, dl);
3567
3568 if (Legalized) {
3569 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3570 // condition code, create a new SETCC node.
3571 if (Tmp3.getNode())
3572 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3573 Tmp1, Tmp2, Tmp3);
3574
3575 // If we expanded the SETCC by inverting the condition code, then wrap
3576 // the existing SETCC in a NOT to restore the intended condition.
3577 if (NeedInvert)
3578 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3579
3580 Results.push_back(Tmp1);
3581 break;
3582 }
3583
3584 // Otherwise, SETCC for the given comparison type must be completely
3585 // illegal; expand it into a SELECT_CC.
3586 EVT VT = Node->getValueType(0);
3587 int TrueValue;
3588 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3589 case TargetLowering::ZeroOrOneBooleanContent:
3590 case TargetLowering::UndefinedBooleanContent:
3591 TrueValue = 1;
3592 break;
3593 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3594 TrueValue = -1;
3595 break;
3596 }
3597 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3598 DAG.getConstant(TrueValue, dl, VT),
3599 DAG.getConstant(0, dl, VT),
3600 Tmp3);
3601 Results.push_back(Tmp1);
3602 break;
3603 }
3604 case ISD::SELECT_CC: {
3605 Tmp1 = Node->getOperand(0); // LHS
3606 Tmp2 = Node->getOperand(1); // RHS
3607 Tmp3 = Node->getOperand(2); // True
3608 Tmp4 = Node->getOperand(3); // False
3609 EVT VT = Node->getValueType(0);
3610 SDValue CC = Node->getOperand(4);
3611 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3612
3613 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3614 // If the condition code is legal, then we need to expand this
3615 // node using SETCC and SELECT.
3616 EVT CmpVT = Tmp1.getValueType();
3617 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3618 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3619 "expanded.");
3620 EVT CCVT =
3621 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT);
3622 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC);
3623 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3624 break;
3625 }
3626
3627 // SELECT_CC is legal, so the condition code must not be.
3628 bool Legalized = false;
3629 // Try to legalize by inverting the condition. This is for targets that
3630 // might support an ordered version of a condition, but not the unordered
3631 // version (or vice versa).
3632 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3633 Tmp1.getValueType().isInteger());
3634 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3635 // Use the new condition code and swap true and false
3636 Legalized = true;
3637 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3638 } else {
3639 // If The inverse is not legal, then try to swap the arguments using
3640 // the inverse condition code.
3641 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3642 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3643 // The swapped inverse condition is legal, so swap true and false,
3644 // lhs and rhs.
3645 Legalized = true;
3646 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3647 }
3648 }
3649
3650 if (!Legalized) {
3651 Legalized = LegalizeSetCCCondCode(
3652 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3653 dl);
3654
3655 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3656
3657 // If we expanded the SETCC by inverting the condition code, then swap
3658 // the True/False operands to match.
3659 if (NeedInvert)
3660 std::swap(Tmp3, Tmp4);
3661
3662 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3663 // condition code, create a new SELECT_CC node.
3664 if (CC.getNode()) {
3665 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3666 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3667 } else {
3668 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3669 CC = DAG.getCondCode(ISD::SETNE);
3670 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3671 Tmp2, Tmp3, Tmp4, CC);
3672 }
3673 }
3674 Results.push_back(Tmp1);
3675 break;
3676 }
3677 case ISD::BR_CC: {
3678 Tmp1 = Node->getOperand(0); // Chain
3679 Tmp2 = Node->getOperand(2); // LHS
3680 Tmp3 = Node->getOperand(3); // RHS
3681 Tmp4 = Node->getOperand(1); // CC
3682
3683 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3684 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3685 (void)Legalized;
3686 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3687
3688 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3689
3690 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3691 // node.
3692 if (Tmp4.getNode()) {
3693 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3694 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3695 } else {
3696 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3697 Tmp4 = DAG.getCondCode(ISD::SETNE);
3698 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3699 Tmp2, Tmp3, Node->getOperand(4));
3700 }
3701 Results.push_back(Tmp1);
3702 break;
3703 }
3704 case ISD::BUILD_VECTOR:
3705 Results.push_back(ExpandBUILD_VECTOR(Node));
3706 break;
3707 case ISD::SRA:
3708 case ISD::SRL:
3709 case ISD::SHL: {
3710 // Scalarize vector SRA/SRL/SHL.
3711 EVT VT = Node->getValueType(0);
3712 assert(VT.isVector() && "Unable to legalize non-vector shift");
3713 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3714 unsigned NumElem = VT.getVectorNumElements();
3715
3716 SmallVector<SDValue, 8> Scalars;
3717 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3718 SDValue Ex = DAG.getNode(
3719 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3720 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3721 SDValue Sh = DAG.getNode(
3722 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3723 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3724 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3725 VT.getScalarType(), Ex, Sh));
3726 }
3727
3728 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3729 ReplaceNode(SDValue(Node, 0), Result);
3730 break;
3731 }
3732 case ISD::GLOBAL_OFFSET_TABLE:
3733 case ISD::GlobalAddress:
3734 case ISD::GlobalTLSAddress:
3735 case ISD::ExternalSymbol:
3736 case ISD::ConstantPool:
3737 case ISD::JumpTable:
3738 case ISD::INTRINSIC_W_CHAIN:
3739 case ISD::INTRINSIC_WO_CHAIN:
3740 case ISD::INTRINSIC_VOID:
3741 // FIXME: Custom lowering for these operations shouldn't return null!
3742 break;
3743 }
3744
3745 // Replace the original node with the legalized result.
3746 if (Results.empty()) {
3747 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3748 return false;
3749 }
3750
3751 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3752 ReplaceNode(Node, Results.data());
3753 return true;
3754 }
3755
ConvertNodeToLibcall(SDNode * Node)3756 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3757 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3758 SmallVector<SDValue, 8> Results;
3759 SDLoc dl(Node);
3760 // FIXME: Check flags on the node to see if we can use a finite call.
3761 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath;
3762 unsigned Opc = Node->getOpcode();
3763 switch (Opc) {
3764 case ISD::ATOMIC_FENCE: {
3765 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3766 // FIXME: handle "fence singlethread" more efficiently.
3767 TargetLowering::ArgListTy Args;
3768
3769 TargetLowering::CallLoweringInfo CLI(DAG);
3770 CLI.setDebugLoc(dl)
3771 .setChain(Node->getOperand(0))
3772 .setLibCallee(
3773 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3774 DAG.getExternalSymbol("__sync_synchronize",
3775 TLI.getPointerTy(DAG.getDataLayout())),
3776 std::move(Args));
3777
3778 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3779
3780 Results.push_back(CallResult.second);
3781 break;
3782 }
3783 // By default, atomic intrinsics are marked Legal and lowered. Targets
3784 // which don't support them directly, however, may want libcalls, in which
3785 // case they mark them Expand, and we get here.
3786 case ISD::ATOMIC_SWAP:
3787 case ISD::ATOMIC_LOAD_ADD:
3788 case ISD::ATOMIC_LOAD_SUB:
3789 case ISD::ATOMIC_LOAD_AND:
3790 case ISD::ATOMIC_LOAD_CLR:
3791 case ISD::ATOMIC_LOAD_OR:
3792 case ISD::ATOMIC_LOAD_XOR:
3793 case ISD::ATOMIC_LOAD_NAND:
3794 case ISD::ATOMIC_LOAD_MIN:
3795 case ISD::ATOMIC_LOAD_MAX:
3796 case ISD::ATOMIC_LOAD_UMIN:
3797 case ISD::ATOMIC_LOAD_UMAX:
3798 case ISD::ATOMIC_CMP_SWAP: {
3799 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3800 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3801 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3802
3803 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3804 Results.push_back(Tmp.first);
3805 Results.push_back(Tmp.second);
3806 break;
3807 }
3808 case ISD::TRAP: {
3809 // If this operation is not supported, lower it to 'abort()' call
3810 TargetLowering::ArgListTy Args;
3811 TargetLowering::CallLoweringInfo CLI(DAG);
3812 CLI.setDebugLoc(dl)
3813 .setChain(Node->getOperand(0))
3814 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3815 DAG.getExternalSymbol(
3816 "abort", TLI.getPointerTy(DAG.getDataLayout())),
3817 std::move(Args));
3818 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3819
3820 Results.push_back(CallResult.second);
3821 break;
3822 }
3823 case ISD::FMINNUM:
3824 case ISD::STRICT_FMINNUM:
3825 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3826 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3827 RTLIB::FMIN_PPCF128));
3828 break;
3829 case ISD::FMAXNUM:
3830 case ISD::STRICT_FMAXNUM:
3831 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3832 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3833 RTLIB::FMAX_PPCF128));
3834 break;
3835 case ISD::FSQRT:
3836 case ISD::STRICT_FSQRT:
3837 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3838 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3839 RTLIB::SQRT_PPCF128));
3840 break;
3841 case ISD::FCBRT:
3842 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3843 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3844 RTLIB::CBRT_PPCF128));
3845 break;
3846 case ISD::FSIN:
3847 case ISD::STRICT_FSIN:
3848 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3849 RTLIB::SIN_F80, RTLIB::SIN_F128,
3850 RTLIB::SIN_PPCF128));
3851 break;
3852 case ISD::FCOS:
3853 case ISD::STRICT_FCOS:
3854 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3855 RTLIB::COS_F80, RTLIB::COS_F128,
3856 RTLIB::COS_PPCF128));
3857 break;
3858 case ISD::FSINCOS:
3859 // Expand into sincos libcall.
3860 ExpandSinCosLibCall(Node, Results);
3861 break;
3862 case ISD::FLOG:
3863 case ISD::STRICT_FLOG:
3864 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite))
3865 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32,
3866 RTLIB::LOG_FINITE_F64,
3867 RTLIB::LOG_FINITE_F80,
3868 RTLIB::LOG_FINITE_F128,
3869 RTLIB::LOG_FINITE_PPCF128));
3870 else
3871 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3872 RTLIB::LOG_F80, RTLIB::LOG_F128,
3873 RTLIB::LOG_PPCF128));
3874 break;
3875 case ISD::FLOG2:
3876 case ISD::STRICT_FLOG2:
3877 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite))
3878 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32,
3879 RTLIB::LOG2_FINITE_F64,
3880 RTLIB::LOG2_FINITE_F80,
3881 RTLIB::LOG2_FINITE_F128,
3882 RTLIB::LOG2_FINITE_PPCF128));
3883 else
3884 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3885 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3886 RTLIB::LOG2_PPCF128));
3887 break;
3888 case ISD::FLOG10:
3889 case ISD::STRICT_FLOG10:
3890 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite))
3891 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32,
3892 RTLIB::LOG10_FINITE_F64,
3893 RTLIB::LOG10_FINITE_F80,
3894 RTLIB::LOG10_FINITE_F128,
3895 RTLIB::LOG10_FINITE_PPCF128));
3896 else
3897 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3898 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3899 RTLIB::LOG10_PPCF128));
3900 break;
3901 case ISD::FEXP:
3902 case ISD::STRICT_FEXP:
3903 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite))
3904 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32,
3905 RTLIB::EXP_FINITE_F64,
3906 RTLIB::EXP_FINITE_F80,
3907 RTLIB::EXP_FINITE_F128,
3908 RTLIB::EXP_FINITE_PPCF128));
3909 else
3910 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3911 RTLIB::EXP_F80, RTLIB::EXP_F128,
3912 RTLIB::EXP_PPCF128));
3913 break;
3914 case ISD::FEXP2:
3915 case ISD::STRICT_FEXP2:
3916 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite))
3917 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32,
3918 RTLIB::EXP2_FINITE_F64,
3919 RTLIB::EXP2_FINITE_F80,
3920 RTLIB::EXP2_FINITE_F128,
3921 RTLIB::EXP2_FINITE_PPCF128));
3922 else
3923 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3924 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3925 RTLIB::EXP2_PPCF128));
3926 break;
3927 case ISD::FTRUNC:
3928 case ISD::STRICT_FTRUNC:
3929 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3930 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3931 RTLIB::TRUNC_PPCF128));
3932 break;
3933 case ISD::FFLOOR:
3934 case ISD::STRICT_FFLOOR:
3935 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3936 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3937 RTLIB::FLOOR_PPCF128));
3938 break;
3939 case ISD::FCEIL:
3940 case ISD::STRICT_FCEIL:
3941 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3942 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3943 RTLIB::CEIL_PPCF128));
3944 break;
3945 case ISD::FRINT:
3946 case ISD::STRICT_FRINT:
3947 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3948 RTLIB::RINT_F80, RTLIB::RINT_F128,
3949 RTLIB::RINT_PPCF128));
3950 break;
3951 case ISD::FNEARBYINT:
3952 case ISD::STRICT_FNEARBYINT:
3953 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3954 RTLIB::NEARBYINT_F64,
3955 RTLIB::NEARBYINT_F80,
3956 RTLIB::NEARBYINT_F128,
3957 RTLIB::NEARBYINT_PPCF128));
3958 break;
3959 case ISD::FROUND:
3960 case ISD::STRICT_FROUND:
3961 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3962 RTLIB::ROUND_F64,
3963 RTLIB::ROUND_F80,
3964 RTLIB::ROUND_F128,
3965 RTLIB::ROUND_PPCF128));
3966 break;
3967 case ISD::FPOWI:
3968 case ISD::STRICT_FPOWI:
3969 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3970 RTLIB::POWI_F80, RTLIB::POWI_F128,
3971 RTLIB::POWI_PPCF128));
3972 break;
3973 case ISD::FPOW:
3974 case ISD::STRICT_FPOW:
3975 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite))
3976 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32,
3977 RTLIB::POW_FINITE_F64,
3978 RTLIB::POW_FINITE_F80,
3979 RTLIB::POW_FINITE_F128,
3980 RTLIB::POW_FINITE_PPCF128));
3981 else
3982 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3983 RTLIB::POW_F80, RTLIB::POW_F128,
3984 RTLIB::POW_PPCF128));
3985 break;
3986 case ISD::FDIV:
3987 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3988 RTLIB::DIV_F80, RTLIB::DIV_F128,
3989 RTLIB::DIV_PPCF128));
3990 break;
3991 case ISD::FREM:
3992 case ISD::STRICT_FREM:
3993 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3994 RTLIB::REM_F80, RTLIB::REM_F128,
3995 RTLIB::REM_PPCF128));
3996 break;
3997 case ISD::FMA:
3998 case ISD::STRICT_FMA:
3999 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
4000 RTLIB::FMA_F80, RTLIB::FMA_F128,
4001 RTLIB::FMA_PPCF128));
4002 break;
4003 case ISD::FADD:
4004 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
4005 RTLIB::ADD_F80, RTLIB::ADD_F128,
4006 RTLIB::ADD_PPCF128));
4007 break;
4008 case ISD::FMUL:
4009 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
4010 RTLIB::MUL_F80, RTLIB::MUL_F128,
4011 RTLIB::MUL_PPCF128));
4012 break;
4013 case ISD::FP16_TO_FP:
4014 if (Node->getValueType(0) == MVT::f32) {
4015 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
4016 }
4017 break;
4018 case ISD::FP_TO_FP16: {
4019 RTLIB::Libcall LC =
4020 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
4021 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
4022 Results.push_back(ExpandLibCall(LC, Node, false));
4023 break;
4024 }
4025 case ISD::FSUB:
4026 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4027 RTLIB::SUB_F80, RTLIB::SUB_F128,
4028 RTLIB::SUB_PPCF128));
4029 break;
4030 case ISD::SREM:
4031 Results.push_back(ExpandIntLibCall(Node, true,
4032 RTLIB::SREM_I8,
4033 RTLIB::SREM_I16, RTLIB::SREM_I32,
4034 RTLIB::SREM_I64, RTLIB::SREM_I128));
4035 break;
4036 case ISD::UREM:
4037 Results.push_back(ExpandIntLibCall(Node, false,
4038 RTLIB::UREM_I8,
4039 RTLIB::UREM_I16, RTLIB::UREM_I32,
4040 RTLIB::UREM_I64, RTLIB::UREM_I128));
4041 break;
4042 case ISD::SDIV:
4043 Results.push_back(ExpandIntLibCall(Node, true,
4044 RTLIB::SDIV_I8,
4045 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4046 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4047 break;
4048 case ISD::UDIV:
4049 Results.push_back(ExpandIntLibCall(Node, false,
4050 RTLIB::UDIV_I8,
4051 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4052 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4053 break;
4054 case ISD::SDIVREM:
4055 case ISD::UDIVREM:
4056 // Expand into divrem libcall
4057 ExpandDivRemLibCall(Node, Results);
4058 break;
4059 case ISD::MUL:
4060 Results.push_back(ExpandIntLibCall(Node, false,
4061 RTLIB::MUL_I8,
4062 RTLIB::MUL_I16, RTLIB::MUL_I32,
4063 RTLIB::MUL_I64, RTLIB::MUL_I128));
4064 break;
4065 case ISD::CTLZ_ZERO_UNDEF:
4066 switch (Node->getSimpleValueType(0).SimpleTy) {
4067 default:
4068 llvm_unreachable("LibCall explicitly requested, but not available");
4069 case MVT::i32:
4070 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4071 break;
4072 case MVT::i64:
4073 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4074 break;
4075 case MVT::i128:
4076 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4077 break;
4078 }
4079 break;
4080 }
4081
4082 // Replace the original node with the legalized result.
4083 if (!Results.empty()) {
4084 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4085 ReplaceNode(Node, Results.data());
4086 } else
4087 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4088 }
4089
4090 // Determine the vector type to use in place of an original scalar element when
4091 // promoting equally sized vectors.
getPromotedVectorElementType(const TargetLowering & TLI,MVT EltVT,MVT NewEltVT)4092 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4093 MVT EltVT, MVT NewEltVT) {
4094 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4095 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4096 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4097 return MidVT;
4098 }
4099
PromoteNode(SDNode * Node)4100 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4101 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4102 SmallVector<SDValue, 8> Results;
4103 MVT OVT = Node->getSimpleValueType(0);
4104 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4105 Node->getOpcode() == ISD::SINT_TO_FP ||
4106 Node->getOpcode() == ISD::SETCC ||
4107 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4108 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4109 OVT = Node->getOperand(0).getSimpleValueType();
4110 }
4111 if (Node->getOpcode() == ISD::BR_CC)
4112 OVT = Node->getOperand(2).getSimpleValueType();
4113 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4114 SDLoc dl(Node);
4115 SDValue Tmp1, Tmp2, Tmp3;
4116 switch (Node->getOpcode()) {
4117 case ISD::CTTZ:
4118 case ISD::CTTZ_ZERO_UNDEF:
4119 case ISD::CTLZ:
4120 case ISD::CTLZ_ZERO_UNDEF:
4121 case ISD::CTPOP:
4122 // Zero extend the argument.
4123 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4124 if (Node->getOpcode() == ISD::CTTZ) {
4125 // The count is the same in the promoted type except if the original
4126 // value was zero. This can be handled by setting the bit just off
4127 // the top of the original type.
4128 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4129 OVT.getSizeInBits());
4130 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4131 DAG.getConstant(TopBit, dl, NVT));
4132 }
4133 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4134 // already the correct result.
4135 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4136 if (Node->getOpcode() == ISD::CTLZ ||
4137 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4138 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4139 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4140 DAG.getConstant(NVT.getSizeInBits() -
4141 OVT.getSizeInBits(), dl, NVT));
4142 }
4143 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4144 break;
4145 case ISD::BITREVERSE:
4146 case ISD::BSWAP: {
4147 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4148 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4149 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4150 Tmp1 = DAG.getNode(
4151 ISD::SRL, dl, NVT, Tmp1,
4152 DAG.getConstant(DiffBits, dl,
4153 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4154
4155 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4156 break;
4157 }
4158 case ISD::FP_TO_UINT:
4159 case ISD::FP_TO_SINT:
4160 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4161 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4162 Results.push_back(Tmp1);
4163 break;
4164 case ISD::UINT_TO_FP:
4165 case ISD::SINT_TO_FP:
4166 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4167 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4168 Results.push_back(Tmp1);
4169 break;
4170 case ISD::VAARG: {
4171 SDValue Chain = Node->getOperand(0); // Get the chain.
4172 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4173
4174 unsigned TruncOp;
4175 if (OVT.isVector()) {
4176 TruncOp = ISD::BITCAST;
4177 } else {
4178 assert(OVT.isInteger()
4179 && "VAARG promotion is supported only for vectors or integer types");
4180 TruncOp = ISD::TRUNCATE;
4181 }
4182
4183 // Perform the larger operation, then convert back
4184 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4185 Node->getConstantOperandVal(3));
4186 Chain = Tmp1.getValue(1);
4187
4188 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4189
4190 // Modified the chain result - switch anything that used the old chain to
4191 // use the new one.
4192 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4193 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4194 if (UpdatedNodes) {
4195 UpdatedNodes->insert(Tmp2.getNode());
4196 UpdatedNodes->insert(Chain.getNode());
4197 }
4198 ReplacedNode(Node);
4199 break;
4200 }
4201 case ISD::MUL:
4202 case ISD::SDIV:
4203 case ISD::SREM:
4204 case ISD::UDIV:
4205 case ISD::UREM:
4206 case ISD::AND:
4207 case ISD::OR:
4208 case ISD::XOR: {
4209 unsigned ExtOp, TruncOp;
4210 if (OVT.isVector()) {
4211 ExtOp = ISD::BITCAST;
4212 TruncOp = ISD::BITCAST;
4213 } else {
4214 assert(OVT.isInteger() && "Cannot promote logic operation");
4215
4216 switch (Node->getOpcode()) {
4217 default:
4218 ExtOp = ISD::ANY_EXTEND;
4219 break;
4220 case ISD::SDIV:
4221 case ISD::SREM:
4222 ExtOp = ISD::SIGN_EXTEND;
4223 break;
4224 case ISD::UDIV:
4225 case ISD::UREM:
4226 ExtOp = ISD::ZERO_EXTEND;
4227 break;
4228 }
4229 TruncOp = ISD::TRUNCATE;
4230 }
4231 // Promote each of the values to the new type.
4232 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4233 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4234 // Perform the larger operation, then convert back
4235 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4236 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4237 break;
4238 }
4239 case ISD::UMUL_LOHI:
4240 case ISD::SMUL_LOHI: {
4241 // Promote to a multiply in a wider integer type.
4242 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4243 : ISD::SIGN_EXTEND;
4244 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4245 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4246 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4247
4248 auto &DL = DAG.getDataLayout();
4249 unsigned OriginalSize = OVT.getScalarSizeInBits();
4250 Tmp2 = DAG.getNode(
4251 ISD::SRL, dl, NVT, Tmp1,
4252 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4253 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4254 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4255 break;
4256 }
4257 case ISD::SELECT: {
4258 unsigned ExtOp, TruncOp;
4259 if (Node->getValueType(0).isVector() ||
4260 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4261 ExtOp = ISD::BITCAST;
4262 TruncOp = ISD::BITCAST;
4263 } else if (Node->getValueType(0).isInteger()) {
4264 ExtOp = ISD::ANY_EXTEND;
4265 TruncOp = ISD::TRUNCATE;
4266 } else {
4267 ExtOp = ISD::FP_EXTEND;
4268 TruncOp = ISD::FP_ROUND;
4269 }
4270 Tmp1 = Node->getOperand(0);
4271 // Promote each of the values to the new type.
4272 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4273 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4274 // Perform the larger operation, then round down.
4275 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4276 if (TruncOp != ISD::FP_ROUND)
4277 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4278 else
4279 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4280 DAG.getIntPtrConstant(0, dl));
4281 Results.push_back(Tmp1);
4282 break;
4283 }
4284 case ISD::VECTOR_SHUFFLE: {
4285 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4286
4287 // Cast the two input vectors.
4288 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4289 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4290
4291 // Convert the shuffle mask to the right # elements.
4292 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4293 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4294 Results.push_back(Tmp1);
4295 break;
4296 }
4297 case ISD::SETCC: {
4298 unsigned ExtOp = ISD::FP_EXTEND;
4299 if (NVT.isInteger()) {
4300 ISD::CondCode CCCode =
4301 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4302 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4303 }
4304 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4305 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4306 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
4307 Tmp1, Tmp2, Node->getOperand(2)));
4308 break;
4309 }
4310 case ISD::BR_CC: {
4311 unsigned ExtOp = ISD::FP_EXTEND;
4312 if (NVT.isInteger()) {
4313 ISD::CondCode CCCode =
4314 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4315 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4316 }
4317 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4318 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4319 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4320 Node->getOperand(0), Node->getOperand(1),
4321 Tmp1, Tmp2, Node->getOperand(4)));
4322 break;
4323 }
4324 case ISD::FADD:
4325 case ISD::FSUB:
4326 case ISD::FMUL:
4327 case ISD::FDIV:
4328 case ISD::FREM:
4329 case ISD::FMINNUM:
4330 case ISD::FMAXNUM:
4331 case ISD::FPOW:
4332 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4333 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4334 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4335 Node->getFlags());
4336 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4337 Tmp3, DAG.getIntPtrConstant(0, dl)));
4338 break;
4339 case ISD::FMA:
4340 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4341 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4342 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4343 Results.push_back(
4344 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4345 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4346 DAG.getIntPtrConstant(0, dl)));
4347 break;
4348 case ISD::FCOPYSIGN:
4349 case ISD::FPOWI: {
4350 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4351 Tmp2 = Node->getOperand(1);
4352 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4353
4354 // fcopysign doesn't change anything but the sign bit, so
4355 // (fp_round (fcopysign (fpext a), b))
4356 // is as precise as
4357 // (fp_round (fpext a))
4358 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4359 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4360 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4361 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4362 break;
4363 }
4364 case ISD::FFLOOR:
4365 case ISD::FCEIL:
4366 case ISD::FRINT:
4367 case ISD::FNEARBYINT:
4368 case ISD::FROUND:
4369 case ISD::FTRUNC:
4370 case ISD::FNEG:
4371 case ISD::FSQRT:
4372 case ISD::FSIN:
4373 case ISD::FCOS:
4374 case ISD::FLOG:
4375 case ISD::FLOG2:
4376 case ISD::FLOG10:
4377 case ISD::FABS:
4378 case ISD::FEXP:
4379 case ISD::FEXP2:
4380 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4381 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4382 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4383 Tmp2, DAG.getIntPtrConstant(0, dl)));
4384 break;
4385 case ISD::BUILD_VECTOR: {
4386 MVT EltVT = OVT.getVectorElementType();
4387 MVT NewEltVT = NVT.getVectorElementType();
4388
4389 // Handle bitcasts to a different vector type with the same total bit size
4390 //
4391 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4392 // =>
4393 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4394
4395 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4396 "Invalid promote type for build_vector");
4397 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4398
4399 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4400
4401 SmallVector<SDValue, 8> NewOps;
4402 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4403 SDValue Op = Node->getOperand(I);
4404 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4405 }
4406
4407 SDLoc SL(Node);
4408 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4409 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4410 Results.push_back(CvtVec);
4411 break;
4412 }
4413 case ISD::EXTRACT_VECTOR_ELT: {
4414 MVT EltVT = OVT.getVectorElementType();
4415 MVT NewEltVT = NVT.getVectorElementType();
4416
4417 // Handle bitcasts to a different vector type with the same total bit size.
4418 //
4419 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4420 // =>
4421 // v4i32:castx = bitcast x:v2i64
4422 //
4423 // i64 = bitcast
4424 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4425 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4426 //
4427
4428 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4429 "Invalid promote type for extract_vector_elt");
4430 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4431
4432 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4433 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4434
4435 SDValue Idx = Node->getOperand(1);
4436 EVT IdxVT = Idx.getValueType();
4437 SDLoc SL(Node);
4438 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4439 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4440
4441 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4442
4443 SmallVector<SDValue, 8> NewOps;
4444 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4445 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4446 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4447
4448 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4449 CastVec, TmpIdx);
4450 NewOps.push_back(Elt);
4451 }
4452
4453 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4454 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4455 break;
4456 }
4457 case ISD::INSERT_VECTOR_ELT: {
4458 MVT EltVT = OVT.getVectorElementType();
4459 MVT NewEltVT = NVT.getVectorElementType();
4460
4461 // Handle bitcasts to a different vector type with the same total bit size
4462 //
4463 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4464 // =>
4465 // v4i32:castx = bitcast x:v2i64
4466 // v2i32:casty = bitcast y:i64
4467 //
4468 // v2i64 = bitcast
4469 // (v4i32 insert_vector_elt
4470 // (v4i32 insert_vector_elt v4i32:castx,
4471 // (extract_vector_elt casty, 0), 2 * z),
4472 // (extract_vector_elt casty, 1), (2 * z + 1))
4473
4474 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4475 "Invalid promote type for insert_vector_elt");
4476 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4477
4478 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4479 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4480
4481 SDValue Val = Node->getOperand(1);
4482 SDValue Idx = Node->getOperand(2);
4483 EVT IdxVT = Idx.getValueType();
4484 SDLoc SL(Node);
4485
4486 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4487 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4488
4489 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4490 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4491
4492 SDValue NewVec = CastVec;
4493 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4494 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4495 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4496
4497 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4498 CastVal, IdxOffset);
4499
4500 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4501 NewVec, Elt, InEltIdx);
4502 }
4503
4504 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4505 break;
4506 }
4507 case ISD::SCALAR_TO_VECTOR: {
4508 MVT EltVT = OVT.getVectorElementType();
4509 MVT NewEltVT = NVT.getVectorElementType();
4510
4511 // Handle bitcasts to different vector type with the same total bit size.
4512 //
4513 // e.g. v2i64 = scalar_to_vector x:i64
4514 // =>
4515 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4516 //
4517
4518 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4519 SDValue Val = Node->getOperand(0);
4520 SDLoc SL(Node);
4521
4522 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4523 SDValue Undef = DAG.getUNDEF(MidVT);
4524
4525 SmallVector<SDValue, 8> NewElts;
4526 NewElts.push_back(CastVal);
4527 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4528 NewElts.push_back(Undef);
4529
4530 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4531 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4532 Results.push_back(CvtVec);
4533 break;
4534 }
4535 }
4536
4537 // Replace the original node with the legalized result.
4538 if (!Results.empty()) {
4539 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4540 ReplaceNode(Node, Results.data());
4541 } else
4542 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4543 }
4544
4545 /// This is the entry point for the file.
Legalize()4546 void SelectionDAG::Legalize() {
4547 AssignTopologicalOrder();
4548
4549 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4550 // Use a delete listener to remove nodes which were deleted during
4551 // legalization from LegalizeNodes. This is needed to handle the situation
4552 // where a new node is allocated by the object pool to the same address of a
4553 // previously deleted node.
4554 DAGNodeDeletedListener DeleteListener(
4555 *this,
4556 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4557
4558 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4559
4560 // Visit all the nodes. We start in topological order, so that we see
4561 // nodes with their original operands intact. Legalization can produce
4562 // new nodes which may themselves need to be legalized. Iterate until all
4563 // nodes have been legalized.
4564 while (true) {
4565 bool AnyLegalized = false;
4566 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4567 --NI;
4568
4569 SDNode *N = &*NI;
4570 if (N->use_empty() && N != getRoot().getNode()) {
4571 ++NI;
4572 DeleteNode(N);
4573 continue;
4574 }
4575
4576 if (LegalizedNodes.insert(N).second) {
4577 AnyLegalized = true;
4578 Legalizer.LegalizeOp(N);
4579
4580 if (N->use_empty() && N != getRoot().getNode()) {
4581 ++NI;
4582 DeleteNode(N);
4583 }
4584 }
4585 }
4586 if (!AnyLegalized)
4587 break;
4588
4589 }
4590
4591 // Remove dead nodes now.
4592 RemoveDeadNodes();
4593 }
4594
LegalizeOp(SDNode * N,SmallSetVector<SDNode *,16> & UpdatedNodes)4595 bool SelectionDAG::LegalizeOp(SDNode *N,
4596 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4597 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4598 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4599
4600 // Directly insert the node in question, and legalize it. This will recurse
4601 // as needed through operands.
4602 LegalizedNodes.insert(N);
4603 Legalizer.LegalizeOp(N);
4604
4605 return LegalizedNodes.count(N);
4606 }
4607