1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/SetOperations.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 32 #include "llvm/CodeGen/LiveStackAnalysis.h" 33 #include "llvm/CodeGen/LiveVariables.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/StackMaps.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/InlineAsm.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/MC/MCAsmInfo.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/FileSystem.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Target/TargetInstrInfo.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetRegisterInfo.h" 51 #include "llvm/Target/TargetSubtargetInfo.h" 52 using namespace llvm; 53 54 namespace { 55 struct MachineVerifier { 56 57 MachineVerifier(Pass *pass, const char *b) : 58 PASS(pass), 59 Banner(b) 60 {} 61 62 unsigned verify(MachineFunction &MF); 63 64 Pass *const PASS; 65 const char *Banner; 66 const MachineFunction *MF; 67 const TargetMachine *TM; 68 const TargetInstrInfo *TII; 69 const TargetRegisterInfo *TRI; 70 const MachineRegisterInfo *MRI; 71 72 unsigned foundErrors; 73 74 // Avoid querying the MachineFunctionProperties for each operand. 75 bool isFunctionRegBankSelected; 76 bool isFunctionSelected; 77 78 typedef SmallVector<unsigned, 16> RegVector; 79 typedef SmallVector<const uint32_t*, 4> RegMaskVector; 80 typedef DenseSet<unsigned> RegSet; 81 typedef DenseMap<unsigned, const MachineInstr*> RegMap; 82 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet; 83 84 const MachineInstr *FirstTerminator; 85 BlockSet FunctionBlocks; 86 87 BitVector regsReserved; 88 RegSet regsLive; 89 RegVector regsDefined, regsDead, regsKilled; 90 RegMaskVector regMasks; 91 92 SlotIndex lastIndex; 93 94 // Add Reg and any sub-registers to RV 95 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 96 RV.push_back(Reg); 97 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 98 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 99 RV.push_back(*SubRegs); 100 } 101 102 struct BBInfo { 103 // Is this MBB reachable from the MF entry point? 104 bool reachable; 105 106 // Vregs that must be live in because they are used without being 107 // defined. Map value is the user. 108 RegMap vregsLiveIn; 109 110 // Regs killed in MBB. They may be defined again, and will then be in both 111 // regsKilled and regsLiveOut. 112 RegSet regsKilled; 113 114 // Regs defined in MBB and live out. Note that vregs passing through may 115 // be live out without being mentioned here. 116 RegSet regsLiveOut; 117 118 // Vregs that pass through MBB untouched. This set is disjoint from 119 // regsKilled and regsLiveOut. 120 RegSet vregsPassed; 121 122 // Vregs that must pass through MBB because they are needed by a successor 123 // block. This set is disjoint from regsLiveOut. 124 RegSet vregsRequired; 125 126 // Set versions of block's predecessor and successor lists. 127 BlockSet Preds, Succs; 128 129 BBInfo() : reachable(false) {} 130 131 // Add register to vregsPassed if it belongs there. Return true if 132 // anything changed. 133 bool addPassed(unsigned Reg) { 134 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 135 return false; 136 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 137 return false; 138 return vregsPassed.insert(Reg).second; 139 } 140 141 // Same for a full set. 142 bool addPassed(const RegSet &RS) { 143 bool changed = false; 144 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 145 if (addPassed(*I)) 146 changed = true; 147 return changed; 148 } 149 150 // Add register to vregsRequired if it belongs there. Return true if 151 // anything changed. 152 bool addRequired(unsigned Reg) { 153 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 154 return false; 155 if (regsLiveOut.count(Reg)) 156 return false; 157 return vregsRequired.insert(Reg).second; 158 } 159 160 // Same for a full set. 161 bool addRequired(const RegSet &RS) { 162 bool changed = false; 163 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 164 if (addRequired(*I)) 165 changed = true; 166 return changed; 167 } 168 169 // Same for a full map. 170 bool addRequired(const RegMap &RM) { 171 bool changed = false; 172 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 173 if (addRequired(I->first)) 174 changed = true; 175 return changed; 176 } 177 178 // Live-out registers are either in regsLiveOut or vregsPassed. 179 bool isLiveOut(unsigned Reg) const { 180 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 181 } 182 }; 183 184 // Extra register info per MBB. 185 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 186 187 bool isReserved(unsigned Reg) { 188 return Reg < regsReserved.size() && regsReserved.test(Reg); 189 } 190 191 bool isAllocatable(unsigned Reg) const { 192 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 193 !regsReserved.test(Reg); 194 } 195 196 // Analysis information if available 197 LiveVariables *LiveVars; 198 LiveIntervals *LiveInts; 199 LiveStacks *LiveStks; 200 SlotIndexes *Indexes; 201 202 void visitMachineFunctionBefore(); 203 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 204 void visitMachineBundleBefore(const MachineInstr *MI); 205 void visitMachineInstrBefore(const MachineInstr *MI); 206 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 207 void visitMachineInstrAfter(const MachineInstr *MI); 208 void visitMachineBundleAfter(const MachineInstr *MI); 209 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 210 void visitMachineFunctionAfter(); 211 212 void report(const char *msg, const MachineFunction *MF); 213 void report(const char *msg, const MachineBasicBlock *MBB); 214 void report(const char *msg, const MachineInstr *MI); 215 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 216 217 void report_context(const LiveInterval &LI) const; 218 void report_context(const LiveRange &LR, unsigned VRegUnit, 219 LaneBitmask LaneMask) const; 220 void report_context(const LiveRange::Segment &S) const; 221 void report_context(const VNInfo &VNI) const; 222 void report_context(SlotIndex Pos) const; 223 void report_context_liverange(const LiveRange &LR) const; 224 void report_context_lanemask(LaneBitmask LaneMask) const; 225 void report_context_vreg(unsigned VReg) const; 226 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 227 228 void verifyInlineAsm(const MachineInstr *MI); 229 230 void checkLiveness(const MachineOperand *MO, unsigned MONum); 231 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 232 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 233 LaneBitmask LaneMask = LaneBitmask::getNone()); 234 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 235 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 236 LaneBitmask LaneMask = LaneBitmask::getNone()); 237 238 void markReachable(const MachineBasicBlock *MBB); 239 void calcRegsPassed(); 240 void checkPHIOps(const MachineBasicBlock *MBB); 241 242 void calcRegsRequired(); 243 void verifyLiveVariables(); 244 void verifyLiveIntervals(); 245 void verifyLiveInterval(const LiveInterval&); 246 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 247 LaneBitmask); 248 void verifyLiveRangeSegment(const LiveRange&, 249 const LiveRange::const_iterator I, unsigned, 250 LaneBitmask); 251 void verifyLiveRange(const LiveRange&, unsigned, 252 LaneBitmask LaneMask = LaneBitmask::getNone()); 253 254 void verifyStackFrame(); 255 256 void verifySlotIndexes() const; 257 void verifyProperties(const MachineFunction &MF); 258 }; 259 260 struct MachineVerifierPass : public MachineFunctionPass { 261 static char ID; // Pass ID, replacement for typeid 262 const std::string Banner; 263 264 MachineVerifierPass(std::string banner = std::string()) 265 : MachineFunctionPass(ID), Banner(std::move(banner)) { 266 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 267 } 268 269 void getAnalysisUsage(AnalysisUsage &AU) const override { 270 AU.setPreservesAll(); 271 MachineFunctionPass::getAnalysisUsage(AU); 272 } 273 274 bool runOnMachineFunction(MachineFunction &MF) override { 275 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 276 if (FoundErrors) 277 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 278 return false; 279 } 280 }; 281 282 } 283 284 char MachineVerifierPass::ID = 0; 285 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 286 "Verify generated machine code", false, false) 287 288 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 289 return new MachineVerifierPass(Banner); 290 } 291 292 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 293 const { 294 MachineFunction &MF = const_cast<MachineFunction&>(*this); 295 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 296 if (AbortOnErrors && FoundErrors) 297 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 298 return FoundErrors == 0; 299 } 300 301 void MachineVerifier::verifySlotIndexes() const { 302 if (Indexes == nullptr) 303 return; 304 305 // Ensure the IdxMBB list is sorted by slot indexes. 306 SlotIndex Last; 307 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 308 E = Indexes->MBBIndexEnd(); I != E; ++I) { 309 assert(!Last.isValid() || I->first > Last); 310 Last = I->first; 311 } 312 } 313 314 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 315 // If a pass has introduced virtual registers without clearing the 316 // NoVRegs property (or set it without allocating the vregs) 317 // then report an error. 318 if (MF.getProperties().hasProperty( 319 MachineFunctionProperties::Property::NoVRegs) && 320 MRI->getNumVirtRegs()) 321 report("Function has NoVRegs property but there are VReg operands", &MF); 322 } 323 324 unsigned MachineVerifier::verify(MachineFunction &MF) { 325 foundErrors = 0; 326 327 this->MF = &MF; 328 TM = &MF.getTarget(); 329 TII = MF.getSubtarget().getInstrInfo(); 330 TRI = MF.getSubtarget().getRegisterInfo(); 331 MRI = &MF.getRegInfo(); 332 333 isFunctionRegBankSelected = MF.getProperties().hasProperty( 334 MachineFunctionProperties::Property::RegBankSelected); 335 isFunctionSelected = MF.getProperties().hasProperty( 336 MachineFunctionProperties::Property::Selected); 337 338 LiveVars = nullptr; 339 LiveInts = nullptr; 340 LiveStks = nullptr; 341 Indexes = nullptr; 342 if (PASS) { 343 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 344 // We don't want to verify LiveVariables if LiveIntervals is available. 345 if (!LiveInts) 346 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 347 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 348 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 349 } 350 351 verifySlotIndexes(); 352 353 verifyProperties(MF); 354 355 visitMachineFunctionBefore(); 356 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 357 MFI!=MFE; ++MFI) { 358 visitMachineBasicBlockBefore(&*MFI); 359 // Keep track of the current bundle header. 360 const MachineInstr *CurBundle = nullptr; 361 // Do we expect the next instruction to be part of the same bundle? 362 bool InBundle = false; 363 364 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 365 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 366 if (MBBI->getParent() != &*MFI) { 367 report("Bad instruction parent pointer", &*MFI); 368 errs() << "Instruction: " << *MBBI; 369 continue; 370 } 371 372 // Check for consistent bundle flags. 373 if (InBundle && !MBBI->isBundledWithPred()) 374 report("Missing BundledPred flag, " 375 "BundledSucc was set on predecessor", 376 &*MBBI); 377 if (!InBundle && MBBI->isBundledWithPred()) 378 report("BundledPred flag is set, " 379 "but BundledSucc not set on predecessor", 380 &*MBBI); 381 382 // Is this a bundle header? 383 if (!MBBI->isInsideBundle()) { 384 if (CurBundle) 385 visitMachineBundleAfter(CurBundle); 386 CurBundle = &*MBBI; 387 visitMachineBundleBefore(CurBundle); 388 } else if (!CurBundle) 389 report("No bundle header", &*MBBI); 390 visitMachineInstrBefore(&*MBBI); 391 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 392 const MachineInstr &MI = *MBBI; 393 const MachineOperand &Op = MI.getOperand(I); 394 if (Op.getParent() != &MI) { 395 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 396 // functions when replacing operands of a MachineInstr. 397 report("Instruction has operand with wrong parent set", &MI); 398 } 399 400 visitMachineOperand(&Op, I); 401 } 402 403 visitMachineInstrAfter(&*MBBI); 404 405 // Was this the last bundled instruction? 406 InBundle = MBBI->isBundledWithSucc(); 407 } 408 if (CurBundle) 409 visitMachineBundleAfter(CurBundle); 410 if (InBundle) 411 report("BundledSucc flag set on last instruction in block", &MFI->back()); 412 visitMachineBasicBlockAfter(&*MFI); 413 } 414 visitMachineFunctionAfter(); 415 416 // Clean up. 417 regsLive.clear(); 418 regsDefined.clear(); 419 regsDead.clear(); 420 regsKilled.clear(); 421 regMasks.clear(); 422 MBBInfoMap.clear(); 423 424 return foundErrors; 425 } 426 427 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 428 assert(MF); 429 errs() << '\n'; 430 if (!foundErrors++) { 431 if (Banner) 432 errs() << "# " << Banner << '\n'; 433 if (LiveInts != nullptr) 434 LiveInts->print(errs()); 435 else 436 MF->print(errs(), Indexes); 437 } 438 errs() << "*** Bad machine code: " << msg << " ***\n" 439 << "- function: " << MF->getName() << "\n"; 440 } 441 442 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 443 assert(MBB); 444 report(msg, MBB->getParent()); 445 errs() << "- basic block: BB#" << MBB->getNumber() 446 << ' ' << MBB->getName() 447 << " (" << (const void*)MBB << ')'; 448 if (Indexes) 449 errs() << " [" << Indexes->getMBBStartIdx(MBB) 450 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 451 errs() << '\n'; 452 } 453 454 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 455 assert(MI); 456 report(msg, MI->getParent()); 457 errs() << "- instruction: "; 458 if (Indexes && Indexes->hasIndex(*MI)) 459 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 460 MI->print(errs(), /*SkipOpers=*/true); 461 errs() << '\n'; 462 } 463 464 void MachineVerifier::report(const char *msg, 465 const MachineOperand *MO, unsigned MONum) { 466 assert(MO); 467 report(msg, MO->getParent()); 468 errs() << "- operand " << MONum << ": "; 469 MO->print(errs(), TRI); 470 errs() << "\n"; 471 } 472 473 void MachineVerifier::report_context(SlotIndex Pos) const { 474 errs() << "- at: " << Pos << '\n'; 475 } 476 477 void MachineVerifier::report_context(const LiveInterval &LI) const { 478 errs() << "- interval: " << LI << '\n'; 479 } 480 481 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 482 LaneBitmask LaneMask) const { 483 report_context_liverange(LR); 484 report_context_vreg_regunit(VRegUnit); 485 if (LaneMask.any()) 486 report_context_lanemask(LaneMask); 487 } 488 489 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 490 errs() << "- segment: " << S << '\n'; 491 } 492 493 void MachineVerifier::report_context(const VNInfo &VNI) const { 494 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 495 } 496 497 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 498 errs() << "- liverange: " << LR << '\n'; 499 } 500 501 void MachineVerifier::report_context_vreg(unsigned VReg) const { 502 errs() << "- v. register: " << PrintReg(VReg, TRI) << '\n'; 503 } 504 505 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 506 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 507 report_context_vreg(VRegOrUnit); 508 } else { 509 errs() << "- regunit: " << PrintRegUnit(VRegOrUnit, TRI) << '\n'; 510 } 511 } 512 513 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 514 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 515 } 516 517 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 518 BBInfo &MInfo = MBBInfoMap[MBB]; 519 if (!MInfo.reachable) { 520 MInfo.reachable = true; 521 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 522 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 523 markReachable(*SuI); 524 } 525 } 526 527 void MachineVerifier::visitMachineFunctionBefore() { 528 lastIndex = SlotIndex(); 529 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 530 : TRI->getReservedRegs(*MF); 531 532 if (!MF->empty()) 533 markReachable(&MF->front()); 534 535 // Build a set of the basic blocks in the function. 536 FunctionBlocks.clear(); 537 for (const auto &MBB : *MF) { 538 FunctionBlocks.insert(&MBB); 539 BBInfo &MInfo = MBBInfoMap[&MBB]; 540 541 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 542 if (MInfo.Preds.size() != MBB.pred_size()) 543 report("MBB has duplicate entries in its predecessor list.", &MBB); 544 545 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 546 if (MInfo.Succs.size() != MBB.succ_size()) 547 report("MBB has duplicate entries in its successor list.", &MBB); 548 } 549 550 // Check that the register use lists are sane. 551 MRI->verifyUseLists(); 552 553 if (!MF->empty()) 554 verifyStackFrame(); 555 } 556 557 // Does iterator point to a and b as the first two elements? 558 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 559 const MachineBasicBlock *a, const MachineBasicBlock *b) { 560 if (*i == a) 561 return *++i == b; 562 if (*i == b) 563 return *++i == a; 564 return false; 565 } 566 567 void 568 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 569 FirstTerminator = nullptr; 570 571 if (!MF->getProperties().hasProperty( 572 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 573 // If this block has allocatable physical registers live-in, check that 574 // it is an entry block or landing pad. 575 for (const auto &LI : MBB->liveins()) { 576 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 577 MBB->getIterator() != MBB->getParent()->begin()) { 578 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 579 } 580 } 581 } 582 583 // Count the number of landing pad successors. 584 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 585 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 586 E = MBB->succ_end(); I != E; ++I) { 587 if ((*I)->isEHPad()) 588 LandingPadSuccs.insert(*I); 589 if (!FunctionBlocks.count(*I)) 590 report("MBB has successor that isn't part of the function.", MBB); 591 if (!MBBInfoMap[*I].Preds.count(MBB)) { 592 report("Inconsistent CFG", MBB); 593 errs() << "MBB is not in the predecessor list of the successor BB#" 594 << (*I)->getNumber() << ".\n"; 595 } 596 } 597 598 // Check the predecessor list. 599 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 600 E = MBB->pred_end(); I != E; ++I) { 601 if (!FunctionBlocks.count(*I)) 602 report("MBB has predecessor that isn't part of the function.", MBB); 603 if (!MBBInfoMap[*I].Succs.count(MBB)) { 604 report("Inconsistent CFG", MBB); 605 errs() << "MBB is not in the successor list of the predecessor BB#" 606 << (*I)->getNumber() << ".\n"; 607 } 608 } 609 610 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 611 const BasicBlock *BB = MBB->getBasicBlock(); 612 const Function *Fn = MF->getFunction(); 613 if (LandingPadSuccs.size() > 1 && 614 !(AsmInfo && 615 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 616 BB && isa<SwitchInst>(BB->getTerminator())) && 617 !isFuncletEHPersonality(classifyEHPersonality(Fn->getPersonalityFn()))) 618 report("MBB has more than one landing pad successor", MBB); 619 620 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 621 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 622 SmallVector<MachineOperand, 4> Cond; 623 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 624 Cond)) { 625 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 626 // check whether its answers match up with reality. 627 if (!TBB && !FBB) { 628 // Block falls through to its successor. 629 MachineFunction::const_iterator MBBI = MBB->getIterator(); 630 ++MBBI; 631 if (MBBI == MF->end()) { 632 // It's possible that the block legitimately ends with a noreturn 633 // call or an unreachable, in which case it won't actually fall 634 // out the bottom of the function. 635 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 636 // It's possible that the block legitimately ends with a noreturn 637 // call or an unreachable, in which case it won't actuall fall 638 // out of the block. 639 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 640 report("MBB exits via unconditional fall-through but doesn't have " 641 "exactly one CFG successor!", MBB); 642 } else if (!MBB->isSuccessor(&*MBBI)) { 643 report("MBB exits via unconditional fall-through but its successor " 644 "differs from its CFG successor!", MBB); 645 } 646 if (!MBB->empty() && MBB->back().isBarrier() && 647 !TII->isPredicated(MBB->back())) { 648 report("MBB exits via unconditional fall-through but ends with a " 649 "barrier instruction!", MBB); 650 } 651 if (!Cond.empty()) { 652 report("MBB exits via unconditional fall-through but has a condition!", 653 MBB); 654 } 655 } else if (TBB && !FBB && Cond.empty()) { 656 // Block unconditionally branches somewhere. 657 // If the block has exactly one successor, that happens to be a 658 // landingpad, accept it as valid control flow. 659 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 660 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 661 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 662 report("MBB exits via unconditional branch but doesn't have " 663 "exactly one CFG successor!", MBB); 664 } else if (!MBB->isSuccessor(TBB)) { 665 report("MBB exits via unconditional branch but the CFG " 666 "successor doesn't match the actual successor!", MBB); 667 } 668 if (MBB->empty()) { 669 report("MBB exits via unconditional branch but doesn't contain " 670 "any instructions!", MBB); 671 } else if (!MBB->back().isBarrier()) { 672 report("MBB exits via unconditional branch but doesn't end with a " 673 "barrier instruction!", MBB); 674 } else if (!MBB->back().isTerminator()) { 675 report("MBB exits via unconditional branch but the branch isn't a " 676 "terminator instruction!", MBB); 677 } 678 } else if (TBB && !FBB && !Cond.empty()) { 679 // Block conditionally branches somewhere, otherwise falls through. 680 MachineFunction::const_iterator MBBI = MBB->getIterator(); 681 ++MBBI; 682 if (MBBI == MF->end()) { 683 report("MBB conditionally falls through out of function!", MBB); 684 } else if (MBB->succ_size() == 1) { 685 // A conditional branch with only one successor is weird, but allowed. 686 if (&*MBBI != TBB) 687 report("MBB exits via conditional branch/fall-through but only has " 688 "one CFG successor!", MBB); 689 else if (TBB != *MBB->succ_begin()) 690 report("MBB exits via conditional branch/fall-through but the CFG " 691 "successor don't match the actual successor!", MBB); 692 } else if (MBB->succ_size() != 2) { 693 report("MBB exits via conditional branch/fall-through but doesn't have " 694 "exactly two CFG successors!", MBB); 695 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 696 report("MBB exits via conditional branch/fall-through but the CFG " 697 "successors don't match the actual successors!", MBB); 698 } 699 if (MBB->empty()) { 700 report("MBB exits via conditional branch/fall-through but doesn't " 701 "contain any instructions!", MBB); 702 } else if (MBB->back().isBarrier()) { 703 report("MBB exits via conditional branch/fall-through but ends with a " 704 "barrier instruction!", MBB); 705 } else if (!MBB->back().isTerminator()) { 706 report("MBB exits via conditional branch/fall-through but the branch " 707 "isn't a terminator instruction!", MBB); 708 } 709 } else if (TBB && FBB) { 710 // Block conditionally branches somewhere, otherwise branches 711 // somewhere else. 712 if (MBB->succ_size() == 1) { 713 // A conditional branch with only one successor is weird, but allowed. 714 if (FBB != TBB) 715 report("MBB exits via conditional branch/branch through but only has " 716 "one CFG successor!", MBB); 717 else if (TBB != *MBB->succ_begin()) 718 report("MBB exits via conditional branch/branch through but the CFG " 719 "successor don't match the actual successor!", MBB); 720 } else if (MBB->succ_size() != 2) { 721 report("MBB exits via conditional branch/branch but doesn't have " 722 "exactly two CFG successors!", MBB); 723 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 724 report("MBB exits via conditional branch/branch but the CFG " 725 "successors don't match the actual successors!", MBB); 726 } 727 if (MBB->empty()) { 728 report("MBB exits via conditional branch/branch but doesn't " 729 "contain any instructions!", MBB); 730 } else if (!MBB->back().isBarrier()) { 731 report("MBB exits via conditional branch/branch but doesn't end with a " 732 "barrier instruction!", MBB); 733 } else if (!MBB->back().isTerminator()) { 734 report("MBB exits via conditional branch/branch but the branch " 735 "isn't a terminator instruction!", MBB); 736 } 737 if (Cond.empty()) { 738 report("MBB exits via conditinal branch/branch but there's no " 739 "condition!", MBB); 740 } 741 } else { 742 report("AnalyzeBranch returned invalid data!", MBB); 743 } 744 } 745 746 regsLive.clear(); 747 if (MRI->tracksLiveness()) { 748 for (const auto &LI : MBB->liveins()) { 749 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 750 report("MBB live-in list contains non-physical register", MBB); 751 continue; 752 } 753 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 754 SubRegs.isValid(); ++SubRegs) 755 regsLive.insert(*SubRegs); 756 } 757 } 758 759 const MachineFrameInfo &MFI = MF->getFrameInfo(); 760 BitVector PR = MFI.getPristineRegs(*MF); 761 for (unsigned I : PR.set_bits()) { 762 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 763 SubRegs.isValid(); ++SubRegs) 764 regsLive.insert(*SubRegs); 765 } 766 767 regsKilled.clear(); 768 regsDefined.clear(); 769 770 if (Indexes) 771 lastIndex = Indexes->getMBBStartIdx(MBB); 772 } 773 774 // This function gets called for all bundle headers, including normal 775 // stand-alone unbundled instructions. 776 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 777 if (Indexes && Indexes->hasIndex(*MI)) { 778 SlotIndex idx = Indexes->getInstructionIndex(*MI); 779 if (!(idx > lastIndex)) { 780 report("Instruction index out of order", MI); 781 errs() << "Last instruction was at " << lastIndex << '\n'; 782 } 783 lastIndex = idx; 784 } 785 786 // Ensure non-terminators don't follow terminators. 787 // Ignore predicated terminators formed by if conversion. 788 // FIXME: If conversion shouldn't need to violate this rule. 789 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 790 if (!FirstTerminator) 791 FirstTerminator = MI; 792 } else if (FirstTerminator) { 793 report("Non-terminator instruction after the first terminator", MI); 794 errs() << "First terminator was:\t" << *FirstTerminator; 795 } 796 } 797 798 // The operands on an INLINEASM instruction must follow a template. 799 // Verify that the flag operands make sense. 800 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 801 // The first two operands on INLINEASM are the asm string and global flags. 802 if (MI->getNumOperands() < 2) { 803 report("Too few operands on inline asm", MI); 804 return; 805 } 806 if (!MI->getOperand(0).isSymbol()) 807 report("Asm string must be an external symbol", MI); 808 if (!MI->getOperand(1).isImm()) 809 report("Asm flags must be an immediate", MI); 810 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 811 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 812 // and Extra_IsConvergent = 32. 813 if (!isUInt<6>(MI->getOperand(1).getImm())) 814 report("Unknown asm flags", &MI->getOperand(1), 1); 815 816 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 817 818 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 819 unsigned NumOps; 820 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 821 const MachineOperand &MO = MI->getOperand(OpNo); 822 // There may be implicit ops after the fixed operands. 823 if (!MO.isImm()) 824 break; 825 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 826 } 827 828 if (OpNo > MI->getNumOperands()) 829 report("Missing operands in last group", MI); 830 831 // An optional MDNode follows the groups. 832 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 833 ++OpNo; 834 835 // All trailing operands must be implicit registers. 836 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 837 const MachineOperand &MO = MI->getOperand(OpNo); 838 if (!MO.isReg() || !MO.isImplicit()) 839 report("Expected implicit register after groups", &MO, OpNo); 840 } 841 } 842 843 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 844 const MCInstrDesc &MCID = MI->getDesc(); 845 if (MI->getNumOperands() < MCID.getNumOperands()) { 846 report("Too few operands", MI); 847 errs() << MCID.getNumOperands() << " operands expected, but " 848 << MI->getNumOperands() << " given.\n"; 849 } 850 851 if (MI->isPHI() && MF->getProperties().hasProperty( 852 MachineFunctionProperties::Property::NoPHIs)) 853 report("Found PHI instruction with NoPHIs property set", MI); 854 855 // Check the tied operands. 856 if (MI->isInlineAsm()) 857 verifyInlineAsm(MI); 858 859 // Check the MachineMemOperands for basic consistency. 860 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 861 E = MI->memoperands_end(); I != E; ++I) { 862 if ((*I)->isLoad() && !MI->mayLoad()) 863 report("Missing mayLoad flag", MI); 864 if ((*I)->isStore() && !MI->mayStore()) 865 report("Missing mayStore flag", MI); 866 } 867 868 // Debug values must not have a slot index. 869 // Other instructions must have one, unless they are inside a bundle. 870 if (LiveInts) { 871 bool mapped = !LiveInts->isNotInMIMap(*MI); 872 if (MI->isDebugValue()) { 873 if (mapped) 874 report("Debug instruction has a slot index", MI); 875 } else if (MI->isInsideBundle()) { 876 if (mapped) 877 report("Instruction inside bundle has a slot index", MI); 878 } else { 879 if (!mapped) 880 report("Missing slot index", MI); 881 } 882 } 883 884 // Check types. 885 if (isPreISelGenericOpcode(MCID.getOpcode())) { 886 if (isFunctionSelected) 887 report("Unexpected generic instruction in a Selected function", MI); 888 889 // Generic instructions specify equality constraints between some 890 // of their operands. Make sure these are consistent. 891 SmallVector<LLT, 4> Types; 892 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 893 if (!MCID.OpInfo[i].isGenericType()) 894 continue; 895 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 896 Types.resize(std::max(TypeIdx + 1, Types.size())); 897 898 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 899 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 900 report("type mismatch in generic instruction", MI); 901 Types[TypeIdx] = OpTy; 902 } 903 } 904 905 // Generic opcodes must not have physical register operands. 906 if (isPreISelGenericOpcode(MCID.getOpcode())) { 907 for (auto &Op : MI->operands()) { 908 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 909 report("Generic instruction cannot have physical register", MI); 910 } 911 } 912 913 StringRef ErrorInfo; 914 if (!TII->verifyInstruction(*MI, ErrorInfo)) 915 report(ErrorInfo.data(), MI); 916 917 // Verify properties of various specific instruction types 918 switch(MI->getOpcode()) { 919 default: 920 break; 921 case TargetOpcode::G_LOAD: 922 case TargetOpcode::G_STORE: 923 // Generic loads and stores must have a single MachineMemOperand 924 // describing that access. 925 if (!MI->hasOneMemOperand()) 926 report("Generic instruction accessing memory must have one mem operand", 927 MI); 928 break; 929 case TargetOpcode::STATEPOINT: 930 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 931 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 932 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 933 report("meta operands to STATEPOINT not constant!", MI); 934 break; 935 936 auto VerifyStackMapConstant = [&](unsigned Offset) { 937 if (!MI->getOperand(Offset).isImm() || 938 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 939 !MI->getOperand(Offset + 1).isImm()) 940 report("stack map constant to STATEPOINT not well formed!", MI); 941 }; 942 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 943 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 944 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 945 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 946 947 // TODO: verify we have properly encoded deopt arguments 948 }; 949 } 950 951 void 952 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 953 const MachineInstr *MI = MO->getParent(); 954 const MCInstrDesc &MCID = MI->getDesc(); 955 unsigned NumDefs = MCID.getNumDefs(); 956 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 957 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 958 959 // The first MCID.NumDefs operands must be explicit register defines 960 if (MONum < NumDefs) { 961 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 962 if (!MO->isReg()) 963 report("Explicit definition must be a register", MO, MONum); 964 else if (!MO->isDef() && !MCOI.isOptionalDef()) 965 report("Explicit definition marked as use", MO, MONum); 966 else if (MO->isImplicit()) 967 report("Explicit definition marked as implicit", MO, MONum); 968 } else if (MONum < MCID.getNumOperands()) { 969 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 970 // Don't check if it's the last operand in a variadic instruction. See, 971 // e.g., LDM_RET in the arm back end. 972 if (MO->isReg() && 973 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 974 if (MO->isDef() && !MCOI.isOptionalDef()) 975 report("Explicit operand marked as def", MO, MONum); 976 if (MO->isImplicit()) 977 report("Explicit operand marked as implicit", MO, MONum); 978 } 979 980 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 981 if (TiedTo != -1) { 982 if (!MO->isReg()) 983 report("Tied use must be a register", MO, MONum); 984 else if (!MO->isTied()) 985 report("Operand should be tied", MO, MONum); 986 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 987 report("Tied def doesn't match MCInstrDesc", MO, MONum); 988 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 989 const MachineOperand &MOTied = MI->getOperand(TiedTo); 990 if (!MOTied.isReg()) 991 report("Tied counterpart must be a register", &MOTied, TiedTo); 992 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 993 MO->getReg() != MOTied.getReg()) 994 report("Tied physical registers must match.", &MOTied, TiedTo); 995 } 996 } else if (MO->isReg() && MO->isTied()) 997 report("Explicit operand should not be tied", MO, MONum); 998 } else { 999 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1000 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1001 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1002 } 1003 1004 switch (MO->getType()) { 1005 case MachineOperand::MO_Register: { 1006 const unsigned Reg = MO->getReg(); 1007 if (!Reg) 1008 return; 1009 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1010 checkLiveness(MO, MONum); 1011 1012 // Verify the consistency of tied operands. 1013 if (MO->isTied()) { 1014 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1015 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1016 if (!OtherMO.isReg()) 1017 report("Must be tied to a register", MO, MONum); 1018 if (!OtherMO.isTied()) 1019 report("Missing tie flags on tied operand", MO, MONum); 1020 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1021 report("Inconsistent tie links", MO, MONum); 1022 if (MONum < MCID.getNumDefs()) { 1023 if (OtherIdx < MCID.getNumOperands()) { 1024 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1025 report("Explicit def tied to explicit use without tie constraint", 1026 MO, MONum); 1027 } else { 1028 if (!OtherMO.isImplicit()) 1029 report("Explicit def should be tied to implicit use", MO, MONum); 1030 } 1031 } 1032 } 1033 1034 // Verify two-address constraints after leaving SSA form. 1035 unsigned DefIdx; 1036 if (!MRI->isSSA() && MO->isUse() && 1037 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1038 Reg != MI->getOperand(DefIdx).getReg()) 1039 report("Two-address instruction operands must be identical", MO, MONum); 1040 1041 // Check register classes. 1042 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { 1043 unsigned SubIdx = MO->getSubReg(); 1044 1045 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1046 if (SubIdx) { 1047 report("Illegal subregister index for physical register", MO, MONum); 1048 return; 1049 } 1050 if (const TargetRegisterClass *DRC = 1051 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1052 if (!DRC->contains(Reg)) { 1053 report("Illegal physical register for instruction", MO, MONum); 1054 errs() << TRI->getName(Reg) << " is not a " 1055 << TRI->getRegClassName(DRC) << " register.\n"; 1056 } 1057 } 1058 } else { 1059 // Virtual register. 1060 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1061 if (!RC) { 1062 // This is a generic virtual register. 1063 1064 // If we're post-Select, we can't have gvregs anymore. 1065 if (isFunctionSelected) { 1066 report("Generic virtual register invalid in a Selected function", 1067 MO, MONum); 1068 return; 1069 } 1070 1071 // The gvreg must have a type and it must not have a SubIdx. 1072 LLT Ty = MRI->getType(Reg); 1073 if (!Ty.isValid()) { 1074 report("Generic virtual register must have a valid type", MO, 1075 MONum); 1076 return; 1077 } 1078 1079 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1080 1081 // If we're post-RegBankSelect, the gvreg must have a bank. 1082 if (!RegBank && isFunctionRegBankSelected) { 1083 report("Generic virtual register must have a bank in a " 1084 "RegBankSelected function", 1085 MO, MONum); 1086 return; 1087 } 1088 1089 // Make sure the register fits into its register bank if any. 1090 if (RegBank && Ty.isValid() && 1091 RegBank->getSize() < Ty.getSizeInBits()) { 1092 report("Register bank is too small for virtual register", MO, 1093 MONum); 1094 errs() << "Register bank " << RegBank->getName() << " too small(" 1095 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1096 << "-bits\n"; 1097 return; 1098 } 1099 if (SubIdx) { 1100 report("Generic virtual register does not subregister index", MO, 1101 MONum); 1102 return; 1103 } 1104 1105 // If this is a target specific instruction and this operand 1106 // has register class constraint, the virtual register must 1107 // comply to it. 1108 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1109 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1110 report("Virtual register does not match instruction constraint", MO, 1111 MONum); 1112 errs() << "Expect register class " 1113 << TRI->getRegClassName( 1114 TII->getRegClass(MCID, MONum, TRI, *MF)) 1115 << " but got nothing\n"; 1116 return; 1117 } 1118 1119 break; 1120 } 1121 if (SubIdx) { 1122 const TargetRegisterClass *SRC = 1123 TRI->getSubClassWithSubReg(RC, SubIdx); 1124 if (!SRC) { 1125 report("Invalid subregister index for virtual register", MO, MONum); 1126 errs() << "Register class " << TRI->getRegClassName(RC) 1127 << " does not support subreg index " << SubIdx << "\n"; 1128 return; 1129 } 1130 if (RC != SRC) { 1131 report("Invalid register class for subregister index", MO, MONum); 1132 errs() << "Register class " << TRI->getRegClassName(RC) 1133 << " does not fully support subreg index " << SubIdx << "\n"; 1134 return; 1135 } 1136 } 1137 if (const TargetRegisterClass *DRC = 1138 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1139 if (SubIdx) { 1140 const TargetRegisterClass *SuperRC = 1141 TRI->getLargestLegalSuperClass(RC, *MF); 1142 if (!SuperRC) { 1143 report("No largest legal super class exists.", MO, MONum); 1144 return; 1145 } 1146 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1147 if (!DRC) { 1148 report("No matching super-reg register class.", MO, MONum); 1149 return; 1150 } 1151 } 1152 if (!RC->hasSuperClassEq(DRC)) { 1153 report("Illegal virtual register for instruction", MO, MONum); 1154 errs() << "Expected a " << TRI->getRegClassName(DRC) 1155 << " register, but got a " << TRI->getRegClassName(RC) 1156 << " register\n"; 1157 } 1158 } 1159 } 1160 } 1161 break; 1162 } 1163 1164 case MachineOperand::MO_RegisterMask: 1165 regMasks.push_back(MO->getRegMask()); 1166 break; 1167 1168 case MachineOperand::MO_MachineBasicBlock: 1169 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1170 report("PHI operand is not in the CFG", MO, MONum); 1171 break; 1172 1173 case MachineOperand::MO_FrameIndex: 1174 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1175 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1176 int FI = MO->getIndex(); 1177 LiveInterval &LI = LiveStks->getInterval(FI); 1178 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1179 1180 bool stores = MI->mayStore(); 1181 bool loads = MI->mayLoad(); 1182 // For a memory-to-memory move, we need to check if the frame 1183 // index is used for storing or loading, by inspecting the 1184 // memory operands. 1185 if (stores && loads) { 1186 for (auto *MMO : MI->memoperands()) { 1187 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1188 if (PSV == nullptr) continue; 1189 const FixedStackPseudoSourceValue *Value = 1190 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1191 if (Value == nullptr) continue; 1192 if (Value->getFrameIndex() != FI) continue; 1193 1194 if (MMO->isStore()) 1195 loads = false; 1196 else 1197 stores = false; 1198 break; 1199 } 1200 if (loads == stores) 1201 report("Missing fixed stack memoperand.", MI); 1202 } 1203 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1204 report("Instruction loads from dead spill slot", MO, MONum); 1205 errs() << "Live stack: " << LI << '\n'; 1206 } 1207 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1208 report("Instruction stores to dead spill slot", MO, MONum); 1209 errs() << "Live stack: " << LI << '\n'; 1210 } 1211 } 1212 break; 1213 1214 default: 1215 break; 1216 } 1217 } 1218 1219 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1220 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1221 LaneBitmask LaneMask) { 1222 LiveQueryResult LRQ = LR.Query(UseIdx); 1223 // Check if we have a segment at the use, note however that we only need one 1224 // live subregister range, the others may be dead. 1225 if (!LRQ.valueIn() && LaneMask.none()) { 1226 report("No live segment at use", MO, MONum); 1227 report_context_liverange(LR); 1228 report_context_vreg_regunit(VRegOrUnit); 1229 report_context(UseIdx); 1230 } 1231 if (MO->isKill() && !LRQ.isKill()) { 1232 report("Live range continues after kill flag", MO, MONum); 1233 report_context_liverange(LR); 1234 report_context_vreg_regunit(VRegOrUnit); 1235 if (LaneMask.any()) 1236 report_context_lanemask(LaneMask); 1237 report_context(UseIdx); 1238 } 1239 } 1240 1241 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1242 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1243 LaneBitmask LaneMask) { 1244 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1245 assert(VNI && "NULL valno is not allowed"); 1246 if (VNI->def != DefIdx) { 1247 report("Inconsistent valno->def", MO, MONum); 1248 report_context_liverange(LR); 1249 report_context_vreg_regunit(VRegOrUnit); 1250 if (LaneMask.any()) 1251 report_context_lanemask(LaneMask); 1252 report_context(*VNI); 1253 report_context(DefIdx); 1254 } 1255 } else { 1256 report("No live segment at def", MO, MONum); 1257 report_context_liverange(LR); 1258 report_context_vreg_regunit(VRegOrUnit); 1259 if (LaneMask.any()) 1260 report_context_lanemask(LaneMask); 1261 report_context(DefIdx); 1262 } 1263 // Check that, if the dead def flag is present, LiveInts agree. 1264 if (MO->isDead()) { 1265 LiveQueryResult LRQ = LR.Query(DefIdx); 1266 if (!LRQ.isDeadDef()) { 1267 // In case of physregs we can have a non-dead definition on another 1268 // operand. 1269 bool otherDef = false; 1270 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1271 const MachineInstr &MI = *MO->getParent(); 1272 for (const MachineOperand &MO : MI.operands()) { 1273 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1274 continue; 1275 unsigned Reg = MO.getReg(); 1276 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1277 if (*Units == VRegOrUnit) { 1278 otherDef = true; 1279 break; 1280 } 1281 } 1282 } 1283 } 1284 1285 if (!otherDef) { 1286 report("Live range continues after dead def flag", MO, MONum); 1287 report_context_liverange(LR); 1288 report_context_vreg_regunit(VRegOrUnit); 1289 if (LaneMask.any()) 1290 report_context_lanemask(LaneMask); 1291 } 1292 } 1293 } 1294 } 1295 1296 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1297 const MachineInstr *MI = MO->getParent(); 1298 const unsigned Reg = MO->getReg(); 1299 1300 // Both use and def operands can read a register. 1301 if (MO->readsReg()) { 1302 if (MO->isKill()) 1303 addRegWithSubRegs(regsKilled, Reg); 1304 1305 // Check that LiveVars knows this kill. 1306 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1307 MO->isKill()) { 1308 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1309 if (!is_contained(VI.Kills, MI)) 1310 report("Kill missing from LiveVariables", MO, MONum); 1311 } 1312 1313 // Check LiveInts liveness and kill. 1314 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1315 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1316 // Check the cached regunit intervals. 1317 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1318 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1319 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1320 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1321 } 1322 } 1323 1324 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1325 if (LiveInts->hasInterval(Reg)) { 1326 // This is a virtual register interval. 1327 const LiveInterval &LI = LiveInts->getInterval(Reg); 1328 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1329 1330 if (LI.hasSubRanges() && !MO->isDef()) { 1331 unsigned SubRegIdx = MO->getSubReg(); 1332 LaneBitmask MOMask = SubRegIdx != 0 1333 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1334 : MRI->getMaxLaneMaskForVReg(Reg); 1335 LaneBitmask LiveInMask; 1336 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1337 if ((MOMask & SR.LaneMask).none()) 1338 continue; 1339 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1340 LiveQueryResult LRQ = SR.Query(UseIdx); 1341 if (LRQ.valueIn()) 1342 LiveInMask |= SR.LaneMask; 1343 } 1344 // At least parts of the register has to be live at the use. 1345 if ((LiveInMask & MOMask).none()) { 1346 report("No live subrange at use", MO, MONum); 1347 report_context(LI); 1348 report_context(UseIdx); 1349 } 1350 } 1351 } else { 1352 report("Virtual register has no live interval", MO, MONum); 1353 } 1354 } 1355 } 1356 1357 // Use of a dead register. 1358 if (!regsLive.count(Reg)) { 1359 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1360 // Reserved registers may be used even when 'dead'. 1361 bool Bad = !isReserved(Reg); 1362 // We are fine if just any subregister has a defined value. 1363 if (Bad) { 1364 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1365 ++SubRegs) { 1366 if (regsLive.count(*SubRegs)) { 1367 Bad = false; 1368 break; 1369 } 1370 } 1371 } 1372 // If there is an additional implicit-use of a super register we stop 1373 // here. By definition we are fine if the super register is not 1374 // (completely) dead, if the complete super register is dead we will 1375 // get a report for its operand. 1376 if (Bad) { 1377 for (const MachineOperand &MOP : MI->uses()) { 1378 if (!MOP.isReg()) 1379 continue; 1380 if (!MOP.isImplicit()) 1381 continue; 1382 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1383 ++SubRegs) { 1384 if (*SubRegs == Reg) { 1385 Bad = false; 1386 break; 1387 } 1388 } 1389 } 1390 } 1391 if (Bad) 1392 report("Using an undefined physical register", MO, MONum); 1393 } else if (MRI->def_empty(Reg)) { 1394 report("Reading virtual register without a def", MO, MONum); 1395 } else { 1396 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1397 // We don't know which virtual registers are live in, so only complain 1398 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1399 // must be live in. PHI instructions are handled separately. 1400 if (MInfo.regsKilled.count(Reg)) 1401 report("Using a killed virtual register", MO, MONum); 1402 else if (!MI->isPHI()) 1403 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1404 } 1405 } 1406 } 1407 1408 if (MO->isDef()) { 1409 // Register defined. 1410 // TODO: verify that earlyclobber ops are not used. 1411 if (MO->isDead()) 1412 addRegWithSubRegs(regsDead, Reg); 1413 else 1414 addRegWithSubRegs(regsDefined, Reg); 1415 1416 // Verify SSA form. 1417 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1418 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1419 report("Multiple virtual register defs in SSA form", MO, MONum); 1420 1421 // Check LiveInts for a live segment, but only for virtual registers. 1422 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1423 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1424 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1425 1426 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1427 if (LiveInts->hasInterval(Reg)) { 1428 const LiveInterval &LI = LiveInts->getInterval(Reg); 1429 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1430 1431 if (LI.hasSubRanges()) { 1432 unsigned SubRegIdx = MO->getSubReg(); 1433 LaneBitmask MOMask = SubRegIdx != 0 1434 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1435 : MRI->getMaxLaneMaskForVReg(Reg); 1436 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1437 if ((SR.LaneMask & MOMask).none()) 1438 continue; 1439 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1440 } 1441 } 1442 } else { 1443 report("Virtual register has no Live interval", MO, MONum); 1444 } 1445 } 1446 } 1447 } 1448 } 1449 1450 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { 1451 } 1452 1453 // This function gets called after visiting all instructions in a bundle. The 1454 // argument points to the bundle header. 1455 // Normal stand-alone instructions are also considered 'bundles', and this 1456 // function is called for all of them. 1457 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1458 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1459 set_union(MInfo.regsKilled, regsKilled); 1460 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1461 // Kill any masked registers. 1462 while (!regMasks.empty()) { 1463 const uint32_t *Mask = regMasks.pop_back_val(); 1464 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1465 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1466 MachineOperand::clobbersPhysReg(Mask, *I)) 1467 regsDead.push_back(*I); 1468 } 1469 set_subtract(regsLive, regsDead); regsDead.clear(); 1470 set_union(regsLive, regsDefined); regsDefined.clear(); 1471 } 1472 1473 void 1474 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1475 MBBInfoMap[MBB].regsLiveOut = regsLive; 1476 regsLive.clear(); 1477 1478 if (Indexes) { 1479 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1480 if (!(stop > lastIndex)) { 1481 report("Block ends before last instruction index", MBB); 1482 errs() << "Block ends at " << stop 1483 << " last instruction was at " << lastIndex << '\n'; 1484 } 1485 lastIndex = stop; 1486 } 1487 } 1488 1489 // Calculate the largest possible vregsPassed sets. These are the registers that 1490 // can pass through an MBB live, but may not be live every time. It is assumed 1491 // that all vregsPassed sets are empty before the call. 1492 void MachineVerifier::calcRegsPassed() { 1493 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1494 // have any vregsPassed. 1495 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1496 for (const auto &MBB : *MF) { 1497 BBInfo &MInfo = MBBInfoMap[&MBB]; 1498 if (!MInfo.reachable) 1499 continue; 1500 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1501 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1502 BBInfo &SInfo = MBBInfoMap[*SuI]; 1503 if (SInfo.addPassed(MInfo.regsLiveOut)) 1504 todo.insert(*SuI); 1505 } 1506 } 1507 1508 // Iteratively push vregsPassed to successors. This will converge to the same 1509 // final state regardless of DenseSet iteration order. 1510 while (!todo.empty()) { 1511 const MachineBasicBlock *MBB = *todo.begin(); 1512 todo.erase(MBB); 1513 BBInfo &MInfo = MBBInfoMap[MBB]; 1514 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1515 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1516 if (*SuI == MBB) 1517 continue; 1518 BBInfo &SInfo = MBBInfoMap[*SuI]; 1519 if (SInfo.addPassed(MInfo.vregsPassed)) 1520 todo.insert(*SuI); 1521 } 1522 } 1523 } 1524 1525 // Calculate the set of virtual registers that must be passed through each basic 1526 // block in order to satisfy the requirements of successor blocks. This is very 1527 // similar to calcRegsPassed, only backwards. 1528 void MachineVerifier::calcRegsRequired() { 1529 // First push live-in regs to predecessors' vregsRequired. 1530 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1531 for (const auto &MBB : *MF) { 1532 BBInfo &MInfo = MBBInfoMap[&MBB]; 1533 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1534 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1535 BBInfo &PInfo = MBBInfoMap[*PrI]; 1536 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1537 todo.insert(*PrI); 1538 } 1539 } 1540 1541 // Iteratively push vregsRequired to predecessors. This will converge to the 1542 // same final state regardless of DenseSet iteration order. 1543 while (!todo.empty()) { 1544 const MachineBasicBlock *MBB = *todo.begin(); 1545 todo.erase(MBB); 1546 BBInfo &MInfo = MBBInfoMap[MBB]; 1547 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1548 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1549 if (*PrI == MBB) 1550 continue; 1551 BBInfo &SInfo = MBBInfoMap[*PrI]; 1552 if (SInfo.addRequired(MInfo.vregsRequired)) 1553 todo.insert(*PrI); 1554 } 1555 } 1556 } 1557 1558 // Check PHI instructions at the beginning of MBB. It is assumed that 1559 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1560 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { 1561 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1562 for (const auto &BBI : *MBB) { 1563 if (!BBI.isPHI()) 1564 break; 1565 seen.clear(); 1566 1567 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { 1568 unsigned Reg = BBI.getOperand(i).getReg(); 1569 const MachineBasicBlock *Pre = BBI.getOperand(i + 1).getMBB(); 1570 if (!Pre->isSuccessor(MBB)) 1571 continue; 1572 seen.insert(Pre); 1573 BBInfo &PrInfo = MBBInfoMap[Pre]; 1574 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) 1575 report("PHI operand is not live-out from predecessor", 1576 &BBI.getOperand(i), i); 1577 } 1578 1579 // Did we see all predecessors? 1580 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1581 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1582 if (!seen.count(*PrI)) { 1583 report("Missing PHI operand", &BBI); 1584 errs() << "BB#" << (*PrI)->getNumber() 1585 << " is a predecessor according to the CFG.\n"; 1586 } 1587 } 1588 } 1589 } 1590 1591 void MachineVerifier::visitMachineFunctionAfter() { 1592 calcRegsPassed(); 1593 1594 for (const auto &MBB : *MF) { 1595 BBInfo &MInfo = MBBInfoMap[&MBB]; 1596 1597 // Skip unreachable MBBs. 1598 if (!MInfo.reachable) 1599 continue; 1600 1601 checkPHIOps(&MBB); 1602 } 1603 1604 // Now check liveness info if available 1605 calcRegsRequired(); 1606 1607 // Check for killed virtual registers that should be live out. 1608 for (const auto &MBB : *MF) { 1609 BBInfo &MInfo = MBBInfoMap[&MBB]; 1610 for (RegSet::iterator 1611 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1612 ++I) 1613 if (MInfo.regsKilled.count(*I)) { 1614 report("Virtual register killed in block, but needed live out.", &MBB); 1615 errs() << "Virtual register " << PrintReg(*I) 1616 << " is used after the block.\n"; 1617 } 1618 } 1619 1620 if (!MF->empty()) { 1621 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1622 for (RegSet::iterator 1623 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1624 ++I) { 1625 report("Virtual register defs don't dominate all uses.", MF); 1626 report_context_vreg(*I); 1627 } 1628 } 1629 1630 if (LiveVars) 1631 verifyLiveVariables(); 1632 if (LiveInts) 1633 verifyLiveIntervals(); 1634 } 1635 1636 void MachineVerifier::verifyLiveVariables() { 1637 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1638 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1639 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1640 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1641 for (const auto &MBB : *MF) { 1642 BBInfo &MInfo = MBBInfoMap[&MBB]; 1643 1644 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1645 if (MInfo.vregsRequired.count(Reg)) { 1646 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1647 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1648 errs() << "Virtual register " << PrintReg(Reg) 1649 << " must be live through the block.\n"; 1650 } 1651 } else { 1652 if (VI.AliveBlocks.test(MBB.getNumber())) { 1653 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1654 errs() << "Virtual register " << PrintReg(Reg) 1655 << " is not needed live through the block.\n"; 1656 } 1657 } 1658 } 1659 } 1660 } 1661 1662 void MachineVerifier::verifyLiveIntervals() { 1663 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1664 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1665 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1666 1667 // Spilling and splitting may leave unused registers around. Skip them. 1668 if (MRI->reg_nodbg_empty(Reg)) 1669 continue; 1670 1671 if (!LiveInts->hasInterval(Reg)) { 1672 report("Missing live interval for virtual register", MF); 1673 errs() << PrintReg(Reg, TRI) << " still has defs or uses\n"; 1674 continue; 1675 } 1676 1677 const LiveInterval &LI = LiveInts->getInterval(Reg); 1678 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1679 verifyLiveInterval(LI); 1680 } 1681 1682 // Verify all the cached regunit intervals. 1683 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1684 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1685 verifyLiveRange(*LR, i); 1686 } 1687 1688 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1689 const VNInfo *VNI, unsigned Reg, 1690 LaneBitmask LaneMask) { 1691 if (VNI->isUnused()) 1692 return; 1693 1694 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1695 1696 if (!DefVNI) { 1697 report("Value not live at VNInfo def and not marked unused", MF); 1698 report_context(LR, Reg, LaneMask); 1699 report_context(*VNI); 1700 return; 1701 } 1702 1703 if (DefVNI != VNI) { 1704 report("Live segment at def has different VNInfo", MF); 1705 report_context(LR, Reg, LaneMask); 1706 report_context(*VNI); 1707 return; 1708 } 1709 1710 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1711 if (!MBB) { 1712 report("Invalid VNInfo definition index", MF); 1713 report_context(LR, Reg, LaneMask); 1714 report_context(*VNI); 1715 return; 1716 } 1717 1718 if (VNI->isPHIDef()) { 1719 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1720 report("PHIDef VNInfo is not defined at MBB start", MBB); 1721 report_context(LR, Reg, LaneMask); 1722 report_context(*VNI); 1723 } 1724 return; 1725 } 1726 1727 // Non-PHI def. 1728 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1729 if (!MI) { 1730 report("No instruction at VNInfo def index", MBB); 1731 report_context(LR, Reg, LaneMask); 1732 report_context(*VNI); 1733 return; 1734 } 1735 1736 if (Reg != 0) { 1737 bool hasDef = false; 1738 bool isEarlyClobber = false; 1739 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1740 if (!MOI->isReg() || !MOI->isDef()) 1741 continue; 1742 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1743 if (MOI->getReg() != Reg) 1744 continue; 1745 } else { 1746 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1747 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1748 continue; 1749 } 1750 if (LaneMask.any() && 1751 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1752 continue; 1753 hasDef = true; 1754 if (MOI->isEarlyClobber()) 1755 isEarlyClobber = true; 1756 } 1757 1758 if (!hasDef) { 1759 report("Defining instruction does not modify register", MI); 1760 report_context(LR, Reg, LaneMask); 1761 report_context(*VNI); 1762 } 1763 1764 // Early clobber defs begin at USE slots, but other defs must begin at 1765 // DEF slots. 1766 if (isEarlyClobber) { 1767 if (!VNI->def.isEarlyClobber()) { 1768 report("Early clobber def must be at an early-clobber slot", MBB); 1769 report_context(LR, Reg, LaneMask); 1770 report_context(*VNI); 1771 } 1772 } else if (!VNI->def.isRegister()) { 1773 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1774 report_context(LR, Reg, LaneMask); 1775 report_context(*VNI); 1776 } 1777 } 1778 } 1779 1780 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1781 const LiveRange::const_iterator I, 1782 unsigned Reg, LaneBitmask LaneMask) 1783 { 1784 const LiveRange::Segment &S = *I; 1785 const VNInfo *VNI = S.valno; 1786 assert(VNI && "Live segment has no valno"); 1787 1788 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1789 report("Foreign valno in live segment", MF); 1790 report_context(LR, Reg, LaneMask); 1791 report_context(S); 1792 report_context(*VNI); 1793 } 1794 1795 if (VNI->isUnused()) { 1796 report("Live segment valno is marked unused", MF); 1797 report_context(LR, Reg, LaneMask); 1798 report_context(S); 1799 } 1800 1801 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1802 if (!MBB) { 1803 report("Bad start of live segment, no basic block", MF); 1804 report_context(LR, Reg, LaneMask); 1805 report_context(S); 1806 return; 1807 } 1808 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1809 if (S.start != MBBStartIdx && S.start != VNI->def) { 1810 report("Live segment must begin at MBB entry or valno def", MBB); 1811 report_context(LR, Reg, LaneMask); 1812 report_context(S); 1813 } 1814 1815 const MachineBasicBlock *EndMBB = 1816 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1817 if (!EndMBB) { 1818 report("Bad end of live segment, no basic block", MF); 1819 report_context(LR, Reg, LaneMask); 1820 report_context(S); 1821 return; 1822 } 1823 1824 // No more checks for live-out segments. 1825 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1826 return; 1827 1828 // RegUnit intervals are allowed dead phis. 1829 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1830 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1831 return; 1832 1833 // The live segment is ending inside EndMBB 1834 const MachineInstr *MI = 1835 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1836 if (!MI) { 1837 report("Live segment doesn't end at a valid instruction", EndMBB); 1838 report_context(LR, Reg, LaneMask); 1839 report_context(S); 1840 return; 1841 } 1842 1843 // The block slot must refer to a basic block boundary. 1844 if (S.end.isBlock()) { 1845 report("Live segment ends at B slot of an instruction", EndMBB); 1846 report_context(LR, Reg, LaneMask); 1847 report_context(S); 1848 } 1849 1850 if (S.end.isDead()) { 1851 // Segment ends on the dead slot. 1852 // That means there must be a dead def. 1853 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1854 report("Live segment ending at dead slot spans instructions", EndMBB); 1855 report_context(LR, Reg, LaneMask); 1856 report_context(S); 1857 } 1858 } 1859 1860 // A live segment can only end at an early-clobber slot if it is being 1861 // redefined by an early-clobber def. 1862 if (S.end.isEarlyClobber()) { 1863 if (I+1 == LR.end() || (I+1)->start != S.end) { 1864 report("Live segment ending at early clobber slot must be " 1865 "redefined by an EC def in the same instruction", EndMBB); 1866 report_context(LR, Reg, LaneMask); 1867 report_context(S); 1868 } 1869 } 1870 1871 // The following checks only apply to virtual registers. Physreg liveness 1872 // is too weird to check. 1873 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1874 // A live segment can end with either a redefinition, a kill flag on a 1875 // use, or a dead flag on a def. 1876 bool hasRead = false; 1877 bool hasSubRegDef = false; 1878 bool hasDeadDef = false; 1879 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1880 if (!MOI->isReg() || MOI->getReg() != Reg) 1881 continue; 1882 unsigned Sub = MOI->getSubReg(); 1883 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1884 : LaneBitmask::getAll(); 1885 if (MOI->isDef()) { 1886 if (Sub != 0) { 1887 hasSubRegDef = true; 1888 // An operand vreg0:sub0<def> reads vreg0:sub1..n. Invert the lane 1889 // mask for subregister defs. Read-undef defs will be handled by 1890 // readsReg below. 1891 SLM = ~SLM; 1892 } 1893 if (MOI->isDead()) 1894 hasDeadDef = true; 1895 } 1896 if (LaneMask.any() && (LaneMask & SLM).none()) 1897 continue; 1898 if (MOI->readsReg()) 1899 hasRead = true; 1900 } 1901 if (S.end.isDead()) { 1902 // Make sure that the corresponding machine operand for a "dead" live 1903 // range has the dead flag. We cannot perform this check for subregister 1904 // liveranges as partially dead values are allowed. 1905 if (LaneMask.none() && !hasDeadDef) { 1906 report("Instruction ending live segment on dead slot has no dead flag", 1907 MI); 1908 report_context(LR, Reg, LaneMask); 1909 report_context(S); 1910 } 1911 } else { 1912 if (!hasRead) { 1913 // When tracking subregister liveness, the main range must start new 1914 // values on partial register writes, even if there is no read. 1915 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 1916 !hasSubRegDef) { 1917 report("Instruction ending live segment doesn't read the register", 1918 MI); 1919 report_context(LR, Reg, LaneMask); 1920 report_context(S); 1921 } 1922 } 1923 } 1924 } 1925 1926 // Now check all the basic blocks in this live segment. 1927 MachineFunction::const_iterator MFI = MBB->getIterator(); 1928 // Is this live segment the beginning of a non-PHIDef VN? 1929 if (S.start == VNI->def && !VNI->isPHIDef()) { 1930 // Not live-in to any blocks. 1931 if (MBB == EndMBB) 1932 return; 1933 // Skip this block. 1934 ++MFI; 1935 } 1936 for (;;) { 1937 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 1938 // We don't know how to track physregs into a landing pad. 1939 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 1940 MFI->isEHPad()) { 1941 if (&*MFI == EndMBB) 1942 break; 1943 ++MFI; 1944 continue; 1945 } 1946 1947 // Is VNI a PHI-def in the current block? 1948 bool IsPHI = VNI->isPHIDef() && 1949 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 1950 1951 // Check that VNI is live-out of all predecessors. 1952 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 1953 PE = MFI->pred_end(); PI != PE; ++PI) { 1954 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 1955 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 1956 1957 // All predecessors must have a live-out value. However for a phi 1958 // instruction with subregister intervals 1959 // only one of the subregisters (not necessarily the current one) needs to 1960 // be defined. 1961 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 1962 report("Register not marked live out of predecessor", *PI); 1963 report_context(LR, Reg, LaneMask); 1964 report_context(*VNI); 1965 errs() << " live into BB#" << MFI->getNumber() 1966 << '@' << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 1967 << PEnd << '\n'; 1968 continue; 1969 } 1970 1971 // Only PHI-defs can take different predecessor values. 1972 if (!IsPHI && PVNI != VNI) { 1973 report("Different value live out of predecessor", *PI); 1974 report_context(LR, Reg, LaneMask); 1975 errs() << "Valno #" << PVNI->id << " live out of BB#" 1976 << (*PI)->getNumber() << '@' << PEnd << "\nValno #" << VNI->id 1977 << " live into BB#" << MFI->getNumber() << '@' 1978 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 1979 } 1980 } 1981 if (&*MFI == EndMBB) 1982 break; 1983 ++MFI; 1984 } 1985 } 1986 1987 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 1988 LaneBitmask LaneMask) { 1989 for (const VNInfo *VNI : LR.valnos) 1990 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 1991 1992 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 1993 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 1994 } 1995 1996 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 1997 unsigned Reg = LI.reg; 1998 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 1999 verifyLiveRange(LI, Reg); 2000 2001 LaneBitmask Mask; 2002 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2003 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2004 if ((Mask & SR.LaneMask).any()) { 2005 report("Lane masks of sub ranges overlap in live interval", MF); 2006 report_context(LI); 2007 } 2008 if ((SR.LaneMask & ~MaxMask).any()) { 2009 report("Subrange lanemask is invalid", MF); 2010 report_context(LI); 2011 } 2012 if (SR.empty()) { 2013 report("Subrange must not be empty", MF); 2014 report_context(SR, LI.reg, SR.LaneMask); 2015 } 2016 Mask |= SR.LaneMask; 2017 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2018 if (!LI.covers(SR)) { 2019 report("A Subrange is not covered by the main range", MF); 2020 report_context(LI); 2021 } 2022 } 2023 2024 // Check the LI only has one connected component. 2025 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2026 unsigned NumComp = ConEQ.Classify(LI); 2027 if (NumComp > 1) { 2028 report("Multiple connected components in live interval", MF); 2029 report_context(LI); 2030 for (unsigned comp = 0; comp != NumComp; ++comp) { 2031 errs() << comp << ": valnos"; 2032 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2033 E = LI.vni_end(); I!=E; ++I) 2034 if (comp == ConEQ.getEqClass(*I)) 2035 errs() << ' ' << (*I)->id; 2036 errs() << '\n'; 2037 } 2038 } 2039 } 2040 2041 namespace { 2042 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2043 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2044 // value is zero. 2045 // We use a bool plus an integer to capture the stack state. 2046 struct StackStateOfBB { 2047 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false), 2048 ExitIsSetup(false) { } 2049 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2050 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2051 ExitIsSetup(ExitSetup) { } 2052 // Can be negative, which means we are setting up a frame. 2053 int EntryValue; 2054 int ExitValue; 2055 bool EntryIsSetup; 2056 bool ExitIsSetup; 2057 }; 2058 } 2059 2060 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2061 /// by a FrameDestroy <n>, stack adjustments are identical on all 2062 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2063 void MachineVerifier::verifyStackFrame() { 2064 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2065 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2066 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2067 return; 2068 2069 SmallVector<StackStateOfBB, 8> SPState; 2070 SPState.resize(MF->getNumBlockIDs()); 2071 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2072 2073 // Visit the MBBs in DFS order. 2074 for (df_ext_iterator<const MachineFunction*, 2075 df_iterator_default_set<const MachineBasicBlock*> > 2076 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2077 DFI != DFE; ++DFI) { 2078 const MachineBasicBlock *MBB = *DFI; 2079 2080 StackStateOfBB BBState; 2081 // Check the exit state of the DFS stack predecessor. 2082 if (DFI.getPathLength() >= 2) { 2083 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2084 assert(Reachable.count(StackPred) && 2085 "DFS stack predecessor is already visited.\n"); 2086 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2087 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2088 BBState.ExitValue = BBState.EntryValue; 2089 BBState.ExitIsSetup = BBState.EntryIsSetup; 2090 } 2091 2092 // Update stack state by checking contents of MBB. 2093 for (const auto &I : *MBB) { 2094 if (I.getOpcode() == FrameSetupOpcode) { 2095 if (BBState.ExitIsSetup) 2096 report("FrameSetup is after another FrameSetup", &I); 2097 BBState.ExitValue -= TII->getFrameTotalSize(I); 2098 BBState.ExitIsSetup = true; 2099 } 2100 2101 if (I.getOpcode() == FrameDestroyOpcode) { 2102 int Size = TII->getFrameTotalSize(I); 2103 if (!BBState.ExitIsSetup) 2104 report("FrameDestroy is not after a FrameSetup", &I); 2105 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2106 BBState.ExitValue; 2107 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2108 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2109 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2110 << AbsSPAdj << ">.\n"; 2111 } 2112 BBState.ExitValue += Size; 2113 BBState.ExitIsSetup = false; 2114 } 2115 } 2116 SPState[MBB->getNumber()] = BBState; 2117 2118 // Make sure the exit state of any predecessor is consistent with the entry 2119 // state. 2120 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2121 E = MBB->pred_end(); I != E; ++I) { 2122 if (Reachable.count(*I) && 2123 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2124 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2125 report("The exit stack state of a predecessor is inconsistent.", MBB); 2126 errs() << "Predecessor BB#" << (*I)->getNumber() << " has exit state (" 2127 << SPState[(*I)->getNumber()].ExitValue << ", " 2128 << SPState[(*I)->getNumber()].ExitIsSetup 2129 << "), while BB#" << MBB->getNumber() << " has entry state (" 2130 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2131 } 2132 } 2133 2134 // Make sure the entry state of any successor is consistent with the exit 2135 // state. 2136 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2137 E = MBB->succ_end(); I != E; ++I) { 2138 if (Reachable.count(*I) && 2139 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2140 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2141 report("The entry stack state of a successor is inconsistent.", MBB); 2142 errs() << "Successor BB#" << (*I)->getNumber() << " has entry state (" 2143 << SPState[(*I)->getNumber()].EntryValue << ", " 2144 << SPState[(*I)->getNumber()].EntryIsSetup 2145 << "), while BB#" << MBB->getNumber() << " has exit state (" 2146 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2147 } 2148 } 2149 2150 // Make sure a basic block with return ends with zero stack adjustment. 2151 if (!MBB->empty() && MBB->back().isReturn()) { 2152 if (BBState.ExitIsSetup) 2153 report("A return block ends with a FrameSetup.", MBB); 2154 if (BBState.ExitValue) 2155 report("A return block ends with a nonzero stack adjustment.", MBB); 2156 } 2157 } 2158 } 2159