1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <limits> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "machinelicm" 58 59 static cl::opt<bool> 60 AvoidSpeculation("avoid-speculation", 61 cl::desc("MachineLICM should avoid speculation"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 HoistCheapInsts("hoist-cheap-insts", 66 cl::desc("MachineLICM should hoist even cheap instructions"), 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> 70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 71 cl::desc("MachineLICM should sink instructions into " 72 "loops to avoid register spills"), 73 cl::init(false), cl::Hidden); 74 75 STATISTIC(NumHoisted, 76 "Number of machine instructions hoisted out of loops"); 77 STATISTIC(NumLowRP, 78 "Number of instructions hoisted in low reg pressure situation"); 79 STATISTIC(NumHighLatency, 80 "Number of high latency instructions hoisted"); 81 STATISTIC(NumCSEed, 82 "Number of hoisted machine instructions CSEed"); 83 STATISTIC(NumPostRAHoisted, 84 "Number of machine instructions hoisted out of loops post regalloc"); 85 86 namespace { 87 88 class MachineLICM : public MachineFunctionPass { 89 const TargetInstrInfo *TII; 90 const TargetLoweringBase *TLI; 91 const TargetRegisterInfo *TRI; 92 const MachineFrameInfo *MFI; 93 MachineRegisterInfo *MRI; 94 TargetSchedModel SchedModel; 95 bool PreRegAlloc = true; 96 97 // Various analyses that we use... 98 AliasAnalysis *AA; // Alias analysis info. 99 MachineLoopInfo *MLI; // Current MachineLoopInfo 100 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 101 102 // State that is updated as we process loops 103 bool Changed; // True if a loop is changed. 104 bool FirstInLoop; // True if it's the first LICM in the loop. 105 MachineLoop *CurLoop; // The current loop we are working on. 106 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 107 108 // Exit blocks for CurLoop. 109 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 110 111 bool isExitBlock(const MachineBasicBlock *MBB) const { 112 return is_contained(ExitBlocks, MBB); 113 } 114 115 // Track 'estimated' register pressure. 116 SmallSet<unsigned, 32> RegSeen; 117 SmallVector<unsigned, 8> RegPressure; 118 119 // Register pressure "limit" per register pressure set. If the pressure 120 // is higher than the limit, then it's considered high. 121 SmallVector<unsigned, 8> RegLimit; 122 123 // Register pressure on path leading from loop preheader to current BB. 124 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 125 126 // For each opcode, keep a list of potential CSE instructions. 127 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 128 129 enum { 130 SpeculateFalse = 0, 131 SpeculateTrue = 1, 132 SpeculateUnknown = 2 133 }; 134 135 // If a MBB does not dominate loop exiting blocks then it may not safe 136 // to hoist loads from this block. 137 // Tri-state: 0 - false, 1 - true, 2 - unknown 138 unsigned SpeculationState; 139 140 public: 141 static char ID; // Pass identification, replacement for typeid 142 143 MachineLICM() : MachineFunctionPass(ID) { 144 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 145 } 146 147 explicit MachineLICM(bool PreRA) 148 : MachineFunctionPass(ID), PreRegAlloc(PreRA) { 149 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 150 } 151 152 bool runOnMachineFunction(MachineFunction &MF) override; 153 154 void getAnalysisUsage(AnalysisUsage &AU) const override { 155 AU.addRequired<MachineLoopInfo>(); 156 AU.addRequired<MachineDominatorTree>(); 157 AU.addRequired<AAResultsWrapperPass>(); 158 AU.addPreserved<MachineLoopInfo>(); 159 AU.addPreserved<MachineDominatorTree>(); 160 MachineFunctionPass::getAnalysisUsage(AU); 161 } 162 163 void releaseMemory() override { 164 RegSeen.clear(); 165 RegPressure.clear(); 166 RegLimit.clear(); 167 BackTrace.clear(); 168 CSEMap.clear(); 169 } 170 171 private: 172 /// Keep track of information about hoisting candidates. 173 struct CandidateInfo { 174 MachineInstr *MI; 175 unsigned Def; 176 int FI; 177 178 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 179 : MI(mi), Def(def), FI(fi) {} 180 }; 181 182 void HoistRegionPostRA(); 183 184 void HoistPostRA(MachineInstr *MI, unsigned Def); 185 186 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 187 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 188 SmallVectorImpl<CandidateInfo> &Candidates); 189 190 void AddToLiveIns(unsigned Reg); 191 192 bool IsLICMCandidate(MachineInstr &I); 193 194 bool IsLoopInvariantInst(MachineInstr &I); 195 196 bool HasLoopPHIUse(const MachineInstr *MI) const; 197 198 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 199 unsigned Reg) const; 200 201 bool IsCheapInstruction(MachineInstr &MI) const; 202 203 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 204 bool Cheap); 205 206 void UpdateBackTraceRegPressure(const MachineInstr *MI); 207 208 bool IsProfitableToHoist(MachineInstr &MI); 209 210 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 211 212 void EnterScope(MachineBasicBlock *MBB); 213 214 void ExitScope(MachineBasicBlock *MBB); 215 216 void ExitScopeIfDone( 217 MachineDomTreeNode *Node, 218 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 219 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 220 221 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 222 223 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 224 225 void SinkIntoLoop(); 226 227 void InitRegPressure(MachineBasicBlock *BB); 228 229 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 230 bool ConsiderSeen, 231 bool ConsiderUnseenAsDef); 232 233 void UpdateRegPressure(const MachineInstr *MI, 234 bool ConsiderUnseenAsDef = false); 235 236 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 237 238 const MachineInstr * 239 LookForDuplicate(const MachineInstr *MI, 240 std::vector<const MachineInstr *> &PrevMIs); 241 242 bool EliminateCSE( 243 MachineInstr *MI, 244 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 245 246 bool MayCSE(MachineInstr *MI); 247 248 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 249 250 void InitCSEMap(MachineBasicBlock *BB); 251 252 MachineBasicBlock *getCurPreheader(); 253 }; 254 255 } // end anonymous namespace 256 257 char MachineLICM::ID = 0; 258 259 char &llvm::MachineLICMID = MachineLICM::ID; 260 261 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 262 "Machine Loop Invariant Code Motion", false, false) 263 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 264 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 265 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 266 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 267 "Machine Loop Invariant Code Motion", false, false) 268 269 /// Test if the given loop is the outer-most loop that has a unique predecessor. 270 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 271 // Check whether this loop even has a unique predecessor. 272 if (!CurLoop->getLoopPredecessor()) 273 return false; 274 // Ok, now check to see if any of its outer loops do. 275 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 276 if (L->getLoopPredecessor()) 277 return false; 278 // None of them did, so this is the outermost with a unique predecessor. 279 return true; 280 } 281 282 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 283 if (skipFunction(MF.getFunction())) 284 return false; 285 286 Changed = FirstInLoop = false; 287 const TargetSubtargetInfo &ST = MF.getSubtarget(); 288 TII = ST.getInstrInfo(); 289 TLI = ST.getTargetLowering(); 290 TRI = ST.getRegisterInfo(); 291 MFI = &MF.getFrameInfo(); 292 MRI = &MF.getRegInfo(); 293 SchedModel.init(ST.getSchedModel(), &ST, TII); 294 295 PreRegAlloc = MRI->isSSA(); 296 297 if (PreRegAlloc) 298 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 299 else 300 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 301 DEBUG(dbgs() << MF.getName() << " ********\n"); 302 303 if (PreRegAlloc) { 304 // Estimate register pressure during pre-regalloc pass. 305 unsigned NumRPS = TRI->getNumRegPressureSets(); 306 RegPressure.resize(NumRPS); 307 std::fill(RegPressure.begin(), RegPressure.end(), 0); 308 RegLimit.resize(NumRPS); 309 for (unsigned i = 0, e = NumRPS; i != e; ++i) 310 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 311 } 312 313 // Get our Loop information... 314 MLI = &getAnalysis<MachineLoopInfo>(); 315 DT = &getAnalysis<MachineDominatorTree>(); 316 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 317 318 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 319 while (!Worklist.empty()) { 320 CurLoop = Worklist.pop_back_val(); 321 CurPreheader = nullptr; 322 ExitBlocks.clear(); 323 324 // If this is done before regalloc, only visit outer-most preheader-sporting 325 // loops. 326 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 327 Worklist.append(CurLoop->begin(), CurLoop->end()); 328 continue; 329 } 330 331 CurLoop->getExitBlocks(ExitBlocks); 332 333 if (!PreRegAlloc) 334 HoistRegionPostRA(); 335 else { 336 // CSEMap is initialized for loop header when the first instruction is 337 // being hoisted. 338 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 339 FirstInLoop = true; 340 HoistOutOfLoop(N); 341 CSEMap.clear(); 342 343 if (SinkInstsToAvoidSpills) 344 SinkIntoLoop(); 345 } 346 } 347 348 return Changed; 349 } 350 351 /// Return true if instruction stores to the specified frame. 352 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 353 // If we lost memory operands, conservatively assume that the instruction 354 // writes to all slots. 355 if (MI->memoperands_empty()) 356 return true; 357 for (const MachineMemOperand *MemOp : MI->memoperands()) { 358 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 359 continue; 360 if (const FixedStackPseudoSourceValue *Value = 361 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 362 if (Value->getFrameIndex() == FI) 363 return true; 364 } 365 } 366 return false; 367 } 368 369 /// Examine the instruction for potentai LICM candidate. Also 370 /// gather register def and frame object update information. 371 void MachineLICM::ProcessMI(MachineInstr *MI, 372 BitVector &PhysRegDefs, 373 BitVector &PhysRegClobbers, 374 SmallSet<int, 32> &StoredFIs, 375 SmallVectorImpl<CandidateInfo> &Candidates) { 376 bool RuledOut = false; 377 bool HasNonInvariantUse = false; 378 unsigned Def = 0; 379 for (const MachineOperand &MO : MI->operands()) { 380 if (MO.isFI()) { 381 // Remember if the instruction stores to the frame index. 382 int FI = MO.getIndex(); 383 if (!StoredFIs.count(FI) && 384 MFI->isSpillSlotObjectIndex(FI) && 385 InstructionStoresToFI(MI, FI)) 386 StoredFIs.insert(FI); 387 HasNonInvariantUse = true; 388 continue; 389 } 390 391 // We can't hoist an instruction defining a physreg that is clobbered in 392 // the loop. 393 if (MO.isRegMask()) { 394 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 395 continue; 396 } 397 398 if (!MO.isReg()) 399 continue; 400 unsigned Reg = MO.getReg(); 401 if (!Reg) 402 continue; 403 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 404 "Not expecting virtual register!"); 405 406 if (!MO.isDef()) { 407 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 408 // If it's using a non-loop-invariant register, then it's obviously not 409 // safe to hoist. 410 HasNonInvariantUse = true; 411 continue; 412 } 413 414 if (MO.isImplicit()) { 415 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 416 PhysRegClobbers.set(*AI); 417 if (!MO.isDead()) 418 // Non-dead implicit def? This cannot be hoisted. 419 RuledOut = true; 420 // No need to check if a dead implicit def is also defined by 421 // another instruction. 422 continue; 423 } 424 425 // FIXME: For now, avoid instructions with multiple defs, unless 426 // it's a dead implicit def. 427 if (Def) 428 RuledOut = true; 429 else 430 Def = Reg; 431 432 // If we have already seen another instruction that defines the same 433 // register, then this is not safe. Two defs is indicated by setting a 434 // PhysRegClobbers bit. 435 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 436 if (PhysRegDefs.test(*AS)) 437 PhysRegClobbers.set(*AS); 438 PhysRegDefs.set(*AS); 439 } 440 if (PhysRegClobbers.test(Reg)) 441 // MI defined register is seen defined by another instruction in 442 // the loop, it cannot be a LICM candidate. 443 RuledOut = true; 444 } 445 446 // Only consider reloads for now and remats which do not have register 447 // operands. FIXME: Consider unfold load folding instructions. 448 if (Def && !RuledOut) { 449 int FI = std::numeric_limits<int>::min(); 450 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 451 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 452 Candidates.push_back(CandidateInfo(MI, Def, FI)); 453 } 454 } 455 456 /// Walk the specified region of the CFG and hoist loop invariants out to the 457 /// preheader. 458 void MachineLICM::HoistRegionPostRA() { 459 MachineBasicBlock *Preheader = getCurPreheader(); 460 if (!Preheader) 461 return; 462 463 unsigned NumRegs = TRI->getNumRegs(); 464 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 465 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 466 467 SmallVector<CandidateInfo, 32> Candidates; 468 SmallSet<int, 32> StoredFIs; 469 470 // Walk the entire region, count number of defs for each register, and 471 // collect potential LICM candidates. 472 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 473 for (MachineBasicBlock *BB : Blocks) { 474 // If the header of the loop containing this basic block is a landing pad, 475 // then don't try to hoist instructions out of this loop. 476 const MachineLoop *ML = MLI->getLoopFor(BB); 477 if (ML && ML->getHeader()->isEHPad()) continue; 478 479 // Conservatively treat live-in's as an external def. 480 // FIXME: That means a reload that're reused in successor block(s) will not 481 // be LICM'ed. 482 for (const auto &LI : BB->liveins()) { 483 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 484 PhysRegDefs.set(*AI); 485 } 486 487 SpeculationState = SpeculateUnknown; 488 for (MachineInstr &MI : *BB) 489 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 490 } 491 492 // Gather the registers read / clobbered by the terminator. 493 BitVector TermRegs(NumRegs); 494 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 495 if (TI != Preheader->end()) { 496 for (const MachineOperand &MO : TI->operands()) { 497 if (!MO.isReg()) 498 continue; 499 unsigned Reg = MO.getReg(); 500 if (!Reg) 501 continue; 502 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 503 TermRegs.set(*AI); 504 } 505 } 506 507 // Now evaluate whether the potential candidates qualify. 508 // 1. Check if the candidate defined register is defined by another 509 // instruction in the loop. 510 // 2. If the candidate is a load from stack slot (always true for now), 511 // check if the slot is stored anywhere in the loop. 512 // 3. Make sure candidate def should not clobber 513 // registers read by the terminator. Similarly its def should not be 514 // clobbered by the terminator. 515 for (CandidateInfo &Candidate : Candidates) { 516 if (Candidate.FI != std::numeric_limits<int>::min() && 517 StoredFIs.count(Candidate.FI)) 518 continue; 519 520 unsigned Def = Candidate.Def; 521 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 522 bool Safe = true; 523 MachineInstr *MI = Candidate.MI; 524 for (const MachineOperand &MO : MI->operands()) { 525 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 526 continue; 527 unsigned Reg = MO.getReg(); 528 if (PhysRegDefs.test(Reg) || 529 PhysRegClobbers.test(Reg)) { 530 // If it's using a non-loop-invariant register, then it's obviously 531 // not safe to hoist. 532 Safe = false; 533 break; 534 } 535 } 536 if (Safe) 537 HoistPostRA(MI, Candidate.Def); 538 } 539 } 540 } 541 542 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 543 /// sure it is not killed by any instructions in the loop. 544 void MachineLICM::AddToLiveIns(unsigned Reg) { 545 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 546 for (MachineBasicBlock *BB : Blocks) { 547 if (!BB->isLiveIn(Reg)) 548 BB->addLiveIn(Reg); 549 for (MachineInstr &MI : *BB) { 550 for (MachineOperand &MO : MI.operands()) { 551 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 552 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 553 MO.setIsKill(false); 554 } 555 } 556 } 557 } 558 559 /// When an instruction is found to only use loop invariant operands that is 560 /// safe to hoist, this instruction is called to do the dirty work. 561 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 562 MachineBasicBlock *Preheader = getCurPreheader(); 563 564 // Now move the instructions to the predecessor, inserting it before any 565 // terminator instructions. 566 DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) << " from " 567 << printMBBReference(*MI->getParent()) << ": " << *MI); 568 569 // Splice the instruction to the preheader. 570 MachineBasicBlock *MBB = MI->getParent(); 571 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 572 573 // Add register to livein list to all the BBs in the current loop since a 574 // loop invariant must be kept live throughout the whole loop. This is 575 // important to ensure later passes do not scavenge the def register. 576 AddToLiveIns(Def); 577 578 ++NumPostRAHoisted; 579 Changed = true; 580 } 581 582 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 583 /// may not be safe to hoist. 584 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 585 if (SpeculationState != SpeculateUnknown) 586 return SpeculationState == SpeculateFalse; 587 588 if (BB != CurLoop->getHeader()) { 589 // Check loop exiting blocks. 590 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 591 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 592 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 593 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 594 SpeculationState = SpeculateTrue; 595 return false; 596 } 597 } 598 599 SpeculationState = SpeculateFalse; 600 return true; 601 } 602 603 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 604 DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 605 606 // Remember livein register pressure. 607 BackTrace.push_back(RegPressure); 608 } 609 610 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 611 DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 612 BackTrace.pop_back(); 613 } 614 615 /// Destroy scope for the MBB that corresponds to the given dominator tree node 616 /// if its a leaf or all of its children are done. Walk up the dominator tree to 617 /// destroy ancestors which are now done. 618 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 619 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 620 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 621 if (OpenChildren[Node]) 622 return; 623 624 // Pop scope. 625 ExitScope(Node->getBlock()); 626 627 // Now traverse upwards to pop ancestors whose offsprings are all done. 628 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 629 unsigned Left = --OpenChildren[Parent]; 630 if (Left != 0) 631 break; 632 ExitScope(Parent->getBlock()); 633 Node = Parent; 634 } 635 } 636 637 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 638 /// specified header block, and that are in the current loop) in depth first 639 /// order w.r.t the DominatorTree. This allows us to visit definitions before 640 /// uses, allowing us to hoist a loop body in one pass without iteration. 641 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 642 MachineBasicBlock *Preheader = getCurPreheader(); 643 if (!Preheader) 644 return; 645 646 SmallVector<MachineDomTreeNode*, 32> Scopes; 647 SmallVector<MachineDomTreeNode*, 8> WorkList; 648 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 649 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 650 651 // Perform a DFS walk to determine the order of visit. 652 WorkList.push_back(HeaderN); 653 while (!WorkList.empty()) { 654 MachineDomTreeNode *Node = WorkList.pop_back_val(); 655 assert(Node && "Null dominator tree node?"); 656 MachineBasicBlock *BB = Node->getBlock(); 657 658 // If the header of the loop containing this basic block is a landing pad, 659 // then don't try to hoist instructions out of this loop. 660 const MachineLoop *ML = MLI->getLoopFor(BB); 661 if (ML && ML->getHeader()->isEHPad()) 662 continue; 663 664 // If this subregion is not in the top level loop at all, exit. 665 if (!CurLoop->contains(BB)) 666 continue; 667 668 Scopes.push_back(Node); 669 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 670 unsigned NumChildren = Children.size(); 671 672 // Don't hoist things out of a large switch statement. This often causes 673 // code to be hoisted that wasn't going to be executed, and increases 674 // register pressure in a situation where it's likely to matter. 675 if (BB->succ_size() >= 25) 676 NumChildren = 0; 677 678 OpenChildren[Node] = NumChildren; 679 // Add children in reverse order as then the next popped worklist node is 680 // the first child of this node. This means we ultimately traverse the 681 // DOM tree in exactly the same order as if we'd recursed. 682 for (int i = (int)NumChildren-1; i >= 0; --i) { 683 MachineDomTreeNode *Child = Children[i]; 684 ParentMap[Child] = Node; 685 WorkList.push_back(Child); 686 } 687 } 688 689 if (Scopes.size() == 0) 690 return; 691 692 // Compute registers which are livein into the loop headers. 693 RegSeen.clear(); 694 BackTrace.clear(); 695 InitRegPressure(Preheader); 696 697 // Now perform LICM. 698 for (MachineDomTreeNode *Node : Scopes) { 699 MachineBasicBlock *MBB = Node->getBlock(); 700 701 EnterScope(MBB); 702 703 // Process the block 704 SpeculationState = SpeculateUnknown; 705 for (MachineBasicBlock::iterator 706 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 707 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 708 MachineInstr *MI = &*MII; 709 if (!Hoist(MI, Preheader)) 710 UpdateRegPressure(MI); 711 MII = NextMII; 712 } 713 714 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 715 ExitScopeIfDone(Node, OpenChildren, ParentMap); 716 } 717 } 718 719 /// Sink instructions into loops if profitable. This especially tries to prevent 720 /// register spills caused by register pressure if there is little to no 721 /// overhead moving instructions into loops. 722 void MachineLICM::SinkIntoLoop() { 723 MachineBasicBlock *Preheader = getCurPreheader(); 724 if (!Preheader) 725 return; 726 727 SmallVector<MachineInstr *, 8> Candidates; 728 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 729 I != Preheader->instr_end(); ++I) { 730 // We need to ensure that we can safely move this instruction into the loop. 731 // As such, it must not have side-effects, e.g. such as a call has. 732 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 733 Candidates.push_back(&*I); 734 } 735 736 for (MachineInstr *I : Candidates) { 737 const MachineOperand &MO = I->getOperand(0); 738 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 739 continue; 740 if (!MRI->hasOneDef(MO.getReg())) 741 continue; 742 bool CanSink = true; 743 MachineBasicBlock *B = nullptr; 744 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 745 // FIXME: Come up with a proper cost model that estimates whether sinking 746 // the instruction (and thus possibly executing it on every loop 747 // iteration) is more expensive than a register. 748 // For now assumes that copies are cheap and thus almost always worth it. 749 if (!MI.isCopy()) { 750 CanSink = false; 751 break; 752 } 753 if (!B) { 754 B = MI.getParent(); 755 continue; 756 } 757 B = DT->findNearestCommonDominator(B, MI.getParent()); 758 if (!B) { 759 CanSink = false; 760 break; 761 } 762 } 763 if (!CanSink || !B || B == Preheader) 764 continue; 765 B->splice(B->getFirstNonPHI(), Preheader, I); 766 } 767 } 768 769 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 770 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 771 } 772 773 /// Find all virtual register references that are liveout of the preheader to 774 /// initialize the starting "register pressure". Note this does not count live 775 /// through (livein but not used) registers. 776 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 777 std::fill(RegPressure.begin(), RegPressure.end(), 0); 778 779 // If the preheader has only a single predecessor and it ends with a 780 // fallthrough or an unconditional branch, then scan its predecessor for live 781 // defs as well. This happens whenever the preheader is created by splitting 782 // the critical edge from the loop predecessor to the loop header. 783 if (BB->pred_size() == 1) { 784 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 785 SmallVector<MachineOperand, 4> Cond; 786 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 787 InitRegPressure(*BB->pred_begin()); 788 } 789 790 for (const MachineInstr &MI : *BB) 791 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 792 } 793 794 /// Update estimate of register pressure after the specified instruction. 795 void MachineLICM::UpdateRegPressure(const MachineInstr *MI, 796 bool ConsiderUnseenAsDef) { 797 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 798 for (const auto &RPIdAndCost : Cost) { 799 unsigned Class = RPIdAndCost.first; 800 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 801 RegPressure[Class] = 0; 802 else 803 RegPressure[Class] += RPIdAndCost.second; 804 } 805 } 806 807 /// Calculate the additional register pressure that the registers used in MI 808 /// cause. 809 /// 810 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 811 /// figure out which usages are live-ins. 812 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 813 DenseMap<unsigned, int> 814 MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 815 bool ConsiderUnseenAsDef) { 816 DenseMap<unsigned, int> Cost; 817 if (MI->isImplicitDef()) 818 return Cost; 819 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 820 const MachineOperand &MO = MI->getOperand(i); 821 if (!MO.isReg() || MO.isImplicit()) 822 continue; 823 unsigned Reg = MO.getReg(); 824 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 825 continue; 826 827 // FIXME: It seems bad to use RegSeen only for some of these calculations. 828 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 829 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 830 831 RegClassWeight W = TRI->getRegClassWeight(RC); 832 int RCCost = 0; 833 if (MO.isDef()) 834 RCCost = W.RegWeight; 835 else { 836 bool isKill = isOperandKill(MO, MRI); 837 if (isNew && !isKill && ConsiderUnseenAsDef) 838 // Haven't seen this, it must be a livein. 839 RCCost = W.RegWeight; 840 else if (!isNew && isKill) 841 RCCost = -W.RegWeight; 842 } 843 if (RCCost == 0) 844 continue; 845 const int *PS = TRI->getRegClassPressureSets(RC); 846 for (; *PS != -1; ++PS) { 847 if (Cost.find(*PS) == Cost.end()) 848 Cost[*PS] = RCCost; 849 else 850 Cost[*PS] += RCCost; 851 } 852 } 853 return Cost; 854 } 855 856 /// Return true if this machine instruction loads from global offset table or 857 /// constant pool. 858 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 859 assert(MI.mayLoad() && "Expected MI that loads!"); 860 861 // If we lost memory operands, conservatively assume that the instruction 862 // reads from everything.. 863 if (MI.memoperands_empty()) 864 return true; 865 866 for (MachineMemOperand *MemOp : MI.memoperands()) 867 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 868 if (PSV->isGOT() || PSV->isConstantPool()) 869 return true; 870 871 return false; 872 } 873 874 /// Returns true if the instruction may be a suitable candidate for LICM. 875 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 876 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 877 // Check if it's safe to move the instruction. 878 bool DontMoveAcrossStore = true; 879 if (!I.isSafeToMove(AA, DontMoveAcrossStore)) 880 return false; 881 882 // If it is load then check if it is guaranteed to execute by making sure that 883 // it dominates all exiting blocks. If it doesn't, then there is a path out of 884 // the loop which does not execute this load, so we can't hoist it. Loads 885 // from constant memory are not safe to speculate all the time, for example 886 // indexed load from a jump table. 887 // Stores and side effects are already checked by isSafeToMove. 888 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 889 !IsGuaranteedToExecute(I.getParent())) 890 return false; 891 892 return true; 893 } 894 895 /// Returns true if the instruction is loop invariant. 896 /// I.e., all virtual register operands are defined outside of the loop, 897 /// physical registers aren't accessed explicitly, and there are no side 898 /// effects that aren't captured by the operands or other flags. 899 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 900 if (!IsLICMCandidate(I)) 901 return false; 902 903 // The instruction is loop invariant if all of its operands are. 904 for (const MachineOperand &MO : I.operands()) { 905 if (!MO.isReg()) 906 continue; 907 908 unsigned Reg = MO.getReg(); 909 if (Reg == 0) continue; 910 911 // Don't hoist an instruction that uses or defines a physical register. 912 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 913 if (MO.isUse()) { 914 // If the physreg has no defs anywhere, it's just an ambient register 915 // and we can freely move its uses. Alternatively, if it's allocatable, 916 // it could get allocated to something with a def during allocation. 917 // However, if the physreg is known to always be caller saved/restored 918 // then this use is safe to hoist. 919 if (!MRI->isConstantPhysReg(Reg) && 920 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 921 return false; 922 // Otherwise it's safe to move. 923 continue; 924 } else if (!MO.isDead()) { 925 // A def that isn't dead. We can't move it. 926 return false; 927 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 928 // If the reg is live into the loop, we can't hoist an instruction 929 // which would clobber it. 930 return false; 931 } 932 } 933 934 if (!MO.isUse()) 935 continue; 936 937 assert(MRI->getVRegDef(Reg) && 938 "Machine instr not mapped for this vreg?!"); 939 940 // If the loop contains the definition of an operand, then the instruction 941 // isn't loop invariant. 942 if (CurLoop->contains(MRI->getVRegDef(Reg))) 943 return false; 944 } 945 946 // If we got this far, the instruction is loop invariant! 947 return true; 948 } 949 950 /// Return true if the specified instruction is used by a phi node and hoisting 951 /// it could cause a copy to be inserted. 952 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 953 SmallVector<const MachineInstr*, 8> Work(1, MI); 954 do { 955 MI = Work.pop_back_val(); 956 for (const MachineOperand &MO : MI->operands()) { 957 if (!MO.isReg() || !MO.isDef()) 958 continue; 959 unsigned Reg = MO.getReg(); 960 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 961 continue; 962 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 963 // A PHI may cause a copy to be inserted. 964 if (UseMI.isPHI()) { 965 // A PHI inside the loop causes a copy because the live range of Reg is 966 // extended across the PHI. 967 if (CurLoop->contains(&UseMI)) 968 return true; 969 // A PHI in an exit block can cause a copy to be inserted if the PHI 970 // has multiple predecessors in the loop with different values. 971 // For now, approximate by rejecting all exit blocks. 972 if (isExitBlock(UseMI.getParent())) 973 return true; 974 continue; 975 } 976 // Look past copies as well. 977 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 978 Work.push_back(&UseMI); 979 } 980 } 981 } while (!Work.empty()); 982 return false; 983 } 984 985 /// Compute operand latency between a def of 'Reg' and an use in the current 986 /// loop, return true if the target considered it high. 987 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 988 unsigned DefIdx, unsigned Reg) const { 989 if (MRI->use_nodbg_empty(Reg)) 990 return false; 991 992 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 993 if (UseMI.isCopyLike()) 994 continue; 995 if (!CurLoop->contains(UseMI.getParent())) 996 continue; 997 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 998 const MachineOperand &MO = UseMI.getOperand(i); 999 if (!MO.isReg() || !MO.isUse()) 1000 continue; 1001 unsigned MOReg = MO.getReg(); 1002 if (MOReg != Reg) 1003 continue; 1004 1005 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1006 return true; 1007 } 1008 1009 // Only look at the first in loop use. 1010 break; 1011 } 1012 1013 return false; 1014 } 1015 1016 /// Return true if the instruction is marked "cheap" or the operand latency 1017 /// between its def and a use is one or less. 1018 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 1019 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1020 return true; 1021 1022 bool isCheap = false; 1023 unsigned NumDefs = MI.getDesc().getNumDefs(); 1024 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1025 MachineOperand &DefMO = MI.getOperand(i); 1026 if (!DefMO.isReg() || !DefMO.isDef()) 1027 continue; 1028 --NumDefs; 1029 unsigned Reg = DefMO.getReg(); 1030 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1031 continue; 1032 1033 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1034 return false; 1035 isCheap = true; 1036 } 1037 1038 return isCheap; 1039 } 1040 1041 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1042 /// given cost matrix can cause high register pressure. 1043 bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1044 bool CheapInstr) { 1045 for (const auto &RPIdAndCost : Cost) { 1046 if (RPIdAndCost.second <= 0) 1047 continue; 1048 1049 unsigned Class = RPIdAndCost.first; 1050 int Limit = RegLimit[Class]; 1051 1052 // Don't hoist cheap instructions if they would increase register pressure, 1053 // even if we're under the limit. 1054 if (CheapInstr && !HoistCheapInsts) 1055 return true; 1056 1057 for (const auto &RP : BackTrace) 1058 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1059 return true; 1060 } 1061 1062 return false; 1063 } 1064 1065 /// Traverse the back trace from header to the current block and update their 1066 /// register pressures to reflect the effect of hoisting MI from the current 1067 /// block to the preheader. 1068 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1069 // First compute the 'cost' of the instruction, i.e. its contribution 1070 // to register pressure. 1071 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1072 /*ConsiderUnseenAsDef=*/false); 1073 1074 // Update register pressure of blocks from loop header to current block. 1075 for (auto &RP : BackTrace) 1076 for (const auto &RPIdAndCost : Cost) 1077 RP[RPIdAndCost.first] += RPIdAndCost.second; 1078 } 1079 1080 /// Return true if it is potentially profitable to hoist the given loop 1081 /// invariant. 1082 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1083 if (MI.isImplicitDef()) 1084 return true; 1085 1086 // Besides removing computation from the loop, hoisting an instruction has 1087 // these effects: 1088 // 1089 // - The value defined by the instruction becomes live across the entire 1090 // loop. This increases register pressure in the loop. 1091 // 1092 // - If the value is used by a PHI in the loop, a copy will be required for 1093 // lowering the PHI after extending the live range. 1094 // 1095 // - When hoisting the last use of a value in the loop, that value no longer 1096 // needs to be live in the loop. This lowers register pressure in the loop. 1097 1098 bool CheapInstr = IsCheapInstruction(MI); 1099 bool CreatesCopy = HasLoopPHIUse(&MI); 1100 1101 // Don't hoist a cheap instruction if it would create a copy in the loop. 1102 if (CheapInstr && CreatesCopy) { 1103 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1104 return false; 1105 } 1106 1107 // Rematerializable instructions should always be hoisted since the register 1108 // allocator can just pull them down again when needed. 1109 if (TII->isTriviallyReMaterializable(MI, AA)) 1110 return true; 1111 1112 // FIXME: If there are long latency loop-invariant instructions inside the 1113 // loop at this point, why didn't the optimizer's LICM hoist them? 1114 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1115 const MachineOperand &MO = MI.getOperand(i); 1116 if (!MO.isReg() || MO.isImplicit()) 1117 continue; 1118 unsigned Reg = MO.getReg(); 1119 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1120 continue; 1121 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1122 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1123 ++NumHighLatency; 1124 return true; 1125 } 1126 } 1127 1128 // Estimate register pressure to determine whether to LICM the instruction. 1129 // In low register pressure situation, we can be more aggressive about 1130 // hoisting. Also, favors hoisting long latency instructions even in 1131 // moderately high pressure situation. 1132 // Cheap instructions will only be hoisted if they don't increase register 1133 // pressure at all. 1134 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1135 /*ConsiderUnseenAsDef=*/false); 1136 1137 // Visit BBs from header to current BB, if hoisting this doesn't cause 1138 // high register pressure, then it's safe to proceed. 1139 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1140 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1141 ++NumLowRP; 1142 return true; 1143 } 1144 1145 // Don't risk increasing register pressure if it would create copies. 1146 if (CreatesCopy) { 1147 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1148 return false; 1149 } 1150 1151 // Do not "speculate" in high register pressure situation. If an 1152 // instruction is not guaranteed to be executed in the loop, it's best to be 1153 // conservative. 1154 if (AvoidSpeculation && 1155 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1156 DEBUG(dbgs() << "Won't speculate: " << MI); 1157 return false; 1158 } 1159 1160 // High register pressure situation, only hoist if the instruction is going 1161 // to be remat'ed. 1162 if (!TII->isTriviallyReMaterializable(MI, AA) && 1163 !MI.isDereferenceableInvariantLoad(AA)) { 1164 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1165 return false; 1166 } 1167 1168 return true; 1169 } 1170 1171 /// Unfold a load from the given machineinstr if the load itself could be 1172 /// hoisted. Return the unfolded and hoistable load, or null if the load 1173 /// couldn't be unfolded or if it wouldn't be hoistable. 1174 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1175 // Don't unfold simple loads. 1176 if (MI->canFoldAsLoad()) 1177 return nullptr; 1178 1179 // If not, we may be able to unfold a load and hoist that. 1180 // First test whether the instruction is loading from an amenable 1181 // memory location. 1182 if (!MI->isDereferenceableInvariantLoad(AA)) 1183 return nullptr; 1184 1185 // Next determine the register class for a temporary register. 1186 unsigned LoadRegIndex; 1187 unsigned NewOpc = 1188 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1189 /*UnfoldLoad=*/true, 1190 /*UnfoldStore=*/false, 1191 &LoadRegIndex); 1192 if (NewOpc == 0) return nullptr; 1193 const MCInstrDesc &MID = TII->get(NewOpc); 1194 MachineFunction &MF = *MI->getMF(); 1195 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1196 // Ok, we're unfolding. Create a temporary register and do the unfold. 1197 unsigned Reg = MRI->createVirtualRegister(RC); 1198 1199 SmallVector<MachineInstr *, 2> NewMIs; 1200 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1201 /*UnfoldLoad=*/true, 1202 /*UnfoldStore=*/false, NewMIs); 1203 (void)Success; 1204 assert(Success && 1205 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1206 "succeeded!"); 1207 assert(NewMIs.size() == 2 && 1208 "Unfolded a load into multiple instructions!"); 1209 MachineBasicBlock *MBB = MI->getParent(); 1210 MachineBasicBlock::iterator Pos = MI; 1211 MBB->insert(Pos, NewMIs[0]); 1212 MBB->insert(Pos, NewMIs[1]); 1213 // If unfolding produced a load that wasn't loop-invariant or profitable to 1214 // hoist, discard the new instructions and bail. 1215 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1216 NewMIs[0]->eraseFromParent(); 1217 NewMIs[1]->eraseFromParent(); 1218 return nullptr; 1219 } 1220 1221 // Update register pressure for the unfolded instruction. 1222 UpdateRegPressure(NewMIs[1]); 1223 1224 // Otherwise we successfully unfolded a load that we can hoist. 1225 MI->eraseFromParent(); 1226 return NewMIs[0]; 1227 } 1228 1229 /// Initialize the CSE map with instructions that are in the current loop 1230 /// preheader that may become duplicates of instructions that are hoisted 1231 /// out of the loop. 1232 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1233 for (MachineInstr &MI : *BB) 1234 CSEMap[MI.getOpcode()].push_back(&MI); 1235 } 1236 1237 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1238 /// Return this instruction if it's found. 1239 const MachineInstr* 1240 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1241 std::vector<const MachineInstr*> &PrevMIs) { 1242 for (const MachineInstr *PrevMI : PrevMIs) 1243 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1244 return PrevMI; 1245 1246 return nullptr; 1247 } 1248 1249 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1250 /// computes the same value. If it's found, do a RAU on with the definition of 1251 /// the existing instruction rather than hoisting the instruction to the 1252 /// preheader. 1253 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1254 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1255 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1256 // the undef property onto uses. 1257 if (CI == CSEMap.end() || MI->isImplicitDef()) 1258 return false; 1259 1260 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1261 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1262 1263 // Replace virtual registers defined by MI by their counterparts defined 1264 // by Dup. 1265 SmallVector<unsigned, 2> Defs; 1266 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1267 const MachineOperand &MO = MI->getOperand(i); 1268 1269 // Physical registers may not differ here. 1270 assert((!MO.isReg() || MO.getReg() == 0 || 1271 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1272 MO.getReg() == Dup->getOperand(i).getReg()) && 1273 "Instructions with different phys regs are not identical!"); 1274 1275 if (MO.isReg() && MO.isDef() && 1276 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1277 Defs.push_back(i); 1278 } 1279 1280 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1281 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1282 unsigned Idx = Defs[i]; 1283 unsigned Reg = MI->getOperand(Idx).getReg(); 1284 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1285 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1286 1287 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1288 // Restore old RCs if more than one defs. 1289 for (unsigned j = 0; j != i; ++j) 1290 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1291 return false; 1292 } 1293 } 1294 1295 for (unsigned Idx : Defs) { 1296 unsigned Reg = MI->getOperand(Idx).getReg(); 1297 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1298 MRI->replaceRegWith(Reg, DupReg); 1299 MRI->clearKillFlags(DupReg); 1300 } 1301 1302 MI->eraseFromParent(); 1303 ++NumCSEed; 1304 return true; 1305 } 1306 return false; 1307 } 1308 1309 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1310 /// the loop. 1311 bool MachineLICM::MayCSE(MachineInstr *MI) { 1312 unsigned Opcode = MI->getOpcode(); 1313 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1314 CI = CSEMap.find(Opcode); 1315 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1316 // the undef property onto uses. 1317 if (CI == CSEMap.end() || MI->isImplicitDef()) 1318 return false; 1319 1320 return LookForDuplicate(MI, CI->second) != nullptr; 1321 } 1322 1323 /// When an instruction is found to use only loop invariant operands 1324 /// that are safe to hoist, this instruction is called to do the dirty work. 1325 /// It returns true if the instruction is hoisted. 1326 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1327 // First check whether we should hoist this instruction. 1328 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1329 // If not, try unfolding a hoistable load. 1330 MI = ExtractHoistableLoad(MI); 1331 if (!MI) return false; 1332 } 1333 1334 // Now move the instructions to the predecessor, inserting it before any 1335 // terminator instructions. 1336 DEBUG({ 1337 dbgs() << "Hoisting " << *MI; 1338 if (MI->getParent()->getBasicBlock()) 1339 dbgs() << " from " << printMBBReference(*MI->getParent()); 1340 if (Preheader->getBasicBlock()) 1341 dbgs() << " to " << printMBBReference(*Preheader); 1342 dbgs() << "\n"; 1343 }); 1344 1345 // If this is the first instruction being hoisted to the preheader, 1346 // initialize the CSE map with potential common expressions. 1347 if (FirstInLoop) { 1348 InitCSEMap(Preheader); 1349 FirstInLoop = false; 1350 } 1351 1352 // Look for opportunity to CSE the hoisted instruction. 1353 unsigned Opcode = MI->getOpcode(); 1354 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1355 CI = CSEMap.find(Opcode); 1356 if (!EliminateCSE(MI, CI)) { 1357 // Otherwise, splice the instruction to the preheader. 1358 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1359 1360 // Since we are moving the instruction out of its basic block, we do not 1361 // retain its debug location. Doing so would degrade the debugging 1362 // experience and adversely affect the accuracy of profiling information. 1363 MI->setDebugLoc(DebugLoc()); 1364 1365 // Update register pressure for BBs from header to this block. 1366 UpdateBackTraceRegPressure(MI); 1367 1368 // Clear the kill flags of any register this instruction defines, 1369 // since they may need to be live throughout the entire loop 1370 // rather than just live for part of it. 1371 for (MachineOperand &MO : MI->operands()) 1372 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1373 MRI->clearKillFlags(MO.getReg()); 1374 1375 // Add to the CSE map. 1376 if (CI != CSEMap.end()) 1377 CI->second.push_back(MI); 1378 else 1379 CSEMap[Opcode].push_back(MI); 1380 } 1381 1382 ++NumHoisted; 1383 Changed = true; 1384 1385 return true; 1386 } 1387 1388 /// Get the preheader for the current loop, splitting a critical edge if needed. 1389 MachineBasicBlock *MachineLICM::getCurPreheader() { 1390 // Determine the block to which to hoist instructions. If we can't find a 1391 // suitable loop predecessor, we can't do any hoisting. 1392 1393 // If we've tried to get a preheader and failed, don't try again. 1394 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1395 return nullptr; 1396 1397 if (!CurPreheader) { 1398 CurPreheader = CurLoop->getLoopPreheader(); 1399 if (!CurPreheader) { 1400 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1401 if (!Pred) { 1402 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1403 return nullptr; 1404 } 1405 1406 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1407 if (!CurPreheader) { 1408 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1409 return nullptr; 1410 } 1411 } 1412 } 1413 return CurPreheader; 1414 } 1415