1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25
26 #include "LiveRangeCalc.h"
27 #include "llvm/ADT/BitVector.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "llvm/ADT/DepthFirstIterator.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetOperations.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/Twine.h"
37 #include "llvm/Analysis/EHPersonalities.h"
38 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
39 #include "llvm/CodeGen/LiveInterval.h"
40 #include "llvm/CodeGen/LiveIntervals.h"
41 #include "llvm/CodeGen/LiveStacks.h"
42 #include "llvm/CodeGen/LiveVariables.h"
43 #include "llvm/CodeGen/MachineBasicBlock.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBundle.h"
49 #include "llvm/CodeGen/MachineMemOperand.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/PseudoSourceValue.h"
53 #include "llvm/CodeGen/SlotIndexes.h"
54 #include "llvm/CodeGen/StackMaps.h"
55 #include "llvm/CodeGen/TargetInstrInfo.h"
56 #include "llvm/CodeGen/TargetOpcodes.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/InlineAsm.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/MC/LaneBitmask.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCInstrDesc.h"
66 #include "llvm/MC/MCRegisterInfo.h"
67 #include "llvm/MC/MCTargetOptions.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/LowLevelTypeImpl.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <string>
81 #include <utility>
82
83 using namespace llvm;
84
85 namespace {
86
87 struct MachineVerifier {
MachineVerifier__anon68d9c28a0111::MachineVerifier88 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89
90 unsigned verify(MachineFunction &MF);
91
92 Pass *const PASS;
93 const char *Banner;
94 const MachineFunction *MF;
95 const TargetMachine *TM;
96 const TargetInstrInfo *TII;
97 const TargetRegisterInfo *TRI;
98 const MachineRegisterInfo *MRI;
99
100 unsigned foundErrors;
101
102 // Avoid querying the MachineFunctionProperties for each operand.
103 bool isFunctionRegBankSelected;
104 bool isFunctionSelected;
105
106 using RegVector = SmallVector<unsigned, 16>;
107 using RegMaskVector = SmallVector<const uint32_t *, 4>;
108 using RegSet = DenseSet<unsigned>;
109 using RegMap = DenseMap<unsigned, const MachineInstr *>;
110 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111
112 const MachineInstr *FirstNonPHI;
113 const MachineInstr *FirstTerminator;
114 BlockSet FunctionBlocks;
115
116 BitVector regsReserved;
117 RegSet regsLive;
118 RegVector regsDefined, regsDead, regsKilled;
119 RegMaskVector regMasks;
120
121 SlotIndex lastIndex;
122
123 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anon68d9c28a0111::MachineVerifier124 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
125 RV.push_back(Reg);
126 if (TargetRegisterInfo::isPhysicalRegister(Reg))
127 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
128 RV.push_back(*SubRegs);
129 }
130
131 struct BBInfo {
132 // Is this MBB reachable from the MF entry point?
133 bool reachable = false;
134
135 // Vregs that must be live in because they are used without being
136 // defined. Map value is the user.
137 RegMap vregsLiveIn;
138
139 // Regs killed in MBB. They may be defined again, and will then be in both
140 // regsKilled and regsLiveOut.
141 RegSet regsKilled;
142
143 // Regs defined in MBB and live out. Note that vregs passing through may
144 // be live out without being mentioned here.
145 RegSet regsLiveOut;
146
147 // Vregs that pass through MBB untouched. This set is disjoint from
148 // regsKilled and regsLiveOut.
149 RegSet vregsPassed;
150
151 // Vregs that must pass through MBB because they are needed by a successor
152 // block. This set is disjoint from regsLiveOut.
153 RegSet vregsRequired;
154
155 // Set versions of block's predecessor and successor lists.
156 BlockSet Preds, Succs;
157
158 BBInfo() = default;
159
160 // Add register to vregsPassed if it belongs there. Return true if
161 // anything changed.
addPassed__anon68d9c28a0111::MachineVerifier::BBInfo162 bool addPassed(unsigned Reg) {
163 if (!TargetRegisterInfo::isVirtualRegister(Reg))
164 return false;
165 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
166 return false;
167 return vregsPassed.insert(Reg).second;
168 }
169
170 // Same for a full set.
addPassed__anon68d9c28a0111::MachineVerifier::BBInfo171 bool addPassed(const RegSet &RS) {
172 bool changed = false;
173 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
174 if (addPassed(*I))
175 changed = true;
176 return changed;
177 }
178
179 // Add register to vregsRequired if it belongs there. Return true if
180 // anything changed.
addRequired__anon68d9c28a0111::MachineVerifier::BBInfo181 bool addRequired(unsigned Reg) {
182 if (!TargetRegisterInfo::isVirtualRegister(Reg))
183 return false;
184 if (regsLiveOut.count(Reg))
185 return false;
186 return vregsRequired.insert(Reg).second;
187 }
188
189 // Same for a full set.
addRequired__anon68d9c28a0111::MachineVerifier::BBInfo190 bool addRequired(const RegSet &RS) {
191 bool changed = false;
192 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
193 if (addRequired(*I))
194 changed = true;
195 return changed;
196 }
197
198 // Same for a full map.
addRequired__anon68d9c28a0111::MachineVerifier::BBInfo199 bool addRequired(const RegMap &RM) {
200 bool changed = false;
201 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
202 if (addRequired(I->first))
203 changed = true;
204 return changed;
205 }
206
207 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anon68d9c28a0111::MachineVerifier::BBInfo208 bool isLiveOut(unsigned Reg) const {
209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
210 }
211 };
212
213 // Extra register info per MBB.
214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215
isReserved__anon68d9c28a0111::MachineVerifier216 bool isReserved(unsigned Reg) {
217 return Reg < regsReserved.size() && regsReserved.test(Reg);
218 }
219
isAllocatable__anon68d9c28a0111::MachineVerifier220 bool isAllocatable(unsigned Reg) const {
221 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
222 !regsReserved.test(Reg);
223 }
224
225 // Analysis information if available
226 LiveVariables *LiveVars;
227 LiveIntervals *LiveInts;
228 LiveStacks *LiveStks;
229 SlotIndexes *Indexes;
230
231 void visitMachineFunctionBefore();
232 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
233 void visitMachineBundleBefore(const MachineInstr *MI);
234 void visitMachineInstrBefore(const MachineInstr *MI);
235 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
236 void visitMachineInstrAfter(const MachineInstr *MI);
237 void visitMachineBundleAfter(const MachineInstr *MI);
238 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
239 void visitMachineFunctionAfter();
240
241 void report(const char *msg, const MachineFunction *MF);
242 void report(const char *msg, const MachineBasicBlock *MBB);
243 void report(const char *msg, const MachineInstr *MI);
244 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
245 LLT MOVRegType = LLT{});
246
247 void report_context(const LiveInterval &LI) const;
248 void report_context(const LiveRange &LR, unsigned VRegUnit,
249 LaneBitmask LaneMask) const;
250 void report_context(const LiveRange::Segment &S) const;
251 void report_context(const VNInfo &VNI) const;
252 void report_context(SlotIndex Pos) const;
253 void report_context(MCPhysReg PhysReg) const;
254 void report_context_liverange(const LiveRange &LR) const;
255 void report_context_lanemask(LaneBitmask LaneMask) const;
256 void report_context_vreg(unsigned VReg) const;
257 void report_context_vreg_regunit(unsigned VRegOrUnit) const;
258
259 void verifyInlineAsm(const MachineInstr *MI);
260
261 void checkLiveness(const MachineOperand *MO, unsigned MONum);
262 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
263 SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
264 LaneBitmask LaneMask = LaneBitmask::getNone());
265 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
266 SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
267 bool SubRangeCheck = false,
268 LaneBitmask LaneMask = LaneBitmask::getNone());
269
270 void markReachable(const MachineBasicBlock *MBB);
271 void calcRegsPassed();
272 void checkPHIOps(const MachineBasicBlock &MBB);
273
274 void calcRegsRequired();
275 void verifyLiveVariables();
276 void verifyLiveIntervals();
277 void verifyLiveInterval(const LiveInterval&);
278 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
279 LaneBitmask);
280 void verifyLiveRangeSegment(const LiveRange&,
281 const LiveRange::const_iterator I, unsigned,
282 LaneBitmask);
283 void verifyLiveRange(const LiveRange&, unsigned,
284 LaneBitmask LaneMask = LaneBitmask::getNone());
285
286 void verifyStackFrame();
287
288 void verifySlotIndexes() const;
289 void verifyProperties(const MachineFunction &MF);
290 };
291
292 struct MachineVerifierPass : public MachineFunctionPass {
293 static char ID; // Pass ID, replacement for typeid
294
295 const std::string Banner;
296
MachineVerifierPass__anon68d9c28a0111::MachineVerifierPass297 MachineVerifierPass(std::string banner = std::string())
298 : MachineFunctionPass(ID), Banner(std::move(banner)) {
299 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
300 }
301
getAnalysisUsage__anon68d9c28a0111::MachineVerifierPass302 void getAnalysisUsage(AnalysisUsage &AU) const override {
303 AU.setPreservesAll();
304 MachineFunctionPass::getAnalysisUsage(AU);
305 }
306
runOnMachineFunction__anon68d9c28a0111::MachineVerifierPass307 bool runOnMachineFunction(MachineFunction &MF) override {
308 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
309 if (FoundErrors)
310 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
311 return false;
312 }
313 };
314
315 } // end anonymous namespace
316
317 char MachineVerifierPass::ID = 0;
318
319 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
320 "Verify generated machine code", false, false)
321
createMachineVerifierPass(const std::string & Banner)322 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
323 return new MachineVerifierPass(Banner);
324 }
325
verify(Pass * p,const char * Banner,bool AbortOnErrors) const326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
327 const {
328 MachineFunction &MF = const_cast<MachineFunction&>(*this);
329 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
330 if (AbortOnErrors && FoundErrors)
331 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
332 return FoundErrors == 0;
333 }
334
verifySlotIndexes() const335 void MachineVerifier::verifySlotIndexes() const {
336 if (Indexes == nullptr)
337 return;
338
339 // Ensure the IdxMBB list is sorted by slot indexes.
340 SlotIndex Last;
341 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
342 E = Indexes->MBBIndexEnd(); I != E; ++I) {
343 assert(!Last.isValid() || I->first > Last);
344 Last = I->first;
345 }
346 }
347
verifyProperties(const MachineFunction & MF)348 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
349 // If a pass has introduced virtual registers without clearing the
350 // NoVRegs property (or set it without allocating the vregs)
351 // then report an error.
352 if (MF.getProperties().hasProperty(
353 MachineFunctionProperties::Property::NoVRegs) &&
354 MRI->getNumVirtRegs())
355 report("Function has NoVRegs property but there are VReg operands", &MF);
356 }
357
verify(MachineFunction & MF)358 unsigned MachineVerifier::verify(MachineFunction &MF) {
359 foundErrors = 0;
360
361 this->MF = &MF;
362 TM = &MF.getTarget();
363 TII = MF.getSubtarget().getInstrInfo();
364 TRI = MF.getSubtarget().getRegisterInfo();
365 MRI = &MF.getRegInfo();
366
367 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
368 MachineFunctionProperties::Property::FailedISel);
369
370 // If we're mid-GlobalISel and we already triggered the fallback path then
371 // it's expected that the MIR is somewhat broken but that's ok since we'll
372 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
373 if (isFunctionFailedISel)
374 return foundErrors;
375
376 isFunctionRegBankSelected =
377 !isFunctionFailedISel &&
378 MF.getProperties().hasProperty(
379 MachineFunctionProperties::Property::RegBankSelected);
380 isFunctionSelected = !isFunctionFailedISel &&
381 MF.getProperties().hasProperty(
382 MachineFunctionProperties::Property::Selected);
383 LiveVars = nullptr;
384 LiveInts = nullptr;
385 LiveStks = nullptr;
386 Indexes = nullptr;
387 if (PASS) {
388 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
389 // We don't want to verify LiveVariables if LiveIntervals is available.
390 if (!LiveInts)
391 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
392 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
393 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
394 }
395
396 verifySlotIndexes();
397
398 verifyProperties(MF);
399
400 visitMachineFunctionBefore();
401 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
402 MFI!=MFE; ++MFI) {
403 visitMachineBasicBlockBefore(&*MFI);
404 // Keep track of the current bundle header.
405 const MachineInstr *CurBundle = nullptr;
406 // Do we expect the next instruction to be part of the same bundle?
407 bool InBundle = false;
408
409 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
410 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
411 if (MBBI->getParent() != &*MFI) {
412 report("Bad instruction parent pointer", &*MFI);
413 errs() << "Instruction: " << *MBBI;
414 continue;
415 }
416
417 // Check for consistent bundle flags.
418 if (InBundle && !MBBI->isBundledWithPred())
419 report("Missing BundledPred flag, "
420 "BundledSucc was set on predecessor",
421 &*MBBI);
422 if (!InBundle && MBBI->isBundledWithPred())
423 report("BundledPred flag is set, "
424 "but BundledSucc not set on predecessor",
425 &*MBBI);
426
427 // Is this a bundle header?
428 if (!MBBI->isInsideBundle()) {
429 if (CurBundle)
430 visitMachineBundleAfter(CurBundle);
431 CurBundle = &*MBBI;
432 visitMachineBundleBefore(CurBundle);
433 } else if (!CurBundle)
434 report("No bundle header", &*MBBI);
435 visitMachineInstrBefore(&*MBBI);
436 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
437 const MachineInstr &MI = *MBBI;
438 const MachineOperand &Op = MI.getOperand(I);
439 if (Op.getParent() != &MI) {
440 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
441 // functions when replacing operands of a MachineInstr.
442 report("Instruction has operand with wrong parent set", &MI);
443 }
444
445 visitMachineOperand(&Op, I);
446 }
447
448 visitMachineInstrAfter(&*MBBI);
449
450 // Was this the last bundled instruction?
451 InBundle = MBBI->isBundledWithSucc();
452 }
453 if (CurBundle)
454 visitMachineBundleAfter(CurBundle);
455 if (InBundle)
456 report("BundledSucc flag set on last instruction in block", &MFI->back());
457 visitMachineBasicBlockAfter(&*MFI);
458 }
459 visitMachineFunctionAfter();
460
461 // Clean up.
462 regsLive.clear();
463 regsDefined.clear();
464 regsDead.clear();
465 regsKilled.clear();
466 regMasks.clear();
467 MBBInfoMap.clear();
468
469 return foundErrors;
470 }
471
report(const char * msg,const MachineFunction * MF)472 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
473 assert(MF);
474 errs() << '\n';
475 if (!foundErrors++) {
476 if (Banner)
477 errs() << "# " << Banner << '\n';
478 if (LiveInts != nullptr)
479 LiveInts->print(errs());
480 else
481 MF->print(errs(), Indexes);
482 }
483 errs() << "*** Bad machine code: " << msg << " ***\n"
484 << "- function: " << MF->getName() << "\n";
485 }
486
report(const char * msg,const MachineBasicBlock * MBB)487 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
488 assert(MBB);
489 report(msg, MBB->getParent());
490 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
491 << MBB->getName() << " (" << (const void *)MBB << ')';
492 if (Indexes)
493 errs() << " [" << Indexes->getMBBStartIdx(MBB)
494 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
495 errs() << '\n';
496 }
497
report(const char * msg,const MachineInstr * MI)498 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
499 assert(MI);
500 report(msg, MI->getParent());
501 errs() << "- instruction: ";
502 if (Indexes && Indexes->hasIndex(*MI))
503 errs() << Indexes->getInstructionIndex(*MI) << '\t';
504 MI->print(errs(), /*SkipOpers=*/true);
505 }
506
report(const char * msg,const MachineOperand * MO,unsigned MONum,LLT MOVRegType)507 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
508 unsigned MONum, LLT MOVRegType) {
509 assert(MO);
510 report(msg, MO->getParent());
511 errs() << "- operand " << MONum << ": ";
512 MO->print(errs(), MOVRegType, TRI);
513 errs() << "\n";
514 }
515
report_context(SlotIndex Pos) const516 void MachineVerifier::report_context(SlotIndex Pos) const {
517 errs() << "- at: " << Pos << '\n';
518 }
519
report_context(const LiveInterval & LI) const520 void MachineVerifier::report_context(const LiveInterval &LI) const {
521 errs() << "- interval: " << LI << '\n';
522 }
523
report_context(const LiveRange & LR,unsigned VRegUnit,LaneBitmask LaneMask) const524 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
525 LaneBitmask LaneMask) const {
526 report_context_liverange(LR);
527 report_context_vreg_regunit(VRegUnit);
528 if (LaneMask.any())
529 report_context_lanemask(LaneMask);
530 }
531
report_context(const LiveRange::Segment & S) const532 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
533 errs() << "- segment: " << S << '\n';
534 }
535
report_context(const VNInfo & VNI) const536 void MachineVerifier::report_context(const VNInfo &VNI) const {
537 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
538 }
539
report_context_liverange(const LiveRange & LR) const540 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
541 errs() << "- liverange: " << LR << '\n';
542 }
543
report_context(MCPhysReg PReg) const544 void MachineVerifier::report_context(MCPhysReg PReg) const {
545 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
546 }
547
report_context_vreg(unsigned VReg) const548 void MachineVerifier::report_context_vreg(unsigned VReg) const {
549 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
550 }
551
report_context_vreg_regunit(unsigned VRegOrUnit) const552 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
553 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
554 report_context_vreg(VRegOrUnit);
555 } else {
556 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
557 }
558 }
559
report_context_lanemask(LaneBitmask LaneMask) const560 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
561 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
562 }
563
markReachable(const MachineBasicBlock * MBB)564 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
565 BBInfo &MInfo = MBBInfoMap[MBB];
566 if (!MInfo.reachable) {
567 MInfo.reachable = true;
568 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
569 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
570 markReachable(*SuI);
571 }
572 }
573
visitMachineFunctionBefore()574 void MachineVerifier::visitMachineFunctionBefore() {
575 lastIndex = SlotIndex();
576 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
577 : TRI->getReservedRegs(*MF);
578
579 if (!MF->empty())
580 markReachable(&MF->front());
581
582 // Build a set of the basic blocks in the function.
583 FunctionBlocks.clear();
584 for (const auto &MBB : *MF) {
585 FunctionBlocks.insert(&MBB);
586 BBInfo &MInfo = MBBInfoMap[&MBB];
587
588 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
589 if (MInfo.Preds.size() != MBB.pred_size())
590 report("MBB has duplicate entries in its predecessor list.", &MBB);
591
592 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
593 if (MInfo.Succs.size() != MBB.succ_size())
594 report("MBB has duplicate entries in its successor list.", &MBB);
595 }
596
597 // Check that the register use lists are sane.
598 MRI->verifyUseLists();
599
600 if (!MF->empty())
601 verifyStackFrame();
602 }
603
604 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)605 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
606 const MachineBasicBlock *a, const MachineBasicBlock *b) {
607 if (*i == a)
608 return *++i == b;
609 if (*i == b)
610 return *++i == a;
611 return false;
612 }
613
614 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)615 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
616 FirstTerminator = nullptr;
617 FirstNonPHI = nullptr;
618
619 if (!MF->getProperties().hasProperty(
620 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
621 // If this block has allocatable physical registers live-in, check that
622 // it is an entry block or landing pad.
623 for (const auto &LI : MBB->liveins()) {
624 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
625 MBB->getIterator() != MBB->getParent()->begin()) {
626 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
627 report_context(LI.PhysReg);
628 }
629 }
630 }
631
632 // Count the number of landing pad successors.
633 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
634 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
635 E = MBB->succ_end(); I != E; ++I) {
636 if ((*I)->isEHPad())
637 LandingPadSuccs.insert(*I);
638 if (!FunctionBlocks.count(*I))
639 report("MBB has successor that isn't part of the function.", MBB);
640 if (!MBBInfoMap[*I].Preds.count(MBB)) {
641 report("Inconsistent CFG", MBB);
642 errs() << "MBB is not in the predecessor list of the successor "
643 << printMBBReference(*(*I)) << ".\n";
644 }
645 }
646
647 // Check the predecessor list.
648 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
649 E = MBB->pred_end(); I != E; ++I) {
650 if (!FunctionBlocks.count(*I))
651 report("MBB has predecessor that isn't part of the function.", MBB);
652 if (!MBBInfoMap[*I].Succs.count(MBB)) {
653 report("Inconsistent CFG", MBB);
654 errs() << "MBB is not in the successor list of the predecessor "
655 << printMBBReference(*(*I)) << ".\n";
656 }
657 }
658
659 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
660 const BasicBlock *BB = MBB->getBasicBlock();
661 const Function &F = MF->getFunction();
662 if (LandingPadSuccs.size() > 1 &&
663 !(AsmInfo &&
664 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
665 BB && isa<SwitchInst>(BB->getTerminator())) &&
666 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
667 report("MBB has more than one landing pad successor", MBB);
668
669 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
670 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
671 SmallVector<MachineOperand, 4> Cond;
672 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
673 Cond)) {
674 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
675 // check whether its answers match up with reality.
676 if (!TBB && !FBB) {
677 // Block falls through to its successor.
678 MachineFunction::const_iterator MBBI = MBB->getIterator();
679 ++MBBI;
680 if (MBBI == MF->end()) {
681 // It's possible that the block legitimately ends with a noreturn
682 // call or an unreachable, in which case it won't actually fall
683 // out the bottom of the function.
684 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
685 // It's possible that the block legitimately ends with a noreturn
686 // call or an unreachable, in which case it won't actually fall
687 // out of the block.
688 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
689 report("MBB exits via unconditional fall-through but doesn't have "
690 "exactly one CFG successor!", MBB);
691 } else if (!MBB->isSuccessor(&*MBBI)) {
692 report("MBB exits via unconditional fall-through but its successor "
693 "differs from its CFG successor!", MBB);
694 }
695 if (!MBB->empty() && MBB->back().isBarrier() &&
696 !TII->isPredicated(MBB->back())) {
697 report("MBB exits via unconditional fall-through but ends with a "
698 "barrier instruction!", MBB);
699 }
700 if (!Cond.empty()) {
701 report("MBB exits via unconditional fall-through but has a condition!",
702 MBB);
703 }
704 } else if (TBB && !FBB && Cond.empty()) {
705 // Block unconditionally branches somewhere.
706 // If the block has exactly one successor, that happens to be a
707 // landingpad, accept it as valid control flow.
708 if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
709 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
710 *MBB->succ_begin() != *LandingPadSuccs.begin())) {
711 report("MBB exits via unconditional branch but doesn't have "
712 "exactly one CFG successor!", MBB);
713 } else if (!MBB->isSuccessor(TBB)) {
714 report("MBB exits via unconditional branch but the CFG "
715 "successor doesn't match the actual successor!", MBB);
716 }
717 if (MBB->empty()) {
718 report("MBB exits via unconditional branch but doesn't contain "
719 "any instructions!", MBB);
720 } else if (!MBB->back().isBarrier()) {
721 report("MBB exits via unconditional branch but doesn't end with a "
722 "barrier instruction!", MBB);
723 } else if (!MBB->back().isTerminator()) {
724 report("MBB exits via unconditional branch but the branch isn't a "
725 "terminator instruction!", MBB);
726 }
727 } else if (TBB && !FBB && !Cond.empty()) {
728 // Block conditionally branches somewhere, otherwise falls through.
729 MachineFunction::const_iterator MBBI = MBB->getIterator();
730 ++MBBI;
731 if (MBBI == MF->end()) {
732 report("MBB conditionally falls through out of function!", MBB);
733 } else if (MBB->succ_size() == 1) {
734 // A conditional branch with only one successor is weird, but allowed.
735 if (&*MBBI != TBB)
736 report("MBB exits via conditional branch/fall-through but only has "
737 "one CFG successor!", MBB);
738 else if (TBB != *MBB->succ_begin())
739 report("MBB exits via conditional branch/fall-through but the CFG "
740 "successor don't match the actual successor!", MBB);
741 } else if (MBB->succ_size() != 2) {
742 report("MBB exits via conditional branch/fall-through but doesn't have "
743 "exactly two CFG successors!", MBB);
744 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
745 report("MBB exits via conditional branch/fall-through but the CFG "
746 "successors don't match the actual successors!", MBB);
747 }
748 if (MBB->empty()) {
749 report("MBB exits via conditional branch/fall-through but doesn't "
750 "contain any instructions!", MBB);
751 } else if (MBB->back().isBarrier()) {
752 report("MBB exits via conditional branch/fall-through but ends with a "
753 "barrier instruction!", MBB);
754 } else if (!MBB->back().isTerminator()) {
755 report("MBB exits via conditional branch/fall-through but the branch "
756 "isn't a terminator instruction!", MBB);
757 }
758 } else if (TBB && FBB) {
759 // Block conditionally branches somewhere, otherwise branches
760 // somewhere else.
761 if (MBB->succ_size() == 1) {
762 // A conditional branch with only one successor is weird, but allowed.
763 if (FBB != TBB)
764 report("MBB exits via conditional branch/branch through but only has "
765 "one CFG successor!", MBB);
766 else if (TBB != *MBB->succ_begin())
767 report("MBB exits via conditional branch/branch through but the CFG "
768 "successor don't match the actual successor!", MBB);
769 } else if (MBB->succ_size() != 2) {
770 report("MBB exits via conditional branch/branch but doesn't have "
771 "exactly two CFG successors!", MBB);
772 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
773 report("MBB exits via conditional branch/branch but the CFG "
774 "successors don't match the actual successors!", MBB);
775 }
776 if (MBB->empty()) {
777 report("MBB exits via conditional branch/branch but doesn't "
778 "contain any instructions!", MBB);
779 } else if (!MBB->back().isBarrier()) {
780 report("MBB exits via conditional branch/branch but doesn't end with a "
781 "barrier instruction!", MBB);
782 } else if (!MBB->back().isTerminator()) {
783 report("MBB exits via conditional branch/branch but the branch "
784 "isn't a terminator instruction!", MBB);
785 }
786 if (Cond.empty()) {
787 report("MBB exits via conditional branch/branch but there's no "
788 "condition!", MBB);
789 }
790 } else {
791 report("AnalyzeBranch returned invalid data!", MBB);
792 }
793 }
794
795 regsLive.clear();
796 if (MRI->tracksLiveness()) {
797 for (const auto &LI : MBB->liveins()) {
798 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
799 report("MBB live-in list contains non-physical register", MBB);
800 continue;
801 }
802 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
803 SubRegs.isValid(); ++SubRegs)
804 regsLive.insert(*SubRegs);
805 }
806 }
807
808 const MachineFrameInfo &MFI = MF->getFrameInfo();
809 BitVector PR = MFI.getPristineRegs(*MF);
810 for (unsigned I : PR.set_bits()) {
811 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
812 SubRegs.isValid(); ++SubRegs)
813 regsLive.insert(*SubRegs);
814 }
815
816 regsKilled.clear();
817 regsDefined.clear();
818
819 if (Indexes)
820 lastIndex = Indexes->getMBBStartIdx(MBB);
821 }
822
823 // This function gets called for all bundle headers, including normal
824 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)825 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
826 if (Indexes && Indexes->hasIndex(*MI)) {
827 SlotIndex idx = Indexes->getInstructionIndex(*MI);
828 if (!(idx > lastIndex)) {
829 report("Instruction index out of order", MI);
830 errs() << "Last instruction was at " << lastIndex << '\n';
831 }
832 lastIndex = idx;
833 }
834
835 // Ensure non-terminators don't follow terminators.
836 // Ignore predicated terminators formed by if conversion.
837 // FIXME: If conversion shouldn't need to violate this rule.
838 if (MI->isTerminator() && !TII->isPredicated(*MI)) {
839 if (!FirstTerminator)
840 FirstTerminator = MI;
841 } else if (FirstTerminator) {
842 report("Non-terminator instruction after the first terminator", MI);
843 errs() << "First terminator was:\t" << *FirstTerminator;
844 }
845 }
846
847 // The operands on an INLINEASM instruction must follow a template.
848 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)849 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
850 // The first two operands on INLINEASM are the asm string and global flags.
851 if (MI->getNumOperands() < 2) {
852 report("Too few operands on inline asm", MI);
853 return;
854 }
855 if (!MI->getOperand(0).isSymbol())
856 report("Asm string must be an external symbol", MI);
857 if (!MI->getOperand(1).isImm())
858 report("Asm flags must be an immediate", MI);
859 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
860 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
861 // and Extra_IsConvergent = 32.
862 if (!isUInt<6>(MI->getOperand(1).getImm()))
863 report("Unknown asm flags", &MI->getOperand(1), 1);
864
865 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
866
867 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
868 unsigned NumOps;
869 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
870 const MachineOperand &MO = MI->getOperand(OpNo);
871 // There may be implicit ops after the fixed operands.
872 if (!MO.isImm())
873 break;
874 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
875 }
876
877 if (OpNo > MI->getNumOperands())
878 report("Missing operands in last group", MI);
879
880 // An optional MDNode follows the groups.
881 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
882 ++OpNo;
883
884 // All trailing operands must be implicit registers.
885 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
886 const MachineOperand &MO = MI->getOperand(OpNo);
887 if (!MO.isReg() || !MO.isImplicit())
888 report("Expected implicit register after groups", &MO, OpNo);
889 }
890 }
891
visitMachineInstrBefore(const MachineInstr * MI)892 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
893 const MCInstrDesc &MCID = MI->getDesc();
894 if (MI->getNumOperands() < MCID.getNumOperands()) {
895 report("Too few operands", MI);
896 errs() << MCID.getNumOperands() << " operands expected, but "
897 << MI->getNumOperands() << " given.\n";
898 }
899
900 if (MI->isPHI()) {
901 if (MF->getProperties().hasProperty(
902 MachineFunctionProperties::Property::NoPHIs))
903 report("Found PHI instruction with NoPHIs property set", MI);
904
905 if (FirstNonPHI)
906 report("Found PHI instruction after non-PHI", MI);
907 } else if (FirstNonPHI == nullptr)
908 FirstNonPHI = MI;
909
910 // Check the tied operands.
911 if (MI->isInlineAsm())
912 verifyInlineAsm(MI);
913
914 // Check the MachineMemOperands for basic consistency.
915 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
916 E = MI->memoperands_end();
917 I != E; ++I) {
918 if ((*I)->isLoad() && !MI->mayLoad())
919 report("Missing mayLoad flag", MI);
920 if ((*I)->isStore() && !MI->mayStore())
921 report("Missing mayStore flag", MI);
922 }
923
924 // Debug values must not have a slot index.
925 // Other instructions must have one, unless they are inside a bundle.
926 if (LiveInts) {
927 bool mapped = !LiveInts->isNotInMIMap(*MI);
928 if (MI->isDebugInstr()) {
929 if (mapped)
930 report("Debug instruction has a slot index", MI);
931 } else if (MI->isInsideBundle()) {
932 if (mapped)
933 report("Instruction inside bundle has a slot index", MI);
934 } else {
935 if (!mapped)
936 report("Missing slot index", MI);
937 }
938 }
939
940 if (isPreISelGenericOpcode(MCID.getOpcode())) {
941 if (isFunctionSelected)
942 report("Unexpected generic instruction in a Selected function", MI);
943
944 // Check types.
945 SmallVector<LLT, 4> Types;
946 for (unsigned I = 0; I < MCID.getNumOperands(); ++I) {
947 if (!MCID.OpInfo[I].isGenericType())
948 continue;
949 // Generic instructions specify type equality constraints between some of
950 // their operands. Make sure these are consistent.
951 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
952 Types.resize(std::max(TypeIdx + 1, Types.size()));
953
954 const MachineOperand *MO = &MI->getOperand(I);
955 LLT OpTy = MRI->getType(MO->getReg());
956 // Don't report a type mismatch if there is no actual mismatch, only a
957 // type missing, to reduce noise:
958 if (OpTy.isValid()) {
959 // Only the first valid type for a type index will be printed: don't
960 // overwrite it later so it's always clear which type was expected:
961 if (!Types[TypeIdx].isValid())
962 Types[TypeIdx] = OpTy;
963 else if (Types[TypeIdx] != OpTy)
964 report("Type mismatch in generic instruction", MO, I, OpTy);
965 } else {
966 // Generic instructions must have types attached to their operands.
967 report("Generic instruction is missing a virtual register type", MO, I);
968 }
969 }
970
971 // Generic opcodes must not have physical register operands.
972 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
973 const MachineOperand *MO = &MI->getOperand(I);
974 if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
975 report("Generic instruction cannot have physical register", MO, I);
976 }
977 }
978
979 StringRef ErrorInfo;
980 if (!TII->verifyInstruction(*MI, ErrorInfo))
981 report(ErrorInfo.data(), MI);
982
983 // Verify properties of various specific instruction types
984 switch(MI->getOpcode()) {
985 default:
986 break;
987 case TargetOpcode::G_LOAD:
988 case TargetOpcode::G_STORE:
989 // Generic loads and stores must have a single MachineMemOperand
990 // describing that access.
991 if (!MI->hasOneMemOperand())
992 report("Generic instruction accessing memory must have one mem operand",
993 MI);
994 break;
995 case TargetOpcode::G_PHI: {
996 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
997 if (!DstTy.isValid() ||
998 !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
999 [this, &DstTy](const MachineOperand &MO) {
1000 if (!MO.isReg())
1001 return true;
1002 LLT Ty = MRI->getType(MO.getReg());
1003 if (!Ty.isValid() || (Ty != DstTy))
1004 return false;
1005 return true;
1006 }))
1007 report("Generic Instruction G_PHI has operands with incompatible/missing "
1008 "types",
1009 MI);
1010 break;
1011 }
1012 case TargetOpcode::G_SEXT:
1013 case TargetOpcode::G_ZEXT:
1014 case TargetOpcode::G_ANYEXT:
1015 case TargetOpcode::G_TRUNC:
1016 case TargetOpcode::G_FPEXT:
1017 case TargetOpcode::G_FPTRUNC: {
1018 // Number of operands and presense of types is already checked (and
1019 // reported in case of any issues), so no need to report them again. As
1020 // we're trying to report as many issues as possible at once, however, the
1021 // instructions aren't guaranteed to have the right number of operands or
1022 // types attached to them at this point
1023 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1024 if (MI->getNumOperands() < MCID.getNumOperands())
1025 break;
1026 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1027 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1028 if (!DstTy.isValid() || !SrcTy.isValid())
1029 break;
1030
1031 LLT DstElTy = DstTy.isVector() ? DstTy.getElementType() : DstTy;
1032 LLT SrcElTy = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
1033 if (DstElTy.isPointer() || SrcElTy.isPointer())
1034 report("Generic extend/truncate can not operate on pointers", MI);
1035
1036 if (DstTy.isVector() != SrcTy.isVector()) {
1037 report("Generic extend/truncate must be all-vector or all-scalar", MI);
1038 // Generally we try to report as many issues as possible at once, but in
1039 // this case it's not clear what should we be comparing the size of the
1040 // scalar with: the size of the whole vector or its lane. Instead of
1041 // making an arbitrary choice and emitting not so helpful message, let's
1042 // avoid the extra noise and stop here.
1043 break;
1044 }
1045 if (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements())
1046 report("Generic vector extend/truncate must preserve number of lanes",
1047 MI);
1048 unsigned DstSize = DstElTy.getSizeInBits();
1049 unsigned SrcSize = SrcElTy.getSizeInBits();
1050 switch (MI->getOpcode()) {
1051 default:
1052 if (DstSize <= SrcSize)
1053 report("Generic extend has destination type no larger than source", MI);
1054 break;
1055 case TargetOpcode::G_TRUNC:
1056 case TargetOpcode::G_FPTRUNC:
1057 if (DstSize >= SrcSize)
1058 report("Generic truncate has destination type no smaller than source",
1059 MI);
1060 break;
1061 }
1062 break;
1063 }
1064 case TargetOpcode::G_MERGE_VALUES: {
1065 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1066 // e.g. s2N = MERGE sN, sN
1067 // Merging multiple scalars into a vector is not allowed, should use
1068 // G_BUILD_VECTOR for that.
1069 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1070 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1071 if (DstTy.isVector() || SrcTy.isVector())
1072 report("G_MERGE_VALUES cannot operate on vectors", MI);
1073 break;
1074 }
1075 case TargetOpcode::G_UNMERGE_VALUES: {
1076 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1077 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1078 // For now G_UNMERGE can split vectors.
1079 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1080 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1081 report("G_UNMERGE_VALUES destination types do not match", MI);
1082 }
1083 if (SrcTy.getSizeInBits() !=
1084 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1085 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1086 MI);
1087 }
1088 break;
1089 }
1090 case TargetOpcode::G_BUILD_VECTOR: {
1091 // Source types must be scalars, dest type a vector. Total size of scalars
1092 // must match the dest vector size.
1093 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1094 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1095 if (!DstTy.isVector() || SrcEltTy.isVector())
1096 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1097 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1098 if (MRI->getType(MI->getOperand(1).getReg()) !=
1099 MRI->getType(MI->getOperand(i).getReg()))
1100 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1101 }
1102 if (DstTy.getSizeInBits() !=
1103 SrcEltTy.getSizeInBits() * (MI->getNumOperands() - 1))
1104 report("G_BUILD_VECTOR src operands total size don't match dest "
1105 "size.",
1106 MI);
1107 break;
1108 }
1109 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1110 // Source types must be scalars, dest type a vector. Scalar types must be
1111 // larger than the dest vector elt type, as this is a truncating operation.
1112 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1113 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1114 if (!DstTy.isVector() || SrcEltTy.isVector())
1115 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1116 MI);
1117 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1118 if (MRI->getType(MI->getOperand(1).getReg()) !=
1119 MRI->getType(MI->getOperand(i).getReg()))
1120 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1121 MI);
1122 }
1123 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1124 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1125 "dest elt type",
1126 MI);
1127 break;
1128 }
1129 case TargetOpcode::G_CONCAT_VECTORS: {
1130 // Source types should be vectors, and total size should match the dest
1131 // vector size.
1132 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1133 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1134 if (!DstTy.isVector() || !SrcTy.isVector())
1135 report("G_CONCAT_VECTOR requires vector source and destination operands",
1136 MI);
1137 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1138 if (MRI->getType(MI->getOperand(1).getReg()) !=
1139 MRI->getType(MI->getOperand(i).getReg()))
1140 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1141 }
1142 if (DstTy.getNumElements() !=
1143 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1144 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1145 break;
1146 }
1147 case TargetOpcode::COPY: {
1148 if (foundErrors)
1149 break;
1150 const MachineOperand &DstOp = MI->getOperand(0);
1151 const MachineOperand &SrcOp = MI->getOperand(1);
1152 LLT DstTy = MRI->getType(DstOp.getReg());
1153 LLT SrcTy = MRI->getType(SrcOp.getReg());
1154 if (SrcTy.isValid() && DstTy.isValid()) {
1155 // If both types are valid, check that the types are the same.
1156 if (SrcTy != DstTy) {
1157 report("Copy Instruction is illegal with mismatching types", MI);
1158 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1159 }
1160 }
1161 if (SrcTy.isValid() || DstTy.isValid()) {
1162 // If one of them have valid types, let's just check they have the same
1163 // size.
1164 unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
1165 unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
1166 assert(SrcSize && "Expecting size here");
1167 assert(DstSize && "Expecting size here");
1168 if (SrcSize != DstSize)
1169 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1170 report("Copy Instruction is illegal with mismatching sizes", MI);
1171 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1172 << "\n";
1173 }
1174 }
1175 break;
1176 }
1177 case TargetOpcode::STATEPOINT:
1178 if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
1179 !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
1180 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
1181 report("meta operands to STATEPOINT not constant!", MI);
1182 break;
1183
1184 auto VerifyStackMapConstant = [&](unsigned Offset) {
1185 if (!MI->getOperand(Offset).isImm() ||
1186 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
1187 !MI->getOperand(Offset + 1).isImm())
1188 report("stack map constant to STATEPOINT not well formed!", MI);
1189 };
1190 const unsigned VarStart = StatepointOpers(MI).getVarIdx();
1191 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
1192 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
1193 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);
1194
1195 // TODO: verify we have properly encoded deopt arguments
1196 };
1197 }
1198
1199 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)1200 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1201 const MachineInstr *MI = MO->getParent();
1202 const MCInstrDesc &MCID = MI->getDesc();
1203 unsigned NumDefs = MCID.getNumDefs();
1204 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1205 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1206
1207 // The first MCID.NumDefs operands must be explicit register defines
1208 if (MONum < NumDefs) {
1209 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1210 if (!MO->isReg())
1211 report("Explicit definition must be a register", MO, MONum);
1212 else if (!MO->isDef() && !MCOI.isOptionalDef())
1213 report("Explicit definition marked as use", MO, MONum);
1214 else if (MO->isImplicit())
1215 report("Explicit definition marked as implicit", MO, MONum);
1216 } else if (MONum < MCID.getNumOperands()) {
1217 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1218 // Don't check if it's the last operand in a variadic instruction. See,
1219 // e.g., LDM_RET in the arm back end.
1220 if (MO->isReg() &&
1221 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
1222 if (MO->isDef() && !MCOI.isOptionalDef())
1223 report("Explicit operand marked as def", MO, MONum);
1224 if (MO->isImplicit())
1225 report("Explicit operand marked as implicit", MO, MONum);
1226 }
1227
1228 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1229 if (TiedTo != -1) {
1230 if (!MO->isReg())
1231 report("Tied use must be a register", MO, MONum);
1232 else if (!MO->isTied())
1233 report("Operand should be tied", MO, MONum);
1234 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1235 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1236 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
1237 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1238 if (!MOTied.isReg())
1239 report("Tied counterpart must be a register", &MOTied, TiedTo);
1240 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
1241 MO->getReg() != MOTied.getReg())
1242 report("Tied physical registers must match.", &MOTied, TiedTo);
1243 }
1244 } else if (MO->isReg() && MO->isTied())
1245 report("Explicit operand should not be tied", MO, MONum);
1246 } else {
1247 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1248 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1249 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1250 }
1251
1252 switch (MO->getType()) {
1253 case MachineOperand::MO_Register: {
1254 const unsigned Reg = MO->getReg();
1255 if (!Reg)
1256 return;
1257 if (MRI->tracksLiveness() && !MI->isDebugValue())
1258 checkLiveness(MO, MONum);
1259
1260 // Verify the consistency of tied operands.
1261 if (MO->isTied()) {
1262 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1263 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1264 if (!OtherMO.isReg())
1265 report("Must be tied to a register", MO, MONum);
1266 if (!OtherMO.isTied())
1267 report("Missing tie flags on tied operand", MO, MONum);
1268 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1269 report("Inconsistent tie links", MO, MONum);
1270 if (MONum < MCID.getNumDefs()) {
1271 if (OtherIdx < MCID.getNumOperands()) {
1272 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1273 report("Explicit def tied to explicit use without tie constraint",
1274 MO, MONum);
1275 } else {
1276 if (!OtherMO.isImplicit())
1277 report("Explicit def should be tied to implicit use", MO, MONum);
1278 }
1279 }
1280 }
1281
1282 // Verify two-address constraints after leaving SSA form.
1283 unsigned DefIdx;
1284 if (!MRI->isSSA() && MO->isUse() &&
1285 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1286 Reg != MI->getOperand(DefIdx).getReg())
1287 report("Two-address instruction operands must be identical", MO, MONum);
1288
1289 // Check register classes.
1290 unsigned SubIdx = MO->getSubReg();
1291
1292 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1293 if (SubIdx) {
1294 report("Illegal subregister index for physical register", MO, MONum);
1295 return;
1296 }
1297 if (MONum < MCID.getNumOperands()) {
1298 if (const TargetRegisterClass *DRC =
1299 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1300 if (!DRC->contains(Reg)) {
1301 report("Illegal physical register for instruction", MO, MONum);
1302 errs() << printReg(Reg, TRI) << " is not a "
1303 << TRI->getRegClassName(DRC) << " register.\n";
1304 }
1305 }
1306 }
1307 if (MO->isRenamable()) {
1308 if (MRI->isReserved(Reg)) {
1309 report("isRenamable set on reserved register", MO, MONum);
1310 return;
1311 }
1312 }
1313 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1314 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1315 return;
1316 }
1317 } else {
1318 // Virtual register.
1319 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1320 if (!RC) {
1321 // This is a generic virtual register.
1322
1323 // If we're post-Select, we can't have gvregs anymore.
1324 if (isFunctionSelected) {
1325 report("Generic virtual register invalid in a Selected function",
1326 MO, MONum);
1327 return;
1328 }
1329
1330 // The gvreg must have a type and it must not have a SubIdx.
1331 LLT Ty = MRI->getType(Reg);
1332 if (!Ty.isValid()) {
1333 report("Generic virtual register must have a valid type", MO,
1334 MONum);
1335 return;
1336 }
1337
1338 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
1339
1340 // If we're post-RegBankSelect, the gvreg must have a bank.
1341 if (!RegBank && isFunctionRegBankSelected) {
1342 report("Generic virtual register must have a bank in a "
1343 "RegBankSelected function",
1344 MO, MONum);
1345 return;
1346 }
1347
1348 // Make sure the register fits into its register bank if any.
1349 if (RegBank && Ty.isValid() &&
1350 RegBank->getSize() < Ty.getSizeInBits()) {
1351 report("Register bank is too small for virtual register", MO,
1352 MONum);
1353 errs() << "Register bank " << RegBank->getName() << " too small("
1354 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
1355 << "-bits\n";
1356 return;
1357 }
1358 if (SubIdx) {
1359 report("Generic virtual register does not subregister index", MO,
1360 MONum);
1361 return;
1362 }
1363
1364 // If this is a target specific instruction and this operand
1365 // has register class constraint, the virtual register must
1366 // comply to it.
1367 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
1368 MONum < MCID.getNumOperands() &&
1369 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1370 report("Virtual register does not match instruction constraint", MO,
1371 MONum);
1372 errs() << "Expect register class "
1373 << TRI->getRegClassName(
1374 TII->getRegClass(MCID, MONum, TRI, *MF))
1375 << " but got nothing\n";
1376 return;
1377 }
1378
1379 break;
1380 }
1381 if (SubIdx) {
1382 const TargetRegisterClass *SRC =
1383 TRI->getSubClassWithSubReg(RC, SubIdx);
1384 if (!SRC) {
1385 report("Invalid subregister index for virtual register", MO, MONum);
1386 errs() << "Register class " << TRI->getRegClassName(RC)
1387 << " does not support subreg index " << SubIdx << "\n";
1388 return;
1389 }
1390 if (RC != SRC) {
1391 report("Invalid register class for subregister index", MO, MONum);
1392 errs() << "Register class " << TRI->getRegClassName(RC)
1393 << " does not fully support subreg index " << SubIdx << "\n";
1394 return;
1395 }
1396 }
1397 if (MONum < MCID.getNumOperands()) {
1398 if (const TargetRegisterClass *DRC =
1399 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1400 if (SubIdx) {
1401 const TargetRegisterClass *SuperRC =
1402 TRI->getLargestLegalSuperClass(RC, *MF);
1403 if (!SuperRC) {
1404 report("No largest legal super class exists.", MO, MONum);
1405 return;
1406 }
1407 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
1408 if (!DRC) {
1409 report("No matching super-reg register class.", MO, MONum);
1410 return;
1411 }
1412 }
1413 if (!RC->hasSuperClassEq(DRC)) {
1414 report("Illegal virtual register for instruction", MO, MONum);
1415 errs() << "Expected a " << TRI->getRegClassName(DRC)
1416 << " register, but got a " << TRI->getRegClassName(RC)
1417 << " register\n";
1418 }
1419 }
1420 }
1421 }
1422 break;
1423 }
1424
1425 case MachineOperand::MO_RegisterMask:
1426 regMasks.push_back(MO->getRegMask());
1427 break;
1428
1429 case MachineOperand::MO_MachineBasicBlock:
1430 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
1431 report("PHI operand is not in the CFG", MO, MONum);
1432 break;
1433
1434 case MachineOperand::MO_FrameIndex:
1435 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
1436 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1437 int FI = MO->getIndex();
1438 LiveInterval &LI = LiveStks->getInterval(FI);
1439 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
1440
1441 bool stores = MI->mayStore();
1442 bool loads = MI->mayLoad();
1443 // For a memory-to-memory move, we need to check if the frame
1444 // index is used for storing or loading, by inspecting the
1445 // memory operands.
1446 if (stores && loads) {
1447 for (auto *MMO : MI->memoperands()) {
1448 const PseudoSourceValue *PSV = MMO->getPseudoValue();
1449 if (PSV == nullptr) continue;
1450 const FixedStackPseudoSourceValue *Value =
1451 dyn_cast<FixedStackPseudoSourceValue>(PSV);
1452 if (Value == nullptr) continue;
1453 if (Value->getFrameIndex() != FI) continue;
1454
1455 if (MMO->isStore())
1456 loads = false;
1457 else
1458 stores = false;
1459 break;
1460 }
1461 if (loads == stores)
1462 report("Missing fixed stack memoperand.", MI);
1463 }
1464 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
1465 report("Instruction loads from dead spill slot", MO, MONum);
1466 errs() << "Live stack: " << LI << '\n';
1467 }
1468 if (stores && !LI.liveAt(Idx.getRegSlot())) {
1469 report("Instruction stores to dead spill slot", MO, MONum);
1470 errs() << "Live stack: " << LI << '\n';
1471 }
1472 }
1473 break;
1474
1475 default:
1476 break;
1477 }
1478 }
1479
checkLivenessAtUse(const MachineOperand * MO,unsigned MONum,SlotIndex UseIdx,const LiveRange & LR,unsigned VRegOrUnit,LaneBitmask LaneMask)1480 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
1481 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
1482 LaneBitmask LaneMask) {
1483 LiveQueryResult LRQ = LR.Query(UseIdx);
1484 // Check if we have a segment at the use, note however that we only need one
1485 // live subregister range, the others may be dead.
1486 if (!LRQ.valueIn() && LaneMask.none()) {
1487 report("No live segment at use", MO, MONum);
1488 report_context_liverange(LR);
1489 report_context_vreg_regunit(VRegOrUnit);
1490 report_context(UseIdx);
1491 }
1492 if (MO->isKill() && !LRQ.isKill()) {
1493 report("Live range continues after kill flag", MO, MONum);
1494 report_context_liverange(LR);
1495 report_context_vreg_regunit(VRegOrUnit);
1496 if (LaneMask.any())
1497 report_context_lanemask(LaneMask);
1498 report_context(UseIdx);
1499 }
1500 }
1501
checkLivenessAtDef(const MachineOperand * MO,unsigned MONum,SlotIndex DefIdx,const LiveRange & LR,unsigned VRegOrUnit,bool SubRangeCheck,LaneBitmask LaneMask)1502 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
1503 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
1504 bool SubRangeCheck, LaneBitmask LaneMask) {
1505 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
1506 assert(VNI && "NULL valno is not allowed");
1507 if (VNI->def != DefIdx) {
1508 report("Inconsistent valno->def", MO, MONum);
1509 report_context_liverange(LR);
1510 report_context_vreg_regunit(VRegOrUnit);
1511 if (LaneMask.any())
1512 report_context_lanemask(LaneMask);
1513 report_context(*VNI);
1514 report_context(DefIdx);
1515 }
1516 } else {
1517 report("No live segment at def", MO, MONum);
1518 report_context_liverange(LR);
1519 report_context_vreg_regunit(VRegOrUnit);
1520 if (LaneMask.any())
1521 report_context_lanemask(LaneMask);
1522 report_context(DefIdx);
1523 }
1524 // Check that, if the dead def flag is present, LiveInts agree.
1525 if (MO->isDead()) {
1526 LiveQueryResult LRQ = LR.Query(DefIdx);
1527 if (!LRQ.isDeadDef()) {
1528 assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
1529 "Expecting a virtual register.");
1530 // A dead subreg def only tells us that the specific subreg is dead. There
1531 // could be other non-dead defs of other subregs, or we could have other
1532 // parts of the register being live through the instruction. So unless we
1533 // are checking liveness for a subrange it is ok for the live range to
1534 // continue, given that we have a dead def of a subregister.
1535 if (SubRangeCheck || MO->getSubReg() == 0) {
1536 report("Live range continues after dead def flag", MO, MONum);
1537 report_context_liverange(LR);
1538 report_context_vreg_regunit(VRegOrUnit);
1539 if (LaneMask.any())
1540 report_context_lanemask(LaneMask);
1541 }
1542 }
1543 }
1544 }
1545
checkLiveness(const MachineOperand * MO,unsigned MONum)1546 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
1547 const MachineInstr *MI = MO->getParent();
1548 const unsigned Reg = MO->getReg();
1549
1550 // Both use and def operands can read a register.
1551 if (MO->readsReg()) {
1552 if (MO->isKill())
1553 addRegWithSubRegs(regsKilled, Reg);
1554
1555 // Check that LiveVars knows this kill.
1556 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
1557 MO->isKill()) {
1558 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1559 if (!is_contained(VI.Kills, MI))
1560 report("Kill missing from LiveVariables", MO, MONum);
1561 }
1562
1563 // Check LiveInts liveness and kill.
1564 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1565 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
1566 // Check the cached regunit intervals.
1567 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1568 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1569 if (MRI->isReservedRegUnit(*Units))
1570 continue;
1571 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
1572 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
1573 }
1574 }
1575
1576 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1577 if (LiveInts->hasInterval(Reg)) {
1578 // This is a virtual register interval.
1579 const LiveInterval &LI = LiveInts->getInterval(Reg);
1580 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
1581
1582 if (LI.hasSubRanges() && !MO->isDef()) {
1583 unsigned SubRegIdx = MO->getSubReg();
1584 LaneBitmask MOMask = SubRegIdx != 0
1585 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1586 : MRI->getMaxLaneMaskForVReg(Reg);
1587 LaneBitmask LiveInMask;
1588 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1589 if ((MOMask & SR.LaneMask).none())
1590 continue;
1591 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
1592 LiveQueryResult LRQ = SR.Query(UseIdx);
1593 if (LRQ.valueIn())
1594 LiveInMask |= SR.LaneMask;
1595 }
1596 // At least parts of the register has to be live at the use.
1597 if ((LiveInMask & MOMask).none()) {
1598 report("No live subrange at use", MO, MONum);
1599 report_context(LI);
1600 report_context(UseIdx);
1601 }
1602 }
1603 } else {
1604 report("Virtual register has no live interval", MO, MONum);
1605 }
1606 }
1607 }
1608
1609 // Use of a dead register.
1610 if (!regsLive.count(Reg)) {
1611 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1612 // Reserved registers may be used even when 'dead'.
1613 bool Bad = !isReserved(Reg);
1614 // We are fine if just any subregister has a defined value.
1615 if (Bad) {
1616 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
1617 ++SubRegs) {
1618 if (regsLive.count(*SubRegs)) {
1619 Bad = false;
1620 break;
1621 }
1622 }
1623 }
1624 // If there is an additional implicit-use of a super register we stop
1625 // here. By definition we are fine if the super register is not
1626 // (completely) dead, if the complete super register is dead we will
1627 // get a report for its operand.
1628 if (Bad) {
1629 for (const MachineOperand &MOP : MI->uses()) {
1630 if (!MOP.isReg() || !MOP.isImplicit())
1631 continue;
1632
1633 if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
1634 continue;
1635
1636 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
1637 ++SubRegs) {
1638 if (*SubRegs == Reg) {
1639 Bad = false;
1640 break;
1641 }
1642 }
1643 }
1644 }
1645 if (Bad)
1646 report("Using an undefined physical register", MO, MONum);
1647 } else if (MRI->def_empty(Reg)) {
1648 report("Reading virtual register without a def", MO, MONum);
1649 } else {
1650 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1651 // We don't know which virtual registers are live in, so only complain
1652 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1653 // must be live in. PHI instructions are handled separately.
1654 if (MInfo.regsKilled.count(Reg))
1655 report("Using a killed virtual register", MO, MONum);
1656 else if (!MI->isPHI())
1657 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1658 }
1659 }
1660 }
1661
1662 if (MO->isDef()) {
1663 // Register defined.
1664 // TODO: verify that earlyclobber ops are not used.
1665 if (MO->isDead())
1666 addRegWithSubRegs(regsDead, Reg);
1667 else
1668 addRegWithSubRegs(regsDefined, Reg);
1669
1670 // Verify SSA form.
1671 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1672 std::next(MRI->def_begin(Reg)) != MRI->def_end())
1673 report("Multiple virtual register defs in SSA form", MO, MONum);
1674
1675 // Check LiveInts for a live segment, but only for virtual registers.
1676 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
1677 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
1678 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1679
1680 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1681 if (LiveInts->hasInterval(Reg)) {
1682 const LiveInterval &LI = LiveInts->getInterval(Reg);
1683 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
1684
1685 if (LI.hasSubRanges()) {
1686 unsigned SubRegIdx = MO->getSubReg();
1687 LaneBitmask MOMask = SubRegIdx != 0
1688 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
1689 : MRI->getMaxLaneMaskForVReg(Reg);
1690 for (const LiveInterval::SubRange &SR : LI.subranges()) {
1691 if ((SR.LaneMask & MOMask).none())
1692 continue;
1693 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
1694 }
1695 }
1696 } else {
1697 report("Virtual register has no Live interval", MO, MONum);
1698 }
1699 }
1700 }
1701 }
1702 }
1703
visitMachineInstrAfter(const MachineInstr * MI)1704 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}
1705
1706 // This function gets called after visiting all instructions in a bundle. The
1707 // argument points to the bundle header.
1708 // Normal stand-alone instructions are also considered 'bundles', and this
1709 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1710 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1711 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1712 set_union(MInfo.regsKilled, regsKilled);
1713 set_subtract(regsLive, regsKilled); regsKilled.clear();
1714 // Kill any masked registers.
1715 while (!regMasks.empty()) {
1716 const uint32_t *Mask = regMasks.pop_back_val();
1717 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1718 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1719 MachineOperand::clobbersPhysReg(Mask, *I))
1720 regsDead.push_back(*I);
1721 }
1722 set_subtract(regsLive, regsDead); regsDead.clear();
1723 set_union(regsLive, regsDefined); regsDefined.clear();
1724 }
1725
1726 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1727 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1728 MBBInfoMap[MBB].regsLiveOut = regsLive;
1729 regsLive.clear();
1730
1731 if (Indexes) {
1732 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1733 if (!(stop > lastIndex)) {
1734 report("Block ends before last instruction index", MBB);
1735 errs() << "Block ends at " << stop
1736 << " last instruction was at " << lastIndex << '\n';
1737 }
1738 lastIndex = stop;
1739 }
1740 }
1741
1742 // Calculate the largest possible vregsPassed sets. These are the registers that
1743 // can pass through an MBB live, but may not be live every time. It is assumed
1744 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1745 void MachineVerifier::calcRegsPassed() {
1746 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1747 // have any vregsPassed.
1748 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1749 for (const auto &MBB : *MF) {
1750 BBInfo &MInfo = MBBInfoMap[&MBB];
1751 if (!MInfo.reachable)
1752 continue;
1753 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1754 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1755 BBInfo &SInfo = MBBInfoMap[*SuI];
1756 if (SInfo.addPassed(MInfo.regsLiveOut))
1757 todo.insert(*SuI);
1758 }
1759 }
1760
1761 // Iteratively push vregsPassed to successors. This will converge to the same
1762 // final state regardless of DenseSet iteration order.
1763 while (!todo.empty()) {
1764 const MachineBasicBlock *MBB = *todo.begin();
1765 todo.erase(MBB);
1766 BBInfo &MInfo = MBBInfoMap[MBB];
1767 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1768 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1769 if (*SuI == MBB)
1770 continue;
1771 BBInfo &SInfo = MBBInfoMap[*SuI];
1772 if (SInfo.addPassed(MInfo.vregsPassed))
1773 todo.insert(*SuI);
1774 }
1775 }
1776 }
1777
1778 // Calculate the set of virtual registers that must be passed through each basic
1779 // block in order to satisfy the requirements of successor blocks. This is very
1780 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1781 void MachineVerifier::calcRegsRequired() {
1782 // First push live-in regs to predecessors' vregsRequired.
1783 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1784 for (const auto &MBB : *MF) {
1785 BBInfo &MInfo = MBBInfoMap[&MBB];
1786 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1787 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1788 BBInfo &PInfo = MBBInfoMap[*PrI];
1789 if (PInfo.addRequired(MInfo.vregsLiveIn))
1790 todo.insert(*PrI);
1791 }
1792 }
1793
1794 // Iteratively push vregsRequired to predecessors. This will converge to the
1795 // same final state regardless of DenseSet iteration order.
1796 while (!todo.empty()) {
1797 const MachineBasicBlock *MBB = *todo.begin();
1798 todo.erase(MBB);
1799 BBInfo &MInfo = MBBInfoMap[MBB];
1800 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1801 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1802 if (*PrI == MBB)
1803 continue;
1804 BBInfo &SInfo = MBBInfoMap[*PrI];
1805 if (SInfo.addRequired(MInfo.vregsRequired))
1806 todo.insert(*PrI);
1807 }
1808 }
1809 }
1810
1811 // Check PHI instructions at the beginning of MBB. It is assumed that
1812 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock & MBB)1813 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
1814 BBInfo &MInfo = MBBInfoMap[&MBB];
1815
1816 SmallPtrSet<const MachineBasicBlock*, 8> seen;
1817 for (const MachineInstr &Phi : MBB) {
1818 if (!Phi.isPHI())
1819 break;
1820 seen.clear();
1821
1822 const MachineOperand &MODef = Phi.getOperand(0);
1823 if (!MODef.isReg() || !MODef.isDef()) {
1824 report("Expected first PHI operand to be a register def", &MODef, 0);
1825 continue;
1826 }
1827 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
1828 MODef.isEarlyClobber() || MODef.isDebug())
1829 report("Unexpected flag on PHI operand", &MODef, 0);
1830 unsigned DefReg = MODef.getReg();
1831 if (!TargetRegisterInfo::isVirtualRegister(DefReg))
1832 report("Expected first PHI operand to be a virtual register", &MODef, 0);
1833
1834 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
1835 const MachineOperand &MO0 = Phi.getOperand(I);
1836 if (!MO0.isReg()) {
1837 report("Expected PHI operand to be a register", &MO0, I);
1838 continue;
1839 }
1840 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
1841 MO0.isDebug() || MO0.isTied())
1842 report("Unexpected flag on PHI operand", &MO0, I);
1843
1844 const MachineOperand &MO1 = Phi.getOperand(I + 1);
1845 if (!MO1.isMBB()) {
1846 report("Expected PHI operand to be a basic block", &MO1, I + 1);
1847 continue;
1848 }
1849
1850 const MachineBasicBlock &Pre = *MO1.getMBB();
1851 if (!Pre.isSuccessor(&MBB)) {
1852 report("PHI input is not a predecessor block", &MO1, I + 1);
1853 continue;
1854 }
1855
1856 if (MInfo.reachable) {
1857 seen.insert(&Pre);
1858 BBInfo &PrInfo = MBBInfoMap[&Pre];
1859 if (!MO0.isUndef() && PrInfo.reachable &&
1860 !PrInfo.isLiveOut(MO0.getReg()))
1861 report("PHI operand is not live-out from predecessor", &MO0, I);
1862 }
1863 }
1864
1865 // Did we see all predecessors?
1866 if (MInfo.reachable) {
1867 for (MachineBasicBlock *Pred : MBB.predecessors()) {
1868 if (!seen.count(Pred)) {
1869 report("Missing PHI operand", &Phi);
1870 errs() << printMBBReference(*Pred)
1871 << " is a predecessor according to the CFG.\n";
1872 }
1873 }
1874 }
1875 }
1876 }
1877
visitMachineFunctionAfter()1878 void MachineVerifier::visitMachineFunctionAfter() {
1879 calcRegsPassed();
1880
1881 for (const MachineBasicBlock &MBB : *MF)
1882 checkPHIOps(MBB);
1883
1884 // Now check liveness info if available
1885 calcRegsRequired();
1886
1887 // Check for killed virtual registers that should be live out.
1888 for (const auto &MBB : *MF) {
1889 BBInfo &MInfo = MBBInfoMap[&MBB];
1890 for (RegSet::iterator
1891 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1892 ++I)
1893 if (MInfo.regsKilled.count(*I)) {
1894 report("Virtual register killed in block, but needed live out.", &MBB);
1895 errs() << "Virtual register " << printReg(*I)
1896 << " is used after the block.\n";
1897 }
1898 }
1899
1900 if (!MF->empty()) {
1901 BBInfo &MInfo = MBBInfoMap[&MF->front()];
1902 for (RegSet::iterator
1903 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1904 ++I) {
1905 report("Virtual register defs don't dominate all uses.", MF);
1906 report_context_vreg(*I);
1907 }
1908 }
1909
1910 if (LiveVars)
1911 verifyLiveVariables();
1912 if (LiveInts)
1913 verifyLiveIntervals();
1914 }
1915
verifyLiveVariables()1916 void MachineVerifier::verifyLiveVariables() {
1917 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1918 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1919 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1920 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1921 for (const auto &MBB : *MF) {
1922 BBInfo &MInfo = MBBInfoMap[&MBB];
1923
1924 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1925 if (MInfo.vregsRequired.count(Reg)) {
1926 if (!VI.AliveBlocks.test(MBB.getNumber())) {
1927 report("LiveVariables: Block missing from AliveBlocks", &MBB);
1928 errs() << "Virtual register " << printReg(Reg)
1929 << " must be live through the block.\n";
1930 }
1931 } else {
1932 if (VI.AliveBlocks.test(MBB.getNumber())) {
1933 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
1934 errs() << "Virtual register " << printReg(Reg)
1935 << " is not needed live through the block.\n";
1936 }
1937 }
1938 }
1939 }
1940 }
1941
verifyLiveIntervals()1942 void MachineVerifier::verifyLiveIntervals() {
1943 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1944 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1945 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1946
1947 // Spilling and splitting may leave unused registers around. Skip them.
1948 if (MRI->reg_nodbg_empty(Reg))
1949 continue;
1950
1951 if (!LiveInts->hasInterval(Reg)) {
1952 report("Missing live interval for virtual register", MF);
1953 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
1954 continue;
1955 }
1956
1957 const LiveInterval &LI = LiveInts->getInterval(Reg);
1958 assert(Reg == LI.reg && "Invalid reg to interval mapping");
1959 verifyLiveInterval(LI);
1960 }
1961
1962 // Verify all the cached regunit intervals.
1963 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1964 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
1965 verifyLiveRange(*LR, i);
1966 }
1967
verifyLiveRangeValue(const LiveRange & LR,const VNInfo * VNI,unsigned Reg,LaneBitmask LaneMask)1968 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
1969 const VNInfo *VNI, unsigned Reg,
1970 LaneBitmask LaneMask) {
1971 if (VNI->isUnused())
1972 return;
1973
1974 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
1975
1976 if (!DefVNI) {
1977 report("Value not live at VNInfo def and not marked unused", MF);
1978 report_context(LR, Reg, LaneMask);
1979 report_context(*VNI);
1980 return;
1981 }
1982
1983 if (DefVNI != VNI) {
1984 report("Live segment at def has different VNInfo", MF);
1985 report_context(LR, Reg, LaneMask);
1986 report_context(*VNI);
1987 return;
1988 }
1989
1990 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1991 if (!MBB) {
1992 report("Invalid VNInfo definition index", MF);
1993 report_context(LR, Reg, LaneMask);
1994 report_context(*VNI);
1995 return;
1996 }
1997
1998 if (VNI->isPHIDef()) {
1999 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2000 report("PHIDef VNInfo is not defined at MBB start", MBB);
2001 report_context(LR, Reg, LaneMask);
2002 report_context(*VNI);
2003 }
2004 return;
2005 }
2006
2007 // Non-PHI def.
2008 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2009 if (!MI) {
2010 report("No instruction at VNInfo def index", MBB);
2011 report_context(LR, Reg, LaneMask);
2012 report_context(*VNI);
2013 return;
2014 }
2015
2016 if (Reg != 0) {
2017 bool hasDef = false;
2018 bool isEarlyClobber = false;
2019 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2020 if (!MOI->isReg() || !MOI->isDef())
2021 continue;
2022 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2023 if (MOI->getReg() != Reg)
2024 continue;
2025 } else {
2026 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
2027 !TRI->hasRegUnit(MOI->getReg(), Reg))
2028 continue;
2029 }
2030 if (LaneMask.any() &&
2031 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2032 continue;
2033 hasDef = true;
2034 if (MOI->isEarlyClobber())
2035 isEarlyClobber = true;
2036 }
2037
2038 if (!hasDef) {
2039 report("Defining instruction does not modify register", MI);
2040 report_context(LR, Reg, LaneMask);
2041 report_context(*VNI);
2042 }
2043
2044 // Early clobber defs begin at USE slots, but other defs must begin at
2045 // DEF slots.
2046 if (isEarlyClobber) {
2047 if (!VNI->def.isEarlyClobber()) {
2048 report("Early clobber def must be at an early-clobber slot", MBB);
2049 report_context(LR, Reg, LaneMask);
2050 report_context(*VNI);
2051 }
2052 } else if (!VNI->def.isRegister()) {
2053 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2054 report_context(LR, Reg, LaneMask);
2055 report_context(*VNI);
2056 }
2057 }
2058 }
2059
verifyLiveRangeSegment(const LiveRange & LR,const LiveRange::const_iterator I,unsigned Reg,LaneBitmask LaneMask)2060 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2061 const LiveRange::const_iterator I,
2062 unsigned Reg, LaneBitmask LaneMask)
2063 {
2064 const LiveRange::Segment &S = *I;
2065 const VNInfo *VNI = S.valno;
2066 assert(VNI && "Live segment has no valno");
2067
2068 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2069 report("Foreign valno in live segment", MF);
2070 report_context(LR, Reg, LaneMask);
2071 report_context(S);
2072 report_context(*VNI);
2073 }
2074
2075 if (VNI->isUnused()) {
2076 report("Live segment valno is marked unused", MF);
2077 report_context(LR, Reg, LaneMask);
2078 report_context(S);
2079 }
2080
2081 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2082 if (!MBB) {
2083 report("Bad start of live segment, no basic block", MF);
2084 report_context(LR, Reg, LaneMask);
2085 report_context(S);
2086 return;
2087 }
2088 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2089 if (S.start != MBBStartIdx && S.start != VNI->def) {
2090 report("Live segment must begin at MBB entry or valno def", MBB);
2091 report_context(LR, Reg, LaneMask);
2092 report_context(S);
2093 }
2094
2095 const MachineBasicBlock *EndMBB =
2096 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2097 if (!EndMBB) {
2098 report("Bad end of live segment, no basic block", MF);
2099 report_context(LR, Reg, LaneMask);
2100 report_context(S);
2101 return;
2102 }
2103
2104 // No more checks for live-out segments.
2105 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2106 return;
2107
2108 // RegUnit intervals are allowed dead phis.
2109 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2110 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2111 return;
2112
2113 // The live segment is ending inside EndMBB
2114 const MachineInstr *MI =
2115 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2116 if (!MI) {
2117 report("Live segment doesn't end at a valid instruction", EndMBB);
2118 report_context(LR, Reg, LaneMask);
2119 report_context(S);
2120 return;
2121 }
2122
2123 // The block slot must refer to a basic block boundary.
2124 if (S.end.isBlock()) {
2125 report("Live segment ends at B slot of an instruction", EndMBB);
2126 report_context(LR, Reg, LaneMask);
2127 report_context(S);
2128 }
2129
2130 if (S.end.isDead()) {
2131 // Segment ends on the dead slot.
2132 // That means there must be a dead def.
2133 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2134 report("Live segment ending at dead slot spans instructions", EndMBB);
2135 report_context(LR, Reg, LaneMask);
2136 report_context(S);
2137 }
2138 }
2139
2140 // A live segment can only end at an early-clobber slot if it is being
2141 // redefined by an early-clobber def.
2142 if (S.end.isEarlyClobber()) {
2143 if (I+1 == LR.end() || (I+1)->start != S.end) {
2144 report("Live segment ending at early clobber slot must be "
2145 "redefined by an EC def in the same instruction", EndMBB);
2146 report_context(LR, Reg, LaneMask);
2147 report_context(S);
2148 }
2149 }
2150
2151 // The following checks only apply to virtual registers. Physreg liveness
2152 // is too weird to check.
2153 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2154 // A live segment can end with either a redefinition, a kill flag on a
2155 // use, or a dead flag on a def.
2156 bool hasRead = false;
2157 bool hasSubRegDef = false;
2158 bool hasDeadDef = false;
2159 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2160 if (!MOI->isReg() || MOI->getReg() != Reg)
2161 continue;
2162 unsigned Sub = MOI->getSubReg();
2163 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2164 : LaneBitmask::getAll();
2165 if (MOI->isDef()) {
2166 if (Sub != 0) {
2167 hasSubRegDef = true;
2168 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2169 // mask for subregister defs. Read-undef defs will be handled by
2170 // readsReg below.
2171 SLM = ~SLM;
2172 }
2173 if (MOI->isDead())
2174 hasDeadDef = true;
2175 }
2176 if (LaneMask.any() && (LaneMask & SLM).none())
2177 continue;
2178 if (MOI->readsReg())
2179 hasRead = true;
2180 }
2181 if (S.end.isDead()) {
2182 // Make sure that the corresponding machine operand for a "dead" live
2183 // range has the dead flag. We cannot perform this check for subregister
2184 // liveranges as partially dead values are allowed.
2185 if (LaneMask.none() && !hasDeadDef) {
2186 report("Instruction ending live segment on dead slot has no dead flag",
2187 MI);
2188 report_context(LR, Reg, LaneMask);
2189 report_context(S);
2190 }
2191 } else {
2192 if (!hasRead) {
2193 // When tracking subregister liveness, the main range must start new
2194 // values on partial register writes, even if there is no read.
2195 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
2196 !hasSubRegDef) {
2197 report("Instruction ending live segment doesn't read the register",
2198 MI);
2199 report_context(LR, Reg, LaneMask);
2200 report_context(S);
2201 }
2202 }
2203 }
2204 }
2205
2206 // Now check all the basic blocks in this live segment.
2207 MachineFunction::const_iterator MFI = MBB->getIterator();
2208 // Is this live segment the beginning of a non-PHIDef VN?
2209 if (S.start == VNI->def && !VNI->isPHIDef()) {
2210 // Not live-in to any blocks.
2211 if (MBB == EndMBB)
2212 return;
2213 // Skip this block.
2214 ++MFI;
2215 }
2216
2217 SmallVector<SlotIndex, 4> Undefs;
2218 if (LaneMask.any()) {
2219 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
2220 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
2221 }
2222
2223 while (true) {
2224 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
2225 // We don't know how to track physregs into a landing pad.
2226 if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
2227 MFI->isEHPad()) {
2228 if (&*MFI == EndMBB)
2229 break;
2230 ++MFI;
2231 continue;
2232 }
2233
2234 // Is VNI a PHI-def in the current block?
2235 bool IsPHI = VNI->isPHIDef() &&
2236 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
2237
2238 // Check that VNI is live-out of all predecessors.
2239 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
2240 PE = MFI->pred_end(); PI != PE; ++PI) {
2241 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
2242 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
2243
2244 // All predecessors must have a live-out value. However for a phi
2245 // instruction with subregister intervals
2246 // only one of the subregisters (not necessarily the current one) needs to
2247 // be defined.
2248 if (!PVNI && (LaneMask.none() || !IsPHI)) {
2249 if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
2250 continue;
2251 report("Register not marked live out of predecessor", *PI);
2252 report_context(LR, Reg, LaneMask);
2253 report_context(*VNI);
2254 errs() << " live into " << printMBBReference(*MFI) << '@'
2255 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
2256 << PEnd << '\n';
2257 continue;
2258 }
2259
2260 // Only PHI-defs can take different predecessor values.
2261 if (!IsPHI && PVNI != VNI) {
2262 report("Different value live out of predecessor", *PI);
2263 report_context(LR, Reg, LaneMask);
2264 errs() << "Valno #" << PVNI->id << " live out of "
2265 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
2266 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
2267 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
2268 }
2269 }
2270 if (&*MFI == EndMBB)
2271 break;
2272 ++MFI;
2273 }
2274 }
2275
verifyLiveRange(const LiveRange & LR,unsigned Reg,LaneBitmask LaneMask)2276 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
2277 LaneBitmask LaneMask) {
2278 for (const VNInfo *VNI : LR.valnos)
2279 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
2280
2281 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
2282 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
2283 }
2284
verifyLiveInterval(const LiveInterval & LI)2285 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
2286 unsigned Reg = LI.reg;
2287 assert(TargetRegisterInfo::isVirtualRegister(Reg));
2288 verifyLiveRange(LI, Reg);
2289
2290 LaneBitmask Mask;
2291 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
2292 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2293 if ((Mask & SR.LaneMask).any()) {
2294 report("Lane masks of sub ranges overlap in live interval", MF);
2295 report_context(LI);
2296 }
2297 if ((SR.LaneMask & ~MaxMask).any()) {
2298 report("Subrange lanemask is invalid", MF);
2299 report_context(LI);
2300 }
2301 if (SR.empty()) {
2302 report("Subrange must not be empty", MF);
2303 report_context(SR, LI.reg, SR.LaneMask);
2304 }
2305 Mask |= SR.LaneMask;
2306 verifyLiveRange(SR, LI.reg, SR.LaneMask);
2307 if (!LI.covers(SR)) {
2308 report("A Subrange is not covered by the main range", MF);
2309 report_context(LI);
2310 }
2311 }
2312
2313 // Check the LI only has one connected component.
2314 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
2315 unsigned NumComp = ConEQ.Classify(LI);
2316 if (NumComp > 1) {
2317 report("Multiple connected components in live interval", MF);
2318 report_context(LI);
2319 for (unsigned comp = 0; comp != NumComp; ++comp) {
2320 errs() << comp << ": valnos";
2321 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
2322 E = LI.vni_end(); I!=E; ++I)
2323 if (comp == ConEQ.getEqClass(*I))
2324 errs() << ' ' << (*I)->id;
2325 errs() << '\n';
2326 }
2327 }
2328 }
2329
2330 namespace {
2331
2332 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
2333 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
2334 // value is zero.
2335 // We use a bool plus an integer to capture the stack state.
2336 struct StackStateOfBB {
2337 StackStateOfBB() = default;
StackStateOfBB__anon68d9c28a0411::StackStateOfBB2338 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
2339 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
2340 ExitIsSetup(ExitSetup) {}
2341
2342 // Can be negative, which means we are setting up a frame.
2343 int EntryValue = 0;
2344 int ExitValue = 0;
2345 bool EntryIsSetup = false;
2346 bool ExitIsSetup = false;
2347 };
2348
2349 } // end anonymous namespace
2350
2351 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
2352 /// by a FrameDestroy <n>, stack adjustments are identical on all
2353 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()2354 void MachineVerifier::verifyStackFrame() {
2355 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
2356 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
2357 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
2358 return;
2359
2360 SmallVector<StackStateOfBB, 8> SPState;
2361 SPState.resize(MF->getNumBlockIDs());
2362 df_iterator_default_set<const MachineBasicBlock*> Reachable;
2363
2364 // Visit the MBBs in DFS order.
2365 for (df_ext_iterator<const MachineFunction *,
2366 df_iterator_default_set<const MachineBasicBlock *>>
2367 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
2368 DFI != DFE; ++DFI) {
2369 const MachineBasicBlock *MBB = *DFI;
2370
2371 StackStateOfBB BBState;
2372 // Check the exit state of the DFS stack predecessor.
2373 if (DFI.getPathLength() >= 2) {
2374 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
2375 assert(Reachable.count(StackPred) &&
2376 "DFS stack predecessor is already visited.\n");
2377 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
2378 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
2379 BBState.ExitValue = BBState.EntryValue;
2380 BBState.ExitIsSetup = BBState.EntryIsSetup;
2381 }
2382
2383 // Update stack state by checking contents of MBB.
2384 for (const auto &I : *MBB) {
2385 if (I.getOpcode() == FrameSetupOpcode) {
2386 if (BBState.ExitIsSetup)
2387 report("FrameSetup is after another FrameSetup", &I);
2388 BBState.ExitValue -= TII->getFrameTotalSize(I);
2389 BBState.ExitIsSetup = true;
2390 }
2391
2392 if (I.getOpcode() == FrameDestroyOpcode) {
2393 int Size = TII->getFrameTotalSize(I);
2394 if (!BBState.ExitIsSetup)
2395 report("FrameDestroy is not after a FrameSetup", &I);
2396 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
2397 BBState.ExitValue;
2398 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
2399 report("FrameDestroy <n> is after FrameSetup <m>", &I);
2400 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
2401 << AbsSPAdj << ">.\n";
2402 }
2403 BBState.ExitValue += Size;
2404 BBState.ExitIsSetup = false;
2405 }
2406 }
2407 SPState[MBB->getNumber()] = BBState;
2408
2409 // Make sure the exit state of any predecessor is consistent with the entry
2410 // state.
2411 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
2412 E = MBB->pred_end(); I != E; ++I) {
2413 if (Reachable.count(*I) &&
2414 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
2415 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
2416 report("The exit stack state of a predecessor is inconsistent.", MBB);
2417 errs() << "Predecessor " << printMBBReference(*(*I))
2418 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
2419 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
2420 << printMBBReference(*MBB) << " has entry state ("
2421 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
2422 }
2423 }
2424
2425 // Make sure the entry state of any successor is consistent with the exit
2426 // state.
2427 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
2428 E = MBB->succ_end(); I != E; ++I) {
2429 if (Reachable.count(*I) &&
2430 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
2431 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
2432 report("The entry stack state of a successor is inconsistent.", MBB);
2433 errs() << "Successor " << printMBBReference(*(*I))
2434 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
2435 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
2436 << printMBBReference(*MBB) << " has exit state ("
2437 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
2438 }
2439 }
2440
2441 // Make sure a basic block with return ends with zero stack adjustment.
2442 if (!MBB->empty() && MBB->back().isReturn()) {
2443 if (BBState.ExitIsSetup)
2444 report("A return block ends with a FrameSetup.", MBB);
2445 if (BBState.ExitValue)
2446 report("A return block ends with a nonzero stack adjustment.", MBB);
2447 }
2448 }
2449 }
2450