1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass does not attempt to throttle itself to limit register pressure. 14 // The register allocation phases are expected to perform rematerialization 15 // to recover when register pressure is high. 16 // 17 // This pass is not intended to be a replacement or a complete alternative 18 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 19 // constructs that are not exposed before lowering and instruction selection. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #define DEBUG_TYPE "machine-licm" 24 #include "llvm/CodeGen/Passes.h" 25 #include "llvm/CodeGen/MachineDominators.h" 26 #include "llvm/CodeGen/MachineFrameInfo.h" 27 #include "llvm/CodeGen/MachineLoopInfo.h" 28 #include "llvm/CodeGen/MachineMemOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/PseudoSourceValue.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include "llvm/Target/TargetInstrInfo.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/raw_ostream.h" 40 41 using namespace llvm; 42 43 STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); 44 STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed"); 45 STATISTIC(NumPostRAHoisted, 46 "Number of machine instructions hoisted out of loops post regalloc"); 47 48 namespace { 49 class MachineLICM : public MachineFunctionPass { 50 bool PreRegAlloc; 51 52 const TargetMachine *TM; 53 const TargetInstrInfo *TII; 54 const TargetRegisterInfo *TRI; 55 const MachineFrameInfo *MFI; 56 MachineRegisterInfo *RegInfo; 57 58 // Various analyses that we use... 59 AliasAnalysis *AA; // Alias analysis info. 60 MachineLoopInfo *MLI; // Current MachineLoopInfo 61 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 62 63 // State that is updated as we process loops 64 bool Changed; // True if a loop is changed. 65 bool FirstInLoop; // True if it's the first LICM in the loop. 66 MachineLoop *CurLoop; // The current loop we are working on. 67 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 68 69 BitVector AllocatableSet; 70 71 // For each opcode, keep a list of potential CSE instructions. 72 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 73 74 public: 75 static char ID; // Pass identification, replacement for typeid 76 MachineLICM() : 77 MachineFunctionPass(ID), PreRegAlloc(true) {} 78 79 explicit MachineLICM(bool PreRA) : 80 MachineFunctionPass(ID), PreRegAlloc(PreRA) {} 81 82 virtual bool runOnMachineFunction(MachineFunction &MF); 83 84 const char *getPassName() const { return "Machine Instruction LICM"; } 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.setPreservesCFG(); 88 AU.addRequired<MachineLoopInfo>(); 89 AU.addRequired<MachineDominatorTree>(); 90 AU.addRequired<AliasAnalysis>(); 91 AU.addPreserved<MachineLoopInfo>(); 92 AU.addPreserved<MachineDominatorTree>(); 93 MachineFunctionPass::getAnalysisUsage(AU); 94 } 95 96 virtual void releaseMemory() { 97 CSEMap.clear(); 98 } 99 100 private: 101 /// CandidateInfo - Keep track of information about hoisting candidates. 102 struct CandidateInfo { 103 MachineInstr *MI; 104 unsigned Def; 105 int FI; 106 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 107 : MI(mi), Def(def), FI(fi) {} 108 }; 109 110 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 111 /// invariants out to the preheader. 112 void HoistRegionPostRA(); 113 114 /// HoistPostRA - When an instruction is found to only use loop invariant 115 /// operands that is safe to hoist, this instruction is called to do the 116 /// dirty work. 117 void HoistPostRA(MachineInstr *MI, unsigned Def); 118 119 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 120 /// gather register def and frame object update information. 121 void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs, 122 SmallSet<int, 32> &StoredFIs, 123 SmallVector<CandidateInfo, 32> &Candidates); 124 125 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the 126 /// current loop. 127 void AddToLiveIns(unsigned Reg); 128 129 /// IsLICMCandidate - Returns true if the instruction may be a suitable 130 /// candidate for LICM. e.g. If the instruction is a call, then it's 131 /// obviously not safe to hoist it. 132 bool IsLICMCandidate(MachineInstr &I); 133 134 /// IsLoopInvariantInst - Returns true if the instruction is loop 135 /// invariant. I.e., all virtual register operands are defined outside of 136 /// the loop, physical registers aren't accessed (explicitly or implicitly), 137 /// and the instruction is hoistable. 138 /// 139 bool IsLoopInvariantInst(MachineInstr &I); 140 141 /// IsProfitableToHoist - Return true if it is potentially profitable to 142 /// hoist the given loop invariant. 143 bool IsProfitableToHoist(MachineInstr &MI); 144 145 /// HoistRegion - Walk the specified region of the CFG (defined by all 146 /// blocks dominated by the specified block, and that are in the current 147 /// loop) in depth first order w.r.t the DominatorTree. This allows us to 148 /// visit definitions before uses, allowing us to hoist a loop body in one 149 /// pass without iteration. 150 /// 151 void HoistRegion(MachineDomTreeNode *N); 152 153 /// isLoadFromConstantMemory - Return true if the given instruction is a 154 /// load from constant memory. 155 bool isLoadFromConstantMemory(MachineInstr *MI); 156 157 /// ExtractHoistableLoad - Unfold a load from the given machineinstr if 158 /// the load itself could be hoisted. Return the unfolded and hoistable 159 /// load, or null if the load couldn't be unfolded or if it wouldn't 160 /// be hoistable. 161 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 162 163 /// LookForDuplicate - Find an instruction amount PrevMIs that is a 164 /// duplicate of MI. Return this instruction if it's found. 165 const MachineInstr *LookForDuplicate(const MachineInstr *MI, 166 std::vector<const MachineInstr*> &PrevMIs); 167 168 /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on 169 /// the preheader that compute the same value. If it's found, do a RAU on 170 /// with the definition of the existing instruction rather than hoisting 171 /// the instruction to the preheader. 172 bool EliminateCSE(MachineInstr *MI, 173 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); 174 175 /// Hoist - When an instruction is found to only use loop invariant operands 176 /// that is safe to hoist, this instruction is called to do the dirty work. 177 /// 178 void Hoist(MachineInstr *MI); 179 180 /// InitCSEMap - Initialize the CSE map with instructions that are in the 181 /// current loop preheader that may become duplicates of instructions that 182 /// are hoisted out of the loop. 183 void InitCSEMap(MachineBasicBlock *BB); 184 185 /// getCurPreheader - Get the preheader for the current loop, splitting 186 /// a critical edge if needed. 187 MachineBasicBlock *getCurPreheader(); 188 }; 189 } // end anonymous namespace 190 191 char MachineLICM::ID = 0; 192 INITIALIZE_PASS(MachineLICM, "machinelicm", 193 "Machine Loop Invariant Code Motion", false, false); 194 195 FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) { 196 return new MachineLICM(PreRegAlloc); 197 } 198 199 /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most 200 /// loop that has a unique predecessor. 201 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 202 // Check whether this loop even has a unique predecessor. 203 if (!CurLoop->getLoopPredecessor()) 204 return false; 205 // Ok, now check to see if any of its outer loops do. 206 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 207 if (L->getLoopPredecessor()) 208 return false; 209 // None of them did, so this is the outermost with a unique predecessor. 210 return true; 211 } 212 213 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 214 if (PreRegAlloc) 215 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n"); 216 else 217 DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n"); 218 219 Changed = FirstInLoop = false; 220 TM = &MF.getTarget(); 221 TII = TM->getInstrInfo(); 222 TRI = TM->getRegisterInfo(); 223 MFI = MF.getFrameInfo(); 224 RegInfo = &MF.getRegInfo(); 225 AllocatableSet = TRI->getAllocatableSet(MF); 226 227 // Get our Loop information... 228 MLI = &getAnalysis<MachineLoopInfo>(); 229 DT = &getAnalysis<MachineDominatorTree>(); 230 AA = &getAnalysis<AliasAnalysis>(); 231 232 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 233 while (!Worklist.empty()) { 234 CurLoop = Worklist.pop_back_val(); 235 CurPreheader = 0; 236 237 // If this is done before regalloc, only visit outer-most preheader-sporting 238 // loops. 239 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 240 Worklist.append(CurLoop->begin(), CurLoop->end()); 241 continue; 242 } 243 244 if (!PreRegAlloc) 245 HoistRegionPostRA(); 246 else { 247 // CSEMap is initialized for loop header when the first instruction is 248 // being hoisted. 249 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 250 FirstInLoop = true; 251 HoistRegion(N); 252 CSEMap.clear(); 253 } 254 } 255 256 return Changed; 257 } 258 259 /// InstructionStoresToFI - Return true if instruction stores to the 260 /// specified frame. 261 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 262 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 263 oe = MI->memoperands_end(); o != oe; ++o) { 264 if (!(*o)->isStore() || !(*o)->getValue()) 265 continue; 266 if (const FixedStackPseudoSourceValue *Value = 267 dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { 268 if (Value->getFrameIndex() == FI) 269 return true; 270 } 271 } 272 return false; 273 } 274 275 /// ProcessMI - Examine the instruction for potentai LICM candidate. Also 276 /// gather register def and frame object update information. 277 void MachineLICM::ProcessMI(MachineInstr *MI, 278 unsigned *PhysRegDefs, 279 SmallSet<int, 32> &StoredFIs, 280 SmallVector<CandidateInfo, 32> &Candidates) { 281 bool RuledOut = false; 282 bool HasNonInvariantUse = false; 283 unsigned Def = 0; 284 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 285 const MachineOperand &MO = MI->getOperand(i); 286 if (MO.isFI()) { 287 // Remember if the instruction stores to the frame index. 288 int FI = MO.getIndex(); 289 if (!StoredFIs.count(FI) && 290 MFI->isSpillSlotObjectIndex(FI) && 291 InstructionStoresToFI(MI, FI)) 292 StoredFIs.insert(FI); 293 HasNonInvariantUse = true; 294 continue; 295 } 296 297 if (!MO.isReg()) 298 continue; 299 unsigned Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 303 "Not expecting virtual register!"); 304 305 if (!MO.isDef()) { 306 if (Reg && PhysRegDefs[Reg]) 307 // If it's using a non-loop-invariant register, then it's obviously not 308 // safe to hoist. 309 HasNonInvariantUse = true; 310 continue; 311 } 312 313 if (MO.isImplicit()) { 314 ++PhysRegDefs[Reg]; 315 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) 316 ++PhysRegDefs[*AS]; 317 if (!MO.isDead()) 318 // Non-dead implicit def? This cannot be hoisted. 319 RuledOut = true; 320 // No need to check if a dead implicit def is also defined by 321 // another instruction. 322 continue; 323 } 324 325 // FIXME: For now, avoid instructions with multiple defs, unless 326 // it's a dead implicit def. 327 if (Def) 328 RuledOut = true; 329 else 330 Def = Reg; 331 332 // If we have already seen another instruction that defines the same 333 // register, then this is not safe. 334 if (++PhysRegDefs[Reg] > 1) 335 // MI defined register is seen defined by another instruction in 336 // the loop, it cannot be a LICM candidate. 337 RuledOut = true; 338 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) 339 if (++PhysRegDefs[*AS] > 1) 340 RuledOut = true; 341 } 342 343 // Only consider reloads for now and remats which do not have register 344 // operands. FIXME: Consider unfold load folding instructions. 345 if (Def && !RuledOut) { 346 int FI = INT_MIN; 347 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 348 (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 349 Candidates.push_back(CandidateInfo(MI, Def, FI)); 350 } 351 } 352 353 /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop 354 /// invariants out to the preheader. 355 void MachineLICM::HoistRegionPostRA() { 356 unsigned NumRegs = TRI->getNumRegs(); 357 unsigned *PhysRegDefs = new unsigned[NumRegs]; 358 std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0); 359 360 SmallVector<CandidateInfo, 32> Candidates; 361 SmallSet<int, 32> StoredFIs; 362 363 // Walk the entire region, count number of defs for each register, and 364 // collect potential LICM candidates. 365 const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks(); 366 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 367 MachineBasicBlock *BB = Blocks[i]; 368 // Conservatively treat live-in's as an external def. 369 // FIXME: That means a reload that're reused in successor block(s) will not 370 // be LICM'ed. 371 for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), 372 E = BB->livein_end(); I != E; ++I) { 373 unsigned Reg = *I; 374 ++PhysRegDefs[Reg]; 375 for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) 376 ++PhysRegDefs[*AS]; 377 } 378 379 for (MachineBasicBlock::iterator 380 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 381 MachineInstr *MI = &*MII; 382 ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates); 383 } 384 } 385 386 // Now evaluate whether the potential candidates qualify. 387 // 1. Check if the candidate defined register is defined by another 388 // instruction in the loop. 389 // 2. If the candidate is a load from stack slot (always true for now), 390 // check if the slot is stored anywhere in the loop. 391 for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { 392 if (Candidates[i].FI != INT_MIN && 393 StoredFIs.count(Candidates[i].FI)) 394 continue; 395 396 if (PhysRegDefs[Candidates[i].Def] == 1) { 397 bool Safe = true; 398 MachineInstr *MI = Candidates[i].MI; 399 for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { 400 const MachineOperand &MO = MI->getOperand(j); 401 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 402 continue; 403 if (PhysRegDefs[MO.getReg()]) { 404 // If it's using a non-loop-invariant register, then it's obviously 405 // not safe to hoist. 406 Safe = false; 407 break; 408 } 409 } 410 if (Safe) 411 HoistPostRA(MI, Candidates[i].Def); 412 } 413 } 414 415 delete[] PhysRegDefs; 416 } 417 418 /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current 419 /// loop, and make sure it is not killed by any instructions in the loop. 420 void MachineLICM::AddToLiveIns(unsigned Reg) { 421 const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks(); 422 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { 423 MachineBasicBlock *BB = Blocks[i]; 424 if (!BB->isLiveIn(Reg)) 425 BB->addLiveIn(Reg); 426 for (MachineBasicBlock::iterator 427 MII = BB->begin(), E = BB->end(); MII != E; ++MII) { 428 MachineInstr *MI = &*MII; 429 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 430 MachineOperand &MO = MI->getOperand(i); 431 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 432 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 433 MO.setIsKill(false); 434 } 435 } 436 } 437 } 438 439 /// HoistPostRA - When an instruction is found to only use loop invariant 440 /// operands that is safe to hoist, this instruction is called to do the 441 /// dirty work. 442 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 443 MachineBasicBlock *Preheader = getCurPreheader(); 444 if (!Preheader) return; 445 446 // Now move the instructions to the predecessor, inserting it before any 447 // terminator instructions. 448 DEBUG({ 449 dbgs() << "Hoisting " << *MI; 450 if (Preheader->getBasicBlock()) 451 dbgs() << " to MachineBasicBlock " 452 << Preheader->getName(); 453 if (MI->getParent()->getBasicBlock()) 454 dbgs() << " from MachineBasicBlock " 455 << MI->getParent()->getName(); 456 dbgs() << "\n"; 457 }); 458 459 // Splice the instruction to the preheader. 460 MachineBasicBlock *MBB = MI->getParent(); 461 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 462 463 // Add register to livein list to all the BBs in the current loop since a 464 // loop invariant must be kept live throughout the whole loop. This is 465 // important to ensure later passes do not scavenge the def register. 466 AddToLiveIns(Def); 467 468 ++NumPostRAHoisted; 469 Changed = true; 470 } 471 472 /// HoistRegion - Walk the specified region of the CFG (defined by all blocks 473 /// dominated by the specified block, and that are in the current loop) in depth 474 /// first order w.r.t the DominatorTree. This allows us to visit definitions 475 /// before uses, allowing us to hoist a loop body in one pass without iteration. 476 /// 477 void MachineLICM::HoistRegion(MachineDomTreeNode *N) { 478 assert(N != 0 && "Null dominator tree node?"); 479 MachineBasicBlock *BB = N->getBlock(); 480 481 // If this subregion is not in the top level loop at all, exit. 482 if (!CurLoop->contains(BB)) return; 483 484 for (MachineBasicBlock::iterator 485 MII = BB->begin(), E = BB->end(); MII != E; ) { 486 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 487 Hoist(&*MII); 488 MII = NextMII; 489 } 490 491 // Don't hoist things out of a large switch statement. This often causes 492 // code to be hoisted that wasn't going to be executed, and increases 493 // register pressure in a situation where it's likely to matter. 494 if (BB->succ_size() < 25) { 495 const std::vector<MachineDomTreeNode*> &Children = N->getChildren(); 496 for (unsigned I = 0, E = Children.size(); I != E; ++I) 497 HoistRegion(Children[I]); 498 } 499 } 500 501 /// IsLICMCandidate - Returns true if the instruction may be a suitable 502 /// candidate for LICM. e.g. If the instruction is a call, then it's obviously 503 /// not safe to hoist it. 504 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 505 // Check if it's safe to move the instruction. 506 bool DontMoveAcrossStore = true; 507 if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) 508 return false; 509 510 return true; 511 } 512 513 /// IsLoopInvariantInst - Returns true if the instruction is loop 514 /// invariant. I.e., all virtual register operands are defined outside of the 515 /// loop, physical registers aren't accessed explicitly, and there are no side 516 /// effects that aren't captured by the operands or other flags. 517 /// 518 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 519 if (!IsLICMCandidate(I)) 520 return false; 521 522 // The instruction is loop invariant if all of its operands are. 523 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { 524 const MachineOperand &MO = I.getOperand(i); 525 526 if (!MO.isReg()) 527 continue; 528 529 unsigned Reg = MO.getReg(); 530 if (Reg == 0) continue; 531 532 // Don't hoist an instruction that uses or defines a physical register. 533 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 534 if (MO.isUse()) { 535 // If the physreg has no defs anywhere, it's just an ambient register 536 // and we can freely move its uses. Alternatively, if it's allocatable, 537 // it could get allocated to something with a def during allocation. 538 if (!RegInfo->def_empty(Reg)) 539 return false; 540 if (AllocatableSet.test(Reg)) 541 return false; 542 // Check for a def among the register's aliases too. 543 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { 544 unsigned AliasReg = *Alias; 545 if (!RegInfo->def_empty(AliasReg)) 546 return false; 547 if (AllocatableSet.test(AliasReg)) 548 return false; 549 } 550 // Otherwise it's safe to move. 551 continue; 552 } else if (!MO.isDead()) { 553 // A def that isn't dead. We can't move it. 554 return false; 555 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 556 // If the reg is live into the loop, we can't hoist an instruction 557 // which would clobber it. 558 return false; 559 } 560 } 561 562 if (!MO.isUse()) 563 continue; 564 565 assert(RegInfo->getVRegDef(Reg) && 566 "Machine instr not mapped for this vreg?!"); 567 568 // If the loop contains the definition of an operand, then the instruction 569 // isn't loop invariant. 570 if (CurLoop->contains(RegInfo->getVRegDef(Reg))) 571 return false; 572 } 573 574 // If we got this far, the instruction is loop invariant! 575 return true; 576 } 577 578 579 /// HasPHIUses - Return true if the specified register has any PHI use. 580 static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) { 581 for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg), 582 UE = RegInfo->use_end(); UI != UE; ++UI) { 583 MachineInstr *UseMI = &*UI; 584 if (UseMI->isPHI()) 585 return true; 586 } 587 return false; 588 } 589 590 /// isLoadFromConstantMemory - Return true if the given instruction is a 591 /// load from constant memory. Machine LICM will hoist these even if they are 592 /// not re-materializable. 593 bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) { 594 if (!MI->getDesc().mayLoad()) return false; 595 if (!MI->hasOneMemOperand()) return false; 596 MachineMemOperand *MMO = *MI->memoperands_begin(); 597 if (MMO->isVolatile()) return false; 598 if (!MMO->getValue()) return false; 599 const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue()); 600 if (PSV) { 601 MachineFunction &MF = *MI->getParent()->getParent(); 602 return PSV->isConstant(MF.getFrameInfo()); 603 } else { 604 return AA->pointsToConstantMemory(MMO->getValue()); 605 } 606 } 607 608 /// IsProfitableToHoist - Return true if it is potentially profitable to hoist 609 /// the given loop invariant. 610 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 611 // FIXME: For now, only hoist re-materilizable instructions. LICM will 612 // increase register pressure. We want to make sure it doesn't increase 613 // spilling. 614 // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting 615 // these tend to help performance in low register pressure situation. The 616 // trade off is it may cause spill in high pressure situation. It will end up 617 // adding a store in the loop preheader. But the reload is no more expensive. 618 // The side benefit is these loads are frequently CSE'ed. 619 if (!TII->isTriviallyReMaterializable(&MI, AA)) { 620 if (!isLoadFromConstantMemory(&MI)) 621 return false; 622 } 623 624 // If result(s) of this instruction is used by PHIs, then don't hoist it. 625 // The presence of joins makes it difficult for current register allocator 626 // implementation to perform remat. 627 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 628 const MachineOperand &MO = MI.getOperand(i); 629 if (!MO.isReg() || !MO.isDef()) 630 continue; 631 if (HasPHIUses(MO.getReg(), RegInfo)) 632 return false; 633 } 634 635 return true; 636 } 637 638 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 639 // If not, we may be able to unfold a load and hoist that. 640 // First test whether the instruction is loading from an amenable 641 // memory location. 642 if (!isLoadFromConstantMemory(MI)) 643 return 0; 644 645 // Next determine the register class for a temporary register. 646 unsigned LoadRegIndex; 647 unsigned NewOpc = 648 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 649 /*UnfoldLoad=*/true, 650 /*UnfoldStore=*/false, 651 &LoadRegIndex); 652 if (NewOpc == 0) return 0; 653 const TargetInstrDesc &TID = TII->get(NewOpc); 654 if (TID.getNumDefs() != 1) return 0; 655 const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI); 656 // Ok, we're unfolding. Create a temporary register and do the unfold. 657 unsigned Reg = RegInfo->createVirtualRegister(RC); 658 659 MachineFunction &MF = *MI->getParent()->getParent(); 660 SmallVector<MachineInstr *, 2> NewMIs; 661 bool Success = 662 TII->unfoldMemoryOperand(MF, MI, Reg, 663 /*UnfoldLoad=*/true, /*UnfoldStore=*/false, 664 NewMIs); 665 (void)Success; 666 assert(Success && 667 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 668 "succeeded!"); 669 assert(NewMIs.size() == 2 && 670 "Unfolded a load into multiple instructions!"); 671 MachineBasicBlock *MBB = MI->getParent(); 672 MBB->insert(MI, NewMIs[0]); 673 MBB->insert(MI, NewMIs[1]); 674 // If unfolding produced a load that wasn't loop-invariant or profitable to 675 // hoist, discard the new instructions and bail. 676 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 677 NewMIs[0]->eraseFromParent(); 678 NewMIs[1]->eraseFromParent(); 679 return 0; 680 } 681 // Otherwise we successfully unfolded a load that we can hoist. 682 MI->eraseFromParent(); 683 return NewMIs[0]; 684 } 685 686 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 687 for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { 688 const MachineInstr *MI = &*I; 689 // FIXME: For now, only hoist re-materilizable instructions. LICM will 690 // increase register pressure. We want to make sure it doesn't increase 691 // spilling. 692 if (TII->isTriviallyReMaterializable(MI, AA)) { 693 unsigned Opcode = MI->getOpcode(); 694 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 695 CI = CSEMap.find(Opcode); 696 if (CI != CSEMap.end()) 697 CI->second.push_back(MI); 698 else { 699 std::vector<const MachineInstr*> CSEMIs; 700 CSEMIs.push_back(MI); 701 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); 702 } 703 } 704 } 705 } 706 707 const MachineInstr* 708 MachineLICM::LookForDuplicate(const MachineInstr *MI, 709 std::vector<const MachineInstr*> &PrevMIs) { 710 for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { 711 const MachineInstr *PrevMI = PrevMIs[i]; 712 if (TII->produceSameValue(MI, PrevMI)) 713 return PrevMI; 714 } 715 return 0; 716 } 717 718 bool MachineLICM::EliminateCSE(MachineInstr *MI, 719 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 720 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 721 // the undef property onto uses. 722 if (CI == CSEMap.end() || MI->isImplicitDef()) 723 return false; 724 725 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 726 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 727 728 // Replace virtual registers defined by MI by their counterparts defined 729 // by Dup. 730 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 731 const MachineOperand &MO = MI->getOperand(i); 732 733 // Physical registers may not differ here. 734 assert((!MO.isReg() || MO.getReg() == 0 || 735 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 736 MO.getReg() == Dup->getOperand(i).getReg()) && 737 "Instructions with different phys regs are not identical!"); 738 739 if (MO.isReg() && MO.isDef() && 740 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 741 RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg()); 742 RegInfo->clearKillFlags(Dup->getOperand(i).getReg()); 743 } 744 } 745 MI->eraseFromParent(); 746 ++NumCSEed; 747 return true; 748 } 749 return false; 750 } 751 752 /// Hoist - When an instruction is found to use only loop invariant operands 753 /// that are safe to hoist, this instruction is called to do the dirty work. 754 /// 755 void MachineLICM::Hoist(MachineInstr *MI) { 756 MachineBasicBlock *Preheader = getCurPreheader(); 757 if (!Preheader) return; 758 759 // First check whether we should hoist this instruction. 760 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 761 // If not, try unfolding a hoistable load. 762 MI = ExtractHoistableLoad(MI); 763 if (!MI) return; 764 } 765 766 // Now move the instructions to the predecessor, inserting it before any 767 // terminator instructions. 768 DEBUG({ 769 dbgs() << "Hoisting " << *MI; 770 if (Preheader->getBasicBlock()) 771 dbgs() << " to MachineBasicBlock " 772 << Preheader->getName(); 773 if (MI->getParent()->getBasicBlock()) 774 dbgs() << " from MachineBasicBlock " 775 << MI->getParent()->getName(); 776 dbgs() << "\n"; 777 }); 778 779 // If this is the first instruction being hoisted to the preheader, 780 // initialize the CSE map with potential common expressions. 781 if (FirstInLoop) { 782 InitCSEMap(Preheader); 783 FirstInLoop = false; 784 } 785 786 // Look for opportunity to CSE the hoisted instruction. 787 unsigned Opcode = MI->getOpcode(); 788 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 789 CI = CSEMap.find(Opcode); 790 if (!EliminateCSE(MI, CI)) { 791 // Otherwise, splice the instruction to the preheader. 792 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 793 794 // Clear the kill flags of any register this instruction defines, 795 // since they may need to be live throughout the entire loop 796 // rather than just live for part of it. 797 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 798 MachineOperand &MO = MI->getOperand(i); 799 if (MO.isReg() && MO.isDef() && !MO.isDead()) 800 RegInfo->clearKillFlags(MO.getReg()); 801 } 802 803 // Add to the CSE map. 804 if (CI != CSEMap.end()) 805 CI->second.push_back(MI); 806 else { 807 std::vector<const MachineInstr*> CSEMIs; 808 CSEMIs.push_back(MI); 809 CSEMap.insert(std::make_pair(Opcode, CSEMIs)); 810 } 811 } 812 813 ++NumHoisted; 814 Changed = true; 815 } 816 817 MachineBasicBlock *MachineLICM::getCurPreheader() { 818 // Determine the block to which to hoist instructions. If we can't find a 819 // suitable loop predecessor, we can't do any hoisting. 820 821 // If we've tried to get a preheader and failed, don't try again. 822 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 823 return 0; 824 825 if (!CurPreheader) { 826 CurPreheader = CurLoop->getLoopPreheader(); 827 if (!CurPreheader) { 828 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 829 if (!Pred) { 830 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 831 return 0; 832 } 833 834 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); 835 if (!CurPreheader) { 836 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 837 return 0; 838 } 839 } 840 } 841 return CurPreheader; 842 } 843