1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates machine instruction PHI nodes by inserting copy 11 // instructions. This destroys SSA information, but is the desired input for 12 // some register allocators. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "PHIEliminationUtils.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "llvm/CodeGen/LiveIntervals.h" 23 #include "llvm/CodeGen/LiveVariables.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineLoopInfo.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetInstrInfo.h" 35 #include "llvm/CodeGen/TargetOpcodes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <iterator> 44 #include <utility> 45 46 using namespace llvm; 47 48 #define DEBUG_TYPE "phi-node-elimination" 49 50 static cl::opt<bool> 51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), 52 cl::Hidden, cl::desc("Disable critical edge splitting " 53 "during PHI elimination")); 54 55 static cl::opt<bool> 56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false), 57 cl::Hidden, cl::desc("Split all critical edges during " 58 "PHI elimination")); 59 60 static cl::opt<bool> NoPhiElimLiveOutEarlyExit( 61 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden, 62 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true.")); 63 64 namespace { 65 66 class PHIElimination : public MachineFunctionPass { 67 MachineRegisterInfo *MRI; // Machine register information 68 LiveVariables *LV; 69 LiveIntervals *LIS; 70 71 public: 72 static char ID; // Pass identification, replacement for typeid 73 74 PHIElimination() : MachineFunctionPass(ID) { 75 initializePHIEliminationPass(*PassRegistry::getPassRegistry()); 76 } 77 78 bool runOnMachineFunction(MachineFunction &MF) override; 79 void getAnalysisUsage(AnalysisUsage &AU) const override; 80 81 private: 82 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions 83 /// in predecessor basic blocks. 84 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); 85 86 void LowerPHINode(MachineBasicBlock &MBB, 87 MachineBasicBlock::iterator LastPHIIt); 88 89 /// analyzePHINodes - Gather information about the PHI nodes in 90 /// here. In particular, we want to map the number of uses of a virtual 91 /// register which is used in a PHI node. We map that to the BB the 92 /// vreg is coming from. This is used later to determine when the vreg 93 /// is killed in the BB. 94 void analyzePHINodes(const MachineFunction& MF); 95 96 /// Split critical edges where necessary for good coalescer performance. 97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, 98 MachineLoopInfo *MLI); 99 100 // These functions are temporary abstractions around LiveVariables and 101 // LiveIntervals, so they can go away when LiveVariables does. 102 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB); 103 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB); 104 105 using BBVRegPair = std::pair<unsigned, unsigned>; 106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; 107 108 VRegPHIUse VRegPHIUseCount; 109 110 // Defs of PHI sources which are implicit_def. 111 SmallPtrSet<MachineInstr*, 4> ImpDefs; 112 113 // Map reusable lowered PHI node -> incoming join register. 114 using LoweredPHIMap = 115 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>; 116 LoweredPHIMap LoweredPHIs; 117 }; 118 119 } // end anonymous namespace 120 121 STATISTIC(NumLowered, "Number of phis lowered"); 122 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); 123 STATISTIC(NumReused, "Number of reused lowered phis"); 124 125 char PHIElimination::ID = 0; 126 127 char& llvm::PHIEliminationID = PHIElimination::ID; 128 129 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, 130 "Eliminate PHI nodes for register allocation", 131 false, false) 132 INITIALIZE_PASS_DEPENDENCY(LiveVariables) 133 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, 134 "Eliminate PHI nodes for register allocation", false, false) 135 136 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { 137 AU.addUsedIfAvailable<LiveVariables>(); 138 AU.addPreserved<LiveVariables>(); 139 AU.addPreserved<SlotIndexes>(); 140 AU.addPreserved<LiveIntervals>(); 141 AU.addPreserved<MachineDominatorTree>(); 142 AU.addPreserved<MachineLoopInfo>(); 143 MachineFunctionPass::getAnalysisUsage(AU); 144 } 145 146 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { 147 MRI = &MF.getRegInfo(); 148 LV = getAnalysisIfAvailable<LiveVariables>(); 149 LIS = getAnalysisIfAvailable<LiveIntervals>(); 150 151 bool Changed = false; 152 153 // This pass takes the function out of SSA form. 154 MRI->leaveSSA(); 155 156 // Split critical edges to help the coalescer. 157 if (!DisableEdgeSplitting && (LV || LIS)) { 158 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); 159 for (auto &MBB : MF) 160 Changed |= SplitPHIEdges(MF, MBB, MLI); 161 } 162 163 // Populate VRegPHIUseCount 164 analyzePHINodes(MF); 165 166 // Eliminate PHI instructions by inserting copies into predecessor blocks. 167 for (auto &MBB : MF) 168 Changed |= EliminatePHINodes(MF, MBB); 169 170 // Remove dead IMPLICIT_DEF instructions. 171 for (MachineInstr *DefMI : ImpDefs) { 172 unsigned DefReg = DefMI->getOperand(0).getReg(); 173 if (MRI->use_nodbg_empty(DefReg)) { 174 if (LIS) 175 LIS->RemoveMachineInstrFromMaps(*DefMI); 176 DefMI->eraseFromParent(); 177 } 178 } 179 180 // Clean up the lowered PHI instructions. 181 for (auto &I : LoweredPHIs) { 182 if (LIS) 183 LIS->RemoveMachineInstrFromMaps(*I.first); 184 MF.DeleteMachineInstr(I.first); 185 } 186 187 LoweredPHIs.clear(); 188 ImpDefs.clear(); 189 VRegPHIUseCount.clear(); 190 191 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs); 192 193 return Changed; 194 } 195 196 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in 197 /// predecessor basic blocks. 198 bool PHIElimination::EliminatePHINodes(MachineFunction &MF, 199 MachineBasicBlock &MBB) { 200 if (MBB.empty() || !MBB.front().isPHI()) 201 return false; // Quick exit for basic blocks without PHIs. 202 203 // Get an iterator to the last PHI node. 204 MachineBasicBlock::iterator LastPHIIt = 205 std::prev(MBB.SkipPHIsAndLabels(MBB.begin())); 206 207 while (MBB.front().isPHI()) 208 LowerPHINode(MBB, LastPHIIt); 209 210 return true; 211 } 212 213 /// Return true if all defs of VirtReg are implicit-defs. 214 /// This includes registers with no defs. 215 static bool isImplicitlyDefined(unsigned VirtReg, 216 const MachineRegisterInfo &MRI) { 217 for (MachineInstr &DI : MRI.def_instructions(VirtReg)) 218 if (!DI.isImplicitDef()) 219 return false; 220 return true; 221 } 222 223 /// Return true if all sources of the phi node are implicit_def's, or undef's. 224 static bool allPhiOperandsUndefined(const MachineInstr &MPhi, 225 const MachineRegisterInfo &MRI) { 226 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { 227 const MachineOperand &MO = MPhi.getOperand(I); 228 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef()) 229 return false; 230 } 231 return true; 232 } 233 /// LowerPHINode - Lower the PHI node at the top of the specified block. 234 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB, 235 MachineBasicBlock::iterator LastPHIIt) { 236 ++NumLowered; 237 238 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt); 239 240 // Unlink the PHI node from the basic block, but don't delete the PHI yet. 241 MachineInstr *MPhi = MBB.remove(&*MBB.begin()); 242 243 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; 244 unsigned DestReg = MPhi->getOperand(0).getReg(); 245 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); 246 bool isDead = MPhi->getOperand(0).isDead(); 247 248 // Create a new register for the incoming PHI arguments. 249 MachineFunction &MF = *MBB.getParent(); 250 unsigned IncomingReg = 0; 251 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? 252 253 // Insert a register to register copy at the top of the current block (but 254 // after any remaining phi nodes) which copies the new incoming register 255 // into the phi node destination. 256 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 257 if (allPhiOperandsUndefined(*MPhi, *MRI)) 258 // If all sources of a PHI node are implicit_def or undef uses, just emit an 259 // implicit_def instead of a copy. 260 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 261 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); 262 else { 263 // Can we reuse an earlier PHI node? This only happens for critical edges, 264 // typically those created by tail duplication. 265 unsigned &entry = LoweredPHIs[MPhi]; 266 if (entry) { 267 // An identical PHI node was already lowered. Reuse the incoming register. 268 IncomingReg = entry; 269 reusedIncoming = true; 270 ++NumReused; 271 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " 272 << *MPhi); 273 } else { 274 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); 275 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); 276 } 277 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), 278 TII->get(TargetOpcode::COPY), DestReg) 279 .addReg(IncomingReg); 280 } 281 282 // Update live variable information if there is any. 283 if (LV) { 284 MachineInstr &PHICopy = *std::prev(AfterPHIsIt); 285 286 if (IncomingReg) { 287 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); 288 289 // Increment use count of the newly created virtual register. 290 LV->setPHIJoin(IncomingReg); 291 292 // When we are reusing the incoming register, it may already have been 293 // killed in this block. The old kill will also have been inserted at 294 // AfterPHIsIt, so it appears before the current PHICopy. 295 if (reusedIncoming) 296 if (MachineInstr *OldKill = VI.findKill(&MBB)) { 297 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); 298 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill); 299 LLVM_DEBUG(MBB.dump()); 300 } 301 302 // Add information to LiveVariables to know that the incoming value is 303 // killed. Note that because the value is defined in several places (once 304 // each for each incoming block), the "def" block and instruction fields 305 // for the VarInfo is not filled in. 306 LV->addVirtualRegisterKilled(IncomingReg, PHICopy); 307 } 308 309 // Since we are going to be deleting the PHI node, if it is the last use of 310 // any registers, or if the value itself is dead, we need to move this 311 // information over to the new copy we just inserted. 312 LV->removeVirtualRegistersKilled(*MPhi); 313 314 // If the result is dead, update LV. 315 if (isDead) { 316 LV->addVirtualRegisterDead(DestReg, PHICopy); 317 LV->removeVirtualRegisterDead(DestReg, *MPhi); 318 } 319 } 320 321 // Update LiveIntervals for the new copy or implicit def. 322 if (LIS) { 323 SlotIndex DestCopyIndex = 324 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt)); 325 326 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB); 327 if (IncomingReg) { 328 // Add the region from the beginning of MBB to the copy instruction to 329 // IncomingReg's live interval. 330 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg); 331 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex); 332 if (!IncomingVNI) 333 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex, 334 LIS->getVNInfoAllocator()); 335 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex, 336 DestCopyIndex.getRegSlot(), 337 IncomingVNI)); 338 } 339 340 LiveInterval &DestLI = LIS->getInterval(DestReg); 341 assert(DestLI.begin() != DestLI.end() && 342 "PHIs should have nonempty LiveIntervals."); 343 if (DestLI.endIndex().isDead()) { 344 // A dead PHI's live range begins and ends at the start of the MBB, but 345 // the lowered copy, which will still be dead, needs to begin and end at 346 // the copy instruction. 347 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex); 348 assert(OrigDestVNI && "PHI destination should be live at block entry."); 349 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot()); 350 DestLI.createDeadDef(DestCopyIndex.getRegSlot(), 351 LIS->getVNInfoAllocator()); 352 DestLI.removeValNo(OrigDestVNI); 353 } else { 354 // Otherwise, remove the region from the beginning of MBB to the copy 355 // instruction from DestReg's live interval. 356 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot()); 357 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot()); 358 assert(DestVNI && "PHI destination should be live at its definition."); 359 DestVNI->def = DestCopyIndex.getRegSlot(); 360 } 361 } 362 363 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. 364 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) 365 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), 366 MPhi->getOperand(i).getReg())]; 367 368 // Now loop over all of the incoming arguments, changing them to copy into the 369 // IncomingReg register in the corresponding predecessor basic block. 370 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; 371 for (int i = NumSrcs - 1; i >= 0; --i) { 372 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); 373 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); 374 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || 375 isImplicitlyDefined(SrcReg, *MRI); 376 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && 377 "Machine PHI Operands must all be virtual registers!"); 378 379 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source 380 // path the PHI. 381 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); 382 383 // Check to make sure we haven't already emitted the copy for this block. 384 // This can happen because PHI nodes may have multiple entries for the same 385 // basic block. 386 if (!MBBsInsertedInto.insert(&opBlock).second) 387 continue; // If the copy has already been emitted, we're done. 388 389 // Find a safe location to insert the copy, this may be the first terminator 390 // in the block (or end()). 391 MachineBasicBlock::iterator InsertPos = 392 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); 393 394 // Insert the copy. 395 MachineInstr *NewSrcInstr = nullptr; 396 if (!reusedIncoming && IncomingReg) { 397 if (SrcUndef) { 398 // The source register is undefined, so there is no need for a real 399 // COPY, but we still need to ensure joint dominance by defs. 400 // Insert an IMPLICIT_DEF instruction. 401 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 402 TII->get(TargetOpcode::IMPLICIT_DEF), 403 IncomingReg); 404 405 // Clean up the old implicit-def, if there even was one. 406 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) 407 if (DefMI->isImplicitDef()) 408 ImpDefs.insert(DefMI); 409 } else { 410 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), 411 TII->get(TargetOpcode::COPY), IncomingReg) 412 .addReg(SrcReg, 0, SrcSubReg); 413 } 414 } 415 416 // We only need to update the LiveVariables kill of SrcReg if this was the 417 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live 418 // out of the predecessor. We can also ignore undef sources. 419 if (LV && !SrcUndef && 420 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && 421 !LV->isLiveOut(SrcReg, opBlock)) { 422 // We want to be able to insert a kill of the register if this PHI (aka, 423 // the copy we just inserted) is the last use of the source value. Live 424 // variable analysis conservatively handles this by saying that the value 425 // is live until the end of the block the PHI entry lives in. If the value 426 // really is dead at the PHI copy, there will be no successor blocks which 427 // have the value live-in. 428 429 // Okay, if we now know that the value is not live out of the block, we 430 // can add a kill marker in this block saying that it kills the incoming 431 // value! 432 433 // In our final twist, we have to decide which instruction kills the 434 // register. In most cases this is the copy, however, terminator 435 // instructions at the end of the block may also use the value. In this 436 // case, we should mark the last such terminator as being the killing 437 // block, not the copy. 438 MachineBasicBlock::iterator KillInst = opBlock.end(); 439 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 440 for (MachineBasicBlock::iterator Term = FirstTerm; 441 Term != opBlock.end(); ++Term) { 442 if (Term->readsRegister(SrcReg)) 443 KillInst = Term; 444 } 445 446 if (KillInst == opBlock.end()) { 447 // No terminator uses the register. 448 449 if (reusedIncoming || !IncomingReg) { 450 // We may have to rewind a bit if we didn't insert a copy this time. 451 KillInst = FirstTerm; 452 while (KillInst != opBlock.begin()) { 453 --KillInst; 454 if (KillInst->isDebugInstr()) 455 continue; 456 if (KillInst->readsRegister(SrcReg)) 457 break; 458 } 459 } else { 460 // We just inserted this copy. 461 KillInst = std::prev(InsertPos); 462 } 463 } 464 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); 465 466 // Finally, mark it killed. 467 LV->addVirtualRegisterKilled(SrcReg, *KillInst); 468 469 // This vreg no longer lives all of the way through opBlock. 470 unsigned opBlockNum = opBlock.getNumber(); 471 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); 472 } 473 474 if (LIS) { 475 if (NewSrcInstr) { 476 LIS->InsertMachineInstrInMaps(*NewSrcInstr); 477 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr); 478 } 479 480 if (!SrcUndef && 481 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { 482 LiveInterval &SrcLI = LIS->getInterval(SrcReg); 483 484 bool isLiveOut = false; 485 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), 486 SE = opBlock.succ_end(); SI != SE; ++SI) { 487 SlotIndex startIdx = LIS->getMBBStartIdx(*SI); 488 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx); 489 490 // Definitions by other PHIs are not truly live-in for our purposes. 491 if (VNI && VNI->def != startIdx) { 492 isLiveOut = true; 493 break; 494 } 495 } 496 497 if (!isLiveOut) { 498 MachineBasicBlock::iterator KillInst = opBlock.end(); 499 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); 500 for (MachineBasicBlock::iterator Term = FirstTerm; 501 Term != opBlock.end(); ++Term) { 502 if (Term->readsRegister(SrcReg)) 503 KillInst = Term; 504 } 505 506 if (KillInst == opBlock.end()) { 507 // No terminator uses the register. 508 509 if (reusedIncoming || !IncomingReg) { 510 // We may have to rewind a bit if we didn't just insert a copy. 511 KillInst = FirstTerm; 512 while (KillInst != opBlock.begin()) { 513 --KillInst; 514 if (KillInst->isDebugInstr()) 515 continue; 516 if (KillInst->readsRegister(SrcReg)) 517 break; 518 } 519 } else { 520 // We just inserted this copy. 521 KillInst = std::prev(InsertPos); 522 } 523 } 524 assert(KillInst->readsRegister(SrcReg) && 525 "Cannot find kill instruction"); 526 527 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst); 528 SrcLI.removeSegment(LastUseIndex.getRegSlot(), 529 LIS->getMBBEndIdx(&opBlock)); 530 } 531 } 532 } 533 } 534 535 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. 536 if (reusedIncoming || !IncomingReg) { 537 if (LIS) 538 LIS->RemoveMachineInstrFromMaps(*MPhi); 539 MF.DeleteMachineInstr(MPhi); 540 } 541 } 542 543 /// analyzePHINodes - Gather information about the PHI nodes in here. In 544 /// particular, we want to map the number of uses of a virtual register which is 545 /// used in a PHI node. We map that to the BB the vreg is coming from. This is 546 /// used later to determine when the vreg is killed in the BB. 547 void PHIElimination::analyzePHINodes(const MachineFunction& MF) { 548 for (const auto &MBB : MF) 549 for (const auto &BBI : MBB) { 550 if (!BBI.isPHI()) 551 break; 552 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) 553 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(), 554 BBI.getOperand(i).getReg())]; 555 } 556 } 557 558 bool PHIElimination::SplitPHIEdges(MachineFunction &MF, 559 MachineBasicBlock &MBB, 560 MachineLoopInfo *MLI) { 561 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) 562 return false; // Quick exit for basic blocks without PHIs. 563 564 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr; 565 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); 566 567 bool Changed = false; 568 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); 569 BBI != BBE && BBI->isPHI(); ++BBI) { 570 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { 571 unsigned Reg = BBI->getOperand(i).getReg(); 572 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); 573 // Is there a critical edge from PreMBB to MBB? 574 if (PreMBB->succ_size() == 1) 575 continue; 576 577 // Avoid splitting backedges of loops. It would introduce small 578 // out-of-line blocks into the loop which is very bad for code placement. 579 if (PreMBB == &MBB && !SplitAllCriticalEdges) 580 continue; 581 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr; 582 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) 583 continue; 584 585 // LV doesn't consider a phi use live-out, so isLiveOut only returns true 586 // when the source register is live-out for some other reason than a phi 587 // use. That means the copy we will insert in PreMBB won't be a kill, and 588 // there is a risk it may not be coalesced away. 589 // 590 // If the copy would be a kill, there is no need to split the edge. 591 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB); 592 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) 593 continue; 594 if (ShouldSplit) { 595 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " 596 << printMBBReference(*PreMBB) << " -> " 597 << printMBBReference(MBB) << ": " << *BBI); 598 } 599 600 // If Reg is not live-in to MBB, it means it must be live-in to some 601 // other PreMBB successor, and we can avoid the interference by splitting 602 // the edge. 603 // 604 // If Reg *is* live-in to MBB, the interference is inevitable and a copy 605 // is likely to be left after coalescing. If we are looking at a loop 606 // exiting edge, split it so we won't insert code in the loop, otherwise 607 // don't bother. 608 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB); 609 610 // Check for a loop exiting edge. 611 if (!ShouldSplit && CurLoop != PreLoop) { 612 LLVM_DEBUG({ 613 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; 614 if (PreLoop) 615 dbgs() << "PreLoop: " << *PreLoop; 616 if (CurLoop) 617 dbgs() << "CurLoop: " << *CurLoop; 618 }); 619 // This edge could be entering a loop, exiting a loop, or it could be 620 // both: Jumping directly form one loop to the header of a sibling 621 // loop. 622 // Split unless this edge is entering CurLoop from an outer loop. 623 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); 624 } 625 if (!ShouldSplit && !SplitAllCriticalEdges) 626 continue; 627 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) { 628 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n"); 629 continue; 630 } 631 Changed = true; 632 ++NumCriticalEdgesSplit; 633 } 634 } 635 return Changed; 636 } 637 638 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) { 639 assert((LV || LIS) && 640 "isLiveIn() requires either LiveVariables or LiveIntervals"); 641 if (LIS) 642 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB); 643 else 644 return LV->isLiveIn(Reg, *MBB); 645 } 646 647 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, 648 const MachineBasicBlock *MBB) { 649 assert((LV || LIS) && 650 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals"); 651 // LiveVariables considers uses in PHIs to be in the predecessor basic block, 652 // so that a register used only in a PHI is not live out of the block. In 653 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than 654 // in the predecessor basic block, so that a register used only in a PHI is live 655 // out of the block. 656 if (LIS) { 657 const LiveInterval &LI = LIS->getInterval(Reg); 658 for (const MachineBasicBlock *SI : MBB->successors()) 659 if (LI.liveAt(LIS->getMBBStartIdx(SI))) 660 return true; 661 return false; 662 } else { 663 return LV->isLiveOut(Reg, *MBB); 664 } 665 } 666