1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <limits>
53 #include <vector>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "machinelicm"
58
59 static cl::opt<bool>
60 AvoidSpeculation("avoid-speculation",
61 cl::desc("MachineLICM should avoid speculation"),
62 cl::init(true), cl::Hidden);
63
64 static cl::opt<bool>
65 HoistCheapInsts("hoist-cheap-insts",
66 cl::desc("MachineLICM should hoist even cheap instructions"),
67 cl::init(false), cl::Hidden);
68
69 static cl::opt<bool>
70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
71 cl::desc("MachineLICM should sink instructions into "
72 "loops to avoid register spills"),
73 cl::init(false), cl::Hidden);
74 static cl::opt<bool>
75 HoistConstStores("hoist-const-stores",
76 cl::desc("Hoist invariant stores"),
77 cl::init(true), cl::Hidden);
78
79 STATISTIC(NumHoisted,
80 "Number of machine instructions hoisted out of loops");
81 STATISTIC(NumLowRP,
82 "Number of instructions hoisted in low reg pressure situation");
83 STATISTIC(NumHighLatency,
84 "Number of high latency instructions hoisted");
85 STATISTIC(NumCSEed,
86 "Number of hoisted machine instructions CSEed");
87 STATISTIC(NumPostRAHoisted,
88 "Number of machine instructions hoisted out of loops post regalloc");
89 STATISTIC(NumStoreConst,
90 "Number of stores of const phys reg hoisted out of loops");
91
92 namespace {
93
94 class MachineLICMBase : public MachineFunctionPass {
95 const TargetInstrInfo *TII;
96 const TargetLoweringBase *TLI;
97 const TargetRegisterInfo *TRI;
98 const MachineFrameInfo *MFI;
99 MachineRegisterInfo *MRI;
100 TargetSchedModel SchedModel;
101 bool PreRegAlloc;
102
103 // Various analyses that we use...
104 AliasAnalysis *AA; // Alias analysis info.
105 MachineLoopInfo *MLI; // Current MachineLoopInfo
106 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
107
108 // State that is updated as we process loops
109 bool Changed; // True if a loop is changed.
110 bool FirstInLoop; // True if it's the first LICM in the loop.
111 MachineLoop *CurLoop; // The current loop we are working on.
112 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
113
114 // Exit blocks for CurLoop.
115 SmallVector<MachineBasicBlock *, 8> ExitBlocks;
116
isExitBlock(const MachineBasicBlock * MBB) const117 bool isExitBlock(const MachineBasicBlock *MBB) const {
118 return is_contained(ExitBlocks, MBB);
119 }
120
121 // Track 'estimated' register pressure.
122 SmallSet<unsigned, 32> RegSeen;
123 SmallVector<unsigned, 8> RegPressure;
124
125 // Register pressure "limit" per register pressure set. If the pressure
126 // is higher than the limit, then it's considered high.
127 SmallVector<unsigned, 8> RegLimit;
128
129 // Register pressure on path leading from loop preheader to current BB.
130 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
131
132 // For each opcode, keep a list of potential CSE instructions.
133 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
134
135 enum {
136 SpeculateFalse = 0,
137 SpeculateTrue = 1,
138 SpeculateUnknown = 2
139 };
140
141 // If a MBB does not dominate loop exiting blocks then it may not safe
142 // to hoist loads from this block.
143 // Tri-state: 0 - false, 1 - true, 2 - unknown
144 unsigned SpeculationState;
145
146 public:
MachineLICMBase(char & PassID,bool PreRegAlloc)147 MachineLICMBase(char &PassID, bool PreRegAlloc)
148 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
149
150 bool runOnMachineFunction(MachineFunction &MF) override;
151
getAnalysisUsage(AnalysisUsage & AU) const152 void getAnalysisUsage(AnalysisUsage &AU) const override {
153 AU.addRequired<MachineLoopInfo>();
154 AU.addRequired<MachineDominatorTree>();
155 AU.addRequired<AAResultsWrapperPass>();
156 AU.addPreserved<MachineLoopInfo>();
157 AU.addPreserved<MachineDominatorTree>();
158 MachineFunctionPass::getAnalysisUsage(AU);
159 }
160
releaseMemory()161 void releaseMemory() override {
162 RegSeen.clear();
163 RegPressure.clear();
164 RegLimit.clear();
165 BackTrace.clear();
166 CSEMap.clear();
167 }
168
169 private:
170 /// Keep track of information about hoisting candidates.
171 struct CandidateInfo {
172 MachineInstr *MI;
173 unsigned Def;
174 int FI;
175
CandidateInfo__anona8a949b30111::MachineLICMBase::CandidateInfo176 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
177 : MI(mi), Def(def), FI(fi) {}
178 };
179
180 void HoistRegionPostRA();
181
182 void HoistPostRA(MachineInstr *MI, unsigned Def);
183
184 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
185 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
186 SmallVectorImpl<CandidateInfo> &Candidates);
187
188 void AddToLiveIns(unsigned Reg);
189
190 bool IsLICMCandidate(MachineInstr &I);
191
192 bool IsLoopInvariantInst(MachineInstr &I);
193
194 bool HasLoopPHIUse(const MachineInstr *MI) const;
195
196 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
197 unsigned Reg) const;
198
199 bool IsCheapInstruction(MachineInstr &MI) const;
200
201 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
202 bool Cheap);
203
204 void UpdateBackTraceRegPressure(const MachineInstr *MI);
205
206 bool IsProfitableToHoist(MachineInstr &MI);
207
208 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
209
210 void EnterScope(MachineBasicBlock *MBB);
211
212 void ExitScope(MachineBasicBlock *MBB);
213
214 void ExitScopeIfDone(
215 MachineDomTreeNode *Node,
216 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
217 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
218
219 void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
220
221 void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
222
223 void SinkIntoLoop();
224
225 void InitRegPressure(MachineBasicBlock *BB);
226
227 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
228 bool ConsiderSeen,
229 bool ConsiderUnseenAsDef);
230
231 void UpdateRegPressure(const MachineInstr *MI,
232 bool ConsiderUnseenAsDef = false);
233
234 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
235
236 const MachineInstr *
237 LookForDuplicate(const MachineInstr *MI,
238 std::vector<const MachineInstr *> &PrevMIs);
239
240 bool EliminateCSE(
241 MachineInstr *MI,
242 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
243
244 bool MayCSE(MachineInstr *MI);
245
246 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
247
248 void InitCSEMap(MachineBasicBlock *BB);
249
250 MachineBasicBlock *getCurPreheader();
251 };
252
253 class MachineLICM : public MachineLICMBase {
254 public:
255 static char ID;
MachineLICM()256 MachineLICM() : MachineLICMBase(ID, false) {
257 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
258 }
259 };
260
261 class EarlyMachineLICM : public MachineLICMBase {
262 public:
263 static char ID;
EarlyMachineLICM()264 EarlyMachineLICM() : MachineLICMBase(ID, true) {
265 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
266 }
267 };
268
269 } // end anonymous namespace
270
271 char MachineLICM::ID;
272 char EarlyMachineLICM::ID;
273
274 char &llvm::MachineLICMID = MachineLICM::ID;
275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
276
277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
278 "Machine Loop Invariant Code Motion", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
283 "Machine Loop Invariant Code Motion", false, false)
284
285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
286 "Early Machine Loop Invariant Code Motion", false, false)
287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
291 "Early Machine Loop Invariant Code Motion", false, false)
292
293 /// Test if the given loop is the outer-most loop that has a unique predecessor.
294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
295 // Check whether this loop even has a unique predecessor.
296 if (!CurLoop->getLoopPredecessor())
297 return false;
298 // Ok, now check to see if any of its outer loops do.
299 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
300 if (L->getLoopPredecessor())
301 return false;
302 // None of them did, so this is the outermost with a unique predecessor.
303 return true;
304 }
305
runOnMachineFunction(MachineFunction & MF)306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
307 if (skipFunction(MF.getFunction()))
308 return false;
309
310 Changed = FirstInLoop = false;
311 const TargetSubtargetInfo &ST = MF.getSubtarget();
312 TII = ST.getInstrInfo();
313 TLI = ST.getTargetLowering();
314 TRI = ST.getRegisterInfo();
315 MFI = &MF.getFrameInfo();
316 MRI = &MF.getRegInfo();
317 SchedModel.init(&ST);
318
319 PreRegAlloc = MRI->isSSA();
320
321 if (PreRegAlloc)
322 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
323 else
324 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
325 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
326
327 if (PreRegAlloc) {
328 // Estimate register pressure during pre-regalloc pass.
329 unsigned NumRPS = TRI->getNumRegPressureSets();
330 RegPressure.resize(NumRPS);
331 std::fill(RegPressure.begin(), RegPressure.end(), 0);
332 RegLimit.resize(NumRPS);
333 for (unsigned i = 0, e = NumRPS; i != e; ++i)
334 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
335 }
336
337 // Get our Loop information...
338 MLI = &getAnalysis<MachineLoopInfo>();
339 DT = &getAnalysis<MachineDominatorTree>();
340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
341
342 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
343 while (!Worklist.empty()) {
344 CurLoop = Worklist.pop_back_val();
345 CurPreheader = nullptr;
346 ExitBlocks.clear();
347
348 // If this is done before regalloc, only visit outer-most preheader-sporting
349 // loops.
350 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
351 Worklist.append(CurLoop->begin(), CurLoop->end());
352 continue;
353 }
354
355 CurLoop->getExitBlocks(ExitBlocks);
356
357 if (!PreRegAlloc)
358 HoistRegionPostRA();
359 else {
360 // CSEMap is initialized for loop header when the first instruction is
361 // being hoisted.
362 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
363 FirstInLoop = true;
364 HoistOutOfLoop(N);
365 CSEMap.clear();
366
367 if (SinkInstsToAvoidSpills)
368 SinkIntoLoop();
369 }
370 }
371
372 return Changed;
373 }
374
375 /// Return true if instruction stores to the specified frame.
InstructionStoresToFI(const MachineInstr * MI,int FI)376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
377 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
378 // true since they have no memory operands.
379 if (!MI->mayStore())
380 return false;
381 // If we lost memory operands, conservatively assume that the instruction
382 // writes to all slots.
383 if (MI->memoperands_empty())
384 return true;
385 for (const MachineMemOperand *MemOp : MI->memoperands()) {
386 if (!MemOp->isStore() || !MemOp->getPseudoValue())
387 continue;
388 if (const FixedStackPseudoSourceValue *Value =
389 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
390 if (Value->getFrameIndex() == FI)
391 return true;
392 }
393 }
394 return false;
395 }
396
397 /// Examine the instruction for potentai LICM candidate. Also
398 /// gather register def and frame object update information.
ProcessMI(MachineInstr * MI,BitVector & PhysRegDefs,BitVector & PhysRegClobbers,SmallSet<int,32> & StoredFIs,SmallVectorImpl<CandidateInfo> & Candidates)399 void MachineLICMBase::ProcessMI(MachineInstr *MI,
400 BitVector &PhysRegDefs,
401 BitVector &PhysRegClobbers,
402 SmallSet<int, 32> &StoredFIs,
403 SmallVectorImpl<CandidateInfo> &Candidates) {
404 bool RuledOut = false;
405 bool HasNonInvariantUse = false;
406 unsigned Def = 0;
407 for (const MachineOperand &MO : MI->operands()) {
408 if (MO.isFI()) {
409 // Remember if the instruction stores to the frame index.
410 int FI = MO.getIndex();
411 if (!StoredFIs.count(FI) &&
412 MFI->isSpillSlotObjectIndex(FI) &&
413 InstructionStoresToFI(MI, FI))
414 StoredFIs.insert(FI);
415 HasNonInvariantUse = true;
416 continue;
417 }
418
419 // We can't hoist an instruction defining a physreg that is clobbered in
420 // the loop.
421 if (MO.isRegMask()) {
422 PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
423 continue;
424 }
425
426 if (!MO.isReg())
427 continue;
428 unsigned Reg = MO.getReg();
429 if (!Reg)
430 continue;
431 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
432 "Not expecting virtual register!");
433
434 if (!MO.isDef()) {
435 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
436 // If it's using a non-loop-invariant register, then it's obviously not
437 // safe to hoist.
438 HasNonInvariantUse = true;
439 continue;
440 }
441
442 if (MO.isImplicit()) {
443 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
444 PhysRegClobbers.set(*AI);
445 if (!MO.isDead())
446 // Non-dead implicit def? This cannot be hoisted.
447 RuledOut = true;
448 // No need to check if a dead implicit def is also defined by
449 // another instruction.
450 continue;
451 }
452
453 // FIXME: For now, avoid instructions with multiple defs, unless
454 // it's a dead implicit def.
455 if (Def)
456 RuledOut = true;
457 else
458 Def = Reg;
459
460 // If we have already seen another instruction that defines the same
461 // register, then this is not safe. Two defs is indicated by setting a
462 // PhysRegClobbers bit.
463 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
464 if (PhysRegDefs.test(*AS))
465 PhysRegClobbers.set(*AS);
466 }
467 // Need a second loop because MCRegAliasIterator can visit the same
468 // register twice.
469 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
470 PhysRegDefs.set(*AS);
471
472 if (PhysRegClobbers.test(Reg))
473 // MI defined register is seen defined by another instruction in
474 // the loop, it cannot be a LICM candidate.
475 RuledOut = true;
476 }
477
478 // Only consider reloads for now and remats which do not have register
479 // operands. FIXME: Consider unfold load folding instructions.
480 if (Def && !RuledOut) {
481 int FI = std::numeric_limits<int>::min();
482 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
483 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
484 Candidates.push_back(CandidateInfo(MI, Def, FI));
485 }
486 }
487
488 /// Walk the specified region of the CFG and hoist loop invariants out to the
489 /// preheader.
HoistRegionPostRA()490 void MachineLICMBase::HoistRegionPostRA() {
491 MachineBasicBlock *Preheader = getCurPreheader();
492 if (!Preheader)
493 return;
494
495 unsigned NumRegs = TRI->getNumRegs();
496 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
497 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
498
499 SmallVector<CandidateInfo, 32> Candidates;
500 SmallSet<int, 32> StoredFIs;
501
502 // Walk the entire region, count number of defs for each register, and
503 // collect potential LICM candidates.
504 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
505 // If the header of the loop containing this basic block is a landing pad,
506 // then don't try to hoist instructions out of this loop.
507 const MachineLoop *ML = MLI->getLoopFor(BB);
508 if (ML && ML->getHeader()->isEHPad()) continue;
509
510 // Conservatively treat live-in's as an external def.
511 // FIXME: That means a reload that're reused in successor block(s) will not
512 // be LICM'ed.
513 for (const auto &LI : BB->liveins()) {
514 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
515 PhysRegDefs.set(*AI);
516 }
517
518 SpeculationState = SpeculateUnknown;
519 for (MachineInstr &MI : *BB)
520 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
521 }
522
523 // Gather the registers read / clobbered by the terminator.
524 BitVector TermRegs(NumRegs);
525 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
526 if (TI != Preheader->end()) {
527 for (const MachineOperand &MO : TI->operands()) {
528 if (!MO.isReg())
529 continue;
530 unsigned Reg = MO.getReg();
531 if (!Reg)
532 continue;
533 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
534 TermRegs.set(*AI);
535 }
536 }
537
538 // Now evaluate whether the potential candidates qualify.
539 // 1. Check if the candidate defined register is defined by another
540 // instruction in the loop.
541 // 2. If the candidate is a load from stack slot (always true for now),
542 // check if the slot is stored anywhere in the loop.
543 // 3. Make sure candidate def should not clobber
544 // registers read by the terminator. Similarly its def should not be
545 // clobbered by the terminator.
546 for (CandidateInfo &Candidate : Candidates) {
547 if (Candidate.FI != std::numeric_limits<int>::min() &&
548 StoredFIs.count(Candidate.FI))
549 continue;
550
551 unsigned Def = Candidate.Def;
552 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
553 bool Safe = true;
554 MachineInstr *MI = Candidate.MI;
555 for (const MachineOperand &MO : MI->operands()) {
556 if (!MO.isReg() || MO.isDef() || !MO.getReg())
557 continue;
558 unsigned Reg = MO.getReg();
559 if (PhysRegDefs.test(Reg) ||
560 PhysRegClobbers.test(Reg)) {
561 // If it's using a non-loop-invariant register, then it's obviously
562 // not safe to hoist.
563 Safe = false;
564 break;
565 }
566 }
567 if (Safe)
568 HoistPostRA(MI, Candidate.Def);
569 }
570 }
571 }
572
573 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
574 /// sure it is not killed by any instructions in the loop.
AddToLiveIns(unsigned Reg)575 void MachineLICMBase::AddToLiveIns(unsigned Reg) {
576 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
577 if (!BB->isLiveIn(Reg))
578 BB->addLiveIn(Reg);
579 for (MachineInstr &MI : *BB) {
580 for (MachineOperand &MO : MI.operands()) {
581 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
582 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
583 MO.setIsKill(false);
584 }
585 }
586 }
587 }
588
589 /// When an instruction is found to only use loop invariant operands that is
590 /// safe to hoist, this instruction is called to do the dirty work.
HoistPostRA(MachineInstr * MI,unsigned Def)591 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
592 MachineBasicBlock *Preheader = getCurPreheader();
593
594 // Now move the instructions to the predecessor, inserting it before any
595 // terminator instructions.
596 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
597 << " from " << printMBBReference(*MI->getParent()) << ": "
598 << *MI);
599
600 // Splice the instruction to the preheader.
601 MachineBasicBlock *MBB = MI->getParent();
602 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
603
604 // Add register to livein list to all the BBs in the current loop since a
605 // loop invariant must be kept live throughout the whole loop. This is
606 // important to ensure later passes do not scavenge the def register.
607 AddToLiveIns(Def);
608
609 ++NumPostRAHoisted;
610 Changed = true;
611 }
612
613 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
614 /// may not be safe to hoist.
IsGuaranteedToExecute(MachineBasicBlock * BB)615 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
616 if (SpeculationState != SpeculateUnknown)
617 return SpeculationState == SpeculateFalse;
618
619 if (BB != CurLoop->getHeader()) {
620 // Check loop exiting blocks.
621 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
622 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
623 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
624 if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
625 SpeculationState = SpeculateTrue;
626 return false;
627 }
628 }
629
630 SpeculationState = SpeculateFalse;
631 return true;
632 }
633
EnterScope(MachineBasicBlock * MBB)634 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
635 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
636
637 // Remember livein register pressure.
638 BackTrace.push_back(RegPressure);
639 }
640
ExitScope(MachineBasicBlock * MBB)641 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
642 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
643 BackTrace.pop_back();
644 }
645
646 /// Destroy scope for the MBB that corresponds to the given dominator tree node
647 /// if its a leaf or all of its children are done. Walk up the dominator tree to
648 /// destroy ancestors which are now done.
ExitScopeIfDone(MachineDomTreeNode * Node,DenseMap<MachineDomTreeNode *,unsigned> & OpenChildren,DenseMap<MachineDomTreeNode *,MachineDomTreeNode * > & ParentMap)649 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
650 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
651 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
652 if (OpenChildren[Node])
653 return;
654
655 // Pop scope.
656 ExitScope(Node->getBlock());
657
658 // Now traverse upwards to pop ancestors whose offsprings are all done.
659 while (MachineDomTreeNode *Parent = ParentMap[Node]) {
660 unsigned Left = --OpenChildren[Parent];
661 if (Left != 0)
662 break;
663 ExitScope(Parent->getBlock());
664 Node = Parent;
665 }
666 }
667
668 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
669 /// specified header block, and that are in the current loop) in depth first
670 /// order w.r.t the DominatorTree. This allows us to visit definitions before
671 /// uses, allowing us to hoist a loop body in one pass without iteration.
HoistOutOfLoop(MachineDomTreeNode * HeaderN)672 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
673 MachineBasicBlock *Preheader = getCurPreheader();
674 if (!Preheader)
675 return;
676
677 SmallVector<MachineDomTreeNode*, 32> Scopes;
678 SmallVector<MachineDomTreeNode*, 8> WorkList;
679 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
680 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
681
682 // Perform a DFS walk to determine the order of visit.
683 WorkList.push_back(HeaderN);
684 while (!WorkList.empty()) {
685 MachineDomTreeNode *Node = WorkList.pop_back_val();
686 assert(Node && "Null dominator tree node?");
687 MachineBasicBlock *BB = Node->getBlock();
688
689 // If the header of the loop containing this basic block is a landing pad,
690 // then don't try to hoist instructions out of this loop.
691 const MachineLoop *ML = MLI->getLoopFor(BB);
692 if (ML && ML->getHeader()->isEHPad())
693 continue;
694
695 // If this subregion is not in the top level loop at all, exit.
696 if (!CurLoop->contains(BB))
697 continue;
698
699 Scopes.push_back(Node);
700 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
701 unsigned NumChildren = Children.size();
702
703 // Don't hoist things out of a large switch statement. This often causes
704 // code to be hoisted that wasn't going to be executed, and increases
705 // register pressure in a situation where it's likely to matter.
706 if (BB->succ_size() >= 25)
707 NumChildren = 0;
708
709 OpenChildren[Node] = NumChildren;
710 // Add children in reverse order as then the next popped worklist node is
711 // the first child of this node. This means we ultimately traverse the
712 // DOM tree in exactly the same order as if we'd recursed.
713 for (int i = (int)NumChildren-1; i >= 0; --i) {
714 MachineDomTreeNode *Child = Children[i];
715 ParentMap[Child] = Node;
716 WorkList.push_back(Child);
717 }
718 }
719
720 if (Scopes.size() == 0)
721 return;
722
723 // Compute registers which are livein into the loop headers.
724 RegSeen.clear();
725 BackTrace.clear();
726 InitRegPressure(Preheader);
727
728 // Now perform LICM.
729 for (MachineDomTreeNode *Node : Scopes) {
730 MachineBasicBlock *MBB = Node->getBlock();
731
732 EnterScope(MBB);
733
734 // Process the block
735 SpeculationState = SpeculateUnknown;
736 for (MachineBasicBlock::iterator
737 MII = MBB->begin(), E = MBB->end(); MII != E; ) {
738 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
739 MachineInstr *MI = &*MII;
740 if (!Hoist(MI, Preheader))
741 UpdateRegPressure(MI);
742 // If we have hoisted an instruction that may store, it can only be a
743 // constant store.
744 MII = NextMII;
745 }
746
747 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
748 ExitScopeIfDone(Node, OpenChildren, ParentMap);
749 }
750 }
751
752 /// Sink instructions into loops if profitable. This especially tries to prevent
753 /// register spills caused by register pressure if there is little to no
754 /// overhead moving instructions into loops.
SinkIntoLoop()755 void MachineLICMBase::SinkIntoLoop() {
756 MachineBasicBlock *Preheader = getCurPreheader();
757 if (!Preheader)
758 return;
759
760 SmallVector<MachineInstr *, 8> Candidates;
761 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
762 I != Preheader->instr_end(); ++I) {
763 // We need to ensure that we can safely move this instruction into the loop.
764 // As such, it must not have side-effects, e.g. such as a call has.
765 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
766 Candidates.push_back(&*I);
767 }
768
769 for (MachineInstr *I : Candidates) {
770 const MachineOperand &MO = I->getOperand(0);
771 if (!MO.isDef() || !MO.isReg() || !MO.getReg())
772 continue;
773 if (!MRI->hasOneDef(MO.getReg()))
774 continue;
775 bool CanSink = true;
776 MachineBasicBlock *B = nullptr;
777 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
778 // FIXME: Come up with a proper cost model that estimates whether sinking
779 // the instruction (and thus possibly executing it on every loop
780 // iteration) is more expensive than a register.
781 // For now assumes that copies are cheap and thus almost always worth it.
782 if (!MI.isCopy()) {
783 CanSink = false;
784 break;
785 }
786 if (!B) {
787 B = MI.getParent();
788 continue;
789 }
790 B = DT->findNearestCommonDominator(B, MI.getParent());
791 if (!B) {
792 CanSink = false;
793 break;
794 }
795 }
796 if (!CanSink || !B || B == Preheader)
797 continue;
798 B->splice(B->getFirstNonPHI(), Preheader, I);
799 }
800 }
801
isOperandKill(const MachineOperand & MO,MachineRegisterInfo * MRI)802 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
803 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
804 }
805
806 /// Find all virtual register references that are liveout of the preheader to
807 /// initialize the starting "register pressure". Note this does not count live
808 /// through (livein but not used) registers.
InitRegPressure(MachineBasicBlock * BB)809 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
810 std::fill(RegPressure.begin(), RegPressure.end(), 0);
811
812 // If the preheader has only a single predecessor and it ends with a
813 // fallthrough or an unconditional branch, then scan its predecessor for live
814 // defs as well. This happens whenever the preheader is created by splitting
815 // the critical edge from the loop predecessor to the loop header.
816 if (BB->pred_size() == 1) {
817 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
818 SmallVector<MachineOperand, 4> Cond;
819 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
820 InitRegPressure(*BB->pred_begin());
821 }
822
823 for (const MachineInstr &MI : *BB)
824 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
825 }
826
827 /// Update estimate of register pressure after the specified instruction.
UpdateRegPressure(const MachineInstr * MI,bool ConsiderUnseenAsDef)828 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
829 bool ConsiderUnseenAsDef) {
830 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
831 for (const auto &RPIdAndCost : Cost) {
832 unsigned Class = RPIdAndCost.first;
833 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
834 RegPressure[Class] = 0;
835 else
836 RegPressure[Class] += RPIdAndCost.second;
837 }
838 }
839
840 /// Calculate the additional register pressure that the registers used in MI
841 /// cause.
842 ///
843 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
844 /// figure out which usages are live-ins.
845 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
846 DenseMap<unsigned, int>
calcRegisterCost(const MachineInstr * MI,bool ConsiderSeen,bool ConsiderUnseenAsDef)847 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
848 bool ConsiderUnseenAsDef) {
849 DenseMap<unsigned, int> Cost;
850 if (MI->isImplicitDef())
851 return Cost;
852 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
853 const MachineOperand &MO = MI->getOperand(i);
854 if (!MO.isReg() || MO.isImplicit())
855 continue;
856 unsigned Reg = MO.getReg();
857 if (!TargetRegisterInfo::isVirtualRegister(Reg))
858 continue;
859
860 // FIXME: It seems bad to use RegSeen only for some of these calculations.
861 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
862 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
863
864 RegClassWeight W = TRI->getRegClassWeight(RC);
865 int RCCost = 0;
866 if (MO.isDef())
867 RCCost = W.RegWeight;
868 else {
869 bool isKill = isOperandKill(MO, MRI);
870 if (isNew && !isKill && ConsiderUnseenAsDef)
871 // Haven't seen this, it must be a livein.
872 RCCost = W.RegWeight;
873 else if (!isNew && isKill)
874 RCCost = -W.RegWeight;
875 }
876 if (RCCost == 0)
877 continue;
878 const int *PS = TRI->getRegClassPressureSets(RC);
879 for (; *PS != -1; ++PS) {
880 if (Cost.find(*PS) == Cost.end())
881 Cost[*PS] = RCCost;
882 else
883 Cost[*PS] += RCCost;
884 }
885 }
886 return Cost;
887 }
888
889 /// Return true if this machine instruction loads from global offset table or
890 /// constant pool.
mayLoadFromGOTOrConstantPool(MachineInstr & MI)891 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
892 assert(MI.mayLoad() && "Expected MI that loads!");
893
894 // If we lost memory operands, conservatively assume that the instruction
895 // reads from everything..
896 if (MI.memoperands_empty())
897 return true;
898
899 for (MachineMemOperand *MemOp : MI.memoperands())
900 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
901 if (PSV->isGOT() || PSV->isConstantPool())
902 return true;
903
904 return false;
905 }
906
907 // This function iterates through all the operands of the input store MI and
908 // checks that each register operand statisfies isCallerPreservedPhysReg.
909 // This means, the value being stored and the address where it is being stored
910 // is constant throughout the body of the function (not including prologue and
911 // epilogue). When called with an MI that isn't a store, it returns false.
912 // A future improvement can be to check if the store registers are constant
913 // throughout the loop rather than throughout the funtion.
isInvariantStore(const MachineInstr & MI,const TargetRegisterInfo * TRI,const MachineRegisterInfo * MRI)914 static bool isInvariantStore(const MachineInstr &MI,
915 const TargetRegisterInfo *TRI,
916 const MachineRegisterInfo *MRI) {
917
918 bool FoundCallerPresReg = false;
919 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
920 (MI.getNumOperands() == 0))
921 return false;
922
923 // Check that all register operands are caller-preserved physical registers.
924 for (const MachineOperand &MO : MI.operands()) {
925 if (MO.isReg()) {
926 unsigned Reg = MO.getReg();
927 // If operand is a virtual register, check if it comes from a copy of a
928 // physical register.
929 if (TargetRegisterInfo::isVirtualRegister(Reg))
930 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
931 if (TargetRegisterInfo::isVirtualRegister(Reg))
932 return false;
933 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
934 return false;
935 else
936 FoundCallerPresReg = true;
937 } else if (!MO.isImm()) {
938 return false;
939 }
940 }
941 return FoundCallerPresReg;
942 }
943
944 // Return true if the input MI is a copy instruction that feeds an invariant
945 // store instruction. This means that the src of the copy has to satisfy
946 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
947 // isInvariantStore.
isCopyFeedingInvariantStore(const MachineInstr & MI,const MachineRegisterInfo * MRI,const TargetRegisterInfo * TRI)948 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
949 const MachineRegisterInfo *MRI,
950 const TargetRegisterInfo *TRI) {
951
952 // FIXME: If targets would like to look through instructions that aren't
953 // pure copies, this can be updated to a query.
954 if (!MI.isCopy())
955 return false;
956
957 const MachineFunction *MF = MI.getMF();
958 // Check that we are copying a constant physical register.
959 unsigned CopySrcReg = MI.getOperand(1).getReg();
960 if (TargetRegisterInfo::isVirtualRegister(CopySrcReg))
961 return false;
962
963 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
964 return false;
965
966 unsigned CopyDstReg = MI.getOperand(0).getReg();
967 // Check if any of the uses of the copy are invariant stores.
968 assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) &&
969 "copy dst is not a virtual reg");
970
971 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
972 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
973 return true;
974 }
975 return false;
976 }
977
978 /// Returns true if the instruction may be a suitable candidate for LICM.
979 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
IsLICMCandidate(MachineInstr & I)980 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
981 // Check if it's safe to move the instruction.
982 bool DontMoveAcrossStore = true;
983 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
984 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
985 return false;
986 }
987
988 // If it is load then check if it is guaranteed to execute by making sure that
989 // it dominates all exiting blocks. If it doesn't, then there is a path out of
990 // the loop which does not execute this load, so we can't hoist it. Loads
991 // from constant memory are not safe to speculate all the time, for example
992 // indexed load from a jump table.
993 // Stores and side effects are already checked by isSafeToMove.
994 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
995 !IsGuaranteedToExecute(I.getParent()))
996 return false;
997
998 return true;
999 }
1000
1001 /// Returns true if the instruction is loop invariant.
1002 /// I.e., all virtual register operands are defined outside of the loop,
1003 /// physical registers aren't accessed explicitly, and there are no side
1004 /// effects that aren't captured by the operands or other flags.
IsLoopInvariantInst(MachineInstr & I)1005 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1006 if (!IsLICMCandidate(I))
1007 return false;
1008
1009 // The instruction is loop invariant if all of its operands are.
1010 for (const MachineOperand &MO : I.operands()) {
1011 if (!MO.isReg())
1012 continue;
1013
1014 unsigned Reg = MO.getReg();
1015 if (Reg == 0) continue;
1016
1017 // Don't hoist an instruction that uses or defines a physical register.
1018 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1019 if (MO.isUse()) {
1020 // If the physreg has no defs anywhere, it's just an ambient register
1021 // and we can freely move its uses. Alternatively, if it's allocatable,
1022 // it could get allocated to something with a def during allocation.
1023 // However, if the physreg is known to always be caller saved/restored
1024 // then this use is safe to hoist.
1025 if (!MRI->isConstantPhysReg(Reg) &&
1026 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1027 return false;
1028 // Otherwise it's safe to move.
1029 continue;
1030 } else if (!MO.isDead()) {
1031 // A def that isn't dead. We can't move it.
1032 return false;
1033 } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1034 // If the reg is live into the loop, we can't hoist an instruction
1035 // which would clobber it.
1036 return false;
1037 }
1038 }
1039
1040 if (!MO.isUse())
1041 continue;
1042
1043 assert(MRI->getVRegDef(Reg) &&
1044 "Machine instr not mapped for this vreg?!");
1045
1046 // If the loop contains the definition of an operand, then the instruction
1047 // isn't loop invariant.
1048 if (CurLoop->contains(MRI->getVRegDef(Reg)))
1049 return false;
1050 }
1051
1052 // If we got this far, the instruction is loop invariant!
1053 return true;
1054 }
1055
1056 /// Return true if the specified instruction is used by a phi node and hoisting
1057 /// it could cause a copy to be inserted.
HasLoopPHIUse(const MachineInstr * MI) const1058 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1059 SmallVector<const MachineInstr*, 8> Work(1, MI);
1060 do {
1061 MI = Work.pop_back_val();
1062 for (const MachineOperand &MO : MI->operands()) {
1063 if (!MO.isReg() || !MO.isDef())
1064 continue;
1065 unsigned Reg = MO.getReg();
1066 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1067 continue;
1068 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1069 // A PHI may cause a copy to be inserted.
1070 if (UseMI.isPHI()) {
1071 // A PHI inside the loop causes a copy because the live range of Reg is
1072 // extended across the PHI.
1073 if (CurLoop->contains(&UseMI))
1074 return true;
1075 // A PHI in an exit block can cause a copy to be inserted if the PHI
1076 // has multiple predecessors in the loop with different values.
1077 // For now, approximate by rejecting all exit blocks.
1078 if (isExitBlock(UseMI.getParent()))
1079 return true;
1080 continue;
1081 }
1082 // Look past copies as well.
1083 if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1084 Work.push_back(&UseMI);
1085 }
1086 }
1087 } while (!Work.empty());
1088 return false;
1089 }
1090
1091 /// Compute operand latency between a def of 'Reg' and an use in the current
1092 /// loop, return true if the target considered it high.
HasHighOperandLatency(MachineInstr & MI,unsigned DefIdx,unsigned Reg) const1093 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1094 unsigned DefIdx,
1095 unsigned Reg) const {
1096 if (MRI->use_nodbg_empty(Reg))
1097 return false;
1098
1099 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1100 if (UseMI.isCopyLike())
1101 continue;
1102 if (!CurLoop->contains(UseMI.getParent()))
1103 continue;
1104 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1105 const MachineOperand &MO = UseMI.getOperand(i);
1106 if (!MO.isReg() || !MO.isUse())
1107 continue;
1108 unsigned MOReg = MO.getReg();
1109 if (MOReg != Reg)
1110 continue;
1111
1112 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1113 return true;
1114 }
1115
1116 // Only look at the first in loop use.
1117 break;
1118 }
1119
1120 return false;
1121 }
1122
1123 /// Return true if the instruction is marked "cheap" or the operand latency
1124 /// between its def and a use is one or less.
IsCheapInstruction(MachineInstr & MI) const1125 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1126 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1127 return true;
1128
1129 bool isCheap = false;
1130 unsigned NumDefs = MI.getDesc().getNumDefs();
1131 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1132 MachineOperand &DefMO = MI.getOperand(i);
1133 if (!DefMO.isReg() || !DefMO.isDef())
1134 continue;
1135 --NumDefs;
1136 unsigned Reg = DefMO.getReg();
1137 if (TargetRegisterInfo::isPhysicalRegister(Reg))
1138 continue;
1139
1140 if (!TII->hasLowDefLatency(SchedModel, MI, i))
1141 return false;
1142 isCheap = true;
1143 }
1144
1145 return isCheap;
1146 }
1147
1148 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1149 /// given cost matrix can cause high register pressure.
1150 bool
CanCauseHighRegPressure(const DenseMap<unsigned,int> & Cost,bool CheapInstr)1151 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1152 bool CheapInstr) {
1153 for (const auto &RPIdAndCost : Cost) {
1154 if (RPIdAndCost.second <= 0)
1155 continue;
1156
1157 unsigned Class = RPIdAndCost.first;
1158 int Limit = RegLimit[Class];
1159
1160 // Don't hoist cheap instructions if they would increase register pressure,
1161 // even if we're under the limit.
1162 if (CheapInstr && !HoistCheapInsts)
1163 return true;
1164
1165 for (const auto &RP : BackTrace)
1166 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1167 return true;
1168 }
1169
1170 return false;
1171 }
1172
1173 /// Traverse the back trace from header to the current block and update their
1174 /// register pressures to reflect the effect of hoisting MI from the current
1175 /// block to the preheader.
UpdateBackTraceRegPressure(const MachineInstr * MI)1176 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1177 // First compute the 'cost' of the instruction, i.e. its contribution
1178 // to register pressure.
1179 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1180 /*ConsiderUnseenAsDef=*/false);
1181
1182 // Update register pressure of blocks from loop header to current block.
1183 for (auto &RP : BackTrace)
1184 for (const auto &RPIdAndCost : Cost)
1185 RP[RPIdAndCost.first] += RPIdAndCost.second;
1186 }
1187
1188 /// Return true if it is potentially profitable to hoist the given loop
1189 /// invariant.
IsProfitableToHoist(MachineInstr & MI)1190 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1191 if (MI.isImplicitDef())
1192 return true;
1193
1194 // Besides removing computation from the loop, hoisting an instruction has
1195 // these effects:
1196 //
1197 // - The value defined by the instruction becomes live across the entire
1198 // loop. This increases register pressure in the loop.
1199 //
1200 // - If the value is used by a PHI in the loop, a copy will be required for
1201 // lowering the PHI after extending the live range.
1202 //
1203 // - When hoisting the last use of a value in the loop, that value no longer
1204 // needs to be live in the loop. This lowers register pressure in the loop.
1205
1206 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI))
1207 return true;
1208
1209 bool CheapInstr = IsCheapInstruction(MI);
1210 bool CreatesCopy = HasLoopPHIUse(&MI);
1211
1212 // Don't hoist a cheap instruction if it would create a copy in the loop.
1213 if (CheapInstr && CreatesCopy) {
1214 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1215 return false;
1216 }
1217
1218 // Rematerializable instructions should always be hoisted since the register
1219 // allocator can just pull them down again when needed.
1220 if (TII->isTriviallyReMaterializable(MI, AA))
1221 return true;
1222
1223 // FIXME: If there are long latency loop-invariant instructions inside the
1224 // loop at this point, why didn't the optimizer's LICM hoist them?
1225 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1226 const MachineOperand &MO = MI.getOperand(i);
1227 if (!MO.isReg() || MO.isImplicit())
1228 continue;
1229 unsigned Reg = MO.getReg();
1230 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1231 continue;
1232 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1233 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1234 ++NumHighLatency;
1235 return true;
1236 }
1237 }
1238
1239 // Estimate register pressure to determine whether to LICM the instruction.
1240 // In low register pressure situation, we can be more aggressive about
1241 // hoisting. Also, favors hoisting long latency instructions even in
1242 // moderately high pressure situation.
1243 // Cheap instructions will only be hoisted if they don't increase register
1244 // pressure at all.
1245 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1246 /*ConsiderUnseenAsDef=*/false);
1247
1248 // Visit BBs from header to current BB, if hoisting this doesn't cause
1249 // high register pressure, then it's safe to proceed.
1250 if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1251 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1252 ++NumLowRP;
1253 return true;
1254 }
1255
1256 // Don't risk increasing register pressure if it would create copies.
1257 if (CreatesCopy) {
1258 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1259 return false;
1260 }
1261
1262 // Do not "speculate" in high register pressure situation. If an
1263 // instruction is not guaranteed to be executed in the loop, it's best to be
1264 // conservative.
1265 if (AvoidSpeculation &&
1266 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1267 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1268 return false;
1269 }
1270
1271 // High register pressure situation, only hoist if the instruction is going
1272 // to be remat'ed.
1273 if (!TII->isTriviallyReMaterializable(MI, AA) &&
1274 !MI.isDereferenceableInvariantLoad(AA)) {
1275 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1276 return false;
1277 }
1278
1279 return true;
1280 }
1281
1282 /// Unfold a load from the given machineinstr if the load itself could be
1283 /// hoisted. Return the unfolded and hoistable load, or null if the load
1284 /// couldn't be unfolded or if it wouldn't be hoistable.
ExtractHoistableLoad(MachineInstr * MI)1285 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1286 // Don't unfold simple loads.
1287 if (MI->canFoldAsLoad())
1288 return nullptr;
1289
1290 // If not, we may be able to unfold a load and hoist that.
1291 // First test whether the instruction is loading from an amenable
1292 // memory location.
1293 if (!MI->isDereferenceableInvariantLoad(AA))
1294 return nullptr;
1295
1296 // Next determine the register class for a temporary register.
1297 unsigned LoadRegIndex;
1298 unsigned NewOpc =
1299 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1300 /*UnfoldLoad=*/true,
1301 /*UnfoldStore=*/false,
1302 &LoadRegIndex);
1303 if (NewOpc == 0) return nullptr;
1304 const MCInstrDesc &MID = TII->get(NewOpc);
1305 MachineFunction &MF = *MI->getMF();
1306 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1307 // Ok, we're unfolding. Create a temporary register and do the unfold.
1308 unsigned Reg = MRI->createVirtualRegister(RC);
1309
1310 SmallVector<MachineInstr *, 2> NewMIs;
1311 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1312 /*UnfoldLoad=*/true,
1313 /*UnfoldStore=*/false, NewMIs);
1314 (void)Success;
1315 assert(Success &&
1316 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1317 "succeeded!");
1318 assert(NewMIs.size() == 2 &&
1319 "Unfolded a load into multiple instructions!");
1320 MachineBasicBlock *MBB = MI->getParent();
1321 MachineBasicBlock::iterator Pos = MI;
1322 MBB->insert(Pos, NewMIs[0]);
1323 MBB->insert(Pos, NewMIs[1]);
1324 // If unfolding produced a load that wasn't loop-invariant or profitable to
1325 // hoist, discard the new instructions and bail.
1326 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1327 NewMIs[0]->eraseFromParent();
1328 NewMIs[1]->eraseFromParent();
1329 return nullptr;
1330 }
1331
1332 // Update register pressure for the unfolded instruction.
1333 UpdateRegPressure(NewMIs[1]);
1334
1335 // Otherwise we successfully unfolded a load that we can hoist.
1336 MI->eraseFromParent();
1337 return NewMIs[0];
1338 }
1339
1340 /// Initialize the CSE map with instructions that are in the current loop
1341 /// preheader that may become duplicates of instructions that are hoisted
1342 /// out of the loop.
InitCSEMap(MachineBasicBlock * BB)1343 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1344 for (MachineInstr &MI : *BB)
1345 CSEMap[MI.getOpcode()].push_back(&MI);
1346 }
1347
1348 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1349 /// Return this instruction if it's found.
1350 const MachineInstr*
LookForDuplicate(const MachineInstr * MI,std::vector<const MachineInstr * > & PrevMIs)1351 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1352 std::vector<const MachineInstr*> &PrevMIs) {
1353 for (const MachineInstr *PrevMI : PrevMIs)
1354 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1355 return PrevMI;
1356
1357 return nullptr;
1358 }
1359
1360 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1361 /// computes the same value. If it's found, do a RAU on with the definition of
1362 /// the existing instruction rather than hoisting the instruction to the
1363 /// preheader.
EliminateCSE(MachineInstr * MI,DenseMap<unsigned,std::vector<const MachineInstr * >>::iterator & CI)1364 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1365 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1366 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1367 // the undef property onto uses.
1368 if (CI == CSEMap.end() || MI->isImplicitDef())
1369 return false;
1370
1371 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1372 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1373
1374 // Replace virtual registers defined by MI by their counterparts defined
1375 // by Dup.
1376 SmallVector<unsigned, 2> Defs;
1377 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1378 const MachineOperand &MO = MI->getOperand(i);
1379
1380 // Physical registers may not differ here.
1381 assert((!MO.isReg() || MO.getReg() == 0 ||
1382 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1383 MO.getReg() == Dup->getOperand(i).getReg()) &&
1384 "Instructions with different phys regs are not identical!");
1385
1386 if (MO.isReg() && MO.isDef() &&
1387 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1388 Defs.push_back(i);
1389 }
1390
1391 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1392 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1393 unsigned Idx = Defs[i];
1394 unsigned Reg = MI->getOperand(Idx).getReg();
1395 unsigned DupReg = Dup->getOperand(Idx).getReg();
1396 OrigRCs.push_back(MRI->getRegClass(DupReg));
1397
1398 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1399 // Restore old RCs if more than one defs.
1400 for (unsigned j = 0; j != i; ++j)
1401 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1402 return false;
1403 }
1404 }
1405
1406 for (unsigned Idx : Defs) {
1407 unsigned Reg = MI->getOperand(Idx).getReg();
1408 unsigned DupReg = Dup->getOperand(Idx).getReg();
1409 MRI->replaceRegWith(Reg, DupReg);
1410 MRI->clearKillFlags(DupReg);
1411 }
1412
1413 MI->eraseFromParent();
1414 ++NumCSEed;
1415 return true;
1416 }
1417 return false;
1418 }
1419
1420 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1421 /// the loop.
MayCSE(MachineInstr * MI)1422 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1423 unsigned Opcode = MI->getOpcode();
1424 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1425 CI = CSEMap.find(Opcode);
1426 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1427 // the undef property onto uses.
1428 if (CI == CSEMap.end() || MI->isImplicitDef())
1429 return false;
1430
1431 return LookForDuplicate(MI, CI->second) != nullptr;
1432 }
1433
1434 /// When an instruction is found to use only loop invariant operands
1435 /// that are safe to hoist, this instruction is called to do the dirty work.
1436 /// It returns true if the instruction is hoisted.
Hoist(MachineInstr * MI,MachineBasicBlock * Preheader)1437 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1438 // First check whether we should hoist this instruction.
1439 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1440 // If not, try unfolding a hoistable load.
1441 MI = ExtractHoistableLoad(MI);
1442 if (!MI) return false;
1443 }
1444
1445 // If we have hoisted an instruction that may store, it can only be a constant
1446 // store.
1447 if (MI->mayStore())
1448 NumStoreConst++;
1449
1450 // Now move the instructions to the predecessor, inserting it before any
1451 // terminator instructions.
1452 LLVM_DEBUG({
1453 dbgs() << "Hoisting " << *MI;
1454 if (MI->getParent()->getBasicBlock())
1455 dbgs() << " from " << printMBBReference(*MI->getParent());
1456 if (Preheader->getBasicBlock())
1457 dbgs() << " to " << printMBBReference(*Preheader);
1458 dbgs() << "\n";
1459 });
1460
1461 // If this is the first instruction being hoisted to the preheader,
1462 // initialize the CSE map with potential common expressions.
1463 if (FirstInLoop) {
1464 InitCSEMap(Preheader);
1465 FirstInLoop = false;
1466 }
1467
1468 // Look for opportunity to CSE the hoisted instruction.
1469 unsigned Opcode = MI->getOpcode();
1470 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1471 CI = CSEMap.find(Opcode);
1472 if (!EliminateCSE(MI, CI)) {
1473 // Otherwise, splice the instruction to the preheader.
1474 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1475
1476 // Since we are moving the instruction out of its basic block, we do not
1477 // retain its debug location. Doing so would degrade the debugging
1478 // experience and adversely affect the accuracy of profiling information.
1479 MI->setDebugLoc(DebugLoc());
1480
1481 // Update register pressure for BBs from header to this block.
1482 UpdateBackTraceRegPressure(MI);
1483
1484 // Clear the kill flags of any register this instruction defines,
1485 // since they may need to be live throughout the entire loop
1486 // rather than just live for part of it.
1487 for (MachineOperand &MO : MI->operands())
1488 if (MO.isReg() && MO.isDef() && !MO.isDead())
1489 MRI->clearKillFlags(MO.getReg());
1490
1491 // Add to the CSE map.
1492 if (CI != CSEMap.end())
1493 CI->second.push_back(MI);
1494 else
1495 CSEMap[Opcode].push_back(MI);
1496 }
1497
1498 ++NumHoisted;
1499 Changed = true;
1500
1501 return true;
1502 }
1503
1504 /// Get the preheader for the current loop, splitting a critical edge if needed.
getCurPreheader()1505 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1506 // Determine the block to which to hoist instructions. If we can't find a
1507 // suitable loop predecessor, we can't do any hoisting.
1508
1509 // If we've tried to get a preheader and failed, don't try again.
1510 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1511 return nullptr;
1512
1513 if (!CurPreheader) {
1514 CurPreheader = CurLoop->getLoopPreheader();
1515 if (!CurPreheader) {
1516 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1517 if (!Pred) {
1518 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1519 return nullptr;
1520 }
1521
1522 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1523 if (!CurPreheader) {
1524 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1525 return nullptr;
1526 }
1527 }
1528 }
1529 return CurPreheader;
1530 }
1531