1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs loop invariant code motion on machine instructions. We
11 // attempt to remove as much code from the body of a loop as possible.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <limits>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "machinelicm"
58 
59 static cl::opt<bool>
60 AvoidSpeculation("avoid-speculation",
61                  cl::desc("MachineLICM should avoid speculation"),
62                  cl::init(true), cl::Hidden);
63 
64 static cl::opt<bool>
65 HoistCheapInsts("hoist-cheap-insts",
66                 cl::desc("MachineLICM should hoist even cheap instructions"),
67                 cl::init(false), cl::Hidden);
68 
69 static cl::opt<bool>
70 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills",
71                        cl::desc("MachineLICM should sink instructions into "
72                                 "loops to avoid register spills"),
73                        cl::init(false), cl::Hidden);
74 static cl::opt<bool>
75 HoistConstStores("hoist-const-stores",
76                  cl::desc("Hoist invariant stores"),
77                  cl::init(true), cl::Hidden);
78 
79 STATISTIC(NumHoisted,
80           "Number of machine instructions hoisted out of loops");
81 STATISTIC(NumLowRP,
82           "Number of instructions hoisted in low reg pressure situation");
83 STATISTIC(NumHighLatency,
84           "Number of high latency instructions hoisted");
85 STATISTIC(NumCSEed,
86           "Number of hoisted machine instructions CSEed");
87 STATISTIC(NumPostRAHoisted,
88           "Number of machine instructions hoisted out of loops post regalloc");
89 STATISTIC(NumStoreConst,
90           "Number of stores of const phys reg hoisted out of loops");
91 
92 namespace {
93 
94   class MachineLICMBase : public MachineFunctionPass {
95     const TargetInstrInfo *TII;
96     const TargetLoweringBase *TLI;
97     const TargetRegisterInfo *TRI;
98     const MachineFrameInfo *MFI;
99     MachineRegisterInfo *MRI;
100     TargetSchedModel SchedModel;
101     bool PreRegAlloc;
102 
103     // Various analyses that we use...
104     AliasAnalysis        *AA;      // Alias analysis info.
105     MachineLoopInfo      *MLI;     // Current MachineLoopInfo
106     MachineDominatorTree *DT;      // Machine dominator tree for the cur loop
107 
108     // State that is updated as we process loops
109     bool         Changed;          // True if a loop is changed.
110     bool         FirstInLoop;      // True if it's the first LICM in the loop.
111     MachineLoop *CurLoop;          // The current loop we are working on.
112     MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
113 
114     // Exit blocks for CurLoop.
115     SmallVector<MachineBasicBlock *, 8> ExitBlocks;
116 
117     bool isExitBlock(const MachineBasicBlock *MBB) const {
118       return is_contained(ExitBlocks, MBB);
119     }
120 
121     // Track 'estimated' register pressure.
122     SmallSet<unsigned, 32> RegSeen;
123     SmallVector<unsigned, 8> RegPressure;
124 
125     // Register pressure "limit" per register pressure set. If the pressure
126     // is higher than the limit, then it's considered high.
127     SmallVector<unsigned, 8> RegLimit;
128 
129     // Register pressure on path leading from loop preheader to current BB.
130     SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
131 
132     // For each opcode, keep a list of potential CSE instructions.
133     DenseMap<unsigned, std::vector<const MachineInstr *>> CSEMap;
134 
135     enum {
136       SpeculateFalse   = 0,
137       SpeculateTrue    = 1,
138       SpeculateUnknown = 2
139     };
140 
141     // If a MBB does not dominate loop exiting blocks then it may not safe
142     // to hoist loads from this block.
143     // Tri-state: 0 - false, 1 - true, 2 - unknown
144     unsigned SpeculationState;
145 
146   public:
147     MachineLICMBase(char &PassID, bool PreRegAlloc)
148         : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
149 
150     bool runOnMachineFunction(MachineFunction &MF) override;
151 
152     void getAnalysisUsage(AnalysisUsage &AU) const override {
153       AU.addRequired<MachineLoopInfo>();
154       AU.addRequired<MachineDominatorTree>();
155       AU.addRequired<AAResultsWrapperPass>();
156       AU.addPreserved<MachineLoopInfo>();
157       AU.addPreserved<MachineDominatorTree>();
158       MachineFunctionPass::getAnalysisUsage(AU);
159     }
160 
161     void releaseMemory() override {
162       RegSeen.clear();
163       RegPressure.clear();
164       RegLimit.clear();
165       BackTrace.clear();
166       CSEMap.clear();
167     }
168 
169   private:
170     /// Keep track of information about hoisting candidates.
171     struct CandidateInfo {
172       MachineInstr *MI;
173       unsigned      Def;
174       int           FI;
175 
176       CandidateInfo(MachineInstr *mi, unsigned def, int fi)
177         : MI(mi), Def(def), FI(fi) {}
178     };
179 
180     void HoistRegionPostRA();
181 
182     void HoistPostRA(MachineInstr *MI, unsigned Def);
183 
184     void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
185                    BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
186                    SmallVectorImpl<CandidateInfo> &Candidates);
187 
188     void AddToLiveIns(unsigned Reg);
189 
190     bool IsLICMCandidate(MachineInstr &I);
191 
192     bool IsLoopInvariantInst(MachineInstr &I);
193 
194     bool HasLoopPHIUse(const MachineInstr *MI) const;
195 
196     bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
197                                unsigned Reg) const;
198 
199     bool IsCheapInstruction(MachineInstr &MI) const;
200 
201     bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
202                                  bool Cheap);
203 
204     void UpdateBackTraceRegPressure(const MachineInstr *MI);
205 
206     bool IsProfitableToHoist(MachineInstr &MI);
207 
208     bool IsGuaranteedToExecute(MachineBasicBlock *BB);
209 
210     void EnterScope(MachineBasicBlock *MBB);
211 
212     void ExitScope(MachineBasicBlock *MBB);
213 
214     void ExitScopeIfDone(
215         MachineDomTreeNode *Node,
216         DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
217         DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
218 
219     void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
220 
221     void HoistRegion(MachineDomTreeNode *N, bool IsHeader);
222 
223     void SinkIntoLoop();
224 
225     void InitRegPressure(MachineBasicBlock *BB);
226 
227     DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
228                                              bool ConsiderSeen,
229                                              bool ConsiderUnseenAsDef);
230 
231     void UpdateRegPressure(const MachineInstr *MI,
232                            bool ConsiderUnseenAsDef = false);
233 
234     MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
235 
236     const MachineInstr *
237     LookForDuplicate(const MachineInstr *MI,
238                      std::vector<const MachineInstr *> &PrevMIs);
239 
240     bool EliminateCSE(
241         MachineInstr *MI,
242         DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI);
243 
244     bool MayCSE(MachineInstr *MI);
245 
246     bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
247 
248     void InitCSEMap(MachineBasicBlock *BB);
249 
250     MachineBasicBlock *getCurPreheader();
251   };
252 
253   class MachineLICM : public MachineLICMBase {
254   public:
255     static char ID;
256     MachineLICM() : MachineLICMBase(ID, false) {
257       initializeMachineLICMPass(*PassRegistry::getPassRegistry());
258     }
259   };
260 
261   class EarlyMachineLICM : public MachineLICMBase {
262   public:
263     static char ID;
264     EarlyMachineLICM() : MachineLICMBase(ID, true) {
265       initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
266     }
267   };
268 
269 } // end anonymous namespace
270 
271 char MachineLICM::ID;
272 char EarlyMachineLICM::ID;
273 
274 char &llvm::MachineLICMID = MachineLICM::ID;
275 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
276 
277 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
278                       "Machine Loop Invariant Code Motion", false, false)
279 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
280 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
281 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
282 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
283                     "Machine Loop Invariant Code Motion", false, false)
284 
285 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
286                       "Early Machine Loop Invariant Code Motion", false, false)
287 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
289 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
290 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
291                     "Early Machine Loop Invariant Code Motion", false, false)
292 
293 /// Test if the given loop is the outer-most loop that has a unique predecessor.
294 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
295   // Check whether this loop even has a unique predecessor.
296   if (!CurLoop->getLoopPredecessor())
297     return false;
298   // Ok, now check to see if any of its outer loops do.
299   for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
300     if (L->getLoopPredecessor())
301       return false;
302   // None of them did, so this is the outermost with a unique predecessor.
303   return true;
304 }
305 
306 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
307   if (skipFunction(MF.getFunction()))
308     return false;
309 
310   Changed = FirstInLoop = false;
311   const TargetSubtargetInfo &ST = MF.getSubtarget();
312   TII = ST.getInstrInfo();
313   TLI = ST.getTargetLowering();
314   TRI = ST.getRegisterInfo();
315   MFI = &MF.getFrameInfo();
316   MRI = &MF.getRegInfo();
317   SchedModel.init(&ST);
318 
319   PreRegAlloc = MRI->isSSA();
320 
321   if (PreRegAlloc)
322     LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
323   else
324     LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
325   LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
326 
327   if (PreRegAlloc) {
328     // Estimate register pressure during pre-regalloc pass.
329     unsigned NumRPS = TRI->getNumRegPressureSets();
330     RegPressure.resize(NumRPS);
331     std::fill(RegPressure.begin(), RegPressure.end(), 0);
332     RegLimit.resize(NumRPS);
333     for (unsigned i = 0, e = NumRPS; i != e; ++i)
334       RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
335   }
336 
337   // Get our Loop information...
338   MLI = &getAnalysis<MachineLoopInfo>();
339   DT  = &getAnalysis<MachineDominatorTree>();
340   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
341 
342   SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
343   while (!Worklist.empty()) {
344     CurLoop = Worklist.pop_back_val();
345     CurPreheader = nullptr;
346     ExitBlocks.clear();
347 
348     // If this is done before regalloc, only visit outer-most preheader-sporting
349     // loops.
350     if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
351       Worklist.append(CurLoop->begin(), CurLoop->end());
352       continue;
353     }
354 
355     CurLoop->getExitBlocks(ExitBlocks);
356 
357     if (!PreRegAlloc)
358       HoistRegionPostRA();
359     else {
360       // CSEMap is initialized for loop header when the first instruction is
361       // being hoisted.
362       MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
363       FirstInLoop = true;
364       HoistOutOfLoop(N);
365       CSEMap.clear();
366 
367       if (SinkInstsToAvoidSpills)
368         SinkIntoLoop();
369     }
370   }
371 
372   return Changed;
373 }
374 
375 /// Return true if instruction stores to the specified frame.
376 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
377   // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
378   // true since they have no memory operands.
379   if (!MI->mayStore())
380      return false;
381   // If we lost memory operands, conservatively assume that the instruction
382   // writes to all slots.
383   if (MI->memoperands_empty())
384     return true;
385   for (const MachineMemOperand *MemOp : MI->memoperands()) {
386     if (!MemOp->isStore() || !MemOp->getPseudoValue())
387       continue;
388     if (const FixedStackPseudoSourceValue *Value =
389         dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
390       if (Value->getFrameIndex() == FI)
391         return true;
392     }
393   }
394   return false;
395 }
396 
397 /// Examine the instruction for potentai LICM candidate. Also
398 /// gather register def and frame object update information.
399 void MachineLICMBase::ProcessMI(MachineInstr *MI,
400                                 BitVector &PhysRegDefs,
401                                 BitVector &PhysRegClobbers,
402                                 SmallSet<int, 32> &StoredFIs,
403                                 SmallVectorImpl<CandidateInfo> &Candidates) {
404   bool RuledOut = false;
405   bool HasNonInvariantUse = false;
406   unsigned Def = 0;
407   for (const MachineOperand &MO : MI->operands()) {
408     if (MO.isFI()) {
409       // Remember if the instruction stores to the frame index.
410       int FI = MO.getIndex();
411       if (!StoredFIs.count(FI) &&
412           MFI->isSpillSlotObjectIndex(FI) &&
413           InstructionStoresToFI(MI, FI))
414         StoredFIs.insert(FI);
415       HasNonInvariantUse = true;
416       continue;
417     }
418 
419     // We can't hoist an instruction defining a physreg that is clobbered in
420     // the loop.
421     if (MO.isRegMask()) {
422       PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
423       continue;
424     }
425 
426     if (!MO.isReg())
427       continue;
428     unsigned Reg = MO.getReg();
429     if (!Reg)
430       continue;
431     assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
432            "Not expecting virtual register!");
433 
434     if (!MO.isDef()) {
435       if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
436         // If it's using a non-loop-invariant register, then it's obviously not
437         // safe to hoist.
438         HasNonInvariantUse = true;
439       continue;
440     }
441 
442     if (MO.isImplicit()) {
443       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
444         PhysRegClobbers.set(*AI);
445       if (!MO.isDead())
446         // Non-dead implicit def? This cannot be hoisted.
447         RuledOut = true;
448       // No need to check if a dead implicit def is also defined by
449       // another instruction.
450       continue;
451     }
452 
453     // FIXME: For now, avoid instructions with multiple defs, unless
454     // it's a dead implicit def.
455     if (Def)
456       RuledOut = true;
457     else
458       Def = Reg;
459 
460     // If we have already seen another instruction that defines the same
461     // register, then this is not safe.  Two defs is indicated by setting a
462     // PhysRegClobbers bit.
463     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
464       if (PhysRegDefs.test(*AS))
465         PhysRegClobbers.set(*AS);
466     }
467     // Need a second loop because MCRegAliasIterator can visit the same
468     // register twice.
469     for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
470       PhysRegDefs.set(*AS);
471 
472     if (PhysRegClobbers.test(Reg))
473       // MI defined register is seen defined by another instruction in
474       // the loop, it cannot be a LICM candidate.
475       RuledOut = true;
476   }
477 
478   // Only consider reloads for now and remats which do not have register
479   // operands. FIXME: Consider unfold load folding instructions.
480   if (Def && !RuledOut) {
481     int FI = std::numeric_limits<int>::min();
482     if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
483         (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
484       Candidates.push_back(CandidateInfo(MI, Def, FI));
485   }
486 }
487 
488 /// Walk the specified region of the CFG and hoist loop invariants out to the
489 /// preheader.
490 void MachineLICMBase::HoistRegionPostRA() {
491   MachineBasicBlock *Preheader = getCurPreheader();
492   if (!Preheader)
493     return;
494 
495   unsigned NumRegs = TRI->getNumRegs();
496   BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
497   BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
498 
499   SmallVector<CandidateInfo, 32> Candidates;
500   SmallSet<int, 32> StoredFIs;
501 
502   // Walk the entire region, count number of defs for each register, and
503   // collect potential LICM candidates.
504   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
505     // If the header of the loop containing this basic block is a landing pad,
506     // then don't try to hoist instructions out of this loop.
507     const MachineLoop *ML = MLI->getLoopFor(BB);
508     if (ML && ML->getHeader()->isEHPad()) continue;
509 
510     // Conservatively treat live-in's as an external def.
511     // FIXME: That means a reload that're reused in successor block(s) will not
512     // be LICM'ed.
513     for (const auto &LI : BB->liveins()) {
514       for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
515         PhysRegDefs.set(*AI);
516     }
517 
518     SpeculationState = SpeculateUnknown;
519     for (MachineInstr &MI : *BB)
520       ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
521   }
522 
523   // Gather the registers read / clobbered by the terminator.
524   BitVector TermRegs(NumRegs);
525   MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
526   if (TI != Preheader->end()) {
527     for (const MachineOperand &MO : TI->operands()) {
528       if (!MO.isReg())
529         continue;
530       unsigned Reg = MO.getReg();
531       if (!Reg)
532         continue;
533       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
534         TermRegs.set(*AI);
535     }
536   }
537 
538   // Now evaluate whether the potential candidates qualify.
539   // 1. Check if the candidate defined register is defined by another
540   //    instruction in the loop.
541   // 2. If the candidate is a load from stack slot (always true for now),
542   //    check if the slot is stored anywhere in the loop.
543   // 3. Make sure candidate def should not clobber
544   //    registers read by the terminator. Similarly its def should not be
545   //    clobbered by the terminator.
546   for (CandidateInfo &Candidate : Candidates) {
547     if (Candidate.FI != std::numeric_limits<int>::min() &&
548         StoredFIs.count(Candidate.FI))
549       continue;
550 
551     unsigned Def = Candidate.Def;
552     if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
553       bool Safe = true;
554       MachineInstr *MI = Candidate.MI;
555       for (const MachineOperand &MO : MI->operands()) {
556         if (!MO.isReg() || MO.isDef() || !MO.getReg())
557           continue;
558         unsigned Reg = MO.getReg();
559         if (PhysRegDefs.test(Reg) ||
560             PhysRegClobbers.test(Reg)) {
561           // If it's using a non-loop-invariant register, then it's obviously
562           // not safe to hoist.
563           Safe = false;
564           break;
565         }
566       }
567       if (Safe)
568         HoistPostRA(MI, Candidate.Def);
569     }
570   }
571 }
572 
573 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
574 /// sure it is not killed by any instructions in the loop.
575 void MachineLICMBase::AddToLiveIns(unsigned Reg) {
576   for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
577     if (!BB->isLiveIn(Reg))
578       BB->addLiveIn(Reg);
579     for (MachineInstr &MI : *BB) {
580       for (MachineOperand &MO : MI.operands()) {
581         if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
582         if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
583           MO.setIsKill(false);
584       }
585     }
586   }
587 }
588 
589 /// When an instruction is found to only use loop invariant operands that is
590 /// safe to hoist, this instruction is called to do the dirty work.
591 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
592   MachineBasicBlock *Preheader = getCurPreheader();
593 
594   // Now move the instructions to the predecessor, inserting it before any
595   // terminator instructions.
596   LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
597                     << " from " << printMBBReference(*MI->getParent()) << ": "
598                     << *MI);
599 
600   // Splice the instruction to the preheader.
601   MachineBasicBlock *MBB = MI->getParent();
602   Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
603 
604   // Add register to livein list to all the BBs in the current loop since a
605   // loop invariant must be kept live throughout the whole loop. This is
606   // important to ensure later passes do not scavenge the def register.
607   AddToLiveIns(Def);
608 
609   ++NumPostRAHoisted;
610   Changed = true;
611 }
612 
613 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
614 /// may not be safe to hoist.
615 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
616   if (SpeculationState != SpeculateUnknown)
617     return SpeculationState == SpeculateFalse;
618 
619   if (BB != CurLoop->getHeader()) {
620     // Check loop exiting blocks.
621     SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
622     CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
623     for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
624       if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
625         SpeculationState = SpeculateTrue;
626         return false;
627       }
628   }
629 
630   SpeculationState = SpeculateFalse;
631   return true;
632 }
633 
634 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
635   LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
636 
637   // Remember livein register pressure.
638   BackTrace.push_back(RegPressure);
639 }
640 
641 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
642   LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
643   BackTrace.pop_back();
644 }
645 
646 /// Destroy scope for the MBB that corresponds to the given dominator tree node
647 /// if its a leaf or all of its children are done. Walk up the dominator tree to
648 /// destroy ancestors which are now done.
649 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
650     DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
651     DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
652   if (OpenChildren[Node])
653     return;
654 
655   // Pop scope.
656   ExitScope(Node->getBlock());
657 
658   // Now traverse upwards to pop ancestors whose offsprings are all done.
659   while (MachineDomTreeNode *Parent = ParentMap[Node]) {
660     unsigned Left = --OpenChildren[Parent];
661     if (Left != 0)
662       break;
663     ExitScope(Parent->getBlock());
664     Node = Parent;
665   }
666 }
667 
668 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
669 /// specified header block, and that are in the current loop) in depth first
670 /// order w.r.t the DominatorTree. This allows us to visit definitions before
671 /// uses, allowing us to hoist a loop body in one pass without iteration.
672 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
673   MachineBasicBlock *Preheader = getCurPreheader();
674   if (!Preheader)
675     return;
676 
677   SmallVector<MachineDomTreeNode*, 32> Scopes;
678   SmallVector<MachineDomTreeNode*, 8> WorkList;
679   DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
680   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
681 
682   // Perform a DFS walk to determine the order of visit.
683   WorkList.push_back(HeaderN);
684   while (!WorkList.empty()) {
685     MachineDomTreeNode *Node = WorkList.pop_back_val();
686     assert(Node && "Null dominator tree node?");
687     MachineBasicBlock *BB = Node->getBlock();
688 
689     // If the header of the loop containing this basic block is a landing pad,
690     // then don't try to hoist instructions out of this loop.
691     const MachineLoop *ML = MLI->getLoopFor(BB);
692     if (ML && ML->getHeader()->isEHPad())
693       continue;
694 
695     // If this subregion is not in the top level loop at all, exit.
696     if (!CurLoop->contains(BB))
697       continue;
698 
699     Scopes.push_back(Node);
700     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
701     unsigned NumChildren = Children.size();
702 
703     // Don't hoist things out of a large switch statement.  This often causes
704     // code to be hoisted that wasn't going to be executed, and increases
705     // register pressure in a situation where it's likely to matter.
706     if (BB->succ_size() >= 25)
707       NumChildren = 0;
708 
709     OpenChildren[Node] = NumChildren;
710     // Add children in reverse order as then the next popped worklist node is
711     // the first child of this node.  This means we ultimately traverse the
712     // DOM tree in exactly the same order as if we'd recursed.
713     for (int i = (int)NumChildren-1; i >= 0; --i) {
714       MachineDomTreeNode *Child = Children[i];
715       ParentMap[Child] = Node;
716       WorkList.push_back(Child);
717     }
718   }
719 
720   if (Scopes.size() == 0)
721     return;
722 
723   // Compute registers which are livein into the loop headers.
724   RegSeen.clear();
725   BackTrace.clear();
726   InitRegPressure(Preheader);
727 
728   // Now perform LICM.
729   for (MachineDomTreeNode *Node : Scopes) {
730     MachineBasicBlock *MBB = Node->getBlock();
731 
732     EnterScope(MBB);
733 
734     // Process the block
735     SpeculationState = SpeculateUnknown;
736     for (MachineBasicBlock::iterator
737          MII = MBB->begin(), E = MBB->end(); MII != E; ) {
738       MachineBasicBlock::iterator NextMII = MII; ++NextMII;
739       MachineInstr *MI = &*MII;
740       if (!Hoist(MI, Preheader))
741         UpdateRegPressure(MI);
742       // If we have hoisted an instruction that may store, it can only be a
743       // constant store.
744       MII = NextMII;
745     }
746 
747     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
748     ExitScopeIfDone(Node, OpenChildren, ParentMap);
749   }
750 }
751 
752 /// Sink instructions into loops if profitable. This especially tries to prevent
753 /// register spills caused by register pressure if there is little to no
754 /// overhead moving instructions into loops.
755 void MachineLICMBase::SinkIntoLoop() {
756   MachineBasicBlock *Preheader = getCurPreheader();
757   if (!Preheader)
758     return;
759 
760   SmallVector<MachineInstr *, 8> Candidates;
761   for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
762        I != Preheader->instr_end(); ++I) {
763     // We need to ensure that we can safely move this instruction into the loop.
764     // As such, it must not have side-effects, e.g. such as a call has.
765     if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
766       Candidates.push_back(&*I);
767   }
768 
769   for (MachineInstr *I : Candidates) {
770     const MachineOperand &MO = I->getOperand(0);
771     if (!MO.isDef() || !MO.isReg() || !MO.getReg())
772       continue;
773     if (!MRI->hasOneDef(MO.getReg()))
774       continue;
775     bool CanSink = true;
776     MachineBasicBlock *B = nullptr;
777     for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
778       // FIXME: Come up with a proper cost model that estimates whether sinking
779       // the instruction (and thus possibly executing it on every loop
780       // iteration) is more expensive than a register.
781       // For now assumes that copies are cheap and thus almost always worth it.
782       if (!MI.isCopy()) {
783         CanSink = false;
784         break;
785       }
786       if (!B) {
787         B = MI.getParent();
788         continue;
789       }
790       B = DT->findNearestCommonDominator(B, MI.getParent());
791       if (!B) {
792         CanSink = false;
793         break;
794       }
795     }
796     if (!CanSink || !B || B == Preheader)
797       continue;
798     B->splice(B->getFirstNonPHI(), Preheader, I);
799   }
800 }
801 
802 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
803   return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
804 }
805 
806 /// Find all virtual register references that are liveout of the preheader to
807 /// initialize the starting "register pressure". Note this does not count live
808 /// through (livein but not used) registers.
809 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
810   std::fill(RegPressure.begin(), RegPressure.end(), 0);
811 
812   // If the preheader has only a single predecessor and it ends with a
813   // fallthrough or an unconditional branch, then scan its predecessor for live
814   // defs as well. This happens whenever the preheader is created by splitting
815   // the critical edge from the loop predecessor to the loop header.
816   if (BB->pred_size() == 1) {
817     MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
818     SmallVector<MachineOperand, 4> Cond;
819     if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
820       InitRegPressure(*BB->pred_begin());
821   }
822 
823   for (const MachineInstr &MI : *BB)
824     UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
825 }
826 
827 /// Update estimate of register pressure after the specified instruction.
828 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
829                                         bool ConsiderUnseenAsDef) {
830   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
831   for (const auto &RPIdAndCost : Cost) {
832     unsigned Class = RPIdAndCost.first;
833     if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
834       RegPressure[Class] = 0;
835     else
836       RegPressure[Class] += RPIdAndCost.second;
837   }
838 }
839 
840 /// Calculate the additional register pressure that the registers used in MI
841 /// cause.
842 ///
843 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
844 /// figure out which usages are live-ins.
845 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
846 DenseMap<unsigned, int>
847 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
848                                   bool ConsiderUnseenAsDef) {
849   DenseMap<unsigned, int> Cost;
850   if (MI->isImplicitDef())
851     return Cost;
852   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
853     const MachineOperand &MO = MI->getOperand(i);
854     if (!MO.isReg() || MO.isImplicit())
855       continue;
856     unsigned Reg = MO.getReg();
857     if (!TargetRegisterInfo::isVirtualRegister(Reg))
858       continue;
859 
860     // FIXME: It seems bad to use RegSeen only for some of these calculations.
861     bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
862     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
863 
864     RegClassWeight W = TRI->getRegClassWeight(RC);
865     int RCCost = 0;
866     if (MO.isDef())
867       RCCost = W.RegWeight;
868     else {
869       bool isKill = isOperandKill(MO, MRI);
870       if (isNew && !isKill && ConsiderUnseenAsDef)
871         // Haven't seen this, it must be a livein.
872         RCCost = W.RegWeight;
873       else if (!isNew && isKill)
874         RCCost = -W.RegWeight;
875     }
876     if (RCCost == 0)
877       continue;
878     const int *PS = TRI->getRegClassPressureSets(RC);
879     for (; *PS != -1; ++PS) {
880       if (Cost.find(*PS) == Cost.end())
881         Cost[*PS] = RCCost;
882       else
883         Cost[*PS] += RCCost;
884     }
885   }
886   return Cost;
887 }
888 
889 /// Return true if this machine instruction loads from global offset table or
890 /// constant pool.
891 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
892   assert(MI.mayLoad() && "Expected MI that loads!");
893 
894   // If we lost memory operands, conservatively assume that the instruction
895   // reads from everything..
896   if (MI.memoperands_empty())
897     return true;
898 
899   for (MachineMemOperand *MemOp : MI.memoperands())
900     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
901       if (PSV->isGOT() || PSV->isConstantPool())
902         return true;
903 
904   return false;
905 }
906 
907 // This function iterates through all the operands of the input store MI and
908 // checks that each register operand statisfies isCallerPreservedPhysReg.
909 // This means, the value being stored and the address where it is being stored
910 // is constant throughout the body of the function (not including prologue and
911 // epilogue). When called with an MI that isn't a store, it returns false.
912 // A future improvement can be to check if the store registers are constant
913 // throughout the loop rather than throughout the funtion.
914 static bool isInvariantStore(const MachineInstr &MI,
915                              const TargetRegisterInfo *TRI,
916                              const MachineRegisterInfo *MRI) {
917 
918   bool FoundCallerPresReg = false;
919   if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
920       (MI.getNumOperands() == 0))
921     return false;
922 
923   // Check that all register operands are caller-preserved physical registers.
924   for (const MachineOperand &MO : MI.operands()) {
925     if (MO.isReg()) {
926       unsigned Reg = MO.getReg();
927       // If operand is a virtual register, check if it comes from a copy of a
928       // physical register.
929       if (TargetRegisterInfo::isVirtualRegister(Reg))
930         Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
931       if (TargetRegisterInfo::isVirtualRegister(Reg))
932         return false;
933       if (!TRI->isCallerPreservedPhysReg(Reg, *MI.getMF()))
934         return false;
935       else
936         FoundCallerPresReg = true;
937     } else if (!MO.isImm()) {
938         return false;
939     }
940   }
941   return FoundCallerPresReg;
942 }
943 
944 // Return true if the input MI is a copy instruction that feeds an invariant
945 // store instruction. This means that the src of the copy has to satisfy
946 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
947 // isInvariantStore.
948 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
949                                         const MachineRegisterInfo *MRI,
950                                         const TargetRegisterInfo *TRI) {
951 
952   // FIXME: If targets would like to look through instructions that aren't
953   // pure copies, this can be updated to a query.
954   if (!MI.isCopy())
955     return false;
956 
957   const MachineFunction *MF = MI.getMF();
958   // Check that we are copying a constant physical register.
959   unsigned CopySrcReg = MI.getOperand(1).getReg();
960   if (TargetRegisterInfo::isVirtualRegister(CopySrcReg))
961     return false;
962 
963   if (!TRI->isCallerPreservedPhysReg(CopySrcReg, *MF))
964     return false;
965 
966   unsigned CopyDstReg = MI.getOperand(0).getReg();
967   // Check if any of the uses of the copy are invariant stores.
968   assert (TargetRegisterInfo::isVirtualRegister(CopyDstReg) &&
969           "copy dst is not a virtual reg");
970 
971   for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
972     if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
973       return true;
974   }
975   return false;
976 }
977 
978 /// Returns true if the instruction may be a suitable candidate for LICM.
979 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
980 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
981   // Check if it's safe to move the instruction.
982   bool DontMoveAcrossStore = true;
983   if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
984       !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
985     return false;
986   }
987 
988   // If it is load then check if it is guaranteed to execute by making sure that
989   // it dominates all exiting blocks. If it doesn't, then there is a path out of
990   // the loop which does not execute this load, so we can't hoist it. Loads
991   // from constant memory are not safe to speculate all the time, for example
992   // indexed load from a jump table.
993   // Stores and side effects are already checked by isSafeToMove.
994   if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
995       !IsGuaranteedToExecute(I.getParent()))
996     return false;
997 
998   return true;
999 }
1000 
1001 /// Returns true if the instruction is loop invariant.
1002 /// I.e., all virtual register operands are defined outside of the loop,
1003 /// physical registers aren't accessed explicitly, and there are no side
1004 /// effects that aren't captured by the operands or other flags.
1005 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1006   if (!IsLICMCandidate(I))
1007     return false;
1008 
1009   // The instruction is loop invariant if all of its operands are.
1010   for (const MachineOperand &MO : I.operands()) {
1011     if (!MO.isReg())
1012       continue;
1013 
1014     unsigned Reg = MO.getReg();
1015     if (Reg == 0) continue;
1016 
1017     // Don't hoist an instruction that uses or defines a physical register.
1018     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1019       if (MO.isUse()) {
1020         // If the physreg has no defs anywhere, it's just an ambient register
1021         // and we can freely move its uses. Alternatively, if it's allocatable,
1022         // it could get allocated to something with a def during allocation.
1023         // However, if the physreg is known to always be caller saved/restored
1024         // then this use is safe to hoist.
1025         if (!MRI->isConstantPhysReg(Reg) &&
1026             !(TRI->isCallerPreservedPhysReg(Reg, *I.getMF())))
1027           return false;
1028         // Otherwise it's safe to move.
1029         continue;
1030       } else if (!MO.isDead()) {
1031         // A def that isn't dead. We can't move it.
1032         return false;
1033       } else if (CurLoop->getHeader()->isLiveIn(Reg)) {
1034         // If the reg is live into the loop, we can't hoist an instruction
1035         // which would clobber it.
1036         return false;
1037       }
1038     }
1039 
1040     if (!MO.isUse())
1041       continue;
1042 
1043     assert(MRI->getVRegDef(Reg) &&
1044            "Machine instr not mapped for this vreg?!");
1045 
1046     // If the loop contains the definition of an operand, then the instruction
1047     // isn't loop invariant.
1048     if (CurLoop->contains(MRI->getVRegDef(Reg)))
1049       return false;
1050   }
1051 
1052   // If we got this far, the instruction is loop invariant!
1053   return true;
1054 }
1055 
1056 /// Return true if the specified instruction is used by a phi node and hoisting
1057 /// it could cause a copy to be inserted.
1058 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1059   SmallVector<const MachineInstr*, 8> Work(1, MI);
1060   do {
1061     MI = Work.pop_back_val();
1062     for (const MachineOperand &MO : MI->operands()) {
1063       if (!MO.isReg() || !MO.isDef())
1064         continue;
1065       unsigned Reg = MO.getReg();
1066       if (!TargetRegisterInfo::isVirtualRegister(Reg))
1067         continue;
1068       for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1069         // A PHI may cause a copy to be inserted.
1070         if (UseMI.isPHI()) {
1071           // A PHI inside the loop causes a copy because the live range of Reg is
1072           // extended across the PHI.
1073           if (CurLoop->contains(&UseMI))
1074             return true;
1075           // A PHI in an exit block can cause a copy to be inserted if the PHI
1076           // has multiple predecessors in the loop with different values.
1077           // For now, approximate by rejecting all exit blocks.
1078           if (isExitBlock(UseMI.getParent()))
1079             return true;
1080           continue;
1081         }
1082         // Look past copies as well.
1083         if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1084           Work.push_back(&UseMI);
1085       }
1086     }
1087   } while (!Work.empty());
1088   return false;
1089 }
1090 
1091 /// Compute operand latency between a def of 'Reg' and an use in the current
1092 /// loop, return true if the target considered it high.
1093 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI,
1094                                             unsigned DefIdx,
1095                                             unsigned Reg) const {
1096   if (MRI->use_nodbg_empty(Reg))
1097     return false;
1098 
1099   for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1100     if (UseMI.isCopyLike())
1101       continue;
1102     if (!CurLoop->contains(UseMI.getParent()))
1103       continue;
1104     for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1105       const MachineOperand &MO = UseMI.getOperand(i);
1106       if (!MO.isReg() || !MO.isUse())
1107         continue;
1108       unsigned MOReg = MO.getReg();
1109       if (MOReg != Reg)
1110         continue;
1111 
1112       if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1113         return true;
1114     }
1115 
1116     // Only look at the first in loop use.
1117     break;
1118   }
1119 
1120   return false;
1121 }
1122 
1123 /// Return true if the instruction is marked "cheap" or the operand latency
1124 /// between its def and a use is one or less.
1125 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1126   if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1127     return true;
1128 
1129   bool isCheap = false;
1130   unsigned NumDefs = MI.getDesc().getNumDefs();
1131   for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1132     MachineOperand &DefMO = MI.getOperand(i);
1133     if (!DefMO.isReg() || !DefMO.isDef())
1134       continue;
1135     --NumDefs;
1136     unsigned Reg = DefMO.getReg();
1137     if (TargetRegisterInfo::isPhysicalRegister(Reg))
1138       continue;
1139 
1140     if (!TII->hasLowDefLatency(SchedModel, MI, i))
1141       return false;
1142     isCheap = true;
1143   }
1144 
1145   return isCheap;
1146 }
1147 
1148 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1149 /// given cost matrix can cause high register pressure.
1150 bool
1151 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1152                                          bool CheapInstr) {
1153   for (const auto &RPIdAndCost : Cost) {
1154     if (RPIdAndCost.second <= 0)
1155       continue;
1156 
1157     unsigned Class = RPIdAndCost.first;
1158     int Limit = RegLimit[Class];
1159 
1160     // Don't hoist cheap instructions if they would increase register pressure,
1161     // even if we're under the limit.
1162     if (CheapInstr && !HoistCheapInsts)
1163       return true;
1164 
1165     for (const auto &RP : BackTrace)
1166       if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1167         return true;
1168   }
1169 
1170   return false;
1171 }
1172 
1173 /// Traverse the back trace from header to the current block and update their
1174 /// register pressures to reflect the effect of hoisting MI from the current
1175 /// block to the preheader.
1176 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1177   // First compute the 'cost' of the instruction, i.e. its contribution
1178   // to register pressure.
1179   auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1180                                /*ConsiderUnseenAsDef=*/false);
1181 
1182   // Update register pressure of blocks from loop header to current block.
1183   for (auto &RP : BackTrace)
1184     for (const auto &RPIdAndCost : Cost)
1185       RP[RPIdAndCost.first] += RPIdAndCost.second;
1186 }
1187 
1188 /// Return true if it is potentially profitable to hoist the given loop
1189 /// invariant.
1190 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1191   if (MI.isImplicitDef())
1192     return true;
1193 
1194   // Besides removing computation from the loop, hoisting an instruction has
1195   // these effects:
1196   //
1197   // - The value defined by the instruction becomes live across the entire
1198   //   loop. This increases register pressure in the loop.
1199   //
1200   // - If the value is used by a PHI in the loop, a copy will be required for
1201   //   lowering the PHI after extending the live range.
1202   //
1203   // - When hoisting the last use of a value in the loop, that value no longer
1204   //   needs to be live in the loop. This lowers register pressure in the loop.
1205 
1206   if (HoistConstStores &&  isCopyFeedingInvariantStore(MI, MRI, TRI))
1207     return true;
1208 
1209   bool CheapInstr = IsCheapInstruction(MI);
1210   bool CreatesCopy = HasLoopPHIUse(&MI);
1211 
1212   // Don't hoist a cheap instruction if it would create a copy in the loop.
1213   if (CheapInstr && CreatesCopy) {
1214     LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1215     return false;
1216   }
1217 
1218   // Rematerializable instructions should always be hoisted since the register
1219   // allocator can just pull them down again when needed.
1220   if (TII->isTriviallyReMaterializable(MI, AA))
1221     return true;
1222 
1223   // FIXME: If there are long latency loop-invariant instructions inside the
1224   // loop at this point, why didn't the optimizer's LICM hoist them?
1225   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1226     const MachineOperand &MO = MI.getOperand(i);
1227     if (!MO.isReg() || MO.isImplicit())
1228       continue;
1229     unsigned Reg = MO.getReg();
1230     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1231       continue;
1232     if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1233       LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1234       ++NumHighLatency;
1235       return true;
1236     }
1237   }
1238 
1239   // Estimate register pressure to determine whether to LICM the instruction.
1240   // In low register pressure situation, we can be more aggressive about
1241   // hoisting. Also, favors hoisting long latency instructions even in
1242   // moderately high pressure situation.
1243   // Cheap instructions will only be hoisted if they don't increase register
1244   // pressure at all.
1245   auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1246                                /*ConsiderUnseenAsDef=*/false);
1247 
1248   // Visit BBs from header to current BB, if hoisting this doesn't cause
1249   // high register pressure, then it's safe to proceed.
1250   if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1251     LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1252     ++NumLowRP;
1253     return true;
1254   }
1255 
1256   // Don't risk increasing register pressure if it would create copies.
1257   if (CreatesCopy) {
1258     LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1259     return false;
1260   }
1261 
1262   // Do not "speculate" in high register pressure situation. If an
1263   // instruction is not guaranteed to be executed in the loop, it's best to be
1264   // conservative.
1265   if (AvoidSpeculation &&
1266       (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1267     LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1268     return false;
1269   }
1270 
1271   // High register pressure situation, only hoist if the instruction is going
1272   // to be remat'ed.
1273   if (!TII->isTriviallyReMaterializable(MI, AA) &&
1274       !MI.isDereferenceableInvariantLoad(AA)) {
1275     LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1276     return false;
1277   }
1278 
1279   return true;
1280 }
1281 
1282 /// Unfold a load from the given machineinstr if the load itself could be
1283 /// hoisted. Return the unfolded and hoistable load, or null if the load
1284 /// couldn't be unfolded or if it wouldn't be hoistable.
1285 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1286   // Don't unfold simple loads.
1287   if (MI->canFoldAsLoad())
1288     return nullptr;
1289 
1290   // If not, we may be able to unfold a load and hoist that.
1291   // First test whether the instruction is loading from an amenable
1292   // memory location.
1293   if (!MI->isDereferenceableInvariantLoad(AA))
1294     return nullptr;
1295 
1296   // Next determine the register class for a temporary register.
1297   unsigned LoadRegIndex;
1298   unsigned NewOpc =
1299     TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1300                                     /*UnfoldLoad=*/true,
1301                                     /*UnfoldStore=*/false,
1302                                     &LoadRegIndex);
1303   if (NewOpc == 0) return nullptr;
1304   const MCInstrDesc &MID = TII->get(NewOpc);
1305   MachineFunction &MF = *MI->getMF();
1306   const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1307   // Ok, we're unfolding. Create a temporary register and do the unfold.
1308   unsigned Reg = MRI->createVirtualRegister(RC);
1309 
1310   SmallVector<MachineInstr *, 2> NewMIs;
1311   bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1312                                           /*UnfoldLoad=*/true,
1313                                           /*UnfoldStore=*/false, NewMIs);
1314   (void)Success;
1315   assert(Success &&
1316          "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1317          "succeeded!");
1318   assert(NewMIs.size() == 2 &&
1319          "Unfolded a load into multiple instructions!");
1320   MachineBasicBlock *MBB = MI->getParent();
1321   MachineBasicBlock::iterator Pos = MI;
1322   MBB->insert(Pos, NewMIs[0]);
1323   MBB->insert(Pos, NewMIs[1]);
1324   // If unfolding produced a load that wasn't loop-invariant or profitable to
1325   // hoist, discard the new instructions and bail.
1326   if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1327     NewMIs[0]->eraseFromParent();
1328     NewMIs[1]->eraseFromParent();
1329     return nullptr;
1330   }
1331 
1332   // Update register pressure for the unfolded instruction.
1333   UpdateRegPressure(NewMIs[1]);
1334 
1335   // Otherwise we successfully unfolded a load that we can hoist.
1336   MI->eraseFromParent();
1337   return NewMIs[0];
1338 }
1339 
1340 /// Initialize the CSE map with instructions that are in the current loop
1341 /// preheader that may become duplicates of instructions that are hoisted
1342 /// out of the loop.
1343 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1344   for (MachineInstr &MI : *BB)
1345     CSEMap[MI.getOpcode()].push_back(&MI);
1346 }
1347 
1348 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1349 /// Return this instruction if it's found.
1350 const MachineInstr*
1351 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1352                                   std::vector<const MachineInstr*> &PrevMIs) {
1353   for (const MachineInstr *PrevMI : PrevMIs)
1354     if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1355       return PrevMI;
1356 
1357   return nullptr;
1358 }
1359 
1360 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1361 /// computes the same value. If it's found, do a RAU on with the definition of
1362 /// the existing instruction rather than hoisting the instruction to the
1363 /// preheader.
1364 bool MachineLICMBase::EliminateCSE(MachineInstr *MI,
1365     DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI) {
1366   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1367   // the undef property onto uses.
1368   if (CI == CSEMap.end() || MI->isImplicitDef())
1369     return false;
1370 
1371   if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1372     LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1373 
1374     // Replace virtual registers defined by MI by their counterparts defined
1375     // by Dup.
1376     SmallVector<unsigned, 2> Defs;
1377     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1378       const MachineOperand &MO = MI->getOperand(i);
1379 
1380       // Physical registers may not differ here.
1381       assert((!MO.isReg() || MO.getReg() == 0 ||
1382               !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
1383               MO.getReg() == Dup->getOperand(i).getReg()) &&
1384              "Instructions with different phys regs are not identical!");
1385 
1386       if (MO.isReg() && MO.isDef() &&
1387           !TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
1388         Defs.push_back(i);
1389     }
1390 
1391     SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1392     for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1393       unsigned Idx = Defs[i];
1394       unsigned Reg = MI->getOperand(Idx).getReg();
1395       unsigned DupReg = Dup->getOperand(Idx).getReg();
1396       OrigRCs.push_back(MRI->getRegClass(DupReg));
1397 
1398       if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1399         // Restore old RCs if more than one defs.
1400         for (unsigned j = 0; j != i; ++j)
1401           MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1402         return false;
1403       }
1404     }
1405 
1406     for (unsigned Idx : Defs) {
1407       unsigned Reg = MI->getOperand(Idx).getReg();
1408       unsigned DupReg = Dup->getOperand(Idx).getReg();
1409       MRI->replaceRegWith(Reg, DupReg);
1410       MRI->clearKillFlags(DupReg);
1411     }
1412 
1413     MI->eraseFromParent();
1414     ++NumCSEed;
1415     return true;
1416   }
1417   return false;
1418 }
1419 
1420 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1421 /// the loop.
1422 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1423   unsigned Opcode = MI->getOpcode();
1424   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1425     CI = CSEMap.find(Opcode);
1426   // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1427   // the undef property onto uses.
1428   if (CI == CSEMap.end() || MI->isImplicitDef())
1429     return false;
1430 
1431   return LookForDuplicate(MI, CI->second) != nullptr;
1432 }
1433 
1434 /// When an instruction is found to use only loop invariant operands
1435 /// that are safe to hoist, this instruction is called to do the dirty work.
1436 /// It returns true if the instruction is hoisted.
1437 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1438   // First check whether we should hoist this instruction.
1439   if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1440     // If not, try unfolding a hoistable load.
1441     MI = ExtractHoistableLoad(MI);
1442     if (!MI) return false;
1443   }
1444 
1445   // If we have hoisted an instruction that may store, it can only be a constant
1446   // store.
1447   if (MI->mayStore())
1448     NumStoreConst++;
1449 
1450   // Now move the instructions to the predecessor, inserting it before any
1451   // terminator instructions.
1452   LLVM_DEBUG({
1453     dbgs() << "Hoisting " << *MI;
1454     if (MI->getParent()->getBasicBlock())
1455       dbgs() << " from " << printMBBReference(*MI->getParent());
1456     if (Preheader->getBasicBlock())
1457       dbgs() << " to " << printMBBReference(*Preheader);
1458     dbgs() << "\n";
1459   });
1460 
1461   // If this is the first instruction being hoisted to the preheader,
1462   // initialize the CSE map with potential common expressions.
1463   if (FirstInLoop) {
1464     InitCSEMap(Preheader);
1465     FirstInLoop = false;
1466   }
1467 
1468   // Look for opportunity to CSE the hoisted instruction.
1469   unsigned Opcode = MI->getOpcode();
1470   DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator
1471     CI = CSEMap.find(Opcode);
1472   if (!EliminateCSE(MI, CI)) {
1473     // Otherwise, splice the instruction to the preheader.
1474     Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1475 
1476     // Since we are moving the instruction out of its basic block, we do not
1477     // retain its debug location. Doing so would degrade the debugging
1478     // experience and adversely affect the accuracy of profiling information.
1479     MI->setDebugLoc(DebugLoc());
1480 
1481     // Update register pressure for BBs from header to this block.
1482     UpdateBackTraceRegPressure(MI);
1483 
1484     // Clear the kill flags of any register this instruction defines,
1485     // since they may need to be live throughout the entire loop
1486     // rather than just live for part of it.
1487     for (MachineOperand &MO : MI->operands())
1488       if (MO.isReg() && MO.isDef() && !MO.isDead())
1489         MRI->clearKillFlags(MO.getReg());
1490 
1491     // Add to the CSE map.
1492     if (CI != CSEMap.end())
1493       CI->second.push_back(MI);
1494     else
1495       CSEMap[Opcode].push_back(MI);
1496   }
1497 
1498   ++NumHoisted;
1499   Changed = true;
1500 
1501   return true;
1502 }
1503 
1504 /// Get the preheader for the current loop, splitting a critical edge if needed.
1505 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1506   // Determine the block to which to hoist instructions. If we can't find a
1507   // suitable loop predecessor, we can't do any hoisting.
1508 
1509   // If we've tried to get a preheader and failed, don't try again.
1510   if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1511     return nullptr;
1512 
1513   if (!CurPreheader) {
1514     CurPreheader = CurLoop->getLoopPreheader();
1515     if (!CurPreheader) {
1516       MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1517       if (!Pred) {
1518         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1519         return nullptr;
1520       }
1521 
1522       CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1523       if (!CurPreheader) {
1524         CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1525         return nullptr;
1526       }
1527     }
1528   }
1529   return CurPreheader;
1530 }
1531