1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file This register allocator allocates registers to a basic block at a
11 /// time, attempting to keep values in registers and reusing registers as
12 /// appropriate.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/IndexedMap.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/RegisterClassInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/MC/MCInstrDesc.h"
40 #include "llvm/MC/MCRegisterInfo.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <cassert>
48 #include <tuple>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #define DEBUG_TYPE "regalloc"
54 
55 STATISTIC(NumStores, "Number of stores added");
56 STATISTIC(NumLoads , "Number of loads added");
57 STATISTIC(NumCoalesced, "Number of copies coalesced");
58 
59 static RegisterRegAlloc
60   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
61 
62 namespace {
63 
64   class RegAllocFast : public MachineFunctionPass {
65   public:
66     static char ID;
67 
RegAllocFast()68     RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
69 
70   private:
71     MachineFrameInfo *MFI;
72     MachineRegisterInfo *MRI;
73     const TargetRegisterInfo *TRI;
74     const TargetInstrInfo *TII;
75     RegisterClassInfo RegClassInfo;
76 
77     /// Basic block currently being allocated.
78     MachineBasicBlock *MBB;
79 
80     /// Maps virtual regs to the frame index where these values are spilled.
81     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
82 
83     /// Everything we know about a live virtual register.
84     struct LiveReg {
85       MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
86       unsigned VirtReg;                ///< Virtual register number.
87       MCPhysReg PhysReg = 0;           ///< Currently held here.
88       unsigned short LastOpNum = 0;    ///< OpNum on LastUse.
89       bool Dirty = false;              ///< Register needs spill.
90 
LiveReg__anon233ffc900111::RegAllocFast::LiveReg91       explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
92 
getSparseSetIndex__anon233ffc900111::RegAllocFast::LiveReg93       unsigned getSparseSetIndex() const {
94         return TargetRegisterInfo::virtReg2Index(VirtReg);
95       }
96     };
97 
98     using LiveRegMap = SparseSet<LiveReg>;
99     /// This map contains entries for each virtual register that is currently
100     /// available in a physical register.
101     LiveRegMap LiveVirtRegs;
102 
103     DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
104 
105     /// State of a physical register.
106     enum RegState {
107       /// A disabled register is not available for allocation, but an alias may
108       /// be in use. A register can only be moved out of the disabled state if
109       /// all aliases are disabled.
110       regDisabled,
111 
112       /// A free register is not currently in use and can be allocated
113       /// immediately without checking aliases.
114       regFree,
115 
116       /// A reserved register has been assigned explicitly (e.g., setting up a
117       /// call parameter), and it remains reserved until it is used.
118       regReserved
119 
120       /// A register state may also be a virtual register number, indication
121       /// that the physical register is currently allocated to a virtual
122       /// register. In that case, LiveVirtRegs contains the inverse mapping.
123     };
124 
125     /// Maps each physical register to a RegState enum or a virtual register.
126     std::vector<unsigned> PhysRegState;
127 
128     SmallVector<unsigned, 16> VirtDead;
129     SmallVector<MachineInstr *, 32> Coalesced;
130 
131     using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
132     /// Set of register units that are used in the current instruction, and so
133     /// cannot be allocated.
134     RegUnitSet UsedInInstr;
135 
136     void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
137 
138     /// Mark a physreg as used in this instruction.
markRegUsedInInstr(MCPhysReg PhysReg)139     void markRegUsedInInstr(MCPhysReg PhysReg) {
140       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
141         UsedInInstr.insert(*Units);
142     }
143 
144     /// Check if a physreg or any of its aliases are used in this instruction.
isRegUsedInInstr(MCPhysReg PhysReg) const145     bool isRegUsedInInstr(MCPhysReg PhysReg) const {
146       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
147         if (UsedInInstr.count(*Units))
148           return true;
149       return false;
150     }
151 
152     enum : unsigned {
153       spillClean = 50,
154       spillDirty = 100,
155       spillImpossible = ~0u
156     };
157 
158   public:
getPassName() const159     StringRef getPassName() const override { return "Fast Register Allocator"; }
160 
getAnalysisUsage(AnalysisUsage & AU) const161     void getAnalysisUsage(AnalysisUsage &AU) const override {
162       AU.setPreservesCFG();
163       MachineFunctionPass::getAnalysisUsage(AU);
164     }
165 
getRequiredProperties() const166     MachineFunctionProperties getRequiredProperties() const override {
167       return MachineFunctionProperties().set(
168           MachineFunctionProperties::Property::NoPHIs);
169     }
170 
getSetProperties() const171     MachineFunctionProperties getSetProperties() const override {
172       return MachineFunctionProperties().set(
173           MachineFunctionProperties::Property::NoVRegs);
174     }
175 
176   private:
177     bool runOnMachineFunction(MachineFunction &MF) override;
178 
179     void allocateBasicBlock(MachineBasicBlock &MBB);
180     void allocateInstruction(MachineInstr &MI);
181     void handleDebugValue(MachineInstr &MI);
182     void handleThroughOperands(MachineInstr &MI,
183                                SmallVectorImpl<unsigned> &VirtDead);
184     bool isLastUseOfLocalReg(const MachineOperand &MO) const;
185 
186     void addKillFlag(const LiveReg &LRI);
187     void killVirtReg(LiveReg &LR);
188     void killVirtReg(unsigned VirtReg);
189     void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
190     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
191 
192     void usePhysReg(MachineOperand &MO);
193     void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
194                        RegState NewState);
195     unsigned calcSpillCost(MCPhysReg PhysReg) const;
196     void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
197 
findLiveVirtReg(unsigned VirtReg)198     LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
199       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
200     }
201 
findLiveVirtReg(unsigned VirtReg) const202     LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
203       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
204     }
205 
206     void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
207     MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
208                             unsigned Hint);
209     LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
210                            unsigned Hint);
211     void spillAll(MachineBasicBlock::iterator MI);
212     bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
213 
214     int getStackSpaceFor(unsigned VirtReg);
215     void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
216                MCPhysReg AssignedReg, bool Kill);
217     void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
218                 MCPhysReg PhysReg);
219 
220     void dumpState();
221   };
222 
223 } // end anonymous namespace
224 
225 char RegAllocFast::ID = 0;
226 
227 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
228                 false)
229 
setPhysRegState(MCPhysReg PhysReg,unsigned NewState)230 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
231   PhysRegState[PhysReg] = NewState;
232 }
233 
234 /// This allocates space for the specified virtual register to be held on the
235 /// stack.
getStackSpaceFor(unsigned VirtReg)236 int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
237   // Find the location Reg would belong...
238   int SS = StackSlotForVirtReg[VirtReg];
239   // Already has space allocated?
240   if (SS != -1)
241     return SS;
242 
243   // Allocate a new stack object for this spill location...
244   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
245   unsigned Size = TRI->getSpillSize(RC);
246   unsigned Align = TRI->getSpillAlignment(RC);
247   int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
248 
249   // Assign the slot.
250   StackSlotForVirtReg[VirtReg] = FrameIdx;
251   return FrameIdx;
252 }
253 
254 /// Insert spill instruction for \p AssignedReg before \p Before. Update
255 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
spill(MachineBasicBlock::iterator Before,unsigned VirtReg,MCPhysReg AssignedReg,bool Kill)256 void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
257                          MCPhysReg AssignedReg, bool Kill) {
258   LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
259                     << " in " << printReg(AssignedReg, TRI));
260   int FI = getStackSpaceFor(VirtReg);
261   LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
262 
263   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
264   TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
265   ++NumStores;
266 
267   // If this register is used by DBG_VALUE then insert new DBG_VALUE to
268   // identify spilled location as the place to find corresponding variable's
269   // value.
270   SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
271   for (MachineInstr *DBG : LRIDbgValues) {
272     MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
273     assert(NewDV->getParent() == MBB && "dangling parent pointer");
274     (void)NewDV;
275     LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
276   }
277   // Now this register is spilled there is should not be any DBG_VALUE
278   // pointing to this register because they are all pointing to spilled value
279   // now.
280   LRIDbgValues.clear();
281 }
282 
283 /// Insert reload instruction for \p PhysReg before \p Before.
reload(MachineBasicBlock::iterator Before,unsigned VirtReg,MCPhysReg PhysReg)284 void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
285                           MCPhysReg PhysReg) {
286   LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
287                     << printReg(PhysReg, TRI) << '\n');
288   int FI = getStackSpaceFor(VirtReg);
289   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
290   TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
291   ++NumLoads;
292 }
293 
294 /// Return true if MO is the only remaining reference to its virtual register,
295 /// and it is guaranteed to be a block-local register.
isLastUseOfLocalReg(const MachineOperand & MO) const296 bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
297   // If the register has ever been spilled or reloaded, we conservatively assume
298   // it is a global register used in multiple blocks.
299   if (StackSlotForVirtReg[MO.getReg()] != -1)
300     return false;
301 
302   // Check that the use/def chain has exactly one operand - MO.
303   MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
304   if (&*I != &MO)
305     return false;
306   return ++I == MRI->reg_nodbg_end();
307 }
308 
309 /// Set kill flags on last use of a virtual register.
addKillFlag(const LiveReg & LR)310 void RegAllocFast::addKillFlag(const LiveReg &LR) {
311   if (!LR.LastUse) return;
312   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
313   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
314     if (MO.getReg() == LR.PhysReg)
315       MO.setIsKill();
316     // else, don't do anything we are problably redefining a
317     // subreg of this register and given we don't track which
318     // lanes are actually dead, we cannot insert a kill flag here.
319     // Otherwise we may end up in a situation like this:
320     // ... = (MO) physreg:sub1, implicit killed physreg
321     // ... <== Here we would allow later pass to reuse physreg:sub1
322     //         which is potentially wrong.
323     // LR:sub0 = ...
324     // ... = LR.sub1 <== This is going to use physreg:sub1
325   }
326 }
327 
328 /// Mark virtreg as no longer available.
killVirtReg(LiveReg & LR)329 void RegAllocFast::killVirtReg(LiveReg &LR) {
330   addKillFlag(LR);
331   assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
332          "Broken RegState mapping");
333   setPhysRegState(LR.PhysReg, regFree);
334   LR.PhysReg = 0;
335 }
336 
337 /// Mark virtreg as no longer available.
killVirtReg(unsigned VirtReg)338 void RegAllocFast::killVirtReg(unsigned VirtReg) {
339   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
340          "killVirtReg needs a virtual register");
341   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
342   if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
343     killVirtReg(*LRI);
344 }
345 
346 /// This method spills the value specified by VirtReg into the corresponding
347 /// stack slot if needed.
spillVirtReg(MachineBasicBlock::iterator MI,unsigned VirtReg)348 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
349                                 unsigned VirtReg) {
350   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
351          "Spilling a physical register is illegal!");
352   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
353   assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
354          "Spilling unmapped virtual register");
355   spillVirtReg(MI, *LRI);
356 }
357 
358 /// Do the actual work of spilling.
spillVirtReg(MachineBasicBlock::iterator MI,LiveReg & LR)359 void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
360   assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
361 
362   if (LR.Dirty) {
363     // If this physreg is used by the instruction, we want to kill it on the
364     // instruction, not on the spill.
365     bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
366     LR.Dirty = false;
367 
368     spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
369 
370     if (SpillKill)
371       LR.LastUse = nullptr; // Don't kill register again
372   }
373   killVirtReg(LR);
374 }
375 
376 /// Spill all dirty virtregs without killing them.
spillAll(MachineBasicBlock::iterator MI)377 void RegAllocFast::spillAll(MachineBasicBlock::iterator MI) {
378   if (LiveVirtRegs.empty())
379     return;
380   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
381   // of spilling here is deterministic, if arbitrary.
382   for (LiveReg &LR : LiveVirtRegs) {
383     if (!LR.PhysReg)
384       continue;
385     spillVirtReg(MI, LR);
386   }
387   LiveVirtRegs.clear();
388 }
389 
390 /// Handle the direct use of a physical register.  Check that the register is
391 /// not used by a virtreg. Kill the physreg, marking it free. This may add
392 /// implicit kills to MO->getParent() and invalidate MO.
usePhysReg(MachineOperand & MO)393 void RegAllocFast::usePhysReg(MachineOperand &MO) {
394   // Ignore undef uses.
395   if (MO.isUndef())
396     return;
397 
398   unsigned PhysReg = MO.getReg();
399   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
400          "Bad usePhysReg operand");
401 
402   markRegUsedInInstr(PhysReg);
403   switch (PhysRegState[PhysReg]) {
404   case regDisabled:
405     break;
406   case regReserved:
407     PhysRegState[PhysReg] = regFree;
408     LLVM_FALLTHROUGH;
409   case regFree:
410     MO.setIsKill();
411     return;
412   default:
413     // The physreg was allocated to a virtual register. That means the value we
414     // wanted has been clobbered.
415     llvm_unreachable("Instruction uses an allocated register");
416   }
417 
418   // Maybe a superregister is reserved?
419   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
420     MCPhysReg Alias = *AI;
421     switch (PhysRegState[Alias]) {
422     case regDisabled:
423       break;
424     case regReserved:
425       // Either PhysReg is a subregister of Alias and we mark the
426       // whole register as free, or PhysReg is the superregister of
427       // Alias and we mark all the aliases as disabled before freeing
428       // PhysReg.
429       // In the latter case, since PhysReg was disabled, this means that
430       // its value is defined only by physical sub-registers. This check
431       // is performed by the assert of the default case in this loop.
432       // Note: The value of the superregister may only be partial
433       // defined, that is why regDisabled is a valid state for aliases.
434       assert((TRI->isSuperRegister(PhysReg, Alias) ||
435               TRI->isSuperRegister(Alias, PhysReg)) &&
436              "Instruction is not using a subregister of a reserved register");
437       LLVM_FALLTHROUGH;
438     case regFree:
439       if (TRI->isSuperRegister(PhysReg, Alias)) {
440         // Leave the superregister in the working set.
441         setPhysRegState(Alias, regFree);
442         MO.getParent()->addRegisterKilled(Alias, TRI, true);
443         return;
444       }
445       // Some other alias was in the working set - clear it.
446       setPhysRegState(Alias, regDisabled);
447       break;
448     default:
449       llvm_unreachable("Instruction uses an alias of an allocated register");
450     }
451   }
452 
453   // All aliases are disabled, bring register into working set.
454   setPhysRegState(PhysReg, regFree);
455   MO.setIsKill();
456 }
457 
458 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
459 /// similar to defineVirtReg except the physreg is reserved instead of
460 /// allocated.
definePhysReg(MachineBasicBlock::iterator MI,MCPhysReg PhysReg,RegState NewState)461 void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
462                                  MCPhysReg PhysReg, RegState NewState) {
463   markRegUsedInInstr(PhysReg);
464   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
465   case regDisabled:
466     break;
467   default:
468     spillVirtReg(MI, VirtReg);
469     LLVM_FALLTHROUGH;
470   case regFree:
471   case regReserved:
472     setPhysRegState(PhysReg, NewState);
473     return;
474   }
475 
476   // This is a disabled register, disable all aliases.
477   setPhysRegState(PhysReg, NewState);
478   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
479     MCPhysReg Alias = *AI;
480     switch (unsigned VirtReg = PhysRegState[Alias]) {
481     case regDisabled:
482       break;
483     default:
484       spillVirtReg(MI, VirtReg);
485       LLVM_FALLTHROUGH;
486     case regFree:
487     case regReserved:
488       setPhysRegState(Alias, regDisabled);
489       if (TRI->isSuperRegister(PhysReg, Alias))
490         return;
491       break;
492     }
493   }
494 }
495 
496 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
497 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
498 /// disabled - it can be allocated directly.
499 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
calcSpillCost(MCPhysReg PhysReg) const500 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
501   if (isRegUsedInInstr(PhysReg)) {
502     LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
503                       << " is already used in instr.\n");
504     return spillImpossible;
505   }
506   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
507   case regDisabled:
508     break;
509   case regFree:
510     return 0;
511   case regReserved:
512     LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
513                       << printReg(PhysReg, TRI) << " is reserved already.\n");
514     return spillImpossible;
515   default: {
516     LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
517     assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
518            "Missing VirtReg entry");
519     return LRI->Dirty ? spillDirty : spillClean;
520   }
521   }
522 
523   // This is a disabled register, add up cost of aliases.
524   LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
525   unsigned Cost = 0;
526   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
527     MCPhysReg Alias = *AI;
528     switch (unsigned VirtReg = PhysRegState[Alias]) {
529     case regDisabled:
530       break;
531     case regFree:
532       ++Cost;
533       break;
534     case regReserved:
535       return spillImpossible;
536     default: {
537       LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
538       assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
539              "Missing VirtReg entry");
540       Cost += LRI->Dirty ? spillDirty : spillClean;
541       break;
542     }
543     }
544   }
545   return Cost;
546 }
547 
548 /// This method updates local state so that we know that PhysReg is the
549 /// proper container for VirtReg now.  The physical register must not be used
550 /// for anything else when this is called.
assignVirtToPhysReg(LiveReg & LR,MCPhysReg PhysReg)551 void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
552   unsigned VirtReg = LR.VirtReg;
553   LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
554                     << printReg(PhysReg, TRI) << '\n');
555   assert(LR.PhysReg == 0 && "Already assigned a physreg");
556   assert(PhysReg != 0 && "Trying to assign no register");
557   LR.PhysReg = PhysReg;
558   setPhysRegState(PhysReg, VirtReg);
559 }
560 
561 /// Allocates a physical register for VirtReg.
allocVirtReg(MachineInstr & MI,LiveReg & LR,unsigned Hint)562 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint) {
563   const unsigned VirtReg = LR.VirtReg;
564 
565   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
566          "Can only allocate virtual registers");
567 
568   const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
569   LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
570                     << " in class " << TRI->getRegClassName(&RC) << '\n');
571 
572   // Take hint when possible.
573   if (TargetRegisterInfo::isPhysicalRegister(Hint) &&
574       MRI->isAllocatable(Hint) && RC.contains(Hint)) {
575     // Ignore the hint if we would have to spill a dirty register.
576     unsigned Cost = calcSpillCost(Hint);
577     if (Cost < spillDirty) {
578       if (Cost)
579         definePhysReg(MI, Hint, regFree);
580       assignVirtToPhysReg(LR, Hint);
581       return;
582     }
583   }
584 
585   // First try to find a completely free register.
586   ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
587   for (MCPhysReg PhysReg : AllocationOrder) {
588     if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
589       assignVirtToPhysReg(LR, PhysReg);
590       return;
591     }
592   }
593 
594   MCPhysReg BestReg = 0;
595   unsigned BestCost = spillImpossible;
596   for (MCPhysReg PhysReg : AllocationOrder) {
597     LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
598     unsigned Cost = calcSpillCost(PhysReg);
599     LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
600     // Immediate take a register with cost 0.
601     if (Cost == 0) {
602       assignVirtToPhysReg(LR, PhysReg);
603       return;
604     }
605     if (Cost < BestCost) {
606       BestReg = PhysReg;
607       BestCost = Cost;
608     }
609   }
610 
611   if (!BestReg) {
612     // Nothing we can do: Report an error and keep going with an invalid
613     // allocation.
614     if (MI.isInlineAsm())
615       MI.emitError("inline assembly requires more registers than available");
616     else
617       MI.emitError("ran out of registers during register allocation");
618     definePhysReg(MI, *AllocationOrder.begin(), regFree);
619     assignVirtToPhysReg(LR, *AllocationOrder.begin());
620     return;
621   }
622 
623   definePhysReg(MI, BestReg, regFree);
624   assignVirtToPhysReg(LR, BestReg);
625 }
626 
627 /// Allocates a register for VirtReg and mark it as dirty.
defineVirtReg(MachineInstr & MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)628 MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
629                                       unsigned VirtReg, unsigned Hint) {
630   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
631          "Not a virtual register");
632   LiveRegMap::iterator LRI;
633   bool New;
634   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
635   if (!LRI->PhysReg) {
636     // If there is no hint, peek at the only use of this register.
637     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
638         MRI->hasOneNonDBGUse(VirtReg)) {
639       const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
640       // It's a copy, use the destination register as a hint.
641       if (UseMI.isCopyLike())
642         Hint = UseMI.getOperand(0).getReg();
643     }
644     allocVirtReg(MI, *LRI, Hint);
645   } else if (LRI->LastUse) {
646     // Redefining a live register - kill at the last use, unless it is this
647     // instruction defining VirtReg multiple times.
648     if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
649       addKillFlag(*LRI);
650   }
651   assert(LRI->PhysReg && "Register not assigned");
652   LRI->LastUse = &MI;
653   LRI->LastOpNum = OpNum;
654   LRI->Dirty = true;
655   markRegUsedInInstr(LRI->PhysReg);
656   return LRI->PhysReg;
657 }
658 
659 /// Make sure VirtReg is available in a physreg and return it.
reloadVirtReg(MachineInstr & MI,unsigned OpNum,unsigned VirtReg,unsigned Hint)660 RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
661                                                    unsigned OpNum,
662                                                    unsigned VirtReg,
663                                                    unsigned Hint) {
664   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
665          "Not a virtual register");
666   LiveRegMap::iterator LRI;
667   bool New;
668   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
669   MachineOperand &MO = MI.getOperand(OpNum);
670   if (!LRI->PhysReg) {
671     allocVirtReg(MI, *LRI, Hint);
672     reload(MI, VirtReg, LRI->PhysReg);
673   } else if (LRI->Dirty) {
674     if (isLastUseOfLocalReg(MO)) {
675       LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
676       if (MO.isUse())
677         MO.setIsKill();
678       else
679         MO.setIsDead();
680     } else if (MO.isKill()) {
681       LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
682       MO.setIsKill(false);
683     } else if (MO.isDead()) {
684       LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
685       MO.setIsDead(false);
686     }
687   } else if (MO.isKill()) {
688     // We must remove kill flags from uses of reloaded registers because the
689     // register would be killed immediately, and there might be a second use:
690     //   %foo = OR killed %x, %x
691     // This would cause a second reload of %x into a different register.
692     LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
693     MO.setIsKill(false);
694   } else if (MO.isDead()) {
695     LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
696     MO.setIsDead(false);
697   }
698   assert(LRI->PhysReg && "Register not assigned");
699   LRI->LastUse = &MI;
700   LRI->LastOpNum = OpNum;
701   markRegUsedInInstr(LRI->PhysReg);
702   return *LRI;
703 }
704 
705 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
706 /// may invalidate any operand pointers.  Return true if the operand kills its
707 /// register.
setPhysReg(MachineInstr & MI,MachineOperand & MO,MCPhysReg PhysReg)708 bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
709                               MCPhysReg PhysReg) {
710   bool Dead = MO.isDead();
711   if (!MO.getSubReg()) {
712     MO.setReg(PhysReg);
713     MO.setIsRenamable(true);
714     return MO.isKill() || Dead;
715   }
716 
717   // Handle subregister index.
718   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
719   MO.setIsRenamable(true);
720   MO.setSubReg(0);
721 
722   // A kill flag implies killing the full register. Add corresponding super
723   // register kill.
724   if (MO.isKill()) {
725     MI.addRegisterKilled(PhysReg, TRI, true);
726     return true;
727   }
728 
729   // A <def,read-undef> of a sub-register requires an implicit def of the full
730   // register.
731   if (MO.isDef() && MO.isUndef())
732     MI.addRegisterDefined(PhysReg, TRI);
733 
734   return Dead;
735 }
736 
737 // Handles special instruction operand like early clobbers and tied ops when
738 // there are additional physreg defines.
handleThroughOperands(MachineInstr & MI,SmallVectorImpl<unsigned> & VirtDead)739 void RegAllocFast::handleThroughOperands(MachineInstr &MI,
740                                          SmallVectorImpl<unsigned> &VirtDead) {
741   LLVM_DEBUG(dbgs() << "Scanning for through registers:");
742   SmallSet<unsigned, 8> ThroughRegs;
743   for (const MachineOperand &MO : MI.operands()) {
744     if (!MO.isReg()) continue;
745     unsigned Reg = MO.getReg();
746     if (!TargetRegisterInfo::isVirtualRegister(Reg))
747       continue;
748     if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
749         (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
750       if (ThroughRegs.insert(Reg).second)
751         LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
752     }
753   }
754 
755   // If any physreg defines collide with preallocated through registers,
756   // we must spill and reallocate.
757   LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
758   for (const MachineOperand &MO : MI.operands()) {
759     if (!MO.isReg() || !MO.isDef()) continue;
760     unsigned Reg = MO.getReg();
761     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
762     markRegUsedInInstr(Reg);
763     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
764       if (ThroughRegs.count(PhysRegState[*AI]))
765         definePhysReg(MI, *AI, regFree);
766     }
767   }
768 
769   SmallVector<unsigned, 8> PartialDefs;
770   LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
771   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
772     MachineOperand &MO = MI.getOperand(I);
773     if (!MO.isReg()) continue;
774     unsigned Reg = MO.getReg();
775     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
776     if (MO.isUse()) {
777       if (!MO.isTied()) continue;
778       LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
779                         << ") is tied to operand " << MI.findTiedOperandIdx(I)
780                         << ".\n");
781       LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
782       MCPhysReg PhysReg = LR.PhysReg;
783       setPhysReg(MI, MO, PhysReg);
784       // Note: we don't update the def operand yet. That would cause the normal
785       // def-scan to attempt spilling.
786     } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
787       LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
788       // Reload the register, but don't assign to the operand just yet.
789       // That would confuse the later phys-def processing pass.
790       LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
791       PartialDefs.push_back(LR.PhysReg);
792     }
793   }
794 
795   LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
796   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
797     const MachineOperand &MO = MI.getOperand(I);
798     if (!MO.isReg()) continue;
799     unsigned Reg = MO.getReg();
800     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
801     if (!MO.isEarlyClobber())
802       continue;
803     // Note: defineVirtReg may invalidate MO.
804     MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
805     if (setPhysReg(MI, MI.getOperand(I), PhysReg))
806       VirtDead.push_back(Reg);
807   }
808 
809   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
810   UsedInInstr.clear();
811   for (const MachineOperand &MO : MI.operands()) {
812     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
813     unsigned Reg = MO.getReg();
814     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
815     LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
816                       << " as used in instr\n");
817     markRegUsedInInstr(Reg);
818   }
819 
820   // Also mark PartialDefs as used to avoid reallocation.
821   for (unsigned PartialDef : PartialDefs)
822     markRegUsedInInstr(PartialDef);
823 }
824 
825 #ifndef NDEBUG
dumpState()826 void RegAllocFast::dumpState() {
827   for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
828     if (PhysRegState[Reg] == regDisabled) continue;
829     dbgs() << " " << printReg(Reg, TRI);
830     switch(PhysRegState[Reg]) {
831     case regFree:
832       break;
833     case regReserved:
834       dbgs() << "*";
835       break;
836     default: {
837       dbgs() << '=' << printReg(PhysRegState[Reg]);
838       LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
839       assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
840              "Missing VirtReg entry");
841       if (LRI->Dirty)
842         dbgs() << "*";
843       assert(LRI->PhysReg == Reg && "Bad inverse map");
844       break;
845     }
846     }
847   }
848   dbgs() << '\n';
849   // Check that LiveVirtRegs is the inverse.
850   for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
851        e = LiveVirtRegs.end(); i != e; ++i) {
852     if (!i->PhysReg)
853       continue;
854     assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
855            "Bad map key");
856     assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
857            "Bad map value");
858     assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
859   }
860 }
861 #endif
862 
allocateInstruction(MachineInstr & MI)863 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
864   const MCInstrDesc &MCID = MI.getDesc();
865 
866   // If this is a copy, we may be able to coalesce.
867   unsigned CopySrcReg = 0;
868   unsigned CopyDstReg = 0;
869   unsigned CopySrcSub = 0;
870   unsigned CopyDstSub = 0;
871   if (MI.isCopy()) {
872     CopyDstReg = MI.getOperand(0).getReg();
873     CopySrcReg = MI.getOperand(1).getReg();
874     CopyDstSub = MI.getOperand(0).getSubReg();
875     CopySrcSub = MI.getOperand(1).getSubReg();
876   }
877 
878   // Track registers used by instruction.
879   UsedInInstr.clear();
880 
881   // First scan.
882   // Mark physreg uses and early clobbers as used.
883   // Find the end of the virtreg operands
884   unsigned VirtOpEnd = 0;
885   bool hasTiedOps = false;
886   bool hasEarlyClobbers = false;
887   bool hasPartialRedefs = false;
888   bool hasPhysDefs = false;
889   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
890     MachineOperand &MO = MI.getOperand(i);
891     // Make sure MRI knows about registers clobbered by regmasks.
892     if (MO.isRegMask()) {
893       MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
894       continue;
895     }
896     if (!MO.isReg()) continue;
897     unsigned Reg = MO.getReg();
898     if (!Reg) continue;
899     if (TargetRegisterInfo::isVirtualRegister(Reg)) {
900       VirtOpEnd = i+1;
901       if (MO.isUse()) {
902         hasTiedOps = hasTiedOps ||
903                             MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
904       } else {
905         if (MO.isEarlyClobber())
906           hasEarlyClobbers = true;
907         if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
908           hasPartialRedefs = true;
909       }
910       continue;
911     }
912     if (!MRI->isAllocatable(Reg)) continue;
913     if (MO.isUse()) {
914       usePhysReg(MO);
915     } else if (MO.isEarlyClobber()) {
916       definePhysReg(MI, Reg,
917                     (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
918       hasEarlyClobbers = true;
919     } else
920       hasPhysDefs = true;
921   }
922 
923   // The instruction may have virtual register operands that must be allocated
924   // the same register at use-time and def-time: early clobbers and tied
925   // operands. If there are also physical defs, these registers must avoid
926   // both physical defs and uses, making them more constrained than normal
927   // operands.
928   // Similarly, if there are multiple defs and tied operands, we must make
929   // sure the same register is allocated to uses and defs.
930   // We didn't detect inline asm tied operands above, so just make this extra
931   // pass for all inline asm.
932   if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
933       (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
934     handleThroughOperands(MI, VirtDead);
935     // Don't attempt coalescing when we have funny stuff going on.
936     CopyDstReg = 0;
937     // Pretend we have early clobbers so the use operands get marked below.
938     // This is not necessary for the common case of a single tied use.
939     hasEarlyClobbers = true;
940   }
941 
942   // Second scan.
943   // Allocate virtreg uses.
944   for (unsigned I = 0; I != VirtOpEnd; ++I) {
945     MachineOperand &MO = MI.getOperand(I);
946     if (!MO.isReg()) continue;
947     unsigned Reg = MO.getReg();
948     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
949     if (MO.isUse()) {
950       LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
951       MCPhysReg PhysReg = LR.PhysReg;
952       CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
953       if (setPhysReg(MI, MO, PhysReg))
954         killVirtReg(LR);
955     }
956   }
957 
958   // Track registers defined by instruction - early clobbers and tied uses at
959   // this point.
960   UsedInInstr.clear();
961   if (hasEarlyClobbers) {
962     for (const MachineOperand &MO : MI.operands()) {
963       if (!MO.isReg()) continue;
964       unsigned Reg = MO.getReg();
965       if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
966       // Look for physreg defs and tied uses.
967       if (!MO.isDef() && !MO.isTied()) continue;
968       markRegUsedInInstr(Reg);
969     }
970   }
971 
972   unsigned DefOpEnd = MI.getNumOperands();
973   if (MI.isCall()) {
974     // Spill all virtregs before a call. This serves one purpose: If an
975     // exception is thrown, the landing pad is going to expect to find
976     // registers in their spill slots.
977     // Note: although this is appealing to just consider all definitions
978     // as call-clobbered, this is not correct because some of those
979     // definitions may be used later on and we do not want to reuse
980     // those for virtual registers in between.
981     LLVM_DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
982     spillAll(MI);
983   }
984 
985   // Third scan.
986   // Allocate defs and collect dead defs.
987   for (unsigned I = 0; I != DefOpEnd; ++I) {
988     const MachineOperand &MO = MI.getOperand(I);
989     if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
990       continue;
991     unsigned Reg = MO.getReg();
992 
993     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
994       if (!MRI->isAllocatable(Reg)) continue;
995       definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
996       continue;
997     }
998     MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
999     if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
1000       VirtDead.push_back(Reg);
1001       CopyDstReg = 0; // cancel coalescing;
1002     } else
1003       CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
1004   }
1005 
1006   // Kill dead defs after the scan to ensure that multiple defs of the same
1007   // register are allocated identically. We didn't need to do this for uses
1008   // because we are crerating our own kill flags, and they are always at the
1009   // last use.
1010   for (unsigned VirtReg : VirtDead)
1011     killVirtReg(VirtReg);
1012   VirtDead.clear();
1013 
1014   LLVM_DEBUG(dbgs() << "<< " << MI);
1015   if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
1016     LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1017     Coalesced.push_back(&MI);
1018   }
1019 }
1020 
handleDebugValue(MachineInstr & MI)1021 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1022   MachineOperand &MO = MI.getOperand(0);
1023 
1024   // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1025   // mostly constants and frame indices.
1026   if (!MO.isReg())
1027     return;
1028   unsigned Reg = MO.getReg();
1029   if (!TargetRegisterInfo::isVirtualRegister(Reg))
1030     return;
1031 
1032   // See if this virtual register has already been allocated to a physical
1033   // register or spilled to a stack slot.
1034   LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1035   if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1036     setPhysReg(MI, MO, LRI->PhysReg);
1037   } else {
1038     int SS = StackSlotForVirtReg[Reg];
1039     if (SS != -1) {
1040       // Modify DBG_VALUE now that the value is in a spill slot.
1041       updateDbgValueForSpill(MI, SS);
1042       LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
1043       return;
1044     }
1045 
1046     // We can't allocate a physreg for a DebugValue, sorry!
1047     LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
1048     MO.setReg(0);
1049   }
1050 
1051   // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1052   // that future spills of Reg will have DBG_VALUEs.
1053   LiveDbgValueMap[Reg].push_back(&MI);
1054 }
1055 
allocateBasicBlock(MachineBasicBlock & MBB)1056 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1057   this->MBB = &MBB;
1058   LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1059 
1060   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
1061   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1062 
1063   MachineBasicBlock::iterator MII = MBB.begin();
1064 
1065   // Add live-in registers as live.
1066   for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
1067     if (MRI->isAllocatable(LI.PhysReg))
1068       definePhysReg(MII, LI.PhysReg, regReserved);
1069 
1070   VirtDead.clear();
1071   Coalesced.clear();
1072 
1073   // Otherwise, sequentially allocate each instruction in the MBB.
1074   for (MachineInstr &MI : MBB) {
1075     LLVM_DEBUG(
1076       dbgs() << "\n>> " << MI << "Regs:";
1077       dumpState()
1078     );
1079 
1080     // Special handling for debug values. Note that they are not allowed to
1081     // affect codegen of the other instructions in any way.
1082     if (MI.isDebugValue()) {
1083       handleDebugValue(MI);
1084       continue;
1085     }
1086 
1087     allocateInstruction(MI);
1088   }
1089 
1090   // Spill all physical registers holding virtual registers now.
1091   LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1092   spillAll(MBB.getFirstTerminator());
1093 
1094   // Erase all the coalesced copies. We are delaying it until now because
1095   // LiveVirtRegs might refer to the instrs.
1096   for (MachineInstr *MI : Coalesced)
1097     MBB.erase(MI);
1098   NumCoalesced += Coalesced.size();
1099 
1100   LLVM_DEBUG(MBB.dump());
1101 }
1102 
runOnMachineFunction(MachineFunction & MF)1103 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1104   LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1105                     << "********** Function: " << MF.getName() << '\n');
1106   MRI = &MF.getRegInfo();
1107   const TargetSubtargetInfo &STI = MF.getSubtarget();
1108   TRI = STI.getRegisterInfo();
1109   TII = STI.getInstrInfo();
1110   MFI = &MF.getFrameInfo();
1111   MRI->freezeReservedRegs(MF);
1112   RegClassInfo.runOnMachineFunction(MF);
1113   UsedInInstr.clear();
1114   UsedInInstr.setUniverse(TRI->getNumRegUnits());
1115 
1116   // initialize the virtual->physical register map to have a 'null'
1117   // mapping for all virtual registers
1118   unsigned NumVirtRegs = MRI->getNumVirtRegs();
1119   StackSlotForVirtReg.resize(NumVirtRegs);
1120   LiveVirtRegs.setUniverse(NumVirtRegs);
1121 
1122   // Loop over all of the basic blocks, eliminating virtual register references
1123   for (MachineBasicBlock &MBB : MF)
1124     allocateBasicBlock(MBB);
1125 
1126   // All machine operands and other references to virtual registers have been
1127   // replaced. Remove the virtual registers.
1128   MRI->clearVirtRegs();
1129 
1130   StackSlotForVirtReg.clear();
1131   LiveDbgValueMap.clear();
1132   return true;
1133 }
1134 
createFastRegisterAllocator()1135 FunctionPass *llvm::createFastRegisterAllocator() {
1136   return new RegAllocFast();
1137 }
1138