1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Pass to verify generated machine code. The following is checked: 11 // 12 // Operand counts: All explicit operands must be present. 13 // 14 // Register classes: All physical and virtual register operands must be 15 // compatible with the register class required by the instruction descriptor. 16 // 17 // Register live intervals: Registers must be defined only once, and must be 18 // defined before use. 19 // 20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the 21 // command-line option -verify-machineinstrs, or by defining the environment 22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive 23 // the verifier errors. 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/ADT/BitVector.h" 27 #include "llvm/ADT/DenseMap.h" 28 #include "llvm/ADT/DenseSet.h" 29 #include "llvm/ADT/DepthFirstIterator.h" 30 #include "llvm/ADT/STLExtras.h" 31 #include "llvm/ADT/SetOperations.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/SmallVector.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/ADT/Twine.h" 36 #include "llvm/Analysis/EHPersonalities.h" 37 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 38 #include "llvm/CodeGen/LiveInterval.h" 39 #include "llvm/CodeGen/LiveIntervals.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineFunctionPass.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBundle.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineOperand.h" 50 #include "llvm/CodeGen/MachineRegisterInfo.h" 51 #include "llvm/CodeGen/PseudoSourceValue.h" 52 #include "llvm/CodeGen/SlotIndexes.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/TargetInstrInfo.h" 55 #include "llvm/CodeGen/TargetOpcodes.h" 56 #include "llvm/CodeGen/TargetRegisterInfo.h" 57 #include "llvm/CodeGen/TargetSubtargetInfo.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Function.h" 60 #include "llvm/IR/InlineAsm.h" 61 #include "llvm/IR/Instructions.h" 62 #include "llvm/MC/LaneBitmask.h" 63 #include "llvm/MC/MCAsmInfo.h" 64 #include "llvm/MC/MCInstrDesc.h" 65 #include "llvm/MC/MCRegisterInfo.h" 66 #include "llvm/MC/MCTargetOptions.h" 67 #include "llvm/Pass.h" 68 #include "llvm/Support/Casting.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/LowLevelTypeImpl.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 namespace { 85 86 struct MachineVerifier { 87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 88 89 unsigned verify(MachineFunction &MF); 90 91 Pass *const PASS; 92 const char *Banner; 93 const MachineFunction *MF; 94 const TargetMachine *TM; 95 const TargetInstrInfo *TII; 96 const TargetRegisterInfo *TRI; 97 const MachineRegisterInfo *MRI; 98 99 unsigned foundErrors; 100 101 // Avoid querying the MachineFunctionProperties for each operand. 102 bool isFunctionRegBankSelected; 103 bool isFunctionSelected; 104 105 using RegVector = SmallVector<unsigned, 16>; 106 using RegMaskVector = SmallVector<const uint32_t *, 4>; 107 using RegSet = DenseSet<unsigned>; 108 using RegMap = DenseMap<unsigned, const MachineInstr *>; 109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 110 111 const MachineInstr *FirstTerminator; 112 BlockSet FunctionBlocks; 113 114 BitVector regsReserved; 115 RegSet regsLive; 116 RegVector regsDefined, regsDead, regsKilled; 117 RegMaskVector regMasks; 118 119 SlotIndex lastIndex; 120 121 // Add Reg and any sub-registers to RV 122 void addRegWithSubRegs(RegVector &RV, unsigned Reg) { 123 RV.push_back(Reg); 124 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 125 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 126 RV.push_back(*SubRegs); 127 } 128 129 struct BBInfo { 130 // Is this MBB reachable from the MF entry point? 131 bool reachable = false; 132 133 // Vregs that must be live in because they are used without being 134 // defined. Map value is the user. 135 RegMap vregsLiveIn; 136 137 // Regs killed in MBB. They may be defined again, and will then be in both 138 // regsKilled and regsLiveOut. 139 RegSet regsKilled; 140 141 // Regs defined in MBB and live out. Note that vregs passing through may 142 // be live out without being mentioned here. 143 RegSet regsLiveOut; 144 145 // Vregs that pass through MBB untouched. This set is disjoint from 146 // regsKilled and regsLiveOut. 147 RegSet vregsPassed; 148 149 // Vregs that must pass through MBB because they are needed by a successor 150 // block. This set is disjoint from regsLiveOut. 151 RegSet vregsRequired; 152 153 // Set versions of block's predecessor and successor lists. 154 BlockSet Preds, Succs; 155 156 BBInfo() = default; 157 158 // Add register to vregsPassed if it belongs there. Return true if 159 // anything changed. 160 bool addPassed(unsigned Reg) { 161 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 162 return false; 163 if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) 164 return false; 165 return vregsPassed.insert(Reg).second; 166 } 167 168 // Same for a full set. 169 bool addPassed(const RegSet &RS) { 170 bool changed = false; 171 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 172 if (addPassed(*I)) 173 changed = true; 174 return changed; 175 } 176 177 // Add register to vregsRequired if it belongs there. Return true if 178 // anything changed. 179 bool addRequired(unsigned Reg) { 180 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 181 return false; 182 if (regsLiveOut.count(Reg)) 183 return false; 184 return vregsRequired.insert(Reg).second; 185 } 186 187 // Same for a full set. 188 bool addRequired(const RegSet &RS) { 189 bool changed = false; 190 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) 191 if (addRequired(*I)) 192 changed = true; 193 return changed; 194 } 195 196 // Same for a full map. 197 bool addRequired(const RegMap &RM) { 198 bool changed = false; 199 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) 200 if (addRequired(I->first)) 201 changed = true; 202 return changed; 203 } 204 205 // Live-out registers are either in regsLiveOut or vregsPassed. 206 bool isLiveOut(unsigned Reg) const { 207 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 208 } 209 }; 210 211 // Extra register info per MBB. 212 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 213 214 bool isReserved(unsigned Reg) { 215 return Reg < regsReserved.size() && regsReserved.test(Reg); 216 } 217 218 bool isAllocatable(unsigned Reg) const { 219 return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 220 !regsReserved.test(Reg); 221 } 222 223 // Analysis information if available 224 LiveVariables *LiveVars; 225 LiveIntervals *LiveInts; 226 LiveStacks *LiveStks; 227 SlotIndexes *Indexes; 228 229 void visitMachineFunctionBefore(); 230 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 231 void visitMachineBundleBefore(const MachineInstr *MI); 232 void visitMachineInstrBefore(const MachineInstr *MI); 233 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 234 void visitMachineInstrAfter(const MachineInstr *MI); 235 void visitMachineBundleAfter(const MachineInstr *MI); 236 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 237 void visitMachineFunctionAfter(); 238 239 void report(const char *msg, const MachineFunction *MF); 240 void report(const char *msg, const MachineBasicBlock *MBB); 241 void report(const char *msg, const MachineInstr *MI); 242 void report(const char *msg, const MachineOperand *MO, unsigned MONum); 243 244 void report_context(const LiveInterval &LI) const; 245 void report_context(const LiveRange &LR, unsigned VRegUnit, 246 LaneBitmask LaneMask) const; 247 void report_context(const LiveRange::Segment &S) const; 248 void report_context(const VNInfo &VNI) const; 249 void report_context(SlotIndex Pos) const; 250 void report_context_liverange(const LiveRange &LR) const; 251 void report_context_lanemask(LaneBitmask LaneMask) const; 252 void report_context_vreg(unsigned VReg) const; 253 void report_context_vreg_regunit(unsigned VRegOrRegUnit) const; 254 255 void verifyInlineAsm(const MachineInstr *MI); 256 257 void checkLiveness(const MachineOperand *MO, unsigned MONum); 258 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 259 SlotIndex UseIdx, const LiveRange &LR, unsigned Reg, 260 LaneBitmask LaneMask = LaneBitmask::getNone()); 261 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 262 SlotIndex DefIdx, const LiveRange &LR, unsigned Reg, 263 LaneBitmask LaneMask = LaneBitmask::getNone()); 264 265 void markReachable(const MachineBasicBlock *MBB); 266 void calcRegsPassed(); 267 void checkPHIOps(const MachineBasicBlock &MBB); 268 269 void calcRegsRequired(); 270 void verifyLiveVariables(); 271 void verifyLiveIntervals(); 272 void verifyLiveInterval(const LiveInterval&); 273 void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned, 274 LaneBitmask); 275 void verifyLiveRangeSegment(const LiveRange&, 276 const LiveRange::const_iterator I, unsigned, 277 LaneBitmask); 278 void verifyLiveRange(const LiveRange&, unsigned, 279 LaneBitmask LaneMask = LaneBitmask::getNone()); 280 281 void verifyStackFrame(); 282 283 void verifySlotIndexes() const; 284 void verifyProperties(const MachineFunction &MF); 285 }; 286 287 struct MachineVerifierPass : public MachineFunctionPass { 288 static char ID; // Pass ID, replacement for typeid 289 290 const std::string Banner; 291 292 MachineVerifierPass(std::string banner = std::string()) 293 : MachineFunctionPass(ID), Banner(std::move(banner)) { 294 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); 295 } 296 297 void getAnalysisUsage(AnalysisUsage &AU) const override { 298 AU.setPreservesAll(); 299 MachineFunctionPass::getAnalysisUsage(AU); 300 } 301 302 bool runOnMachineFunction(MachineFunction &MF) override { 303 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 304 if (FoundErrors) 305 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 306 return false; 307 } 308 }; 309 310 } // end anonymous namespace 311 312 char MachineVerifierPass::ID = 0; 313 314 INITIALIZE_PASS(MachineVerifierPass, "machineverifier", 315 "Verify generated machine code", false, false) 316 317 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 318 return new MachineVerifierPass(Banner); 319 } 320 321 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 322 const { 323 MachineFunction &MF = const_cast<MachineFunction&>(*this); 324 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 325 if (AbortOnErrors && FoundErrors) 326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 327 return FoundErrors == 0; 328 } 329 330 void MachineVerifier::verifySlotIndexes() const { 331 if (Indexes == nullptr) 332 return; 333 334 // Ensure the IdxMBB list is sorted by slot indexes. 335 SlotIndex Last; 336 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 337 E = Indexes->MBBIndexEnd(); I != E; ++I) { 338 assert(!Last.isValid() || I->first > Last); 339 Last = I->first; 340 } 341 } 342 343 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 344 // If a pass has introduced virtual registers without clearing the 345 // NoVRegs property (or set it without allocating the vregs) 346 // then report an error. 347 if (MF.getProperties().hasProperty( 348 MachineFunctionProperties::Property::NoVRegs) && 349 MRI->getNumVirtRegs()) 350 report("Function has NoVRegs property but there are VReg operands", &MF); 351 } 352 353 unsigned MachineVerifier::verify(MachineFunction &MF) { 354 foundErrors = 0; 355 356 this->MF = &MF; 357 TM = &MF.getTarget(); 358 TII = MF.getSubtarget().getInstrInfo(); 359 TRI = MF.getSubtarget().getRegisterInfo(); 360 MRI = &MF.getRegInfo(); 361 362 isFunctionRegBankSelected = MF.getProperties().hasProperty( 363 MachineFunctionProperties::Property::RegBankSelected); 364 isFunctionSelected = MF.getProperties().hasProperty( 365 MachineFunctionProperties::Property::Selected); 366 367 LiveVars = nullptr; 368 LiveInts = nullptr; 369 LiveStks = nullptr; 370 Indexes = nullptr; 371 if (PASS) { 372 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); 373 // We don't want to verify LiveVariables if LiveIntervals is available. 374 if (!LiveInts) 375 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); 376 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 377 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); 378 } 379 380 verifySlotIndexes(); 381 382 verifyProperties(MF); 383 384 visitMachineFunctionBefore(); 385 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); 386 MFI!=MFE; ++MFI) { 387 visitMachineBasicBlockBefore(&*MFI); 388 // Keep track of the current bundle header. 389 const MachineInstr *CurBundle = nullptr; 390 // Do we expect the next instruction to be part of the same bundle? 391 bool InBundle = false; 392 393 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), 394 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { 395 if (MBBI->getParent() != &*MFI) { 396 report("Bad instruction parent pointer", &*MFI); 397 errs() << "Instruction: " << *MBBI; 398 continue; 399 } 400 401 // Check for consistent bundle flags. 402 if (InBundle && !MBBI->isBundledWithPred()) 403 report("Missing BundledPred flag, " 404 "BundledSucc was set on predecessor", 405 &*MBBI); 406 if (!InBundle && MBBI->isBundledWithPred()) 407 report("BundledPred flag is set, " 408 "but BundledSucc not set on predecessor", 409 &*MBBI); 410 411 // Is this a bundle header? 412 if (!MBBI->isInsideBundle()) { 413 if (CurBundle) 414 visitMachineBundleAfter(CurBundle); 415 CurBundle = &*MBBI; 416 visitMachineBundleBefore(CurBundle); 417 } else if (!CurBundle) 418 report("No bundle header", &*MBBI); 419 visitMachineInstrBefore(&*MBBI); 420 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) { 421 const MachineInstr &MI = *MBBI; 422 const MachineOperand &Op = MI.getOperand(I); 423 if (Op.getParent() != &MI) { 424 // Make sure to use correct addOperand / RemoveOperand / ChangeTo 425 // functions when replacing operands of a MachineInstr. 426 report("Instruction has operand with wrong parent set", &MI); 427 } 428 429 visitMachineOperand(&Op, I); 430 } 431 432 visitMachineInstrAfter(&*MBBI); 433 434 // Was this the last bundled instruction? 435 InBundle = MBBI->isBundledWithSucc(); 436 } 437 if (CurBundle) 438 visitMachineBundleAfter(CurBundle); 439 if (InBundle) 440 report("BundledSucc flag set on last instruction in block", &MFI->back()); 441 visitMachineBasicBlockAfter(&*MFI); 442 } 443 visitMachineFunctionAfter(); 444 445 // Clean up. 446 regsLive.clear(); 447 regsDefined.clear(); 448 regsDead.clear(); 449 regsKilled.clear(); 450 regMasks.clear(); 451 MBBInfoMap.clear(); 452 453 return foundErrors; 454 } 455 456 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 457 assert(MF); 458 errs() << '\n'; 459 if (!foundErrors++) { 460 if (Banner) 461 errs() << "# " << Banner << '\n'; 462 if (LiveInts != nullptr) 463 LiveInts->print(errs()); 464 else 465 MF->print(errs(), Indexes); 466 } 467 errs() << "*** Bad machine code: " << msg << " ***\n" 468 << "- function: " << MF->getName() << "\n"; 469 } 470 471 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 472 assert(MBB); 473 report(msg, MBB->getParent()); 474 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 475 << MBB->getName() << " (" << (const void *)MBB << ')'; 476 if (Indexes) 477 errs() << " [" << Indexes->getMBBStartIdx(MBB) 478 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 479 errs() << '\n'; 480 } 481 482 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 483 assert(MI); 484 report(msg, MI->getParent()); 485 errs() << "- instruction: "; 486 if (Indexes && Indexes->hasIndex(*MI)) 487 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 488 MI->print(errs(), /*SkipOpers=*/true); 489 errs() << '\n'; 490 } 491 492 void MachineVerifier::report(const char *msg, 493 const MachineOperand *MO, unsigned MONum) { 494 assert(MO); 495 report(msg, MO->getParent()); 496 errs() << "- operand " << MONum << ": "; 497 MO->print(errs(), TRI); 498 errs() << "\n"; 499 } 500 501 void MachineVerifier::report_context(SlotIndex Pos) const { 502 errs() << "- at: " << Pos << '\n'; 503 } 504 505 void MachineVerifier::report_context(const LiveInterval &LI) const { 506 errs() << "- interval: " << LI << '\n'; 507 } 508 509 void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit, 510 LaneBitmask LaneMask) const { 511 report_context_liverange(LR); 512 report_context_vreg_regunit(VRegUnit); 513 if (LaneMask.any()) 514 report_context_lanemask(LaneMask); 515 } 516 517 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 518 errs() << "- segment: " << S << '\n'; 519 } 520 521 void MachineVerifier::report_context(const VNInfo &VNI) const { 522 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 523 } 524 525 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 526 errs() << "- liverange: " << LR << '\n'; 527 } 528 529 void MachineVerifier::report_context_vreg(unsigned VReg) const { 530 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 531 } 532 533 void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const { 534 if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 535 report_context_vreg(VRegOrUnit); 536 } else { 537 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 538 } 539 } 540 541 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 542 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 543 } 544 545 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 546 BBInfo &MInfo = MBBInfoMap[MBB]; 547 if (!MInfo.reachable) { 548 MInfo.reachable = true; 549 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 550 SuE = MBB->succ_end(); SuI != SuE; ++SuI) 551 markReachable(*SuI); 552 } 553 } 554 555 void MachineVerifier::visitMachineFunctionBefore() { 556 lastIndex = SlotIndex(); 557 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 558 : TRI->getReservedRegs(*MF); 559 560 if (!MF->empty()) 561 markReachable(&MF->front()); 562 563 // Build a set of the basic blocks in the function. 564 FunctionBlocks.clear(); 565 for (const auto &MBB : *MF) { 566 FunctionBlocks.insert(&MBB); 567 BBInfo &MInfo = MBBInfoMap[&MBB]; 568 569 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 570 if (MInfo.Preds.size() != MBB.pred_size()) 571 report("MBB has duplicate entries in its predecessor list.", &MBB); 572 573 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 574 if (MInfo.Succs.size() != MBB.succ_size()) 575 report("MBB has duplicate entries in its successor list.", &MBB); 576 } 577 578 // Check that the register use lists are sane. 579 MRI->verifyUseLists(); 580 581 if (!MF->empty()) 582 verifyStackFrame(); 583 } 584 585 // Does iterator point to a and b as the first two elements? 586 static bool matchPair(MachineBasicBlock::const_succ_iterator i, 587 const MachineBasicBlock *a, const MachineBasicBlock *b) { 588 if (*i == a) 589 return *++i == b; 590 if (*i == b) 591 return *++i == a; 592 return false; 593 } 594 595 void 596 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 597 FirstTerminator = nullptr; 598 599 if (!MF->getProperties().hasProperty( 600 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 601 // If this block has allocatable physical registers live-in, check that 602 // it is an entry block or landing pad. 603 for (const auto &LI : MBB->liveins()) { 604 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 605 MBB->getIterator() != MBB->getParent()->begin()) { 606 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB); 607 } 608 } 609 } 610 611 // Count the number of landing pad successors. 612 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; 613 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 614 E = MBB->succ_end(); I != E; ++I) { 615 if ((*I)->isEHPad()) 616 LandingPadSuccs.insert(*I); 617 if (!FunctionBlocks.count(*I)) 618 report("MBB has successor that isn't part of the function.", MBB); 619 if (!MBBInfoMap[*I].Preds.count(MBB)) { 620 report("Inconsistent CFG", MBB); 621 errs() << "MBB is not in the predecessor list of the successor " 622 << printMBBReference(*(*I)) << ".\n"; 623 } 624 } 625 626 // Check the predecessor list. 627 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 628 E = MBB->pred_end(); I != E; ++I) { 629 if (!FunctionBlocks.count(*I)) 630 report("MBB has predecessor that isn't part of the function.", MBB); 631 if (!MBBInfoMap[*I].Succs.count(MBB)) { 632 report("Inconsistent CFG", MBB); 633 errs() << "MBB is not in the successor list of the predecessor " 634 << printMBBReference(*(*I)) << ".\n"; 635 } 636 } 637 638 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 639 const BasicBlock *BB = MBB->getBasicBlock(); 640 const Function &F = MF->getFunction(); 641 if (LandingPadSuccs.size() > 1 && 642 !(AsmInfo && 643 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 644 BB && isa<SwitchInst>(BB->getTerminator())) && 645 !isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 646 report("MBB has more than one landing pad successor", MBB); 647 648 // Call AnalyzeBranch. If it succeeds, there several more conditions to check. 649 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 650 SmallVector<MachineOperand, 4> Cond; 651 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 652 Cond)) { 653 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's 654 // check whether its answers match up with reality. 655 if (!TBB && !FBB) { 656 // Block falls through to its successor. 657 MachineFunction::const_iterator MBBI = MBB->getIterator(); 658 ++MBBI; 659 if (MBBI == MF->end()) { 660 // It's possible that the block legitimately ends with a noreturn 661 // call or an unreachable, in which case it won't actually fall 662 // out the bottom of the function. 663 } else if (MBB->succ_size() == LandingPadSuccs.size()) { 664 // It's possible that the block legitimately ends with a noreturn 665 // call or an unreachable, in which case it won't actuall fall 666 // out of the block. 667 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { 668 report("MBB exits via unconditional fall-through but doesn't have " 669 "exactly one CFG successor!", MBB); 670 } else if (!MBB->isSuccessor(&*MBBI)) { 671 report("MBB exits via unconditional fall-through but its successor " 672 "differs from its CFG successor!", MBB); 673 } 674 if (!MBB->empty() && MBB->back().isBarrier() && 675 !TII->isPredicated(MBB->back())) { 676 report("MBB exits via unconditional fall-through but ends with a " 677 "barrier instruction!", MBB); 678 } 679 if (!Cond.empty()) { 680 report("MBB exits via unconditional fall-through but has a condition!", 681 MBB); 682 } 683 } else if (TBB && !FBB && Cond.empty()) { 684 // Block unconditionally branches somewhere. 685 // If the block has exactly one successor, that happens to be a 686 // landingpad, accept it as valid control flow. 687 if (MBB->succ_size() != 1+LandingPadSuccs.size() && 688 (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 || 689 *MBB->succ_begin() != *LandingPadSuccs.begin())) { 690 report("MBB exits via unconditional branch but doesn't have " 691 "exactly one CFG successor!", MBB); 692 } else if (!MBB->isSuccessor(TBB)) { 693 report("MBB exits via unconditional branch but the CFG " 694 "successor doesn't match the actual successor!", MBB); 695 } 696 if (MBB->empty()) { 697 report("MBB exits via unconditional branch but doesn't contain " 698 "any instructions!", MBB); 699 } else if (!MBB->back().isBarrier()) { 700 report("MBB exits via unconditional branch but doesn't end with a " 701 "barrier instruction!", MBB); 702 } else if (!MBB->back().isTerminator()) { 703 report("MBB exits via unconditional branch but the branch isn't a " 704 "terminator instruction!", MBB); 705 } 706 } else if (TBB && !FBB && !Cond.empty()) { 707 // Block conditionally branches somewhere, otherwise falls through. 708 MachineFunction::const_iterator MBBI = MBB->getIterator(); 709 ++MBBI; 710 if (MBBI == MF->end()) { 711 report("MBB conditionally falls through out of function!", MBB); 712 } else if (MBB->succ_size() == 1) { 713 // A conditional branch with only one successor is weird, but allowed. 714 if (&*MBBI != TBB) 715 report("MBB exits via conditional branch/fall-through but only has " 716 "one CFG successor!", MBB); 717 else if (TBB != *MBB->succ_begin()) 718 report("MBB exits via conditional branch/fall-through but the CFG " 719 "successor don't match the actual successor!", MBB); 720 } else if (MBB->succ_size() != 2) { 721 report("MBB exits via conditional branch/fall-through but doesn't have " 722 "exactly two CFG successors!", MBB); 723 } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) { 724 report("MBB exits via conditional branch/fall-through but the CFG " 725 "successors don't match the actual successors!", MBB); 726 } 727 if (MBB->empty()) { 728 report("MBB exits via conditional branch/fall-through but doesn't " 729 "contain any instructions!", MBB); 730 } else if (MBB->back().isBarrier()) { 731 report("MBB exits via conditional branch/fall-through but ends with a " 732 "barrier instruction!", MBB); 733 } else if (!MBB->back().isTerminator()) { 734 report("MBB exits via conditional branch/fall-through but the branch " 735 "isn't a terminator instruction!", MBB); 736 } 737 } else if (TBB && FBB) { 738 // Block conditionally branches somewhere, otherwise branches 739 // somewhere else. 740 if (MBB->succ_size() == 1) { 741 // A conditional branch with only one successor is weird, but allowed. 742 if (FBB != TBB) 743 report("MBB exits via conditional branch/branch through but only has " 744 "one CFG successor!", MBB); 745 else if (TBB != *MBB->succ_begin()) 746 report("MBB exits via conditional branch/branch through but the CFG " 747 "successor don't match the actual successor!", MBB); 748 } else if (MBB->succ_size() != 2) { 749 report("MBB exits via conditional branch/branch but doesn't have " 750 "exactly two CFG successors!", MBB); 751 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { 752 report("MBB exits via conditional branch/branch but the CFG " 753 "successors don't match the actual successors!", MBB); 754 } 755 if (MBB->empty()) { 756 report("MBB exits via conditional branch/branch but doesn't " 757 "contain any instructions!", MBB); 758 } else if (!MBB->back().isBarrier()) { 759 report("MBB exits via conditional branch/branch but doesn't end with a " 760 "barrier instruction!", MBB); 761 } else if (!MBB->back().isTerminator()) { 762 report("MBB exits via conditional branch/branch but the branch " 763 "isn't a terminator instruction!", MBB); 764 } 765 if (Cond.empty()) { 766 report("MBB exits via conditinal branch/branch but there's no " 767 "condition!", MBB); 768 } 769 } else { 770 report("AnalyzeBranch returned invalid data!", MBB); 771 } 772 } 773 774 regsLive.clear(); 775 if (MRI->tracksLiveness()) { 776 for (const auto &LI : MBB->liveins()) { 777 if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) { 778 report("MBB live-in list contains non-physical register", MBB); 779 continue; 780 } 781 for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true); 782 SubRegs.isValid(); ++SubRegs) 783 regsLive.insert(*SubRegs); 784 } 785 } 786 787 const MachineFrameInfo &MFI = MF->getFrameInfo(); 788 BitVector PR = MFI.getPristineRegs(*MF); 789 for (unsigned I : PR.set_bits()) { 790 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true); 791 SubRegs.isValid(); ++SubRegs) 792 regsLive.insert(*SubRegs); 793 } 794 795 regsKilled.clear(); 796 regsDefined.clear(); 797 798 if (Indexes) 799 lastIndex = Indexes->getMBBStartIdx(MBB); 800 } 801 802 // This function gets called for all bundle headers, including normal 803 // stand-alone unbundled instructions. 804 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 805 if (Indexes && Indexes->hasIndex(*MI)) { 806 SlotIndex idx = Indexes->getInstructionIndex(*MI); 807 if (!(idx > lastIndex)) { 808 report("Instruction index out of order", MI); 809 errs() << "Last instruction was at " << lastIndex << '\n'; 810 } 811 lastIndex = idx; 812 } 813 814 // Ensure non-terminators don't follow terminators. 815 // Ignore predicated terminators formed by if conversion. 816 // FIXME: If conversion shouldn't need to violate this rule. 817 if (MI->isTerminator() && !TII->isPredicated(*MI)) { 818 if (!FirstTerminator) 819 FirstTerminator = MI; 820 } else if (FirstTerminator) { 821 report("Non-terminator instruction after the first terminator", MI); 822 errs() << "First terminator was:\t" << *FirstTerminator; 823 } 824 } 825 826 // The operands on an INLINEASM instruction must follow a template. 827 // Verify that the flag operands make sense. 828 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 829 // The first two operands on INLINEASM are the asm string and global flags. 830 if (MI->getNumOperands() < 2) { 831 report("Too few operands on inline asm", MI); 832 return; 833 } 834 if (!MI->getOperand(0).isSymbol()) 835 report("Asm string must be an external symbol", MI); 836 if (!MI->getOperand(1).isImm()) 837 report("Asm flags must be an immediate", MI); 838 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 839 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 840 // and Extra_IsConvergent = 32. 841 if (!isUInt<6>(MI->getOperand(1).getImm())) 842 report("Unknown asm flags", &MI->getOperand(1), 1); 843 844 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 845 846 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 847 unsigned NumOps; 848 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 849 const MachineOperand &MO = MI->getOperand(OpNo); 850 // There may be implicit ops after the fixed operands. 851 if (!MO.isImm()) 852 break; 853 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm()); 854 } 855 856 if (OpNo > MI->getNumOperands()) 857 report("Missing operands in last group", MI); 858 859 // An optional MDNode follows the groups. 860 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 861 ++OpNo; 862 863 // All trailing operands must be implicit registers. 864 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 865 const MachineOperand &MO = MI->getOperand(OpNo); 866 if (!MO.isReg() || !MO.isImplicit()) 867 report("Expected implicit register after groups", &MO, OpNo); 868 } 869 } 870 871 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 872 const MCInstrDesc &MCID = MI->getDesc(); 873 if (MI->getNumOperands() < MCID.getNumOperands()) { 874 report("Too few operands", MI); 875 errs() << MCID.getNumOperands() << " operands expected, but " 876 << MI->getNumOperands() << " given.\n"; 877 } 878 879 if (MI->isPHI() && MF->getProperties().hasProperty( 880 MachineFunctionProperties::Property::NoPHIs)) 881 report("Found PHI instruction with NoPHIs property set", MI); 882 883 // Check the tied operands. 884 if (MI->isInlineAsm()) 885 verifyInlineAsm(MI); 886 887 // Check the MachineMemOperands for basic consistency. 888 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), 889 E = MI->memoperands_end(); I != E; ++I) { 890 if ((*I)->isLoad() && !MI->mayLoad()) 891 report("Missing mayLoad flag", MI); 892 if ((*I)->isStore() && !MI->mayStore()) 893 report("Missing mayStore flag", MI); 894 } 895 896 // Debug values must not have a slot index. 897 // Other instructions must have one, unless they are inside a bundle. 898 if (LiveInts) { 899 bool mapped = !LiveInts->isNotInMIMap(*MI); 900 if (MI->isDebugValue()) { 901 if (mapped) 902 report("Debug instruction has a slot index", MI); 903 } else if (MI->isInsideBundle()) { 904 if (mapped) 905 report("Instruction inside bundle has a slot index", MI); 906 } else { 907 if (!mapped) 908 report("Missing slot index", MI); 909 } 910 } 911 912 // Check types. 913 if (isPreISelGenericOpcode(MCID.getOpcode())) { 914 if (isFunctionSelected) 915 report("Unexpected generic instruction in a Selected function", MI); 916 917 // Generic instructions specify equality constraints between some 918 // of their operands. Make sure these are consistent. 919 SmallVector<LLT, 4> Types; 920 for (unsigned i = 0; i < MCID.getNumOperands(); ++i) { 921 if (!MCID.OpInfo[i].isGenericType()) 922 continue; 923 size_t TypeIdx = MCID.OpInfo[i].getGenericTypeIndex(); 924 Types.resize(std::max(TypeIdx + 1, Types.size())); 925 926 LLT OpTy = MRI->getType(MI->getOperand(i).getReg()); 927 if (Types[TypeIdx].isValid() && Types[TypeIdx] != OpTy) 928 report("type mismatch in generic instruction", MI); 929 Types[TypeIdx] = OpTy; 930 } 931 } 932 933 // Generic opcodes must not have physical register operands. 934 if (isPreISelGenericOpcode(MCID.getOpcode())) { 935 for (auto &Op : MI->operands()) { 936 if (Op.isReg() && TargetRegisterInfo::isPhysicalRegister(Op.getReg())) 937 report("Generic instruction cannot have physical register", MI); 938 } 939 } 940 941 StringRef ErrorInfo; 942 if (!TII->verifyInstruction(*MI, ErrorInfo)) 943 report(ErrorInfo.data(), MI); 944 945 // Verify properties of various specific instruction types 946 switch(MI->getOpcode()) { 947 default: 948 break; 949 case TargetOpcode::G_LOAD: 950 case TargetOpcode::G_STORE: 951 // Generic loads and stores must have a single MachineMemOperand 952 // describing that access. 953 if (!MI->hasOneMemOperand()) 954 report("Generic instruction accessing memory must have one mem operand", 955 MI); 956 break; 957 case TargetOpcode::G_PHI: { 958 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 959 if (!DstTy.isValid() || 960 !std::all_of(MI->operands_begin() + 1, MI->operands_end(), 961 [this, &DstTy](const MachineOperand &MO) { 962 if (!MO.isReg()) 963 return true; 964 LLT Ty = MRI->getType(MO.getReg()); 965 if (!Ty.isValid() || (Ty != DstTy)) 966 return false; 967 return true; 968 })) 969 report("Generic Instruction G_PHI has operands with incompatible/missing " 970 "types", 971 MI); 972 break; 973 } 974 case TargetOpcode::STATEPOINT: 975 if (!MI->getOperand(StatepointOpers::IDPos).isImm() || 976 !MI->getOperand(StatepointOpers::NBytesPos).isImm() || 977 !MI->getOperand(StatepointOpers::NCallArgsPos).isImm()) 978 report("meta operands to STATEPOINT not constant!", MI); 979 break; 980 981 auto VerifyStackMapConstant = [&](unsigned Offset) { 982 if (!MI->getOperand(Offset).isImm() || 983 MI->getOperand(Offset).getImm() != StackMaps::ConstantOp || 984 !MI->getOperand(Offset + 1).isImm()) 985 report("stack map constant to STATEPOINT not well formed!", MI); 986 }; 987 const unsigned VarStart = StatepointOpers(MI).getVarIdx(); 988 VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset); 989 VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset); 990 VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset); 991 992 // TODO: verify we have properly encoded deopt arguments 993 }; 994 } 995 996 void 997 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 998 const MachineInstr *MI = MO->getParent(); 999 const MCInstrDesc &MCID = MI->getDesc(); 1000 unsigned NumDefs = MCID.getNumDefs(); 1001 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 1002 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 1003 1004 // The first MCID.NumDefs operands must be explicit register defines 1005 if (MONum < NumDefs) { 1006 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1007 if (!MO->isReg()) 1008 report("Explicit definition must be a register", MO, MONum); 1009 else if (!MO->isDef() && !MCOI.isOptionalDef()) 1010 report("Explicit definition marked as use", MO, MONum); 1011 else if (MO->isImplicit()) 1012 report("Explicit definition marked as implicit", MO, MONum); 1013 } else if (MONum < MCID.getNumOperands()) { 1014 const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; 1015 // Don't check if it's the last operand in a variadic instruction. See, 1016 // e.g., LDM_RET in the arm back end. 1017 if (MO->isReg() && 1018 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { 1019 if (MO->isDef() && !MCOI.isOptionalDef()) 1020 report("Explicit operand marked as def", MO, MONum); 1021 if (MO->isImplicit()) 1022 report("Explicit operand marked as implicit", MO, MONum); 1023 } 1024 1025 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 1026 if (TiedTo != -1) { 1027 if (!MO->isReg()) 1028 report("Tied use must be a register", MO, MONum); 1029 else if (!MO->isTied()) 1030 report("Operand should be tied", MO, MONum); 1031 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 1032 report("Tied def doesn't match MCInstrDesc", MO, MONum); 1033 else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) { 1034 const MachineOperand &MOTied = MI->getOperand(TiedTo); 1035 if (!MOTied.isReg()) 1036 report("Tied counterpart must be a register", &MOTied, TiedTo); 1037 else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) && 1038 MO->getReg() != MOTied.getReg()) 1039 report("Tied physical registers must match.", &MOTied, TiedTo); 1040 } 1041 } else if (MO->isReg() && MO->isTied()) 1042 report("Explicit operand should not be tied", MO, MONum); 1043 } else { 1044 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 1045 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) 1046 report("Extra explicit operand on non-variadic instruction", MO, MONum); 1047 } 1048 1049 switch (MO->getType()) { 1050 case MachineOperand::MO_Register: { 1051 const unsigned Reg = MO->getReg(); 1052 if (!Reg) 1053 return; 1054 if (MRI->tracksLiveness() && !MI->isDebugValue()) 1055 checkLiveness(MO, MONum); 1056 1057 // Verify the consistency of tied operands. 1058 if (MO->isTied()) { 1059 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 1060 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 1061 if (!OtherMO.isReg()) 1062 report("Must be tied to a register", MO, MONum); 1063 if (!OtherMO.isTied()) 1064 report("Missing tie flags on tied operand", MO, MONum); 1065 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 1066 report("Inconsistent tie links", MO, MONum); 1067 if (MONum < MCID.getNumDefs()) { 1068 if (OtherIdx < MCID.getNumOperands()) { 1069 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 1070 report("Explicit def tied to explicit use without tie constraint", 1071 MO, MONum); 1072 } else { 1073 if (!OtherMO.isImplicit()) 1074 report("Explicit def should be tied to implicit use", MO, MONum); 1075 } 1076 } 1077 } 1078 1079 // Verify two-address constraints after leaving SSA form. 1080 unsigned DefIdx; 1081 if (!MRI->isSSA() && MO->isUse() && 1082 MI->isRegTiedToDefOperand(MONum, &DefIdx) && 1083 Reg != MI->getOperand(DefIdx).getReg()) 1084 report("Two-address instruction operands must be identical", MO, MONum); 1085 1086 // Check register classes. 1087 unsigned SubIdx = MO->getSubReg(); 1088 1089 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1090 if (SubIdx) { 1091 report("Illegal subregister index for physical register", MO, MONum); 1092 return; 1093 } 1094 if (MONum < MCID.getNumOperands()) { 1095 if (const TargetRegisterClass *DRC = 1096 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1097 if (!DRC->contains(Reg)) { 1098 report("Illegal physical register for instruction", MO, MONum); 1099 errs() << printReg(Reg, TRI) << " is not a " 1100 << TRI->getRegClassName(DRC) << " register.\n"; 1101 } 1102 } 1103 } 1104 if (MO->isRenamable() && 1105 ((MO->isDef() && MI->hasExtraDefRegAllocReq()) || 1106 (MO->isUse() && MI->hasExtraSrcRegAllocReq()))) { 1107 report("Illegal isRenamable setting for opcode with extra regalloc " 1108 "requirements", 1109 MO, MONum); 1110 return; 1111 } 1112 } else { 1113 // Virtual register. 1114 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 1115 if (!RC) { 1116 // This is a generic virtual register. 1117 1118 // If we're post-Select, we can't have gvregs anymore. 1119 if (isFunctionSelected) { 1120 report("Generic virtual register invalid in a Selected function", 1121 MO, MONum); 1122 return; 1123 } 1124 1125 // The gvreg must have a type and it must not have a SubIdx. 1126 LLT Ty = MRI->getType(Reg); 1127 if (!Ty.isValid()) { 1128 report("Generic virtual register must have a valid type", MO, 1129 MONum); 1130 return; 1131 } 1132 1133 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 1134 1135 // If we're post-RegBankSelect, the gvreg must have a bank. 1136 if (!RegBank && isFunctionRegBankSelected) { 1137 report("Generic virtual register must have a bank in a " 1138 "RegBankSelected function", 1139 MO, MONum); 1140 return; 1141 } 1142 1143 // Make sure the register fits into its register bank if any. 1144 if (RegBank && Ty.isValid() && 1145 RegBank->getSize() < Ty.getSizeInBits()) { 1146 report("Register bank is too small for virtual register", MO, 1147 MONum); 1148 errs() << "Register bank " << RegBank->getName() << " too small(" 1149 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits() 1150 << "-bits\n"; 1151 return; 1152 } 1153 if (SubIdx) { 1154 report("Generic virtual register does not subregister index", MO, 1155 MONum); 1156 return; 1157 } 1158 1159 // If this is a target specific instruction and this operand 1160 // has register class constraint, the virtual register must 1161 // comply to it. 1162 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 1163 MONum < MCID.getNumOperands() && 1164 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1165 report("Virtual register does not match instruction constraint", MO, 1166 MONum); 1167 errs() << "Expect register class " 1168 << TRI->getRegClassName( 1169 TII->getRegClass(MCID, MONum, TRI, *MF)) 1170 << " but got nothing\n"; 1171 return; 1172 } 1173 1174 break; 1175 } 1176 if (SubIdx) { 1177 const TargetRegisterClass *SRC = 1178 TRI->getSubClassWithSubReg(RC, SubIdx); 1179 if (!SRC) { 1180 report("Invalid subregister index for virtual register", MO, MONum); 1181 errs() << "Register class " << TRI->getRegClassName(RC) 1182 << " does not support subreg index " << SubIdx << "\n"; 1183 return; 1184 } 1185 if (RC != SRC) { 1186 report("Invalid register class for subregister index", MO, MONum); 1187 errs() << "Register class " << TRI->getRegClassName(RC) 1188 << " does not fully support subreg index " << SubIdx << "\n"; 1189 return; 1190 } 1191 } 1192 if (MONum < MCID.getNumOperands()) { 1193 if (const TargetRegisterClass *DRC = 1194 TII->getRegClass(MCID, MONum, TRI, *MF)) { 1195 if (SubIdx) { 1196 const TargetRegisterClass *SuperRC = 1197 TRI->getLargestLegalSuperClass(RC, *MF); 1198 if (!SuperRC) { 1199 report("No largest legal super class exists.", MO, MONum); 1200 return; 1201 } 1202 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 1203 if (!DRC) { 1204 report("No matching super-reg register class.", MO, MONum); 1205 return; 1206 } 1207 } 1208 if (!RC->hasSuperClassEq(DRC)) { 1209 report("Illegal virtual register for instruction", MO, MONum); 1210 errs() << "Expected a " << TRI->getRegClassName(DRC) 1211 << " register, but got a " << TRI->getRegClassName(RC) 1212 << " register\n"; 1213 } 1214 } 1215 } 1216 } 1217 break; 1218 } 1219 1220 case MachineOperand::MO_RegisterMask: 1221 regMasks.push_back(MO->getRegMask()); 1222 break; 1223 1224 case MachineOperand::MO_MachineBasicBlock: 1225 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 1226 report("PHI operand is not in the CFG", MO, MONum); 1227 break; 1228 1229 case MachineOperand::MO_FrameIndex: 1230 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 1231 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1232 int FI = MO->getIndex(); 1233 LiveInterval &LI = LiveStks->getInterval(FI); 1234 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 1235 1236 bool stores = MI->mayStore(); 1237 bool loads = MI->mayLoad(); 1238 // For a memory-to-memory move, we need to check if the frame 1239 // index is used for storing or loading, by inspecting the 1240 // memory operands. 1241 if (stores && loads) { 1242 for (auto *MMO : MI->memoperands()) { 1243 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 1244 if (PSV == nullptr) continue; 1245 const FixedStackPseudoSourceValue *Value = 1246 dyn_cast<FixedStackPseudoSourceValue>(PSV); 1247 if (Value == nullptr) continue; 1248 if (Value->getFrameIndex() != FI) continue; 1249 1250 if (MMO->isStore()) 1251 loads = false; 1252 else 1253 stores = false; 1254 break; 1255 } 1256 if (loads == stores) 1257 report("Missing fixed stack memoperand.", MI); 1258 } 1259 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 1260 report("Instruction loads from dead spill slot", MO, MONum); 1261 errs() << "Live stack: " << LI << '\n'; 1262 } 1263 if (stores && !LI.liveAt(Idx.getRegSlot())) { 1264 report("Instruction stores to dead spill slot", MO, MONum); 1265 errs() << "Live stack: " << LI << '\n'; 1266 } 1267 } 1268 break; 1269 1270 default: 1271 break; 1272 } 1273 } 1274 1275 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 1276 unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit, 1277 LaneBitmask LaneMask) { 1278 LiveQueryResult LRQ = LR.Query(UseIdx); 1279 // Check if we have a segment at the use, note however that we only need one 1280 // live subregister range, the others may be dead. 1281 if (!LRQ.valueIn() && LaneMask.none()) { 1282 report("No live segment at use", MO, MONum); 1283 report_context_liverange(LR); 1284 report_context_vreg_regunit(VRegOrUnit); 1285 report_context(UseIdx); 1286 } 1287 if (MO->isKill() && !LRQ.isKill()) { 1288 report("Live range continues after kill flag", MO, MONum); 1289 report_context_liverange(LR); 1290 report_context_vreg_regunit(VRegOrUnit); 1291 if (LaneMask.any()) 1292 report_context_lanemask(LaneMask); 1293 report_context(UseIdx); 1294 } 1295 } 1296 1297 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 1298 unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit, 1299 LaneBitmask LaneMask) { 1300 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 1301 assert(VNI && "NULL valno is not allowed"); 1302 if (VNI->def != DefIdx) { 1303 report("Inconsistent valno->def", MO, MONum); 1304 report_context_liverange(LR); 1305 report_context_vreg_regunit(VRegOrUnit); 1306 if (LaneMask.any()) 1307 report_context_lanemask(LaneMask); 1308 report_context(*VNI); 1309 report_context(DefIdx); 1310 } 1311 } else { 1312 report("No live segment at def", MO, MONum); 1313 report_context_liverange(LR); 1314 report_context_vreg_regunit(VRegOrUnit); 1315 if (LaneMask.any()) 1316 report_context_lanemask(LaneMask); 1317 report_context(DefIdx); 1318 } 1319 // Check that, if the dead def flag is present, LiveInts agree. 1320 if (MO->isDead()) { 1321 LiveQueryResult LRQ = LR.Query(DefIdx); 1322 if (!LRQ.isDeadDef()) { 1323 // In case of physregs we can have a non-dead definition on another 1324 // operand. 1325 bool otherDef = false; 1326 if (!TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) { 1327 const MachineInstr &MI = *MO->getParent(); 1328 for (const MachineOperand &MO : MI.operands()) { 1329 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 1330 continue; 1331 unsigned Reg = MO.getReg(); 1332 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1333 if (*Units == VRegOrUnit) { 1334 otherDef = true; 1335 break; 1336 } 1337 } 1338 } 1339 } 1340 1341 if (!otherDef) { 1342 report("Live range continues after dead def flag", MO, MONum); 1343 report_context_liverange(LR); 1344 report_context_vreg_regunit(VRegOrUnit); 1345 if (LaneMask.any()) 1346 report_context_lanemask(LaneMask); 1347 } 1348 } 1349 } 1350 } 1351 1352 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 1353 const MachineInstr *MI = MO->getParent(); 1354 const unsigned Reg = MO->getReg(); 1355 1356 // Both use and def operands can read a register. 1357 if (MO->readsReg()) { 1358 if (MO->isKill()) 1359 addRegWithSubRegs(regsKilled, Reg); 1360 1361 // Check that LiveVars knows this kill. 1362 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && 1363 MO->isKill()) { 1364 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1365 if (!is_contained(VI.Kills, MI)) 1366 report("Kill missing from LiveVariables", MO, MONum); 1367 } 1368 1369 // Check LiveInts liveness and kill. 1370 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1371 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI); 1372 // Check the cached regunit intervals. 1373 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) { 1374 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) { 1375 if (MRI->isReservedRegUnit(*Units)) 1376 continue; 1377 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units)) 1378 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units); 1379 } 1380 } 1381 1382 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1383 if (LiveInts->hasInterval(Reg)) { 1384 // This is a virtual register interval. 1385 const LiveInterval &LI = LiveInts->getInterval(Reg); 1386 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg); 1387 1388 if (LI.hasSubRanges() && !MO->isDef()) { 1389 unsigned SubRegIdx = MO->getSubReg(); 1390 LaneBitmask MOMask = SubRegIdx != 0 1391 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1392 : MRI->getMaxLaneMaskForVReg(Reg); 1393 LaneBitmask LiveInMask; 1394 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1395 if ((MOMask & SR.LaneMask).none()) 1396 continue; 1397 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 1398 LiveQueryResult LRQ = SR.Query(UseIdx); 1399 if (LRQ.valueIn()) 1400 LiveInMask |= SR.LaneMask; 1401 } 1402 // At least parts of the register has to be live at the use. 1403 if ((LiveInMask & MOMask).none()) { 1404 report("No live subrange at use", MO, MONum); 1405 report_context(LI); 1406 report_context(UseIdx); 1407 } 1408 } 1409 } else { 1410 report("Virtual register has no live interval", MO, MONum); 1411 } 1412 } 1413 } 1414 1415 // Use of a dead register. 1416 if (!regsLive.count(Reg)) { 1417 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1418 // Reserved registers may be used even when 'dead'. 1419 bool Bad = !isReserved(Reg); 1420 // We are fine if just any subregister has a defined value. 1421 if (Bad) { 1422 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); 1423 ++SubRegs) { 1424 if (regsLive.count(*SubRegs)) { 1425 Bad = false; 1426 break; 1427 } 1428 } 1429 } 1430 // If there is an additional implicit-use of a super register we stop 1431 // here. By definition we are fine if the super register is not 1432 // (completely) dead, if the complete super register is dead we will 1433 // get a report for its operand. 1434 if (Bad) { 1435 for (const MachineOperand &MOP : MI->uses()) { 1436 if (!MOP.isReg()) 1437 continue; 1438 if (!MOP.isImplicit()) 1439 continue; 1440 for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid(); 1441 ++SubRegs) { 1442 if (*SubRegs == Reg) { 1443 Bad = false; 1444 break; 1445 } 1446 } 1447 } 1448 } 1449 if (Bad) 1450 report("Using an undefined physical register", MO, MONum); 1451 } else if (MRI->def_empty(Reg)) { 1452 report("Reading virtual register without a def", MO, MONum); 1453 } else { 1454 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1455 // We don't know which virtual registers are live in, so only complain 1456 // if vreg was killed in this MBB. Otherwise keep track of vregs that 1457 // must be live in. PHI instructions are handled separately. 1458 if (MInfo.regsKilled.count(Reg)) 1459 report("Using a killed virtual register", MO, MONum); 1460 else if (!MI->isPHI()) 1461 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 1462 } 1463 } 1464 } 1465 1466 if (MO->isDef()) { 1467 // Register defined. 1468 // TODO: verify that earlyclobber ops are not used. 1469 if (MO->isDead()) 1470 addRegWithSubRegs(regsDead, Reg); 1471 else 1472 addRegWithSubRegs(regsDefined, Reg); 1473 1474 // Verify SSA form. 1475 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && 1476 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 1477 report("Multiple virtual register defs in SSA form", MO, MONum); 1478 1479 // Check LiveInts for a live segment, but only for virtual registers. 1480 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 1481 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 1482 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 1483 1484 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1485 if (LiveInts->hasInterval(Reg)) { 1486 const LiveInterval &LI = LiveInts->getInterval(Reg); 1487 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg); 1488 1489 if (LI.hasSubRanges()) { 1490 unsigned SubRegIdx = MO->getSubReg(); 1491 LaneBitmask MOMask = SubRegIdx != 0 1492 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 1493 : MRI->getMaxLaneMaskForVReg(Reg); 1494 for (const LiveInterval::SubRange &SR : LI.subranges()) { 1495 if ((SR.LaneMask & MOMask).none()) 1496 continue; 1497 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, SR.LaneMask); 1498 } 1499 } 1500 } else { 1501 report("Virtual register has no Live interval", MO, MONum); 1502 } 1503 } 1504 } 1505 } 1506 } 1507 1508 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {} 1509 1510 // This function gets called after visiting all instructions in a bundle. The 1511 // argument points to the bundle header. 1512 // Normal stand-alone instructions are also considered 'bundles', and this 1513 // function is called for all of them. 1514 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 1515 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 1516 set_union(MInfo.regsKilled, regsKilled); 1517 set_subtract(regsLive, regsKilled); regsKilled.clear(); 1518 // Kill any masked registers. 1519 while (!regMasks.empty()) { 1520 const uint32_t *Mask = regMasks.pop_back_val(); 1521 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) 1522 if (TargetRegisterInfo::isPhysicalRegister(*I) && 1523 MachineOperand::clobbersPhysReg(Mask, *I)) 1524 regsDead.push_back(*I); 1525 } 1526 set_subtract(regsLive, regsDead); regsDead.clear(); 1527 set_union(regsLive, regsDefined); regsDefined.clear(); 1528 } 1529 1530 void 1531 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 1532 MBBInfoMap[MBB].regsLiveOut = regsLive; 1533 regsLive.clear(); 1534 1535 if (Indexes) { 1536 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 1537 if (!(stop > lastIndex)) { 1538 report("Block ends before last instruction index", MBB); 1539 errs() << "Block ends at " << stop 1540 << " last instruction was at " << lastIndex << '\n'; 1541 } 1542 lastIndex = stop; 1543 } 1544 } 1545 1546 // Calculate the largest possible vregsPassed sets. These are the registers that 1547 // can pass through an MBB live, but may not be live every time. It is assumed 1548 // that all vregsPassed sets are empty before the call. 1549 void MachineVerifier::calcRegsPassed() { 1550 // First push live-out regs to successors' vregsPassed. Remember the MBBs that 1551 // have any vregsPassed. 1552 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1553 for (const auto &MBB : *MF) { 1554 BBInfo &MInfo = MBBInfoMap[&MBB]; 1555 if (!MInfo.reachable) 1556 continue; 1557 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), 1558 SuE = MBB.succ_end(); SuI != SuE; ++SuI) { 1559 BBInfo &SInfo = MBBInfoMap[*SuI]; 1560 if (SInfo.addPassed(MInfo.regsLiveOut)) 1561 todo.insert(*SuI); 1562 } 1563 } 1564 1565 // Iteratively push vregsPassed to successors. This will converge to the same 1566 // final state regardless of DenseSet iteration order. 1567 while (!todo.empty()) { 1568 const MachineBasicBlock *MBB = *todo.begin(); 1569 todo.erase(MBB); 1570 BBInfo &MInfo = MBBInfoMap[MBB]; 1571 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), 1572 SuE = MBB->succ_end(); SuI != SuE; ++SuI) { 1573 if (*SuI == MBB) 1574 continue; 1575 BBInfo &SInfo = MBBInfoMap[*SuI]; 1576 if (SInfo.addPassed(MInfo.vregsPassed)) 1577 todo.insert(*SuI); 1578 } 1579 } 1580 } 1581 1582 // Calculate the set of virtual registers that must be passed through each basic 1583 // block in order to satisfy the requirements of successor blocks. This is very 1584 // similar to calcRegsPassed, only backwards. 1585 void MachineVerifier::calcRegsRequired() { 1586 // First push live-in regs to predecessors' vregsRequired. 1587 SmallPtrSet<const MachineBasicBlock*, 8> todo; 1588 for (const auto &MBB : *MF) { 1589 BBInfo &MInfo = MBBInfoMap[&MBB]; 1590 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), 1591 PrE = MBB.pred_end(); PrI != PrE; ++PrI) { 1592 BBInfo &PInfo = MBBInfoMap[*PrI]; 1593 if (PInfo.addRequired(MInfo.vregsLiveIn)) 1594 todo.insert(*PrI); 1595 } 1596 } 1597 1598 // Iteratively push vregsRequired to predecessors. This will converge to the 1599 // same final state regardless of DenseSet iteration order. 1600 while (!todo.empty()) { 1601 const MachineBasicBlock *MBB = *todo.begin(); 1602 todo.erase(MBB); 1603 BBInfo &MInfo = MBBInfoMap[MBB]; 1604 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), 1605 PrE = MBB->pred_end(); PrI != PrE; ++PrI) { 1606 if (*PrI == MBB) 1607 continue; 1608 BBInfo &SInfo = MBBInfoMap[*PrI]; 1609 if (SInfo.addRequired(MInfo.vregsRequired)) 1610 todo.insert(*PrI); 1611 } 1612 } 1613 } 1614 1615 // Check PHI instructions at the beginning of MBB. It is assumed that 1616 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 1617 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 1618 BBInfo &MInfo = MBBInfoMap[&MBB]; 1619 1620 SmallPtrSet<const MachineBasicBlock*, 8> seen; 1621 for (const MachineInstr &Phi : MBB) { 1622 if (!Phi.isPHI()) 1623 break; 1624 seen.clear(); 1625 1626 const MachineOperand &MODef = Phi.getOperand(0); 1627 if (!MODef.isReg() || !MODef.isDef()) { 1628 report("Expected first PHI operand to be a register def", &MODef, 0); 1629 continue; 1630 } 1631 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 1632 MODef.isEarlyClobber() || MODef.isDebug()) 1633 report("Unexpected flag on PHI operand", &MODef, 0); 1634 unsigned DefReg = MODef.getReg(); 1635 if (!TargetRegisterInfo::isVirtualRegister(DefReg)) 1636 report("Expected first PHI operand to be a virtual register", &MODef, 0); 1637 1638 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 1639 const MachineOperand &MO0 = Phi.getOperand(I); 1640 if (!MO0.isReg()) { 1641 report("Expected PHI operand to be a register", &MO0, I); 1642 continue; 1643 } 1644 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 1645 MO0.isDebug() || MO0.isTied()) 1646 report("Unexpected flag on PHI operand", &MO0, I); 1647 1648 const MachineOperand &MO1 = Phi.getOperand(I + 1); 1649 if (!MO1.isMBB()) { 1650 report("Expected PHI operand to be a basic block", &MO1, I + 1); 1651 continue; 1652 } 1653 1654 const MachineBasicBlock &Pre = *MO1.getMBB(); 1655 if (!Pre.isSuccessor(&MBB)) { 1656 report("PHI input is not a predecessor block", &MO1, I + 1); 1657 continue; 1658 } 1659 1660 if (MInfo.reachable) { 1661 seen.insert(&Pre); 1662 BBInfo &PrInfo = MBBInfoMap[&Pre]; 1663 if (!MO0.isUndef() && PrInfo.reachable && 1664 !PrInfo.isLiveOut(MO0.getReg())) 1665 report("PHI operand is not live-out from predecessor", &MO0, I); 1666 } 1667 } 1668 1669 // Did we see all predecessors? 1670 if (MInfo.reachable) { 1671 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1672 if (!seen.count(Pred)) { 1673 report("Missing PHI operand", &Phi); 1674 errs() << printMBBReference(*Pred) 1675 << " is a predecessor according to the CFG.\n"; 1676 } 1677 } 1678 } 1679 } 1680 } 1681 1682 void MachineVerifier::visitMachineFunctionAfter() { 1683 calcRegsPassed(); 1684 1685 for (const MachineBasicBlock &MBB : *MF) 1686 checkPHIOps(MBB); 1687 1688 // Now check liveness info if available 1689 calcRegsRequired(); 1690 1691 // Check for killed virtual registers that should be live out. 1692 for (const auto &MBB : *MF) { 1693 BBInfo &MInfo = MBBInfoMap[&MBB]; 1694 for (RegSet::iterator 1695 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1696 ++I) 1697 if (MInfo.regsKilled.count(*I)) { 1698 report("Virtual register killed in block, but needed live out.", &MBB); 1699 errs() << "Virtual register " << printReg(*I) 1700 << " is used after the block.\n"; 1701 } 1702 } 1703 1704 if (!MF->empty()) { 1705 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 1706 for (RegSet::iterator 1707 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; 1708 ++I) { 1709 report("Virtual register defs don't dominate all uses.", MF); 1710 report_context_vreg(*I); 1711 } 1712 } 1713 1714 if (LiveVars) 1715 verifyLiveVariables(); 1716 if (LiveInts) 1717 verifyLiveIntervals(); 1718 } 1719 1720 void MachineVerifier::verifyLiveVariables() { 1721 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 1722 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1723 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1724 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 1725 for (const auto &MBB : *MF) { 1726 BBInfo &MInfo = MBBInfoMap[&MBB]; 1727 1728 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 1729 if (MInfo.vregsRequired.count(Reg)) { 1730 if (!VI.AliveBlocks.test(MBB.getNumber())) { 1731 report("LiveVariables: Block missing from AliveBlocks", &MBB); 1732 errs() << "Virtual register " << printReg(Reg) 1733 << " must be live through the block.\n"; 1734 } 1735 } else { 1736 if (VI.AliveBlocks.test(MBB.getNumber())) { 1737 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 1738 errs() << "Virtual register " << printReg(Reg) 1739 << " is not needed live through the block.\n"; 1740 } 1741 } 1742 } 1743 } 1744 } 1745 1746 void MachineVerifier::verifyLiveIntervals() { 1747 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 1748 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 1749 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 1750 1751 // Spilling and splitting may leave unused registers around. Skip them. 1752 if (MRI->reg_nodbg_empty(Reg)) 1753 continue; 1754 1755 if (!LiveInts->hasInterval(Reg)) { 1756 report("Missing live interval for virtual register", MF); 1757 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 1758 continue; 1759 } 1760 1761 const LiveInterval &LI = LiveInts->getInterval(Reg); 1762 assert(Reg == LI.reg && "Invalid reg to interval mapping"); 1763 verifyLiveInterval(LI); 1764 } 1765 1766 // Verify all the cached regunit intervals. 1767 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 1768 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 1769 verifyLiveRange(*LR, i); 1770 } 1771 1772 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 1773 const VNInfo *VNI, unsigned Reg, 1774 LaneBitmask LaneMask) { 1775 if (VNI->isUnused()) 1776 return; 1777 1778 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 1779 1780 if (!DefVNI) { 1781 report("Value not live at VNInfo def and not marked unused", MF); 1782 report_context(LR, Reg, LaneMask); 1783 report_context(*VNI); 1784 return; 1785 } 1786 1787 if (DefVNI != VNI) { 1788 report("Live segment at def has different VNInfo", MF); 1789 report_context(LR, Reg, LaneMask); 1790 report_context(*VNI); 1791 return; 1792 } 1793 1794 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 1795 if (!MBB) { 1796 report("Invalid VNInfo definition index", MF); 1797 report_context(LR, Reg, LaneMask); 1798 report_context(*VNI); 1799 return; 1800 } 1801 1802 if (VNI->isPHIDef()) { 1803 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 1804 report("PHIDef VNInfo is not defined at MBB start", MBB); 1805 report_context(LR, Reg, LaneMask); 1806 report_context(*VNI); 1807 } 1808 return; 1809 } 1810 1811 // Non-PHI def. 1812 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 1813 if (!MI) { 1814 report("No instruction at VNInfo def index", MBB); 1815 report_context(LR, Reg, LaneMask); 1816 report_context(*VNI); 1817 return; 1818 } 1819 1820 if (Reg != 0) { 1821 bool hasDef = false; 1822 bool isEarlyClobber = false; 1823 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1824 if (!MOI->isReg() || !MOI->isDef()) 1825 continue; 1826 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1827 if (MOI->getReg() != Reg) 1828 continue; 1829 } else { 1830 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || 1831 !TRI->hasRegUnit(MOI->getReg(), Reg)) 1832 continue; 1833 } 1834 if (LaneMask.any() && 1835 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 1836 continue; 1837 hasDef = true; 1838 if (MOI->isEarlyClobber()) 1839 isEarlyClobber = true; 1840 } 1841 1842 if (!hasDef) { 1843 report("Defining instruction does not modify register", MI); 1844 report_context(LR, Reg, LaneMask); 1845 report_context(*VNI); 1846 } 1847 1848 // Early clobber defs begin at USE slots, but other defs must begin at 1849 // DEF slots. 1850 if (isEarlyClobber) { 1851 if (!VNI->def.isEarlyClobber()) { 1852 report("Early clobber def must be at an early-clobber slot", MBB); 1853 report_context(LR, Reg, LaneMask); 1854 report_context(*VNI); 1855 } 1856 } else if (!VNI->def.isRegister()) { 1857 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 1858 report_context(LR, Reg, LaneMask); 1859 report_context(*VNI); 1860 } 1861 } 1862 } 1863 1864 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 1865 const LiveRange::const_iterator I, 1866 unsigned Reg, LaneBitmask LaneMask) 1867 { 1868 const LiveRange::Segment &S = *I; 1869 const VNInfo *VNI = S.valno; 1870 assert(VNI && "Live segment has no valno"); 1871 1872 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 1873 report("Foreign valno in live segment", MF); 1874 report_context(LR, Reg, LaneMask); 1875 report_context(S); 1876 report_context(*VNI); 1877 } 1878 1879 if (VNI->isUnused()) { 1880 report("Live segment valno is marked unused", MF); 1881 report_context(LR, Reg, LaneMask); 1882 report_context(S); 1883 } 1884 1885 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 1886 if (!MBB) { 1887 report("Bad start of live segment, no basic block", MF); 1888 report_context(LR, Reg, LaneMask); 1889 report_context(S); 1890 return; 1891 } 1892 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 1893 if (S.start != MBBStartIdx && S.start != VNI->def) { 1894 report("Live segment must begin at MBB entry or valno def", MBB); 1895 report_context(LR, Reg, LaneMask); 1896 report_context(S); 1897 } 1898 1899 const MachineBasicBlock *EndMBB = 1900 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 1901 if (!EndMBB) { 1902 report("Bad end of live segment, no basic block", MF); 1903 report_context(LR, Reg, LaneMask); 1904 report_context(S); 1905 return; 1906 } 1907 1908 // No more checks for live-out segments. 1909 if (S.end == LiveInts->getMBBEndIdx(EndMBB)) 1910 return; 1911 1912 // RegUnit intervals are allowed dead phis. 1913 if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() && 1914 S.start == VNI->def && S.end == VNI->def.getDeadSlot()) 1915 return; 1916 1917 // The live segment is ending inside EndMBB 1918 const MachineInstr *MI = 1919 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 1920 if (!MI) { 1921 report("Live segment doesn't end at a valid instruction", EndMBB); 1922 report_context(LR, Reg, LaneMask); 1923 report_context(S); 1924 return; 1925 } 1926 1927 // The block slot must refer to a basic block boundary. 1928 if (S.end.isBlock()) { 1929 report("Live segment ends at B slot of an instruction", EndMBB); 1930 report_context(LR, Reg, LaneMask); 1931 report_context(S); 1932 } 1933 1934 if (S.end.isDead()) { 1935 // Segment ends on the dead slot. 1936 // That means there must be a dead def. 1937 if (!SlotIndex::isSameInstr(S.start, S.end)) { 1938 report("Live segment ending at dead slot spans instructions", EndMBB); 1939 report_context(LR, Reg, LaneMask); 1940 report_context(S); 1941 } 1942 } 1943 1944 // A live segment can only end at an early-clobber slot if it is being 1945 // redefined by an early-clobber def. 1946 if (S.end.isEarlyClobber()) { 1947 if (I+1 == LR.end() || (I+1)->start != S.end) { 1948 report("Live segment ending at early clobber slot must be " 1949 "redefined by an EC def in the same instruction", EndMBB); 1950 report_context(LR, Reg, LaneMask); 1951 report_context(S); 1952 } 1953 } 1954 1955 // The following checks only apply to virtual registers. Physreg liveness 1956 // is too weird to check. 1957 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1958 // A live segment can end with either a redefinition, a kill flag on a 1959 // use, or a dead flag on a def. 1960 bool hasRead = false; 1961 bool hasSubRegDef = false; 1962 bool hasDeadDef = false; 1963 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 1964 if (!MOI->isReg() || MOI->getReg() != Reg) 1965 continue; 1966 unsigned Sub = MOI->getSubReg(); 1967 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) 1968 : LaneBitmask::getAll(); 1969 if (MOI->isDef()) { 1970 if (Sub != 0) { 1971 hasSubRegDef = true; 1972 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 1973 // mask for subregister defs. Read-undef defs will be handled by 1974 // readsReg below. 1975 SLM = ~SLM; 1976 } 1977 if (MOI->isDead()) 1978 hasDeadDef = true; 1979 } 1980 if (LaneMask.any() && (LaneMask & SLM).none()) 1981 continue; 1982 if (MOI->readsReg()) 1983 hasRead = true; 1984 } 1985 if (S.end.isDead()) { 1986 // Make sure that the corresponding machine operand for a "dead" live 1987 // range has the dead flag. We cannot perform this check for subregister 1988 // liveranges as partially dead values are allowed. 1989 if (LaneMask.none() && !hasDeadDef) { 1990 report("Instruction ending live segment on dead slot has no dead flag", 1991 MI); 1992 report_context(LR, Reg, LaneMask); 1993 report_context(S); 1994 } 1995 } else { 1996 if (!hasRead) { 1997 // When tracking subregister liveness, the main range must start new 1998 // values on partial register writes, even if there is no read. 1999 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 2000 !hasSubRegDef) { 2001 report("Instruction ending live segment doesn't read the register", 2002 MI); 2003 report_context(LR, Reg, LaneMask); 2004 report_context(S); 2005 } 2006 } 2007 } 2008 } 2009 2010 // Now check all the basic blocks in this live segment. 2011 MachineFunction::const_iterator MFI = MBB->getIterator(); 2012 // Is this live segment the beginning of a non-PHIDef VN? 2013 if (S.start == VNI->def && !VNI->isPHIDef()) { 2014 // Not live-in to any blocks. 2015 if (MBB == EndMBB) 2016 return; 2017 // Skip this block. 2018 ++MFI; 2019 } 2020 while (true) { 2021 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 2022 // We don't know how to track physregs into a landing pad. 2023 if (!TargetRegisterInfo::isVirtualRegister(Reg) && 2024 MFI->isEHPad()) { 2025 if (&*MFI == EndMBB) 2026 break; 2027 ++MFI; 2028 continue; 2029 } 2030 2031 // Is VNI a PHI-def in the current block? 2032 bool IsPHI = VNI->isPHIDef() && 2033 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 2034 2035 // Check that VNI is live-out of all predecessors. 2036 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), 2037 PE = MFI->pred_end(); PI != PE; ++PI) { 2038 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); 2039 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 2040 2041 // All predecessors must have a live-out value. However for a phi 2042 // instruction with subregister intervals 2043 // only one of the subregisters (not necessarily the current one) needs to 2044 // be defined. 2045 if (!PVNI && (LaneMask.none() || !IsPHI) ) { 2046 report("Register not marked live out of predecessor", *PI); 2047 report_context(LR, Reg, LaneMask); 2048 report_context(*VNI); 2049 errs() << " live into " << printMBBReference(*MFI) << '@' 2050 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 2051 << PEnd << '\n'; 2052 continue; 2053 } 2054 2055 // Only PHI-defs can take different predecessor values. 2056 if (!IsPHI && PVNI != VNI) { 2057 report("Different value live out of predecessor", *PI); 2058 report_context(LR, Reg, LaneMask); 2059 errs() << "Valno #" << PVNI->id << " live out of " 2060 << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #" 2061 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 2062 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 2063 } 2064 } 2065 if (&*MFI == EndMBB) 2066 break; 2067 ++MFI; 2068 } 2069 } 2070 2071 void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg, 2072 LaneBitmask LaneMask) { 2073 for (const VNInfo *VNI : LR.valnos) 2074 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 2075 2076 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 2077 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 2078 } 2079 2080 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 2081 unsigned Reg = LI.reg; 2082 assert(TargetRegisterInfo::isVirtualRegister(Reg)); 2083 verifyLiveRange(LI, Reg); 2084 2085 LaneBitmask Mask; 2086 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 2087 for (const LiveInterval::SubRange &SR : LI.subranges()) { 2088 if ((Mask & SR.LaneMask).any()) { 2089 report("Lane masks of sub ranges overlap in live interval", MF); 2090 report_context(LI); 2091 } 2092 if ((SR.LaneMask & ~MaxMask).any()) { 2093 report("Subrange lanemask is invalid", MF); 2094 report_context(LI); 2095 } 2096 if (SR.empty()) { 2097 report("Subrange must not be empty", MF); 2098 report_context(SR, LI.reg, SR.LaneMask); 2099 } 2100 Mask |= SR.LaneMask; 2101 verifyLiveRange(SR, LI.reg, SR.LaneMask); 2102 if (!LI.covers(SR)) { 2103 report("A Subrange is not covered by the main range", MF); 2104 report_context(LI); 2105 } 2106 } 2107 2108 // Check the LI only has one connected component. 2109 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 2110 unsigned NumComp = ConEQ.Classify(LI); 2111 if (NumComp > 1) { 2112 report("Multiple connected components in live interval", MF); 2113 report_context(LI); 2114 for (unsigned comp = 0; comp != NumComp; ++comp) { 2115 errs() << comp << ": valnos"; 2116 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), 2117 E = LI.vni_end(); I!=E; ++I) 2118 if (comp == ConEQ.getEqClass(*I)) 2119 errs() << ' ' << (*I)->id; 2120 errs() << '\n'; 2121 } 2122 } 2123 } 2124 2125 namespace { 2126 2127 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 2128 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 2129 // value is zero. 2130 // We use a bool plus an integer to capture the stack state. 2131 struct StackStateOfBB { 2132 StackStateOfBB() = default; 2133 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 2134 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 2135 ExitIsSetup(ExitSetup) {} 2136 2137 // Can be negative, which means we are setting up a frame. 2138 int EntryValue = 0; 2139 int ExitValue = 0; 2140 bool EntryIsSetup = false; 2141 bool ExitIsSetup = false; 2142 }; 2143 2144 } // end anonymous namespace 2145 2146 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 2147 /// by a FrameDestroy <n>, stack adjustments are identical on all 2148 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 2149 void MachineVerifier::verifyStackFrame() { 2150 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 2151 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 2152 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 2153 return; 2154 2155 SmallVector<StackStateOfBB, 8> SPState; 2156 SPState.resize(MF->getNumBlockIDs()); 2157 df_iterator_default_set<const MachineBasicBlock*> Reachable; 2158 2159 // Visit the MBBs in DFS order. 2160 for (df_ext_iterator<const MachineFunction *, 2161 df_iterator_default_set<const MachineBasicBlock *>> 2162 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 2163 DFI != DFE; ++DFI) { 2164 const MachineBasicBlock *MBB = *DFI; 2165 2166 StackStateOfBB BBState; 2167 // Check the exit state of the DFS stack predecessor. 2168 if (DFI.getPathLength() >= 2) { 2169 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 2170 assert(Reachable.count(StackPred) && 2171 "DFS stack predecessor is already visited.\n"); 2172 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 2173 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 2174 BBState.ExitValue = BBState.EntryValue; 2175 BBState.ExitIsSetup = BBState.EntryIsSetup; 2176 } 2177 2178 // Update stack state by checking contents of MBB. 2179 for (const auto &I : *MBB) { 2180 if (I.getOpcode() == FrameSetupOpcode) { 2181 if (BBState.ExitIsSetup) 2182 report("FrameSetup is after another FrameSetup", &I); 2183 BBState.ExitValue -= TII->getFrameTotalSize(I); 2184 BBState.ExitIsSetup = true; 2185 } 2186 2187 if (I.getOpcode() == FrameDestroyOpcode) { 2188 int Size = TII->getFrameTotalSize(I); 2189 if (!BBState.ExitIsSetup) 2190 report("FrameDestroy is not after a FrameSetup", &I); 2191 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 2192 BBState.ExitValue; 2193 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 2194 report("FrameDestroy <n> is after FrameSetup <m>", &I); 2195 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 2196 << AbsSPAdj << ">.\n"; 2197 } 2198 BBState.ExitValue += Size; 2199 BBState.ExitIsSetup = false; 2200 } 2201 } 2202 SPState[MBB->getNumber()] = BBState; 2203 2204 // Make sure the exit state of any predecessor is consistent with the entry 2205 // state. 2206 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(), 2207 E = MBB->pred_end(); I != E; ++I) { 2208 if (Reachable.count(*I) && 2209 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue || 2210 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 2211 report("The exit stack state of a predecessor is inconsistent.", MBB); 2212 errs() << "Predecessor " << printMBBReference(*(*I)) 2213 << " has exit state (" << SPState[(*I)->getNumber()].ExitValue 2214 << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while " 2215 << printMBBReference(*MBB) << " has entry state (" 2216 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 2217 } 2218 } 2219 2220 // Make sure the entry state of any successor is consistent with the exit 2221 // state. 2222 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), 2223 E = MBB->succ_end(); I != E; ++I) { 2224 if (Reachable.count(*I) && 2225 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue || 2226 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 2227 report("The entry stack state of a successor is inconsistent.", MBB); 2228 errs() << "Successor " << printMBBReference(*(*I)) 2229 << " has entry state (" << SPState[(*I)->getNumber()].EntryValue 2230 << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while " 2231 << printMBBReference(*MBB) << " has exit state (" 2232 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 2233 } 2234 } 2235 2236 // Make sure a basic block with return ends with zero stack adjustment. 2237 if (!MBB->empty() && MBB->back().isReturn()) { 2238 if (BBState.ExitIsSetup) 2239 report("A return block ends with a FrameSetup.", MBB); 2240 if (BBState.ExitValue) 2241 report("A return block ends with a nonzero stack adjustment.", MBB); 2242 } 2243 } 2244 } 2245