1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "PHIEliminationUtils.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineLoopInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "phi-node-elimination"
49
50 static cl::opt<bool>
51 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
52 cl::Hidden, cl::desc("Disable critical edge splitting "
53 "during PHI elimination"));
54
55 static cl::opt<bool>
56 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
57 cl::Hidden, cl::desc("Split all critical edges during "
58 "PHI elimination"));
59
60 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
61 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
62 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
63
64 namespace {
65
66 class PHIElimination : public MachineFunctionPass {
67 MachineRegisterInfo *MRI; // Machine register information
68 LiveVariables *LV;
69 LiveIntervals *LIS;
70
71 public:
72 static char ID; // Pass identification, replacement for typeid
73
PHIElimination()74 PHIElimination() : MachineFunctionPass(ID) {
75 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
76 }
77
78 bool runOnMachineFunction(MachineFunction &MF) override;
79 void getAnalysisUsage(AnalysisUsage &AU) const override;
80
81 private:
82 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
83 /// in predecessor basic blocks.
84 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
85
86 void LowerPHINode(MachineBasicBlock &MBB,
87 MachineBasicBlock::iterator LastPHIIt);
88
89 /// analyzePHINodes - Gather information about the PHI nodes in
90 /// here. In particular, we want to map the number of uses of a virtual
91 /// register which is used in a PHI node. We map that to the BB the
92 /// vreg is coming from. This is used later to determine when the vreg
93 /// is killed in the BB.
94 void analyzePHINodes(const MachineFunction& MF);
95
96 /// Split critical edges where necessary for good coalescer performance.
97 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
98 MachineLoopInfo *MLI);
99
100 // These functions are temporary abstractions around LiveVariables and
101 // LiveIntervals, so they can go away when LiveVariables does.
102 bool isLiveIn(unsigned Reg, const MachineBasicBlock *MBB);
103 bool isLiveOutPastPHIs(unsigned Reg, const MachineBasicBlock *MBB);
104
105 using BBVRegPair = std::pair<unsigned, unsigned>;
106 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107
108 VRegPHIUse VRegPHIUseCount;
109
110 // Defs of PHI sources which are implicit_def.
111 SmallPtrSet<MachineInstr*, 4> ImpDefs;
112
113 // Map reusable lowered PHI node -> incoming join register.
114 using LoweredPHIMap =
115 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
116 LoweredPHIMap LoweredPHIs;
117 };
118
119 } // end anonymous namespace
120
121 STATISTIC(NumLowered, "Number of phis lowered");
122 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
123 STATISTIC(NumReused, "Number of reused lowered phis");
124
125 char PHIElimination::ID = 0;
126
127 char& llvm::PHIEliminationID = PHIElimination::ID;
128
129 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
130 "Eliminate PHI nodes for register allocation",
131 false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)132 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
133 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
134 "Eliminate PHI nodes for register allocation", false, false)
135
136 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
137 AU.addUsedIfAvailable<LiveVariables>();
138 AU.addPreserved<LiveVariables>();
139 AU.addPreserved<SlotIndexes>();
140 AU.addPreserved<LiveIntervals>();
141 AU.addPreserved<MachineDominatorTree>();
142 AU.addPreserved<MachineLoopInfo>();
143 MachineFunctionPass::getAnalysisUsage(AU);
144 }
145
runOnMachineFunction(MachineFunction & MF)146 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
147 MRI = &MF.getRegInfo();
148 LV = getAnalysisIfAvailable<LiveVariables>();
149 LIS = getAnalysisIfAvailable<LiveIntervals>();
150
151 bool Changed = false;
152
153 // This pass takes the function out of SSA form.
154 MRI->leaveSSA();
155
156 // Split critical edges to help the coalescer.
157 if (!DisableEdgeSplitting && (LV || LIS)) {
158 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
159 for (auto &MBB : MF)
160 Changed |= SplitPHIEdges(MF, MBB, MLI);
161 }
162
163 // Populate VRegPHIUseCount
164 analyzePHINodes(MF);
165
166 // Eliminate PHI instructions by inserting copies into predecessor blocks.
167 for (auto &MBB : MF)
168 Changed |= EliminatePHINodes(MF, MBB);
169
170 // Remove dead IMPLICIT_DEF instructions.
171 for (MachineInstr *DefMI : ImpDefs) {
172 unsigned DefReg = DefMI->getOperand(0).getReg();
173 if (MRI->use_nodbg_empty(DefReg)) {
174 if (LIS)
175 LIS->RemoveMachineInstrFromMaps(*DefMI);
176 DefMI->eraseFromParent();
177 }
178 }
179
180 // Clean up the lowered PHI instructions.
181 for (auto &I : LoweredPHIs) {
182 if (LIS)
183 LIS->RemoveMachineInstrFromMaps(*I.first);
184 MF.DeleteMachineInstr(I.first);
185 }
186
187 LoweredPHIs.clear();
188 ImpDefs.clear();
189 VRegPHIUseCount.clear();
190
191 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
192
193 return Changed;
194 }
195
196 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
197 /// predecessor basic blocks.
EliminatePHINodes(MachineFunction & MF,MachineBasicBlock & MBB)198 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
199 MachineBasicBlock &MBB) {
200 if (MBB.empty() || !MBB.front().isPHI())
201 return false; // Quick exit for basic blocks without PHIs.
202
203 // Get an iterator to the last PHI node.
204 MachineBasicBlock::iterator LastPHIIt =
205 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
206
207 while (MBB.front().isPHI())
208 LowerPHINode(MBB, LastPHIIt);
209
210 return true;
211 }
212
213 /// Return true if all defs of VirtReg are implicit-defs.
214 /// This includes registers with no defs.
isImplicitlyDefined(unsigned VirtReg,const MachineRegisterInfo & MRI)215 static bool isImplicitlyDefined(unsigned VirtReg,
216 const MachineRegisterInfo &MRI) {
217 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
218 if (!DI.isImplicitDef())
219 return false;
220 return true;
221 }
222
223 /// Return true if all sources of the phi node are implicit_def's, or undef's.
allPhiOperandsUndefined(const MachineInstr & MPhi,const MachineRegisterInfo & MRI)224 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
225 const MachineRegisterInfo &MRI) {
226 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
227 const MachineOperand &MO = MPhi.getOperand(I);
228 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
229 return false;
230 }
231 return true;
232 }
233 /// LowerPHINode - Lower the PHI node at the top of the specified block.
LowerPHINode(MachineBasicBlock & MBB,MachineBasicBlock::iterator LastPHIIt)234 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
235 MachineBasicBlock::iterator LastPHIIt) {
236 ++NumLowered;
237
238 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
239
240 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
241 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
242
243 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
244 unsigned DestReg = MPhi->getOperand(0).getReg();
245 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
246 bool isDead = MPhi->getOperand(0).isDead();
247
248 // Create a new register for the incoming PHI arguments.
249 MachineFunction &MF = *MBB.getParent();
250 unsigned IncomingReg = 0;
251 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
252
253 // Insert a register to register copy at the top of the current block (but
254 // after any remaining phi nodes) which copies the new incoming register
255 // into the phi node destination.
256 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
257 if (allPhiOperandsUndefined(*MPhi, *MRI))
258 // If all sources of a PHI node are implicit_def or undef uses, just emit an
259 // implicit_def instead of a copy.
260 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
261 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
262 else {
263 // Can we reuse an earlier PHI node? This only happens for critical edges,
264 // typically those created by tail duplication.
265 unsigned &entry = LoweredPHIs[MPhi];
266 if (entry) {
267 // An identical PHI node was already lowered. Reuse the incoming register.
268 IncomingReg = entry;
269 reusedIncoming = true;
270 ++NumReused;
271 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
272 << *MPhi);
273 } else {
274 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
275 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
276 }
277 BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
278 TII->get(TargetOpcode::COPY), DestReg)
279 .addReg(IncomingReg);
280 }
281
282 // Update live variable information if there is any.
283 if (LV) {
284 MachineInstr &PHICopy = *std::prev(AfterPHIsIt);
285
286 if (IncomingReg) {
287 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
288
289 // Increment use count of the newly created virtual register.
290 LV->setPHIJoin(IncomingReg);
291
292 // When we are reusing the incoming register, it may already have been
293 // killed in this block. The old kill will also have been inserted at
294 // AfterPHIsIt, so it appears before the current PHICopy.
295 if (reusedIncoming)
296 if (MachineInstr *OldKill = VI.findKill(&MBB)) {
297 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
298 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
299 LLVM_DEBUG(MBB.dump());
300 }
301
302 // Add information to LiveVariables to know that the incoming value is
303 // killed. Note that because the value is defined in several places (once
304 // each for each incoming block), the "def" block and instruction fields
305 // for the VarInfo is not filled in.
306 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
307 }
308
309 // Since we are going to be deleting the PHI node, if it is the last use of
310 // any registers, or if the value itself is dead, we need to move this
311 // information over to the new copy we just inserted.
312 LV->removeVirtualRegistersKilled(*MPhi);
313
314 // If the result is dead, update LV.
315 if (isDead) {
316 LV->addVirtualRegisterDead(DestReg, PHICopy);
317 LV->removeVirtualRegisterDead(DestReg, *MPhi);
318 }
319 }
320
321 // Update LiveIntervals for the new copy or implicit def.
322 if (LIS) {
323 SlotIndex DestCopyIndex =
324 LIS->InsertMachineInstrInMaps(*std::prev(AfterPHIsIt));
325
326 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
327 if (IncomingReg) {
328 // Add the region from the beginning of MBB to the copy instruction to
329 // IncomingReg's live interval.
330 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
331 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
332 if (!IncomingVNI)
333 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
334 LIS->getVNInfoAllocator());
335 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
336 DestCopyIndex.getRegSlot(),
337 IncomingVNI));
338 }
339
340 LiveInterval &DestLI = LIS->getInterval(DestReg);
341 assert(DestLI.begin() != DestLI.end() &&
342 "PHIs should have nonempty LiveIntervals.");
343 if (DestLI.endIndex().isDead()) {
344 // A dead PHI's live range begins and ends at the start of the MBB, but
345 // the lowered copy, which will still be dead, needs to begin and end at
346 // the copy instruction.
347 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
348 assert(OrigDestVNI && "PHI destination should be live at block entry.");
349 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
350 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
351 LIS->getVNInfoAllocator());
352 DestLI.removeValNo(OrigDestVNI);
353 } else {
354 // Otherwise, remove the region from the beginning of MBB to the copy
355 // instruction from DestReg's live interval.
356 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
357 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
358 assert(DestVNI && "PHI destination should be live at its definition.");
359 DestVNI->def = DestCopyIndex.getRegSlot();
360 }
361 }
362
363 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
364 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
365 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
366 MPhi->getOperand(i).getReg())];
367
368 // Now loop over all of the incoming arguments, changing them to copy into the
369 // IncomingReg register in the corresponding predecessor basic block.
370 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
371 for (int i = NumSrcs - 1; i >= 0; --i) {
372 unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
373 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
374 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
375 isImplicitlyDefined(SrcReg, *MRI);
376 assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
377 "Machine PHI Operands must all be virtual registers!");
378
379 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
380 // path the PHI.
381 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
382
383 // Check to make sure we haven't already emitted the copy for this block.
384 // This can happen because PHI nodes may have multiple entries for the same
385 // basic block.
386 if (!MBBsInsertedInto.insert(&opBlock).second)
387 continue; // If the copy has already been emitted, we're done.
388
389 // Find a safe location to insert the copy, this may be the first terminator
390 // in the block (or end()).
391 MachineBasicBlock::iterator InsertPos =
392 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
393
394 // Insert the copy.
395 MachineInstr *NewSrcInstr = nullptr;
396 if (!reusedIncoming && IncomingReg) {
397 if (SrcUndef) {
398 // The source register is undefined, so there is no need for a real
399 // COPY, but we still need to ensure joint dominance by defs.
400 // Insert an IMPLICIT_DEF instruction.
401 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
402 TII->get(TargetOpcode::IMPLICIT_DEF),
403 IncomingReg);
404
405 // Clean up the old implicit-def, if there even was one.
406 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
407 if (DefMI->isImplicitDef())
408 ImpDefs.insert(DefMI);
409 } else {
410 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
411 TII->get(TargetOpcode::COPY), IncomingReg)
412 .addReg(SrcReg, 0, SrcSubReg);
413 }
414 }
415
416 // We only need to update the LiveVariables kill of SrcReg if this was the
417 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
418 // out of the predecessor. We can also ignore undef sources.
419 if (LV && !SrcUndef &&
420 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
421 !LV->isLiveOut(SrcReg, opBlock)) {
422 // We want to be able to insert a kill of the register if this PHI (aka,
423 // the copy we just inserted) is the last use of the source value. Live
424 // variable analysis conservatively handles this by saying that the value
425 // is live until the end of the block the PHI entry lives in. If the value
426 // really is dead at the PHI copy, there will be no successor blocks which
427 // have the value live-in.
428
429 // Okay, if we now know that the value is not live out of the block, we
430 // can add a kill marker in this block saying that it kills the incoming
431 // value!
432
433 // In our final twist, we have to decide which instruction kills the
434 // register. In most cases this is the copy, however, terminator
435 // instructions at the end of the block may also use the value. In this
436 // case, we should mark the last such terminator as being the killing
437 // block, not the copy.
438 MachineBasicBlock::iterator KillInst = opBlock.end();
439 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
440 for (MachineBasicBlock::iterator Term = FirstTerm;
441 Term != opBlock.end(); ++Term) {
442 if (Term->readsRegister(SrcReg))
443 KillInst = Term;
444 }
445
446 if (KillInst == opBlock.end()) {
447 // No terminator uses the register.
448
449 if (reusedIncoming || !IncomingReg) {
450 // We may have to rewind a bit if we didn't insert a copy this time.
451 KillInst = FirstTerm;
452 while (KillInst != opBlock.begin()) {
453 --KillInst;
454 if (KillInst->isDebugInstr())
455 continue;
456 if (KillInst->readsRegister(SrcReg))
457 break;
458 }
459 } else {
460 // We just inserted this copy.
461 KillInst = std::prev(InsertPos);
462 }
463 }
464 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
465
466 // Finally, mark it killed.
467 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
468
469 // This vreg no longer lives all of the way through opBlock.
470 unsigned opBlockNum = opBlock.getNumber();
471 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
472 }
473
474 if (LIS) {
475 if (NewSrcInstr) {
476 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
477 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
478 }
479
480 if (!SrcUndef &&
481 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
482 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
483
484 bool isLiveOut = false;
485 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
486 SE = opBlock.succ_end(); SI != SE; ++SI) {
487 SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
488 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
489
490 // Definitions by other PHIs are not truly live-in for our purposes.
491 if (VNI && VNI->def != startIdx) {
492 isLiveOut = true;
493 break;
494 }
495 }
496
497 if (!isLiveOut) {
498 MachineBasicBlock::iterator KillInst = opBlock.end();
499 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
500 for (MachineBasicBlock::iterator Term = FirstTerm;
501 Term != opBlock.end(); ++Term) {
502 if (Term->readsRegister(SrcReg))
503 KillInst = Term;
504 }
505
506 if (KillInst == opBlock.end()) {
507 // No terminator uses the register.
508
509 if (reusedIncoming || !IncomingReg) {
510 // We may have to rewind a bit if we didn't just insert a copy.
511 KillInst = FirstTerm;
512 while (KillInst != opBlock.begin()) {
513 --KillInst;
514 if (KillInst->isDebugInstr())
515 continue;
516 if (KillInst->readsRegister(SrcReg))
517 break;
518 }
519 } else {
520 // We just inserted this copy.
521 KillInst = std::prev(InsertPos);
522 }
523 }
524 assert(KillInst->readsRegister(SrcReg) &&
525 "Cannot find kill instruction");
526
527 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
528 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
529 LIS->getMBBEndIdx(&opBlock));
530 }
531 }
532 }
533 }
534
535 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
536 if (reusedIncoming || !IncomingReg) {
537 if (LIS)
538 LIS->RemoveMachineInstrFromMaps(*MPhi);
539 MF.DeleteMachineInstr(MPhi);
540 }
541 }
542
543 /// analyzePHINodes - Gather information about the PHI nodes in here. In
544 /// particular, we want to map the number of uses of a virtual register which is
545 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
546 /// used later to determine when the vreg is killed in the BB.
analyzePHINodes(const MachineFunction & MF)547 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
548 for (const auto &MBB : MF)
549 for (const auto &BBI : MBB) {
550 if (!BBI.isPHI())
551 break;
552 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
553 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
554 BBI.getOperand(i).getReg())];
555 }
556 }
557
SplitPHIEdges(MachineFunction & MF,MachineBasicBlock & MBB,MachineLoopInfo * MLI)558 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
559 MachineBasicBlock &MBB,
560 MachineLoopInfo *MLI) {
561 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
562 return false; // Quick exit for basic blocks without PHIs.
563
564 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
565 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
566
567 bool Changed = false;
568 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
569 BBI != BBE && BBI->isPHI(); ++BBI) {
570 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
571 unsigned Reg = BBI->getOperand(i).getReg();
572 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
573 // Is there a critical edge from PreMBB to MBB?
574 if (PreMBB->succ_size() == 1)
575 continue;
576
577 // Avoid splitting backedges of loops. It would introduce small
578 // out-of-line blocks into the loop which is very bad for code placement.
579 if (PreMBB == &MBB && !SplitAllCriticalEdges)
580 continue;
581 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
582 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
583 continue;
584
585 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
586 // when the source register is live-out for some other reason than a phi
587 // use. That means the copy we will insert in PreMBB won't be a kill, and
588 // there is a risk it may not be coalesced away.
589 //
590 // If the copy would be a kill, there is no need to split the edge.
591 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
592 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
593 continue;
594 if (ShouldSplit) {
595 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
596 << printMBBReference(*PreMBB) << " -> "
597 << printMBBReference(MBB) << ": " << *BBI);
598 }
599
600 // If Reg is not live-in to MBB, it means it must be live-in to some
601 // other PreMBB successor, and we can avoid the interference by splitting
602 // the edge.
603 //
604 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
605 // is likely to be left after coalescing. If we are looking at a loop
606 // exiting edge, split it so we won't insert code in the loop, otherwise
607 // don't bother.
608 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
609
610 // Check for a loop exiting edge.
611 if (!ShouldSplit && CurLoop != PreLoop) {
612 LLVM_DEBUG({
613 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
614 if (PreLoop)
615 dbgs() << "PreLoop: " << *PreLoop;
616 if (CurLoop)
617 dbgs() << "CurLoop: " << *CurLoop;
618 });
619 // This edge could be entering a loop, exiting a loop, or it could be
620 // both: Jumping directly form one loop to the header of a sibling
621 // loop.
622 // Split unless this edge is entering CurLoop from an outer loop.
623 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
624 }
625 if (!ShouldSplit && !SplitAllCriticalEdges)
626 continue;
627 if (!PreMBB->SplitCriticalEdge(&MBB, *this)) {
628 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
629 continue;
630 }
631 Changed = true;
632 ++NumCriticalEdgesSplit;
633 }
634 }
635 return Changed;
636 }
637
isLiveIn(unsigned Reg,const MachineBasicBlock * MBB)638 bool PHIElimination::isLiveIn(unsigned Reg, const MachineBasicBlock *MBB) {
639 assert((LV || LIS) &&
640 "isLiveIn() requires either LiveVariables or LiveIntervals");
641 if (LIS)
642 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
643 else
644 return LV->isLiveIn(Reg, *MBB);
645 }
646
isLiveOutPastPHIs(unsigned Reg,const MachineBasicBlock * MBB)647 bool PHIElimination::isLiveOutPastPHIs(unsigned Reg,
648 const MachineBasicBlock *MBB) {
649 assert((LV || LIS) &&
650 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
651 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
652 // so that a register used only in a PHI is not live out of the block. In
653 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
654 // in the predecessor basic block, so that a register used only in a PHI is live
655 // out of the block.
656 if (LIS) {
657 const LiveInterval &LI = LIS->getInterval(Reg);
658 for (const MachineBasicBlock *SI : MBB->successors())
659 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
660 return true;
661 return false;
662 } else {
663 return LV->isLiveOut(Reg, *MBB);
664 }
665 }
666