1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineFunctionPass.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineLoopInfo.h" 33 #include "llvm/CodeGen/MachineMemOperand.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/PseudoSourceValue.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetLowering.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSchedule.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <limits> 53 #include <vector> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "machinelicm" 58 59 static cl::opt<bool> 60 AvoidSpeculation("avoid-speculation", 61 cl::desc("MachineLICM should avoid speculation"), 62 cl::init(true), cl::Hidden); 63 64 static cl::opt<bool> 65 HoistCheapInsts("hoist-cheap-insts", 66 cl::desc("MachineLICM should hoist even cheap instructions"), 67 cl::init(false), cl::Hidden); 68 69 static cl::opt<bool> 70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 71 cl::desc("MachineLICM should sink instructions into " 72 "loops to avoid register spills"), 73 cl::init(false), cl::Hidden); 74 static cl::opt<bool> 75 HoistConstStores("hoist-const-stores", 76 cl::desc("Hoist invariant stores"), 77 cl::init(true), cl::Hidden); 78 79 STATISTIC(NumHoisted, 80 "Number of machine instructions hoisted out of loops"); 81 STATISTIC(NumLowRP, 82 "Number of instructions hoisted in low reg pressure situation"); 83 STATISTIC(NumHighLatency, 84 "Number of high latency instructions hoisted"); 85 STATISTIC(NumCSEed, 86 "Number of hoisted machine instructions CSEed"); 87 STATISTIC(NumPostRAHoisted, 88 "Number of machine instructions hoisted out of loops post regalloc"); 89 STATISTIC(NumStoreConst, 90 "Number of stores of const phys reg hoisted out of loops"); 91 92 namespace { 93 94 class MachineLICMBase : public MachineFunctionPass { 95 const TargetInstrInfo *TII; 96 const TargetLoweringBase *TLI; 97 const TargetRegisterInfo *TRI; 98 const MachineFrameInfo *MFI; 99 MachineRegisterInfo *MRI; 100 TargetSchedModel SchedModel; 101 bool PreRegAlloc; 102 103 // Various analyses that we use... 104 AliasAnalysis *AA; // Alias analysis info. 105 MachineLoopInfo *MLI; // Current MachineLoopInfo 106 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 107 108 // State that is updated as we process loops 109 bool Changed; // True if a loop is changed. 110 bool FirstInLoop; // True if it's the first LICM in the loop. 111 MachineLoop *CurLoop; // The current loop we are working on. 112 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 113 114 // Exit blocks for CurLoop. 115 SmallVector<MachineBasicBlock *, 8> ExitBlocks; 116 117 bool isExitBlock(const MachineBasicBlock *MBB) const { 118 return is_contained(ExitBlocks, MBB); 119 } 120 121 // Track 'estimated' register pressure. 122 SmallSet<unsigned, 32> RegSeen; 123 SmallVector<unsigned, 8> RegPressure; 124 125 // Register pressure "limit" per register pressure set. If the pressure 126 // is higher than the limit, then it's considered high. 127 SmallVector<unsigned, 8> RegLimit; 128 129 // Register pressure on path leading from loop preheader to current BB. 130 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 131 132 // For each opcode, keep a list of potential CSE instructions. 133 DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap; 134 135 enum { 136 SpeculateFalse = 0, 137 SpeculateTrue = 1, 138 SpeculateUnknown = 2 139 }; 140 141 // If a MBB does not dominate loop exiting blocks then it may not safe 142 // to hoist loads from this block. 143 // Tri-state: 0 - false, 1 - true, 2 - unknown 144 unsigned SpeculationState; 145 146 public: 147 MachineLICMBase(char &PassID, bool PreRegAlloc) 148 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {} 149 150 bool runOnMachineFunction(MachineFunction &MF) override; 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.addRequired<MachineLoopInfo>(); 154 AU.addRequired<MachineDominatorTree>(); 155 AU.addRequired<AAResultsWrapperPass>(); 156 AU.addPreserved<MachineLoopInfo>(); 157 AU.addPreserved<MachineDominatorTree>(); 158 MachineFunctionPass::getAnalysisUsage(AU); 159 } 160 161 void releaseMemory() override { 162 RegSeen.clear(); 163 RegPressure.clear(); 164 RegLimit.clear(); 165 BackTrace.clear(); 166 CSEMap.clear(); 167 } 168 169 private: 170 /// Keep track of information about hoisting candidates. 171 struct CandidateInfo { 172 MachineInstr *MI; 173 unsigned Def; 174 int FI; 175 176 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 177 : MI(mi), Def(def), FI(fi) {} 178 }; 179 180 void HoistRegionPostRA(); 181 182 void HoistPostRA(MachineInstr *MI, unsigned Def); 183 184 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 185 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 186 SmallVectorImpl<CandidateInfo> &Candidates); 187 188 void AddToLiveIns(unsigned Reg); 189 190 bool IsLICMCandidate(MachineInstr &I); 191 192 bool IsLoopInvariantInst(MachineInstr &I); 193 194 bool HasLoopPHIUse(const MachineInstr *MI) const; 195 196 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 197 unsigned Reg) const; 198 199 bool IsCheapInstruction(MachineInstr &MI) const; 200 201 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 202 bool Cheap); 203 204 void UpdateBackTraceRegPressure(const MachineInstr *MI); 205 206 bool IsProfitableToHoist(MachineInstr &MI); 207 208 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 209 210 void EnterScope(MachineBasicBlock *MBB); 211 212 void ExitScope(MachineBasicBlock *MBB); 213 214 void ExitScopeIfDone( 215 MachineDomTreeNode *Node, 216 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 217 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 218 219 void HoistOutOfLoop(MachineDomTreeNode *HeaderN); 220 221 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 222 223 void SinkIntoLoop(); 224 225 void InitRegPressure(MachineBasicBlock *BB); 226 227 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 228 bool ConsiderSeen, 229 bool ConsiderUnseenAsDef); 230 231 void UpdateRegPressure(const MachineInstr *MI, 232 bool ConsiderUnseenAsDef = false); 233 234 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 235 236 const MachineInstr * 237 LookForDuplicate(const MachineInstr *MI, 238 std::vector<const MachineInstr *> &PrevMIs); 239 240 bool EliminateCSE( 241 MachineInstr *MI, 242 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 243 244 bool MayCSE(MachineInstr *MI); 245 246 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 247 248 void InitCSEMap(MachineBasicBlock *BB); 249 250 MachineBasicBlock *getCurPreheader(); 251 }; 252 253 class MachineLICM : public MachineLICMBase { 254 public: 255 static char ID; 256 MachineLICM() : MachineLICMBase(ID, false) { 257 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 258 } 259 }; 260 261 class EarlyMachineLICM : public MachineLICMBase { 262 public: 263 static char ID; 264 EarlyMachineLICM() : MachineLICMBase(ID, true) { 265 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); 266 } 267 }; 268 269 } // end anonymous namespace 270 271 char MachineLICM::ID; 272 char EarlyMachineLICM::ID; 273 274 char &llvm::MachineLICMID = MachineLICM::ID; 275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; 276 277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, 278 "Machine Loop Invariant Code Motion", false, false) 279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, 283 "Machine Loop Invariant Code Motion", false, false) 284 285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm", 286 "Early Machine Loop Invariant Code Motion", false, false) 287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm", 291 "Early Machine Loop Invariant Code Motion", false, false) 292 293 /// Test if the given loop is the outer-most loop that has a unique predecessor. 294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 295 // Check whether this loop even has a unique predecessor. 296 if (!CurLoop->getLoopPredecessor()) 297 return false; 298 // Ok, now check to see if any of its outer loops do. 299 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 300 if (L->getLoopPredecessor()) 301 return false; 302 // None of them did, so this is the outermost with a unique predecessor. 303 return true; 304 } 305 306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { 307 if (skipFunction(MF.getFunction())) 308 return false; 309 310 Changed = FirstInLoop = false; 311 const TargetSubtargetInfo &ST = MF.getSubtarget(); 312 TII = ST.getInstrInfo(); 313 TLI = ST.getTargetLowering(); 314 TRI = ST.getRegisterInfo(); 315 MFI = &MF.getFrameInfo(); 316 MRI = &MF.getRegInfo(); 317 SchedModel.init(&ST); 318 319 PreRegAlloc = MRI->isSSA(); 320 321 if (PreRegAlloc) 322 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 323 else 324 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 325 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n"); 326 327 if (PreRegAlloc) { 328 // Estimate register pressure during pre-regalloc pass. 329 unsigned NumRPS = TRI->getNumRegPressureSets(); 330 RegPressure.resize(NumRPS); 331 std::fill(RegPressure.begin(), RegPressure.end(), 0); 332 RegLimit.resize(NumRPS); 333 for (unsigned i = 0, e = NumRPS; i != e; ++i) 334 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 335 } 336 337 // Get our Loop information... 338 MLI = &getAnalysis<MachineLoopInfo>(); 339 DT = &getAnalysis<MachineDominatorTree>(); 340 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 341 342 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 343 while (!Worklist.empty()) { 344 CurLoop = Worklist.pop_back_val(); 345 CurPreheader = nullptr; 346 ExitBlocks.clear(); 347 348 // If this is done before regalloc, only visit outer-most preheader-sporting 349 // loops. 350 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 351 Worklist.append(CurLoop->begin(), CurLoop->end()); 352 continue; 353 } 354 355 CurLoop->getExitBlocks(ExitBlocks); 356 357 if (!PreRegAlloc) 358 HoistRegionPostRA(); 359 else { 360 // CSEMap is initialized for loop header when the first instruction is 361 // being hoisted. 362 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 363 FirstInLoop = true; 364 HoistOutOfLoop(N); 365 CSEMap.clear(); 366 367 if (SinkInstsToAvoidSpills) 368 SinkIntoLoop(); 369 } 370 } 371 372 return Changed; 373 } 374 375 /// Return true if instruction stores to the specified frame. 376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 377 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return 378 // true since they have no memory operands. 379 if (!MI->mayStore()) 380 return false; 381 // If we lost memory operands, conservatively assume that the instruction 382 // writes to all slots. 383 if (MI->memoperands_empty()) 384 return true; 385 for (const MachineMemOperand *MemOp : MI->memoperands()) { 386 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 387 continue; 388 if (const FixedStackPseudoSourceValue *Value = 389 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 390 if (Value->getFrameIndex() == FI) 391 return true; 392 } 393 } 394 return false; 395 } 396 397 /// Examine the instruction for potentai LICM candidate. Also 398 /// gather register def and frame object update information. 399 void MachineLICMBase::ProcessMI(MachineInstr *MI, 400 BitVector &PhysRegDefs, 401 BitVector &PhysRegClobbers, 402 SmallSet<int, 32> &StoredFIs, 403 SmallVectorImpl<CandidateInfo> &Candidates) { 404 bool RuledOut = false; 405 bool HasNonInvariantUse = false; 406 unsigned Def = 0; 407 for (const MachineOperand &MO : MI->operands()) { 408 if (MO.isFI()) { 409 // Remember if the instruction stores to the frame index. 410 int FI = MO.getIndex(); 411 if (!StoredFIs.count(FI) && 412 MFI->isSpillSlotObjectIndex(FI) && 413 InstructionStoresToFI(MI, FI)) 414 StoredFIs.insert(FI); 415 HasNonInvariantUse = true; 416 continue; 417 } 418 419 // We can't hoist an instruction defining a physreg that is clobbered in 420 // the loop. 421 if (MO.isRegMask()) { 422 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 423 continue; 424 } 425 426 if (!MO.isReg()) 427 continue; 428 unsigned Reg = MO.getReg(); 429 if (!Reg) 430 continue; 431 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 432 "Not expecting virtual register!"); 433 434 if (!MO.isDef()) { 435 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 436 // If it's using a non-loop-invariant register, then it's obviously not 437 // safe to hoist. 438 HasNonInvariantUse = true; 439 continue; 440 } 441 442 if (MO.isImplicit()) { 443 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 444 PhysRegClobbers.set(*AI); 445 if (!MO.isDead()) 446 // Non-dead implicit def? This cannot be hoisted. 447 RuledOut = true; 448 // No need to check if a dead implicit def is also defined by 449 // another instruction. 450 continue; 451 } 452 453 // FIXME: For now, avoid instructions with multiple defs, unless 454 // it's a dead implicit def. 455 if (Def) 456 RuledOut = true; 457 else 458 Def = Reg; 459 460 // If we have already seen another instruction that defines the same 461 // register, then this is not safe. Two defs is indicated by setting a 462 // PhysRegClobbers bit. 463 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 464 if (PhysRegDefs.test(*AS)) 465 PhysRegClobbers.set(*AS); 466 } 467 // Need a second loop because MCRegAliasIterator can visit the same 468 // register twice. 469 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) 470 PhysRegDefs.set(*AS); 471 472 if (PhysRegClobbers.test(Reg)) 473 // MI defined register is seen defined by another instruction in 474 // the loop, it cannot be a LICM candidate. 475 RuledOut = true; 476 } 477 478 // Only consider reloads for now and remats which do not have register 479 // operands. FIXME: Consider unfold load folding instructions. 480 if (Def && !RuledOut) { 481 int FI = std::numeric_limits<int>::min(); 482 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 483 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 484 Candidates.push_back(CandidateInfo(MI, Def, FI)); 485 } 486 } 487 488 /// Walk the specified region of the CFG and hoist loop invariants out to the 489 /// preheader. 490 void MachineLICMBase::HoistRegionPostRA() { 491 MachineBasicBlock *Preheader = getCurPreheader(); 492 if (!Preheader) 493 return; 494 495 unsigned NumRegs = TRI->getNumRegs(); 496 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 497 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 498 499 SmallVector<CandidateInfo, 32> Candidates; 500 SmallSet<int, 32> StoredFIs; 501 502 // Walk the entire region, count number of defs for each register, and 503 // collect potential LICM candidates. 504 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 505 // If the header of the loop containing this basic block is a landing pad, 506 // then don't try to hoist instructions out of this loop. 507 const MachineLoop *ML = MLI->getLoopFor(BB); 508 if (ML && ML->getHeader()->isEHPad()) continue; 509 510 // Conservatively treat live-in's as an external def. 511 // FIXME: That means a reload that're reused in successor block(s) will not 512 // be LICM'ed. 513 for (const auto &LI : BB->liveins()) { 514 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 515 PhysRegDefs.set(*AI); 516 } 517 518 SpeculationState = SpeculateUnknown; 519 for (MachineInstr &MI : *BB) 520 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 521 } 522 523 // Gather the registers read / clobbered by the terminator. 524 BitVector TermRegs(NumRegs); 525 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 526 if (TI != Preheader->end()) { 527 for (const MachineOperand &MO : TI->operands()) { 528 if (!MO.isReg()) 529 continue; 530 unsigned Reg = MO.getReg(); 531 if (!Reg) 532 continue; 533 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 534 TermRegs.set(*AI); 535 } 536 } 537 538 // Now evaluate whether the potential candidates qualify. 539 // 1. Check if the candidate defined register is defined by another 540 // instruction in the loop. 541 // 2. If the candidate is a load from stack slot (always true for now), 542 // check if the slot is stored anywhere in the loop. 543 // 3. Make sure candidate def should not clobber 544 // registers read by the terminator. Similarly its def should not be 545 // clobbered by the terminator. 546 for (CandidateInfo &Candidate : Candidates) { 547 if (Candidate.FI != std::numeric_limits<int>::min() && 548 StoredFIs.count(Candidate.FI)) 549 continue; 550 551 unsigned Def = Candidate.Def; 552 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 553 bool Safe = true; 554 MachineInstr *MI = Candidate.MI; 555 for (const MachineOperand &MO : MI->operands()) { 556 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 557 continue; 558 unsigned Reg = MO.getReg(); 559 if (PhysRegDefs.test(Reg) || 560 PhysRegClobbers.test(Reg)) { 561 // If it's using a non-loop-invariant register, then it's obviously 562 // not safe to hoist. 563 Safe = false; 564 break; 565 } 566 } 567 if (Safe) 568 HoistPostRA(MI, Candidate.Def); 569 } 570 } 571 } 572 573 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 574 /// sure it is not killed by any instructions in the loop. 575 void MachineLICMBase::AddToLiveIns(unsigned Reg) { 576 for (MachineBasicBlock *BB : CurLoop->getBlocks()) { 577 if (!BB->isLiveIn(Reg)) 578 BB->addLiveIn(Reg); 579 for (MachineInstr &MI : *BB) { 580 for (MachineOperand &MO : MI.operands()) { 581 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 582 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 583 MO.setIsKill(false); 584 } 585 } 586 } 587 } 588 589 /// When an instruction is found to only use loop invariant operands that is 590 /// safe to hoist, this instruction is called to do the dirty work. 591 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) { 592 MachineBasicBlock *Preheader = getCurPreheader(); 593 594 // Now move the instructions to the predecessor, inserting it before any 595 // terminator instructions. 596 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) 597 << " from " << printMBBReference(*MI->getParent()) << ": " 598 << *MI); 599 600 // Splice the instruction to the preheader. 601 MachineBasicBlock *MBB = MI->getParent(); 602 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 603 604 // Add register to livein list to all the BBs in the current loop since a 605 // loop invariant must be kept live throughout the whole loop. This is 606 // important to ensure later passes do not scavenge the def register. 607 AddToLiveIns(Def); 608 609 ++NumPostRAHoisted; 610 Changed = true; 611 } 612 613 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 614 /// may not be safe to hoist. 615 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) { 616 if (SpeculationState != SpeculateUnknown) 617 return SpeculationState == SpeculateFalse; 618 619 if (BB != CurLoop->getHeader()) { 620 // Check loop exiting blocks. 621 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 622 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 623 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 624 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 625 SpeculationState = SpeculateTrue; 626 return false; 627 } 628 } 629 630 SpeculationState = SpeculateFalse; 631 return true; 632 } 633 634 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) { 635 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); 636 637 // Remember livein register pressure. 638 BackTrace.push_back(RegPressure); 639 } 640 641 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) { 642 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); 643 BackTrace.pop_back(); 644 } 645 646 /// Destroy scope for the MBB that corresponds to the given dominator tree node 647 /// if its a leaf or all of its children are done. Walk up the dominator tree to 648 /// destroy ancestors which are now done. 649 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node, 650 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 651 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 652 if (OpenChildren[Node]) 653 return; 654 655 // Pop scope. 656 ExitScope(Node->getBlock()); 657 658 // Now traverse upwards to pop ancestors whose offsprings are all done. 659 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 660 unsigned Left = --OpenChildren[Parent]; 661 if (Left != 0) 662 break; 663 ExitScope(Parent->getBlock()); 664 Node = Parent; 665 } 666 } 667 668 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 669 /// specified header block, and that are in the current loop) in depth first 670 /// order w.r.t the DominatorTree. This allows us to visit definitions before 671 /// uses, allowing us to hoist a loop body in one pass without iteration. 672 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 673 MachineBasicBlock *Preheader = getCurPreheader(); 674 if (!Preheader) 675 return; 676 677 SmallVector<MachineDomTreeNode*, 32> Scopes; 678 SmallVector<MachineDomTreeNode*, 8> WorkList; 679 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 680 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 681 682 // Perform a DFS walk to determine the order of visit. 683 WorkList.push_back(HeaderN); 684 while (!WorkList.empty()) { 685 MachineDomTreeNode *Node = WorkList.pop_back_val(); 686 assert(Node && "Null dominator tree node?"); 687 MachineBasicBlock *BB = Node->getBlock(); 688 689 // If the header of the loop containing this basic block is a landing pad, 690 // then don't try to hoist instructions out of this loop. 691 const MachineLoop *ML = MLI->getLoopFor(BB); 692 if (ML && ML->getHeader()->isEHPad()) 693 continue; 694 695 // If this subregion is not in the top level loop at all, exit. 696 if (!CurLoop->contains(BB)) 697 continue; 698 699 Scopes.push_back(Node); 700 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 701 unsigned NumChildren = Children.size(); 702 703 // Don't hoist things out of a large switch statement. This often causes 704 // code to be hoisted that wasn't going to be executed, and increases 705 // register pressure in a situation where it's likely to matter. 706 if (BB->succ_size() >= 25) 707 NumChildren = 0; 708 709 OpenChildren[Node] = NumChildren; 710 // Add children in reverse order as then the next popped worklist node is 711 // the first child of this node. This means we ultimately traverse the 712 // DOM tree in exactly the same order as if we'd recursed. 713 for (int i = (int)NumChildren-1; i >= 0; --i) { 714 MachineDomTreeNode *Child = Children[i]; 715 ParentMap[Child] = Node; 716 WorkList.push_back(Child); 717 } 718 } 719 720 if (Scopes.size() == 0) 721 return; 722 723 // Compute registers which are livein into the loop headers. 724 RegSeen.clear(); 725 BackTrace.clear(); 726 InitRegPressure(Preheader); 727 728 // Now perform LICM. 729 for (MachineDomTreeNode *Node : Scopes) { 730 MachineBasicBlock *MBB = Node->getBlock(); 731 732 EnterScope(MBB); 733 734 // Process the block 735 SpeculationState = SpeculateUnknown; 736 for (MachineBasicBlock::iterator 737 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 738 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 739 MachineInstr *MI = &*MII; 740 if (!Hoist(MI, Preheader)) 741 UpdateRegPressure(MI); 742 // If we have hoisted an instruction that may store, it can only be a 743 // constant store. 744 MII = NextMII; 745 } 746 747 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 748 ExitScopeIfDone(Node, OpenChildren, ParentMap); 749 } 750 } 751 752 /// Sink instructions into loops if profitable. This especially tries to prevent 753 /// register spills caused by register pressure if there is little to no 754 /// overhead moving instructions into loops. 755 void MachineLICMBase::SinkIntoLoop() { 756 MachineBasicBlock *Preheader = getCurPreheader(); 757 if (!Preheader) 758 return; 759 760 SmallVector<MachineInstr *, 8> Candidates; 761 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 762 I != Preheader->instr_end(); ++I) { 763 // We need to ensure that we can safely move this instruction into the loop. 764 // As such, it must not have side-effects, e.g. such as a call has. 765 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 766 Candidates.push_back(&*I); 767 } 768 769 for (MachineInstr *I : Candidates) { 770 const MachineOperand &MO = I->getOperand(0); 771 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 772 continue; 773 if (!MRI->hasOneDef(MO.getReg())) 774 continue; 775 bool CanSink = true; 776 MachineBasicBlock *B = nullptr; 777 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 778 // FIXME: Come up with a proper cost model that estimates whether sinking 779 // the instruction (and thus possibly executing it on every loop 780 // iteration) is more expensive than a register. 781 // For now assumes that copies are cheap and thus almost always worth it. 782 if (!MI.isCopy()) { 783 CanSink = false; 784 break; 785 } 786 if (!B) { 787 B = MI.getParent(); 788 continue; 789 } 790 B = DT->findNearestCommonDominator(B, MI.getParent()); 791 if (!B) { 792 CanSink = false; 793 break; 794 } 795 } 796 if (!CanSink || !B || B == Preheader) 797 continue; 798 B->splice(B->getFirstNonPHI(), Preheader, I); 799 } 800 } 801 802 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 803 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 804 } 805 806 /// Find all virtual register references that are liveout of the preheader to 807 /// initialize the starting "register pressure". Note this does not count live 808 /// through (livein but not used) registers. 809 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) { 810 std::fill(RegPressure.begin(), RegPressure.end(), 0); 811 812 // If the preheader has only a single predecessor and it ends with a 813 // fallthrough or an unconditional branch, then scan its predecessor for live 814 // defs as well. This happens whenever the preheader is created by splitting 815 // the critical edge from the loop predecessor to the loop header. 816 if (BB->pred_size() == 1) { 817 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 818 SmallVector<MachineOperand, 4> Cond; 819 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 820 InitRegPressure(*BB->pred_begin()); 821 } 822 823 for (const MachineInstr &MI : *BB) 824 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 825 } 826 827 /// Update estimate of register pressure after the specified instruction. 828 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI, 829 bool ConsiderUnseenAsDef) { 830 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 831 for (const auto &RPIdAndCost : Cost) { 832 unsigned Class = RPIdAndCost.first; 833 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 834 RegPressure[Class] = 0; 835 else 836 RegPressure[Class] += RPIdAndCost.second; 837 } 838 } 839 840 /// Calculate the additional register pressure that the registers used in MI 841 /// cause. 842 /// 843 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 844 /// figure out which usages are live-ins. 845 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 846 DenseMap<unsigned, int> 847 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 848 bool ConsiderUnseenAsDef) { 849 DenseMap<unsigned, int> Cost; 850 if (MI->isImplicitDef()) 851 return Cost; 852 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 853 const MachineOperand &MO = MI->getOperand(i); 854 if (!MO.isReg() || MO.isImplicit()) 855 continue; 856 unsigned Reg = MO.getReg(); 857 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 858 continue; 859 860 // FIXME: It seems bad to use RegSeen only for some of these calculations. 861 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 862 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 863 864 RegClassWeight W = TRI->getRegClassWeight(RC); 865 int RCCost = 0; 866 if (MO.isDef()) 867 RCCost = W.RegWeight; 868 else { 869 bool isKill = isOperandKill(MO, MRI); 870 if (isNew && !isKill && ConsiderUnseenAsDef) 871 // Haven't seen this, it must be a livein. 872 RCCost = W.RegWeight; 873 else if (!isNew && isKill) 874 RCCost = -W.RegWeight; 875 } 876 if (RCCost == 0) 877 continue; 878 const int *PS = TRI->getRegClassPressureSets(RC); 879 for (; *PS != -1; ++PS) { 880 if (Cost.find(*PS) == Cost.end()) 881 Cost[*PS] = RCCost; 882 else 883 Cost[*PS] += RCCost; 884 } 885 } 886 return Cost; 887 } 888 889 /// Return true if this machine instruction loads from global offset table or 890 /// constant pool. 891 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 892 assert(MI.mayLoad() && "Expected MI that loads!"); 893 894 // If we lost memory operands, conservatively assume that the instruction 895 // reads from everything.. 896 if (MI.memoperands_empty()) 897 return true; 898 899 for (MachineMemOperand *MemOp : MI.memoperands()) 900 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 901 if (PSV->isGOT() || PSV->isConstantPool()) 902 return true; 903 904 return false; 905 } 906 907 // This function iterates through all the operands of the input store MI and 908 // checks that each register operand statisfies isCallerPreservedPhysReg. 909 // This means, the value being stored and the address where it is being stored 910 // is constant throughout the body of the function (not including prologue and 911 // epilogue). When called with an MI that isn't a store, it returns false. 912 // A future improvement can be to check if the store registers are constant 913 // throughout the loop rather than throughout the funtion. 914 static bool isInvariantStore(const MachineInstr &MI, 915 const TargetRegisterInfo *TRI, 916 const MachineRegisterInfo *MRI) { 917 918 bool FoundCallerPresReg = false; 919 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || 920 (MI.getNumOperands() == 0)) 921 return false; 922 923 // Check that all register operands are caller-preserved physical registers. 924 for (const MachineOperand &MO : MI.operands()) { 925 if (MO.isReg()) { 926 unsigned Reg = MO.getReg(); 927 // If operand is a virtual register, check if it comes from a copy of a 928 // physical register. 929 if (TargetRegisterInfo::isVirtualRegister(Reg)) 930 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI); 931 if (TargetRegisterInfo::isVirtualRegister(Reg)) 932 return false; 933 if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF())) 934 return false; 935 else 936 FoundCallerPresReg = true; 937 } else if (!MO.isImm()) { 938 return false; 939 } 940 } 941 return FoundCallerPresReg; 942 } 943 944 // Return true if the input MI is a copy instruction that feeds an invariant 945 // store instruction. This means that the src of the copy has to satisfy 946 // isCallerPreservedPhysReg and atleast one of it's users should satisfy 947 // isInvariantStore. 948 static bool isCopyFeedingInvariantStore(const MachineInstr &MI, 949 const MachineRegisterInfo *MRI, 950 const TargetRegisterInfo *TRI) { 951 952 // FIXME: If targets would like to look through instructions that aren't 953 // pure copies, this can be updated to a query. 954 if (!MI.isCopy()) 955 return false; 956 957 const MachineFunction *MF = MI.getMF(); 958 // Check that we are copying a constant physical register. 959 unsigned CopySrcReg = MI.getOperand(1).getReg(); 960 if (TargetRegisterInfo::isVirtualRegister(CopySrcReg)) 961 return false; 962 963 if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF)) 964 return false; 965 966 unsigned CopyDstReg = MI.getOperand(0).getReg(); 967 // Check if any of the uses of the copy are invariant stores. 968 assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) && 969 "copy dst is not a virtual reg"); 970 971 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) { 972 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI)) 973 return true; 974 } 975 return false; 976 } 977 978 /// Returns true if the instruction may be a suitable candidate for LICM. 979 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 980 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) { 981 // Check if it's safe to move the instruction. 982 bool DontMoveAcrossStore = true; 983 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) && 984 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) { 985 return false; 986 } 987 988 // If it is load then check if it is guaranteed to execute by making sure that 989 // it dominates all exiting blocks. If it doesn't, then there is a path out of 990 // the loop which does not execute this load, so we can't hoist it. Loads 991 // from constant memory are not safe to speculate all the time, for example 992 // indexed load from a jump table. 993 // Stores and side effects are already checked by isSafeToMove. 994 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 995 !IsGuaranteedToExecute(I.getParent())) 996 return false; 997 998 return true; 999 } 1000 1001 /// Returns true if the instruction is loop invariant. 1002 /// I.e., all virtual register operands are defined outside of the loop, 1003 /// physical registers aren't accessed explicitly, and there are no side 1004 /// effects that aren't captured by the operands or other flags. 1005 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) { 1006 if (!IsLICMCandidate(I)) 1007 return false; 1008 1009 // The instruction is loop invariant if all of its operands are. 1010 for (const MachineOperand &MO : I.operands()) { 1011 if (!MO.isReg()) 1012 continue; 1013 1014 unsigned Reg = MO.getReg(); 1015 if (Reg == 0) continue; 1016 1017 // Don't hoist an instruction that uses or defines a physical register. 1018 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1019 if (MO.isUse()) { 1020 // If the physreg has no defs anywhere, it's just an ambient register 1021 // and we can freely move its uses. Alternatively, if it's allocatable, 1022 // it could get allocated to something with a def during allocation. 1023 // However, if the physreg is known to always be caller saved/restored 1024 // then this use is safe to hoist. 1025 if (!MRI->isConstantPhysReg(Reg) && 1026 !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF()))) 1027 return false; 1028 // Otherwise it's safe to move. 1029 continue; 1030 } else if (!MO.isDead()) { 1031 // A def that isn't dead. We can't move it. 1032 return false; 1033 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 1034 // If the reg is live into the loop, we can't hoist an instruction 1035 // which would clobber it. 1036 return false; 1037 } 1038 } 1039 1040 if (!MO.isUse()) 1041 continue; 1042 1043 assert(MRI->getVRegDef(Reg) && 1044 "Machine instr not mapped for this vreg?!"); 1045 1046 // If the loop contains the definition of an operand, then the instruction 1047 // isn't loop invariant. 1048 if (CurLoop->contains(MRI->getVRegDef(Reg))) 1049 return false; 1050 } 1051 1052 // If we got this far, the instruction is loop invariant! 1053 return true; 1054 } 1055 1056 /// Return true if the specified instruction is used by a phi node and hoisting 1057 /// it could cause a copy to be inserted. 1058 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const { 1059 SmallVector<const MachineInstr*, 8> Work(1, MI); 1060 do { 1061 MI = Work.pop_back_val(); 1062 for (const MachineOperand &MO : MI->operands()) { 1063 if (!MO.isReg() || !MO.isDef()) 1064 continue; 1065 unsigned Reg = MO.getReg(); 1066 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1067 continue; 1068 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 1069 // A PHI may cause a copy to be inserted. 1070 if (UseMI.isPHI()) { 1071 // A PHI inside the loop causes a copy because the live range of Reg is 1072 // extended across the PHI. 1073 if (CurLoop->contains(&UseMI)) 1074 return true; 1075 // A PHI in an exit block can cause a copy to be inserted if the PHI 1076 // has multiple predecessors in the loop with different values. 1077 // For now, approximate by rejecting all exit blocks. 1078 if (isExitBlock(UseMI.getParent())) 1079 return true; 1080 continue; 1081 } 1082 // Look past copies as well. 1083 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 1084 Work.push_back(&UseMI); 1085 } 1086 } 1087 } while (!Work.empty()); 1088 return false; 1089 } 1090 1091 /// Compute operand latency between a def of 'Reg' and an use in the current 1092 /// loop, return true if the target considered it high. 1093 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, 1094 unsigned DefIdx, 1095 unsigned Reg) const { 1096 if (MRI->use_nodbg_empty(Reg)) 1097 return false; 1098 1099 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 1100 if (UseMI.isCopyLike()) 1101 continue; 1102 if (!CurLoop->contains(UseMI.getParent())) 1103 continue; 1104 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 1105 const MachineOperand &MO = UseMI.getOperand(i); 1106 if (!MO.isReg() || !MO.isUse()) 1107 continue; 1108 unsigned MOReg = MO.getReg(); 1109 if (MOReg != Reg) 1110 continue; 1111 1112 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 1113 return true; 1114 } 1115 1116 // Only look at the first in loop use. 1117 break; 1118 } 1119 1120 return false; 1121 } 1122 1123 /// Return true if the instruction is marked "cheap" or the operand latency 1124 /// between its def and a use is one or less. 1125 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const { 1126 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 1127 return true; 1128 1129 bool isCheap = false; 1130 unsigned NumDefs = MI.getDesc().getNumDefs(); 1131 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1132 MachineOperand &DefMO = MI.getOperand(i); 1133 if (!DefMO.isReg() || !DefMO.isDef()) 1134 continue; 1135 --NumDefs; 1136 unsigned Reg = DefMO.getReg(); 1137 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1138 continue; 1139 1140 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1141 return false; 1142 isCheap = true; 1143 } 1144 1145 return isCheap; 1146 } 1147 1148 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1149 /// given cost matrix can cause high register pressure. 1150 bool 1151 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1152 bool CheapInstr) { 1153 for (const auto &RPIdAndCost : Cost) { 1154 if (RPIdAndCost.second <= 0) 1155 continue; 1156 1157 unsigned Class = RPIdAndCost.first; 1158 int Limit = RegLimit[Class]; 1159 1160 // Don't hoist cheap instructions if they would increase register pressure, 1161 // even if we're under the limit. 1162 if (CheapInstr && !HoistCheapInsts) 1163 return true; 1164 1165 for (const auto &RP : BackTrace) 1166 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1167 return true; 1168 } 1169 1170 return false; 1171 } 1172 1173 /// Traverse the back trace from header to the current block and update their 1174 /// register pressures to reflect the effect of hoisting MI from the current 1175 /// block to the preheader. 1176 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1177 // First compute the 'cost' of the instruction, i.e. its contribution 1178 // to register pressure. 1179 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1180 /*ConsiderUnseenAsDef=*/false); 1181 1182 // Update register pressure of blocks from loop header to current block. 1183 for (auto &RP : BackTrace) 1184 for (const auto &RPIdAndCost : Cost) 1185 RP[RPIdAndCost.first] += RPIdAndCost.second; 1186 } 1187 1188 /// Return true if it is potentially profitable to hoist the given loop 1189 /// invariant. 1190 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) { 1191 if (MI.isImplicitDef()) 1192 return true; 1193 1194 // Besides removing computation from the loop, hoisting an instruction has 1195 // these effects: 1196 // 1197 // - The value defined by the instruction becomes live across the entire 1198 // loop. This increases register pressure in the loop. 1199 // 1200 // - If the value is used by a PHI in the loop, a copy will be required for 1201 // lowering the PHI after extending the live range. 1202 // 1203 // - When hoisting the last use of a value in the loop, that value no longer 1204 // needs to be live in the loop. This lowers register pressure in the loop. 1205 1206 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) 1207 return true; 1208 1209 bool CheapInstr = IsCheapInstruction(MI); 1210 bool CreatesCopy = HasLoopPHIUse(&MI); 1211 1212 // Don't hoist a cheap instruction if it would create a copy in the loop. 1213 if (CheapInstr && CreatesCopy) { 1214 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1215 return false; 1216 } 1217 1218 // Rematerializable instructions should always be hoisted since the register 1219 // allocator can just pull them down again when needed. 1220 if (TII->isTriviallyReMaterializable(MI, AA)) 1221 return true; 1222 1223 // FIXME: If there are long latency loop-invariant instructions inside the 1224 // loop at this point, why didn't the optimizer's LICM hoist them? 1225 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1226 const MachineOperand &MO = MI.getOperand(i); 1227 if (!MO.isReg() || MO.isImplicit()) 1228 continue; 1229 unsigned Reg = MO.getReg(); 1230 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1231 continue; 1232 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1233 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); 1234 ++NumHighLatency; 1235 return true; 1236 } 1237 } 1238 1239 // Estimate register pressure to determine whether to LICM the instruction. 1240 // In low register pressure situation, we can be more aggressive about 1241 // hoisting. Also, favors hoisting long latency instructions even in 1242 // moderately high pressure situation. 1243 // Cheap instructions will only be hoisted if they don't increase register 1244 // pressure at all. 1245 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1246 /*ConsiderUnseenAsDef=*/false); 1247 1248 // Visit BBs from header to current BB, if hoisting this doesn't cause 1249 // high register pressure, then it's safe to proceed. 1250 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1251 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1252 ++NumLowRP; 1253 return true; 1254 } 1255 1256 // Don't risk increasing register pressure if it would create copies. 1257 if (CreatesCopy) { 1258 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1259 return false; 1260 } 1261 1262 // Do not "speculate" in high register pressure situation. If an 1263 // instruction is not guaranteed to be executed in the loop, it's best to be 1264 // conservative. 1265 if (AvoidSpeculation && 1266 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1267 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); 1268 return false; 1269 } 1270 1271 // High register pressure situation, only hoist if the instruction is going 1272 // to be remat'ed. 1273 if (!TII->isTriviallyReMaterializable(MI, AA) && 1274 !MI.isDereferenceableInvariantLoad(AA)) { 1275 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1276 return false; 1277 } 1278 1279 return true; 1280 } 1281 1282 /// Unfold a load from the given machineinstr if the load itself could be 1283 /// hoisted. Return the unfolded and hoistable load, or null if the load 1284 /// couldn't be unfolded or if it wouldn't be hoistable. 1285 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) { 1286 // Don't unfold simple loads. 1287 if (MI->canFoldAsLoad()) 1288 return nullptr; 1289 1290 // If not, we may be able to unfold a load and hoist that. 1291 // First test whether the instruction is loading from an amenable 1292 // memory location. 1293 if (!MI->isDereferenceableInvariantLoad(AA)) 1294 return nullptr; 1295 1296 // Next determine the register class for a temporary register. 1297 unsigned LoadRegIndex; 1298 unsigned NewOpc = 1299 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1300 /*UnfoldLoad=*/true, 1301 /*UnfoldStore=*/false, 1302 &LoadRegIndex); 1303 if (NewOpc == 0) return nullptr; 1304 const MCInstrDesc &MID = TII->get(NewOpc); 1305 MachineFunction &MF = *MI->getMF(); 1306 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1307 // Ok, we're unfolding. Create a temporary register and do the unfold. 1308 unsigned Reg = MRI->createVirtualRegister(RC); 1309 1310 SmallVector<MachineInstr *, 2> NewMIs; 1311 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1312 /*UnfoldLoad=*/true, 1313 /*UnfoldStore=*/false, NewMIs); 1314 (void)Success; 1315 assert(Success && 1316 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1317 "succeeded!"); 1318 assert(NewMIs.size() == 2 && 1319 "Unfolded a load into multiple instructions!"); 1320 MachineBasicBlock *MBB = MI->getParent(); 1321 MachineBasicBlock::iterator Pos = MI; 1322 MBB->insert(Pos, NewMIs[0]); 1323 MBB->insert(Pos, NewMIs[1]); 1324 // If unfolding produced a load that wasn't loop-invariant or profitable to 1325 // hoist, discard the new instructions and bail. 1326 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1327 NewMIs[0]->eraseFromParent(); 1328 NewMIs[1]->eraseFromParent(); 1329 return nullptr; 1330 } 1331 1332 // Update register pressure for the unfolded instruction. 1333 UpdateRegPressure(NewMIs[1]); 1334 1335 // Otherwise we successfully unfolded a load that we can hoist. 1336 MI->eraseFromParent(); 1337 return NewMIs[0]; 1338 } 1339 1340 /// Initialize the CSE map with instructions that are in the current loop 1341 /// preheader that may become duplicates of instructions that are hoisted 1342 /// out of the loop. 1343 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) { 1344 for (MachineInstr &MI : *BB) 1345 CSEMap[MI.getOpcode()].push_back(&MI); 1346 } 1347 1348 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1349 /// Return this instruction if it's found. 1350 const MachineInstr* 1351 MachineLICMBase::LookForDuplicate(const MachineInstr *MI, 1352 std::vector<const MachineInstr*> &PrevMIs) { 1353 for (const MachineInstr *PrevMI : PrevMIs) 1354 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1355 return PrevMI; 1356 1357 return nullptr; 1358 } 1359 1360 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1361 /// computes the same value. If it's found, do a RAU on with the definition of 1362 /// the existing instruction rather than hoisting the instruction to the 1363 /// preheader. 1364 bool MachineLICMBase::EliminateCSE(MachineInstr *MI, 1365 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) { 1366 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1367 // the undef property onto uses. 1368 if (CI == CSEMap.end() || MI->isImplicitDef()) 1369 return false; 1370 1371 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1372 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1373 1374 // Replace virtual registers defined by MI by their counterparts defined 1375 // by Dup. 1376 SmallVector<unsigned, 2> Defs; 1377 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1378 const MachineOperand &MO = MI->getOperand(i); 1379 1380 // Physical registers may not differ here. 1381 assert((!MO.isReg() || MO.getReg() == 0 || 1382 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1383 MO.getReg() == Dup->getOperand(i).getReg()) && 1384 "Instructions with different phys regs are not identical!"); 1385 1386 if (MO.isReg() && MO.isDef() && 1387 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1388 Defs.push_back(i); 1389 } 1390 1391 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1392 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1393 unsigned Idx = Defs[i]; 1394 unsigned Reg = MI->getOperand(Idx).getReg(); 1395 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1396 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1397 1398 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1399 // Restore old RCs if more than one defs. 1400 for (unsigned j = 0; j != i; ++j) 1401 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1402 return false; 1403 } 1404 } 1405 1406 for (unsigned Idx : Defs) { 1407 unsigned Reg = MI->getOperand(Idx).getReg(); 1408 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1409 MRI->replaceRegWith(Reg, DupReg); 1410 MRI->clearKillFlags(DupReg); 1411 } 1412 1413 MI->eraseFromParent(); 1414 ++NumCSEed; 1415 return true; 1416 } 1417 return false; 1418 } 1419 1420 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1421 /// the loop. 1422 bool MachineLICMBase::MayCSE(MachineInstr *MI) { 1423 unsigned Opcode = MI->getOpcode(); 1424 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1425 CI = CSEMap.find(Opcode); 1426 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1427 // the undef property onto uses. 1428 if (CI == CSEMap.end() || MI->isImplicitDef()) 1429 return false; 1430 1431 return LookForDuplicate(MI, CI->second) != nullptr; 1432 } 1433 1434 /// When an instruction is found to use only loop invariant operands 1435 /// that are safe to hoist, this instruction is called to do the dirty work. 1436 /// It returns true if the instruction is hoisted. 1437 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1438 // First check whether we should hoist this instruction. 1439 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1440 // If not, try unfolding a hoistable load. 1441 MI = ExtractHoistableLoad(MI); 1442 if (!MI) return false; 1443 } 1444 1445 // If we have hoisted an instruction that may store, it can only be a constant 1446 // store. 1447 if (MI->mayStore()) 1448 NumStoreConst++; 1449 1450 // Now move the instructions to the predecessor, inserting it before any 1451 // terminator instructions. 1452 LLVM_DEBUG({ 1453 dbgs() << "Hoisting " << *MI; 1454 if (MI->getParent()->getBasicBlock()) 1455 dbgs() << " from " << printMBBReference(*MI->getParent()); 1456 if (Preheader->getBasicBlock()) 1457 dbgs() << " to " << printMBBReference(*Preheader); 1458 dbgs() << "\n"; 1459 }); 1460 1461 // If this is the first instruction being hoisted to the preheader, 1462 // initialize the CSE map with potential common expressions. 1463 if (FirstInLoop) { 1464 InitCSEMap(Preheader); 1465 FirstInLoop = false; 1466 } 1467 1468 // Look for opportunity to CSE the hoisted instruction. 1469 unsigned Opcode = MI->getOpcode(); 1470 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator 1471 CI = CSEMap.find(Opcode); 1472 if (!EliminateCSE(MI, CI)) { 1473 // Otherwise, splice the instruction to the preheader. 1474 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1475 1476 // Since we are moving the instruction out of its basic block, we do not 1477 // retain its debug location. Doing so would degrade the debugging 1478 // experience and adversely affect the accuracy of profiling information. 1479 MI->setDebugLoc(DebugLoc()); 1480 1481 // Update register pressure for BBs from header to this block. 1482 UpdateBackTraceRegPressure(MI); 1483 1484 // Clear the kill flags of any register this instruction defines, 1485 // since they may need to be live throughout the entire loop 1486 // rather than just live for part of it. 1487 for (MachineOperand &MO : MI->operands()) 1488 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1489 MRI->clearKillFlags(MO.getReg()); 1490 1491 // Add to the CSE map. 1492 if (CI != CSEMap.end()) 1493 CI->second.push_back(MI); 1494 else 1495 CSEMap[Opcode].push_back(MI); 1496 } 1497 1498 ++NumHoisted; 1499 Changed = true; 1500 1501 return true; 1502 } 1503 1504 /// Get the preheader for the current loop, splitting a critical edge if needed. 1505 MachineBasicBlock *MachineLICMBase::getCurPreheader() { 1506 // Determine the block to which to hoist instructions. If we can't find a 1507 // suitable loop predecessor, we can't do any hoisting. 1508 1509 // If we've tried to get a preheader and failed, don't try again. 1510 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1511 return nullptr; 1512 1513 if (!CurPreheader) { 1514 CurPreheader = CurLoop->getLoopPreheader(); 1515 if (!CurPreheader) { 1516 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1517 if (!Pred) { 1518 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1519 return nullptr; 1520 } 1521 1522 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1523 if (!CurPreheader) { 1524 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1525 return nullptr; 1526 } 1527 } 1528 } 1529 return CurPreheader; 1530 } 1531