1 //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs loop invariant code motion on machine instructions. We 11 // attempt to remove as much code from the body of a loop as possible. 12 // 13 // This pass is not intended to be a replacement or a complete alternative 14 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple 15 // constructs that are not exposed before lowering and instruction selection. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/CodeGen/Passes.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineDominators.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineLoopInfo.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/PseudoSourceValue.h" 30 #include "llvm/CodeGen/TargetSchedule.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetLowering.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetRegisterInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "machine-licm" 42 43 static cl::opt<bool> 44 AvoidSpeculation("avoid-speculation", 45 cl::desc("MachineLICM should avoid speculation"), 46 cl::init(true), cl::Hidden); 47 48 static cl::opt<bool> 49 HoistCheapInsts("hoist-cheap-insts", 50 cl::desc("MachineLICM should hoist even cheap instructions"), 51 cl::init(false), cl::Hidden); 52 53 static cl::opt<bool> 54 SinkInstsToAvoidSpills("sink-insts-to-avoid-spills", 55 cl::desc("MachineLICM should sink instructions into " 56 "loops to avoid register spills"), 57 cl::init(false), cl::Hidden); 58 59 STATISTIC(NumHoisted, 60 "Number of machine instructions hoisted out of loops"); 61 STATISTIC(NumLowRP, 62 "Number of instructions hoisted in low reg pressure situation"); 63 STATISTIC(NumHighLatency, 64 "Number of high latency instructions hoisted"); 65 STATISTIC(NumCSEed, 66 "Number of hoisted machine instructions CSEed"); 67 STATISTIC(NumPostRAHoisted, 68 "Number of machine instructions hoisted out of loops post regalloc"); 69 70 namespace { 71 class MachineLICM : public MachineFunctionPass { 72 const TargetInstrInfo *TII; 73 const TargetLoweringBase *TLI; 74 const TargetRegisterInfo *TRI; 75 const MachineFrameInfo *MFI; 76 MachineRegisterInfo *MRI; 77 TargetSchedModel SchedModel; 78 bool PreRegAlloc; 79 80 // Various analyses that we use... 81 AliasAnalysis *AA; // Alias analysis info. 82 MachineLoopInfo *MLI; // Current MachineLoopInfo 83 MachineDominatorTree *DT; // Machine dominator tree for the cur loop 84 85 // State that is updated as we process loops 86 bool Changed; // True if a loop is changed. 87 bool FirstInLoop; // True if it's the first LICM in the loop. 88 MachineLoop *CurLoop; // The current loop we are working on. 89 MachineBasicBlock *CurPreheader; // The preheader for CurLoop. 90 91 // Exit blocks for CurLoop. 92 SmallVector<MachineBasicBlock*, 8> ExitBlocks; 93 94 bool isExitBlock(const MachineBasicBlock *MBB) const { 95 return is_contained(ExitBlocks, MBB); 96 } 97 98 // Track 'estimated' register pressure. 99 SmallSet<unsigned, 32> RegSeen; 100 SmallVector<unsigned, 8> RegPressure; 101 102 // Register pressure "limit" per register pressure set. If the pressure 103 // is higher than the limit, then it's considered high. 104 SmallVector<unsigned, 8> RegLimit; 105 106 // Register pressure on path leading from loop preheader to current BB. 107 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; 108 109 // For each opcode, keep a list of potential CSE instructions. 110 DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; 111 112 enum { 113 SpeculateFalse = 0, 114 SpeculateTrue = 1, 115 SpeculateUnknown = 2 116 }; 117 118 // If a MBB does not dominate loop exiting blocks then it may not safe 119 // to hoist loads from this block. 120 // Tri-state: 0 - false, 1 - true, 2 - unknown 121 unsigned SpeculationState; 122 123 public: 124 static char ID; // Pass identification, replacement for typeid 125 MachineLICM() : 126 MachineFunctionPass(ID), PreRegAlloc(true) { 127 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 128 } 129 130 explicit MachineLICM(bool PreRA) : 131 MachineFunctionPass(ID), PreRegAlloc(PreRA) { 132 initializeMachineLICMPass(*PassRegistry::getPassRegistry()); 133 } 134 135 bool runOnMachineFunction(MachineFunction &MF) override; 136 137 void getAnalysisUsage(AnalysisUsage &AU) const override { 138 AU.addRequired<MachineLoopInfo>(); 139 AU.addRequired<MachineDominatorTree>(); 140 AU.addRequired<AAResultsWrapperPass>(); 141 AU.addPreserved<MachineLoopInfo>(); 142 AU.addPreserved<MachineDominatorTree>(); 143 MachineFunctionPass::getAnalysisUsage(AU); 144 } 145 146 void releaseMemory() override { 147 RegSeen.clear(); 148 RegPressure.clear(); 149 RegLimit.clear(); 150 BackTrace.clear(); 151 CSEMap.clear(); 152 } 153 154 private: 155 /// Keep track of information about hoisting candidates. 156 struct CandidateInfo { 157 MachineInstr *MI; 158 unsigned Def; 159 int FI; 160 CandidateInfo(MachineInstr *mi, unsigned def, int fi) 161 : MI(mi), Def(def), FI(fi) {} 162 }; 163 164 void HoistRegionPostRA(); 165 166 void HoistPostRA(MachineInstr *MI, unsigned Def); 167 168 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs, 169 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs, 170 SmallVectorImpl<CandidateInfo> &Candidates); 171 172 void AddToLiveIns(unsigned Reg); 173 174 bool IsLICMCandidate(MachineInstr &I); 175 176 bool IsLoopInvariantInst(MachineInstr &I); 177 178 bool HasLoopPHIUse(const MachineInstr *MI) const; 179 180 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, 181 unsigned Reg) const; 182 183 bool IsCheapInstruction(MachineInstr &MI) const; 184 185 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost, 186 bool Cheap); 187 188 void UpdateBackTraceRegPressure(const MachineInstr *MI); 189 190 bool IsProfitableToHoist(MachineInstr &MI); 191 192 bool IsGuaranteedToExecute(MachineBasicBlock *BB); 193 194 void EnterScope(MachineBasicBlock *MBB); 195 196 void ExitScope(MachineBasicBlock *MBB); 197 198 void ExitScopeIfDone( 199 MachineDomTreeNode *Node, 200 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, 201 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); 202 203 void HoistOutOfLoop(MachineDomTreeNode *LoopHeaderNode); 204 205 void HoistRegion(MachineDomTreeNode *N, bool IsHeader); 206 207 void SinkIntoLoop(); 208 209 void InitRegPressure(MachineBasicBlock *BB); 210 211 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, 212 bool ConsiderSeen, 213 bool ConsiderUnseenAsDef); 214 215 void UpdateRegPressure(const MachineInstr *MI, 216 bool ConsiderUnseenAsDef = false); 217 218 MachineInstr *ExtractHoistableLoad(MachineInstr *MI); 219 220 const MachineInstr * 221 LookForDuplicate(const MachineInstr *MI, 222 std::vector<const MachineInstr *> &PrevMIs); 223 224 bool EliminateCSE( 225 MachineInstr *MI, 226 DenseMap<unsigned, std::vector<const MachineInstr *>>::iterator &CI); 227 228 bool MayCSE(MachineInstr *MI); 229 230 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader); 231 232 void InitCSEMap(MachineBasicBlock *BB); 233 234 MachineBasicBlock *getCurPreheader(); 235 }; 236 } // end anonymous namespace 237 238 char MachineLICM::ID = 0; 239 char &llvm::MachineLICMID = MachineLICM::ID; 240 INITIALIZE_PASS_BEGIN(MachineLICM, "machinelicm", 241 "Machine Loop Invariant Code Motion", false, false) 242 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 243 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 244 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 245 INITIALIZE_PASS_END(MachineLICM, "machinelicm", 246 "Machine Loop Invariant Code Motion", false, false) 247 248 /// Test if the given loop is the outer-most loop that has a unique predecessor. 249 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { 250 // Check whether this loop even has a unique predecessor. 251 if (!CurLoop->getLoopPredecessor()) 252 return false; 253 // Ok, now check to see if any of its outer loops do. 254 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) 255 if (L->getLoopPredecessor()) 256 return false; 257 // None of them did, so this is the outermost with a unique predecessor. 258 return true; 259 } 260 261 bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { 262 if (skipFunction(*MF.getFunction())) 263 return false; 264 265 Changed = FirstInLoop = false; 266 const TargetSubtargetInfo &ST = MF.getSubtarget(); 267 TII = ST.getInstrInfo(); 268 TLI = ST.getTargetLowering(); 269 TRI = ST.getRegisterInfo(); 270 MFI = &MF.getFrameInfo(); 271 MRI = &MF.getRegInfo(); 272 SchedModel.init(ST.getSchedModel(), &ST, TII); 273 274 PreRegAlloc = MRI->isSSA(); 275 276 if (PreRegAlloc) 277 DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: "); 278 else 279 DEBUG(dbgs() << "******** Post-regalloc Machine LICM: "); 280 DEBUG(dbgs() << MF.getName() << " ********\n"); 281 282 if (PreRegAlloc) { 283 // Estimate register pressure during pre-regalloc pass. 284 unsigned NumRPS = TRI->getNumRegPressureSets(); 285 RegPressure.resize(NumRPS); 286 std::fill(RegPressure.begin(), RegPressure.end(), 0); 287 RegLimit.resize(NumRPS); 288 for (unsigned i = 0, e = NumRPS; i != e; ++i) 289 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i); 290 } 291 292 // Get our Loop information... 293 MLI = &getAnalysis<MachineLoopInfo>(); 294 DT = &getAnalysis<MachineDominatorTree>(); 295 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 296 297 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); 298 while (!Worklist.empty()) { 299 CurLoop = Worklist.pop_back_val(); 300 CurPreheader = nullptr; 301 ExitBlocks.clear(); 302 303 // If this is done before regalloc, only visit outer-most preheader-sporting 304 // loops. 305 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { 306 Worklist.append(CurLoop->begin(), CurLoop->end()); 307 continue; 308 } 309 310 CurLoop->getExitBlocks(ExitBlocks); 311 312 if (!PreRegAlloc) 313 HoistRegionPostRA(); 314 else { 315 // CSEMap is initialized for loop header when the first instruction is 316 // being hoisted. 317 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); 318 FirstInLoop = true; 319 HoistOutOfLoop(N); 320 CSEMap.clear(); 321 322 if (SinkInstsToAvoidSpills) 323 SinkIntoLoop(); 324 } 325 } 326 327 return Changed; 328 } 329 330 /// Return true if instruction stores to the specified frame. 331 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { 332 // If we lost memory operands, conservatively assume that the instruction 333 // writes to all slots. 334 if (MI->memoperands_empty()) 335 return true; 336 for (const MachineMemOperand *MemOp : MI->memoperands()) { 337 if (!MemOp->isStore() || !MemOp->getPseudoValue()) 338 continue; 339 if (const FixedStackPseudoSourceValue *Value = 340 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) { 341 if (Value->getFrameIndex() == FI) 342 return true; 343 } 344 } 345 return false; 346 } 347 348 /// Examine the instruction for potentai LICM candidate. Also 349 /// gather register def and frame object update information. 350 void MachineLICM::ProcessMI(MachineInstr *MI, 351 BitVector &PhysRegDefs, 352 BitVector &PhysRegClobbers, 353 SmallSet<int, 32> &StoredFIs, 354 SmallVectorImpl<CandidateInfo> &Candidates) { 355 bool RuledOut = false; 356 bool HasNonInvariantUse = false; 357 unsigned Def = 0; 358 for (const MachineOperand &MO : MI->operands()) { 359 if (MO.isFI()) { 360 // Remember if the instruction stores to the frame index. 361 int FI = MO.getIndex(); 362 if (!StoredFIs.count(FI) && 363 MFI->isSpillSlotObjectIndex(FI) && 364 InstructionStoresToFI(MI, FI)) 365 StoredFIs.insert(FI); 366 HasNonInvariantUse = true; 367 continue; 368 } 369 370 // We can't hoist an instruction defining a physreg that is clobbered in 371 // the loop. 372 if (MO.isRegMask()) { 373 PhysRegClobbers.setBitsNotInMask(MO.getRegMask()); 374 continue; 375 } 376 377 if (!MO.isReg()) 378 continue; 379 unsigned Reg = MO.getReg(); 380 if (!Reg) 381 continue; 382 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 383 "Not expecting virtual register!"); 384 385 if (!MO.isDef()) { 386 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg))) 387 // If it's using a non-loop-invariant register, then it's obviously not 388 // safe to hoist. 389 HasNonInvariantUse = true; 390 continue; 391 } 392 393 if (MO.isImplicit()) { 394 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 395 PhysRegClobbers.set(*AI); 396 if (!MO.isDead()) 397 // Non-dead implicit def? This cannot be hoisted. 398 RuledOut = true; 399 // No need to check if a dead implicit def is also defined by 400 // another instruction. 401 continue; 402 } 403 404 // FIXME: For now, avoid instructions with multiple defs, unless 405 // it's a dead implicit def. 406 if (Def) 407 RuledOut = true; 408 else 409 Def = Reg; 410 411 // If we have already seen another instruction that defines the same 412 // register, then this is not safe. Two defs is indicated by setting a 413 // PhysRegClobbers bit. 414 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) { 415 if (PhysRegDefs.test(*AS)) 416 PhysRegClobbers.set(*AS); 417 PhysRegDefs.set(*AS); 418 } 419 if (PhysRegClobbers.test(Reg)) 420 // MI defined register is seen defined by another instruction in 421 // the loop, it cannot be a LICM candidate. 422 RuledOut = true; 423 } 424 425 // Only consider reloads for now and remats which do not have register 426 // operands. FIXME: Consider unfold load folding instructions. 427 if (Def && !RuledOut) { 428 int FI = INT_MIN; 429 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || 430 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI))) 431 Candidates.push_back(CandidateInfo(MI, Def, FI)); 432 } 433 } 434 435 /// Walk the specified region of the CFG and hoist loop invariants out to the 436 /// preheader. 437 void MachineLICM::HoistRegionPostRA() { 438 MachineBasicBlock *Preheader = getCurPreheader(); 439 if (!Preheader) 440 return; 441 442 unsigned NumRegs = TRI->getNumRegs(); 443 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop. 444 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once. 445 446 SmallVector<CandidateInfo, 32> Candidates; 447 SmallSet<int, 32> StoredFIs; 448 449 // Walk the entire region, count number of defs for each register, and 450 // collect potential LICM candidates. 451 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 452 for (MachineBasicBlock *BB : Blocks) { 453 // If the header of the loop containing this basic block is a landing pad, 454 // then don't try to hoist instructions out of this loop. 455 const MachineLoop *ML = MLI->getLoopFor(BB); 456 if (ML && ML->getHeader()->isEHPad()) continue; 457 458 // Conservatively treat live-in's as an external def. 459 // FIXME: That means a reload that're reused in successor block(s) will not 460 // be LICM'ed. 461 for (const auto &LI : BB->liveins()) { 462 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) 463 PhysRegDefs.set(*AI); 464 } 465 466 SpeculationState = SpeculateUnknown; 467 for (MachineInstr &MI : *BB) 468 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates); 469 } 470 471 // Gather the registers read / clobbered by the terminator. 472 BitVector TermRegs(NumRegs); 473 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); 474 if (TI != Preheader->end()) { 475 for (const MachineOperand &MO : TI->operands()) { 476 if (!MO.isReg()) 477 continue; 478 unsigned Reg = MO.getReg(); 479 if (!Reg) 480 continue; 481 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) 482 TermRegs.set(*AI); 483 } 484 } 485 486 // Now evaluate whether the potential candidates qualify. 487 // 1. Check if the candidate defined register is defined by another 488 // instruction in the loop. 489 // 2. If the candidate is a load from stack slot (always true for now), 490 // check if the slot is stored anywhere in the loop. 491 // 3. Make sure candidate def should not clobber 492 // registers read by the terminator. Similarly its def should not be 493 // clobbered by the terminator. 494 for (CandidateInfo &Candidate : Candidates) { 495 if (Candidate.FI != INT_MIN && 496 StoredFIs.count(Candidate.FI)) 497 continue; 498 499 unsigned Def = Candidate.Def; 500 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) { 501 bool Safe = true; 502 MachineInstr *MI = Candidate.MI; 503 for (const MachineOperand &MO : MI->operands()) { 504 if (!MO.isReg() || MO.isDef() || !MO.getReg()) 505 continue; 506 unsigned Reg = MO.getReg(); 507 if (PhysRegDefs.test(Reg) || 508 PhysRegClobbers.test(Reg)) { 509 // If it's using a non-loop-invariant register, then it's obviously 510 // not safe to hoist. 511 Safe = false; 512 break; 513 } 514 } 515 if (Safe) 516 HoistPostRA(MI, Candidate.Def); 517 } 518 } 519 } 520 521 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make 522 /// sure it is not killed by any instructions in the loop. 523 void MachineLICM::AddToLiveIns(unsigned Reg) { 524 const std::vector<MachineBasicBlock *> &Blocks = CurLoop->getBlocks(); 525 for (MachineBasicBlock *BB : Blocks) { 526 if (!BB->isLiveIn(Reg)) 527 BB->addLiveIn(Reg); 528 for (MachineInstr &MI : *BB) { 529 for (MachineOperand &MO : MI.operands()) { 530 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; 531 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) 532 MO.setIsKill(false); 533 } 534 } 535 } 536 } 537 538 /// When an instruction is found to only use loop invariant operands that is 539 /// safe to hoist, this instruction is called to do the dirty work. 540 void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { 541 MachineBasicBlock *Preheader = getCurPreheader(); 542 543 // Now move the instructions to the predecessor, inserting it before any 544 // terminator instructions. 545 DEBUG(dbgs() << "Hoisting to BB#" << Preheader->getNumber() << " from BB#" 546 << MI->getParent()->getNumber() << ": " << *MI); 547 548 // Splice the instruction to the preheader. 549 MachineBasicBlock *MBB = MI->getParent(); 550 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); 551 552 // Add register to livein list to all the BBs in the current loop since a 553 // loop invariant must be kept live throughout the whole loop. This is 554 // important to ensure later passes do not scavenge the def register. 555 AddToLiveIns(Def); 556 557 ++NumPostRAHoisted; 558 Changed = true; 559 } 560 561 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb 562 /// may not be safe to hoist. 563 bool MachineLICM::IsGuaranteedToExecute(MachineBasicBlock *BB) { 564 if (SpeculationState != SpeculateUnknown) 565 return SpeculationState == SpeculateFalse; 566 567 if (BB != CurLoop->getHeader()) { 568 // Check loop exiting blocks. 569 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; 570 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks); 571 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) 572 if (!DT->dominates(BB, CurrentLoopExitingBlock)) { 573 SpeculationState = SpeculateTrue; 574 return false; 575 } 576 } 577 578 SpeculationState = SpeculateFalse; 579 return true; 580 } 581 582 void MachineLICM::EnterScope(MachineBasicBlock *MBB) { 583 DEBUG(dbgs() << "Entering BB#" << MBB->getNumber() << '\n'); 584 585 // Remember livein register pressure. 586 BackTrace.push_back(RegPressure); 587 } 588 589 void MachineLICM::ExitScope(MachineBasicBlock *MBB) { 590 DEBUG(dbgs() << "Exiting BB#" << MBB->getNumber() << '\n'); 591 BackTrace.pop_back(); 592 } 593 594 /// Destroy scope for the MBB that corresponds to the given dominator tree node 595 /// if its a leaf or all of its children are done. Walk up the dominator tree to 596 /// destroy ancestors which are now done. 597 void MachineLICM::ExitScopeIfDone(MachineDomTreeNode *Node, 598 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren, 599 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) { 600 if (OpenChildren[Node]) 601 return; 602 603 // Pop scope. 604 ExitScope(Node->getBlock()); 605 606 // Now traverse upwards to pop ancestors whose offsprings are all done. 607 while (MachineDomTreeNode *Parent = ParentMap[Node]) { 608 unsigned Left = --OpenChildren[Parent]; 609 if (Left != 0) 610 break; 611 ExitScope(Parent->getBlock()); 612 Node = Parent; 613 } 614 } 615 616 /// Walk the specified loop in the CFG (defined by all blocks dominated by the 617 /// specified header block, and that are in the current loop) in depth first 618 /// order w.r.t the DominatorTree. This allows us to visit definitions before 619 /// uses, allowing us to hoist a loop body in one pass without iteration. 620 /// 621 void MachineLICM::HoistOutOfLoop(MachineDomTreeNode *HeaderN) { 622 MachineBasicBlock *Preheader = getCurPreheader(); 623 if (!Preheader) 624 return; 625 626 SmallVector<MachineDomTreeNode*, 32> Scopes; 627 SmallVector<MachineDomTreeNode*, 8> WorkList; 628 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; 629 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; 630 631 // Perform a DFS walk to determine the order of visit. 632 WorkList.push_back(HeaderN); 633 while (!WorkList.empty()) { 634 MachineDomTreeNode *Node = WorkList.pop_back_val(); 635 assert(Node && "Null dominator tree node?"); 636 MachineBasicBlock *BB = Node->getBlock(); 637 638 // If the header of the loop containing this basic block is a landing pad, 639 // then don't try to hoist instructions out of this loop. 640 const MachineLoop *ML = MLI->getLoopFor(BB); 641 if (ML && ML->getHeader()->isEHPad()) 642 continue; 643 644 // If this subregion is not in the top level loop at all, exit. 645 if (!CurLoop->contains(BB)) 646 continue; 647 648 Scopes.push_back(Node); 649 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren(); 650 unsigned NumChildren = Children.size(); 651 652 // Don't hoist things out of a large switch statement. This often causes 653 // code to be hoisted that wasn't going to be executed, and increases 654 // register pressure in a situation where it's likely to matter. 655 if (BB->succ_size() >= 25) 656 NumChildren = 0; 657 658 OpenChildren[Node] = NumChildren; 659 // Add children in reverse order as then the next popped worklist node is 660 // the first child of this node. This means we ultimately traverse the 661 // DOM tree in exactly the same order as if we'd recursed. 662 for (int i = (int)NumChildren-1; i >= 0; --i) { 663 MachineDomTreeNode *Child = Children[i]; 664 ParentMap[Child] = Node; 665 WorkList.push_back(Child); 666 } 667 } 668 669 if (Scopes.size() == 0) 670 return; 671 672 // Compute registers which are livein into the loop headers. 673 RegSeen.clear(); 674 BackTrace.clear(); 675 InitRegPressure(Preheader); 676 677 // Now perform LICM. 678 for (MachineDomTreeNode *Node : Scopes) { 679 MachineBasicBlock *MBB = Node->getBlock(); 680 681 EnterScope(MBB); 682 683 // Process the block 684 SpeculationState = SpeculateUnknown; 685 for (MachineBasicBlock::iterator 686 MII = MBB->begin(), E = MBB->end(); MII != E; ) { 687 MachineBasicBlock::iterator NextMII = MII; ++NextMII; 688 MachineInstr *MI = &*MII; 689 if (!Hoist(MI, Preheader)) 690 UpdateRegPressure(MI); 691 MII = NextMII; 692 } 693 694 // If it's a leaf node, it's done. Traverse upwards to pop ancestors. 695 ExitScopeIfDone(Node, OpenChildren, ParentMap); 696 } 697 } 698 699 /// Sink instructions into loops if profitable. This especially tries to prevent 700 /// register spills caused by register pressure if there is little to no 701 /// overhead moving instructions into loops. 702 void MachineLICM::SinkIntoLoop() { 703 MachineBasicBlock *Preheader = getCurPreheader(); 704 if (!Preheader) 705 return; 706 707 SmallVector<MachineInstr *, 8> Candidates; 708 for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin(); 709 I != Preheader->instr_end(); ++I) { 710 // We need to ensure that we can safely move this instruction into the loop. 711 // As such, it must not have side-effects, e.g. such as a call has. 712 if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I)) 713 Candidates.push_back(&*I); 714 } 715 716 for (MachineInstr *I : Candidates) { 717 const MachineOperand &MO = I->getOperand(0); 718 if (!MO.isDef() || !MO.isReg() || !MO.getReg()) 719 continue; 720 if (!MRI->hasOneDef(MO.getReg())) 721 continue; 722 bool CanSink = true; 723 MachineBasicBlock *B = nullptr; 724 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 725 // FIXME: Come up with a proper cost model that estimates whether sinking 726 // the instruction (and thus possibly executing it on every loop 727 // iteration) is more expensive than a register. 728 // For now assumes that copies are cheap and thus almost always worth it. 729 if (!MI.isCopy()) { 730 CanSink = false; 731 break; 732 } 733 if (!B) { 734 B = MI.getParent(); 735 continue; 736 } 737 B = DT->findNearestCommonDominator(B, MI.getParent()); 738 if (!B) { 739 CanSink = false; 740 break; 741 } 742 } 743 if (!CanSink || !B || B == Preheader) 744 continue; 745 B->splice(B->getFirstNonPHI(), Preheader, I); 746 } 747 } 748 749 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { 750 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg()); 751 } 752 753 /// Find all virtual register references that are liveout of the preheader to 754 /// initialize the starting "register pressure". Note this does not count live 755 /// through (livein but not used) registers. 756 void MachineLICM::InitRegPressure(MachineBasicBlock *BB) { 757 std::fill(RegPressure.begin(), RegPressure.end(), 0); 758 759 // If the preheader has only a single predecessor and it ends with a 760 // fallthrough or an unconditional branch, then scan its predecessor for live 761 // defs as well. This happens whenever the preheader is created by splitting 762 // the critical edge from the loop predecessor to the loop header. 763 if (BB->pred_size() == 1) { 764 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 765 SmallVector<MachineOperand, 4> Cond; 766 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty()) 767 InitRegPressure(*BB->pred_begin()); 768 } 769 770 for (const MachineInstr &MI : *BB) 771 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true); 772 } 773 774 /// Update estimate of register pressure after the specified instruction. 775 void MachineLICM::UpdateRegPressure(const MachineInstr *MI, 776 bool ConsiderUnseenAsDef) { 777 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); 778 for (const auto &RPIdAndCost : Cost) { 779 unsigned Class = RPIdAndCost.first; 780 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) 781 RegPressure[Class] = 0; 782 else 783 RegPressure[Class] += RPIdAndCost.second; 784 } 785 } 786 787 /// Calculate the additional register pressure that the registers used in MI 788 /// cause. 789 /// 790 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to 791 /// figure out which usages are live-ins. 792 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. 793 DenseMap<unsigned, int> 794 MachineLICM::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, 795 bool ConsiderUnseenAsDef) { 796 DenseMap<unsigned, int> Cost; 797 if (MI->isImplicitDef()) 798 return Cost; 799 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { 800 const MachineOperand &MO = MI->getOperand(i); 801 if (!MO.isReg() || MO.isImplicit()) 802 continue; 803 unsigned Reg = MO.getReg(); 804 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 805 continue; 806 807 // FIXME: It seems bad to use RegSeen only for some of these calculations. 808 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false; 809 const TargetRegisterClass *RC = MRI->getRegClass(Reg); 810 811 RegClassWeight W = TRI->getRegClassWeight(RC); 812 int RCCost = 0; 813 if (MO.isDef()) 814 RCCost = W.RegWeight; 815 else { 816 bool isKill = isOperandKill(MO, MRI); 817 if (isNew && !isKill && ConsiderUnseenAsDef) 818 // Haven't seen this, it must be a livein. 819 RCCost = W.RegWeight; 820 else if (!isNew && isKill) 821 RCCost = -W.RegWeight; 822 } 823 if (RCCost == 0) 824 continue; 825 const int *PS = TRI->getRegClassPressureSets(RC); 826 for (; *PS != -1; ++PS) { 827 if (Cost.find(*PS) == Cost.end()) 828 Cost[*PS] = RCCost; 829 else 830 Cost[*PS] += RCCost; 831 } 832 } 833 return Cost; 834 } 835 836 /// Return true if this machine instruction loads from global offset table or 837 /// constant pool. 838 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 839 assert (MI.mayLoad() && "Expected MI that loads!"); 840 841 // If we lost memory operands, conservatively assume that the instruction 842 // reads from everything.. 843 if (MI.memoperands_empty()) 844 return true; 845 846 for (MachineMemOperand *MemOp : MI.memoperands()) 847 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 848 if (PSV->isGOT() || PSV->isConstantPool()) 849 return true; 850 851 return false; 852 } 853 854 /// Returns true if the instruction may be a suitable candidate for LICM. 855 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. 856 bool MachineLICM::IsLICMCandidate(MachineInstr &I) { 857 // Check if it's safe to move the instruction. 858 bool DontMoveAcrossStore = true; 859 if (!I.isSafeToMove(AA, DontMoveAcrossStore)) 860 return false; 861 862 // If it is load then check if it is guaranteed to execute by making sure that 863 // it dominates all exiting blocks. If it doesn't, then there is a path out of 864 // the loop which does not execute this load, so we can't hoist it. Loads 865 // from constant memory are not safe to speculate all the time, for example 866 // indexed load from a jump table. 867 // Stores and side effects are already checked by isSafeToMove. 868 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) && 869 !IsGuaranteedToExecute(I.getParent())) 870 return false; 871 872 return true; 873 } 874 875 /// Returns true if the instruction is loop invariant. 876 /// I.e., all virtual register operands are defined outside of the loop, 877 /// physical registers aren't accessed explicitly, and there are no side 878 /// effects that aren't captured by the operands or other flags. 879 /// 880 bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { 881 if (!IsLICMCandidate(I)) 882 return false; 883 884 // The instruction is loop invariant if all of its operands are. 885 for (const MachineOperand &MO : I.operands()) { 886 if (!MO.isReg()) 887 continue; 888 889 unsigned Reg = MO.getReg(); 890 if (Reg == 0) continue; 891 892 // Don't hoist an instruction that uses or defines a physical register. 893 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 894 if (MO.isUse()) { 895 // If the physreg has no defs anywhere, it's just an ambient register 896 // and we can freely move its uses. Alternatively, if it's allocatable, 897 // it could get allocated to something with a def during allocation. 898 if (!MRI->isConstantPhysReg(Reg)) 899 return false; 900 // Otherwise it's safe to move. 901 continue; 902 } else if (!MO.isDead()) { 903 // A def that isn't dead. We can't move it. 904 return false; 905 } else if (CurLoop->getHeader()->isLiveIn(Reg)) { 906 // If the reg is live into the loop, we can't hoist an instruction 907 // which would clobber it. 908 return false; 909 } 910 } 911 912 if (!MO.isUse()) 913 continue; 914 915 assert(MRI->getVRegDef(Reg) && 916 "Machine instr not mapped for this vreg?!"); 917 918 // If the loop contains the definition of an operand, then the instruction 919 // isn't loop invariant. 920 if (CurLoop->contains(MRI->getVRegDef(Reg))) 921 return false; 922 } 923 924 // If we got this far, the instruction is loop invariant! 925 return true; 926 } 927 928 929 /// Return true if the specified instruction is used by a phi node and hoisting 930 /// it could cause a copy to be inserted. 931 bool MachineLICM::HasLoopPHIUse(const MachineInstr *MI) const { 932 SmallVector<const MachineInstr*, 8> Work(1, MI); 933 do { 934 MI = Work.pop_back_val(); 935 for (const MachineOperand &MO : MI->operands()) { 936 if (!MO.isReg() || !MO.isDef()) 937 continue; 938 unsigned Reg = MO.getReg(); 939 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 940 continue; 941 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { 942 // A PHI may cause a copy to be inserted. 943 if (UseMI.isPHI()) { 944 // A PHI inside the loop causes a copy because the live range of Reg is 945 // extended across the PHI. 946 if (CurLoop->contains(&UseMI)) 947 return true; 948 // A PHI in an exit block can cause a copy to be inserted if the PHI 949 // has multiple predecessors in the loop with different values. 950 // For now, approximate by rejecting all exit blocks. 951 if (isExitBlock(UseMI.getParent())) 952 return true; 953 continue; 954 } 955 // Look past copies as well. 956 if (UseMI.isCopy() && CurLoop->contains(&UseMI)) 957 Work.push_back(&UseMI); 958 } 959 } 960 } while (!Work.empty()); 961 return false; 962 } 963 964 /// Compute operand latency between a def of 'Reg' and an use in the current 965 /// loop, return true if the target considered it high. 966 bool MachineLICM::HasHighOperandLatency(MachineInstr &MI, 967 unsigned DefIdx, unsigned Reg) const { 968 if (MRI->use_nodbg_empty(Reg)) 969 return false; 970 971 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { 972 if (UseMI.isCopyLike()) 973 continue; 974 if (!CurLoop->contains(UseMI.getParent())) 975 continue; 976 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { 977 const MachineOperand &MO = UseMI.getOperand(i); 978 if (!MO.isReg() || !MO.isUse()) 979 continue; 980 unsigned MOReg = MO.getReg(); 981 if (MOReg != Reg) 982 continue; 983 984 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i)) 985 return true; 986 } 987 988 // Only look at the first in loop use. 989 break; 990 } 991 992 return false; 993 } 994 995 /// Return true if the instruction is marked "cheap" or the operand latency 996 /// between its def and a use is one or less. 997 bool MachineLICM::IsCheapInstruction(MachineInstr &MI) const { 998 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) 999 return true; 1000 1001 bool isCheap = false; 1002 unsigned NumDefs = MI.getDesc().getNumDefs(); 1003 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { 1004 MachineOperand &DefMO = MI.getOperand(i); 1005 if (!DefMO.isReg() || !DefMO.isDef()) 1006 continue; 1007 --NumDefs; 1008 unsigned Reg = DefMO.getReg(); 1009 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1010 continue; 1011 1012 if (!TII->hasLowDefLatency(SchedModel, MI, i)) 1013 return false; 1014 isCheap = true; 1015 } 1016 1017 return isCheap; 1018 } 1019 1020 /// Visit BBs from header to current BB, check if hoisting an instruction of the 1021 /// given cost matrix can cause high register pressure. 1022 bool MachineLICM::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost, 1023 bool CheapInstr) { 1024 for (const auto &RPIdAndCost : Cost) { 1025 if (RPIdAndCost.second <= 0) 1026 continue; 1027 1028 unsigned Class = RPIdAndCost.first; 1029 int Limit = RegLimit[Class]; 1030 1031 // Don't hoist cheap instructions if they would increase register pressure, 1032 // even if we're under the limit. 1033 if (CheapInstr && !HoistCheapInsts) 1034 return true; 1035 1036 for (const auto &RP : BackTrace) 1037 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) 1038 return true; 1039 } 1040 1041 return false; 1042 } 1043 1044 /// Traverse the back trace from header to the current block and update their 1045 /// register pressures to reflect the effect of hoisting MI from the current 1046 /// block to the preheader. 1047 void MachineLICM::UpdateBackTraceRegPressure(const MachineInstr *MI) { 1048 // First compute the 'cost' of the instruction, i.e. its contribution 1049 // to register pressure. 1050 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, 1051 /*ConsiderUnseenAsDef=*/false); 1052 1053 // Update register pressure of blocks from loop header to current block. 1054 for (auto &RP : BackTrace) 1055 for (const auto &RPIdAndCost : Cost) 1056 RP[RPIdAndCost.first] += RPIdAndCost.second; 1057 } 1058 1059 /// Return true if it is potentially profitable to hoist the given loop 1060 /// invariant. 1061 bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { 1062 if (MI.isImplicitDef()) 1063 return true; 1064 1065 // Besides removing computation from the loop, hoisting an instruction has 1066 // these effects: 1067 // 1068 // - The value defined by the instruction becomes live across the entire 1069 // loop. This increases register pressure in the loop. 1070 // 1071 // - If the value is used by a PHI in the loop, a copy will be required for 1072 // lowering the PHI after extending the live range. 1073 // 1074 // - When hoisting the last use of a value in the loop, that value no longer 1075 // needs to be live in the loop. This lowers register pressure in the loop. 1076 1077 bool CheapInstr = IsCheapInstruction(MI); 1078 bool CreatesCopy = HasLoopPHIUse(&MI); 1079 1080 // Don't hoist a cheap instruction if it would create a copy in the loop. 1081 if (CheapInstr && CreatesCopy) { 1082 DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); 1083 return false; 1084 } 1085 1086 // Rematerializable instructions should always be hoisted since the register 1087 // allocator can just pull them down again when needed. 1088 if (TII->isTriviallyReMaterializable(MI, AA)) 1089 return true; 1090 1091 // FIXME: If there are long latency loop-invariant instructions inside the 1092 // loop at this point, why didn't the optimizer's LICM hoist them? 1093 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { 1094 const MachineOperand &MO = MI.getOperand(i); 1095 if (!MO.isReg() || MO.isImplicit()) 1096 continue; 1097 unsigned Reg = MO.getReg(); 1098 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1099 continue; 1100 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) { 1101 DEBUG(dbgs() << "Hoist High Latency: " << MI); 1102 ++NumHighLatency; 1103 return true; 1104 } 1105 } 1106 1107 // Estimate register pressure to determine whether to LICM the instruction. 1108 // In low register pressure situation, we can be more aggressive about 1109 // hoisting. Also, favors hoisting long latency instructions even in 1110 // moderately high pressure situation. 1111 // Cheap instructions will only be hoisted if they don't increase register 1112 // pressure at all. 1113 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false, 1114 /*ConsiderUnseenAsDef=*/false); 1115 1116 // Visit BBs from header to current BB, if hoisting this doesn't cause 1117 // high register pressure, then it's safe to proceed. 1118 if (!CanCauseHighRegPressure(Cost, CheapInstr)) { 1119 DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); 1120 ++NumLowRP; 1121 return true; 1122 } 1123 1124 // Don't risk increasing register pressure if it would create copies. 1125 if (CreatesCopy) { 1126 DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); 1127 return false; 1128 } 1129 1130 // Do not "speculate" in high register pressure situation. If an 1131 // instruction is not guaranteed to be executed in the loop, it's best to be 1132 // conservative. 1133 if (AvoidSpeculation && 1134 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) { 1135 DEBUG(dbgs() << "Won't speculate: " << MI); 1136 return false; 1137 } 1138 1139 // High register pressure situation, only hoist if the instruction is going 1140 // to be remat'ed. 1141 if (!TII->isTriviallyReMaterializable(MI, AA) && 1142 !MI.isDereferenceableInvariantLoad(AA)) { 1143 DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); 1144 return false; 1145 } 1146 1147 return true; 1148 } 1149 1150 /// Unfold a load from the given machineinstr if the load itself could be 1151 /// hoisted. Return the unfolded and hoistable load, or null if the load 1152 /// couldn't be unfolded or if it wouldn't be hoistable. 1153 MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { 1154 // Don't unfold simple loads. 1155 if (MI->canFoldAsLoad()) 1156 return nullptr; 1157 1158 // If not, we may be able to unfold a load and hoist that. 1159 // First test whether the instruction is loading from an amenable 1160 // memory location. 1161 if (!MI->isDereferenceableInvariantLoad(AA)) 1162 return nullptr; 1163 1164 // Next determine the register class for a temporary register. 1165 unsigned LoadRegIndex; 1166 unsigned NewOpc = 1167 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), 1168 /*UnfoldLoad=*/true, 1169 /*UnfoldStore=*/false, 1170 &LoadRegIndex); 1171 if (NewOpc == 0) return nullptr; 1172 const MCInstrDesc &MID = TII->get(NewOpc); 1173 MachineFunction &MF = *MI->getParent()->getParent(); 1174 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF); 1175 // Ok, we're unfolding. Create a temporary register and do the unfold. 1176 unsigned Reg = MRI->createVirtualRegister(RC); 1177 1178 SmallVector<MachineInstr *, 2> NewMIs; 1179 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg, 1180 /*UnfoldLoad=*/true, 1181 /*UnfoldStore=*/false, NewMIs); 1182 (void)Success; 1183 assert(Success && 1184 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " 1185 "succeeded!"); 1186 assert(NewMIs.size() == 2 && 1187 "Unfolded a load into multiple instructions!"); 1188 MachineBasicBlock *MBB = MI->getParent(); 1189 MachineBasicBlock::iterator Pos = MI; 1190 MBB->insert(Pos, NewMIs[0]); 1191 MBB->insert(Pos, NewMIs[1]); 1192 // If unfolding produced a load that wasn't loop-invariant or profitable to 1193 // hoist, discard the new instructions and bail. 1194 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { 1195 NewMIs[0]->eraseFromParent(); 1196 NewMIs[1]->eraseFromParent(); 1197 return nullptr; 1198 } 1199 1200 // Update register pressure for the unfolded instruction. 1201 UpdateRegPressure(NewMIs[1]); 1202 1203 // Otherwise we successfully unfolded a load that we can hoist. 1204 MI->eraseFromParent(); 1205 return NewMIs[0]; 1206 } 1207 1208 /// Initialize the CSE map with instructions that are in the current loop 1209 /// preheader that may become duplicates of instructions that are hoisted 1210 /// out of the loop. 1211 void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { 1212 for (MachineInstr &MI : *BB) 1213 CSEMap[MI.getOpcode()].push_back(&MI); 1214 } 1215 1216 /// Find an instruction amount PrevMIs that is a duplicate of MI. 1217 /// Return this instruction if it's found. 1218 const MachineInstr* 1219 MachineLICM::LookForDuplicate(const MachineInstr *MI, 1220 std::vector<const MachineInstr*> &PrevMIs) { 1221 for (const MachineInstr *PrevMI : PrevMIs) 1222 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr))) 1223 return PrevMI; 1224 1225 return nullptr; 1226 } 1227 1228 /// Given a LICM'ed instruction, look for an instruction on the preheader that 1229 /// computes the same value. If it's found, do a RAU on with the definition of 1230 /// the existing instruction rather than hoisting the instruction to the 1231 /// preheader. 1232 bool MachineLICM::EliminateCSE(MachineInstr *MI, 1233 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { 1234 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1235 // the undef property onto uses. 1236 if (CI == CSEMap.end() || MI->isImplicitDef()) 1237 return false; 1238 1239 if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { 1240 DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); 1241 1242 // Replace virtual registers defined by MI by their counterparts defined 1243 // by Dup. 1244 SmallVector<unsigned, 2> Defs; 1245 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1246 const MachineOperand &MO = MI->getOperand(i); 1247 1248 // Physical registers may not differ here. 1249 assert((!MO.isReg() || MO.getReg() == 0 || 1250 !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || 1251 MO.getReg() == Dup->getOperand(i).getReg()) && 1252 "Instructions with different phys regs are not identical!"); 1253 1254 if (MO.isReg() && MO.isDef() && 1255 !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 1256 Defs.push_back(i); 1257 } 1258 1259 SmallVector<const TargetRegisterClass*, 2> OrigRCs; 1260 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 1261 unsigned Idx = Defs[i]; 1262 unsigned Reg = MI->getOperand(Idx).getReg(); 1263 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1264 OrigRCs.push_back(MRI->getRegClass(DupReg)); 1265 1266 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) { 1267 // Restore old RCs if more than one defs. 1268 for (unsigned j = 0; j != i; ++j) 1269 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]); 1270 return false; 1271 } 1272 } 1273 1274 for (unsigned Idx : Defs) { 1275 unsigned Reg = MI->getOperand(Idx).getReg(); 1276 unsigned DupReg = Dup->getOperand(Idx).getReg(); 1277 MRI->replaceRegWith(Reg, DupReg); 1278 MRI->clearKillFlags(DupReg); 1279 } 1280 1281 MI->eraseFromParent(); 1282 ++NumCSEed; 1283 return true; 1284 } 1285 return false; 1286 } 1287 1288 /// Return true if the given instruction will be CSE'd if it's hoisted out of 1289 /// the loop. 1290 bool MachineLICM::MayCSE(MachineInstr *MI) { 1291 unsigned Opcode = MI->getOpcode(); 1292 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1293 CI = CSEMap.find(Opcode); 1294 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate 1295 // the undef property onto uses. 1296 if (CI == CSEMap.end() || MI->isImplicitDef()) 1297 return false; 1298 1299 return LookForDuplicate(MI, CI->second) != nullptr; 1300 } 1301 1302 /// When an instruction is found to use only loop invariant operands 1303 /// that are safe to hoist, this instruction is called to do the dirty work. 1304 /// It returns true if the instruction is hoisted. 1305 bool MachineLICM::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) { 1306 // First check whether we should hoist this instruction. 1307 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { 1308 // If not, try unfolding a hoistable load. 1309 MI = ExtractHoistableLoad(MI); 1310 if (!MI) return false; 1311 } 1312 1313 // Now move the instructions to the predecessor, inserting it before any 1314 // terminator instructions. 1315 DEBUG({ 1316 dbgs() << "Hoisting " << *MI; 1317 if (MI->getParent()->getBasicBlock()) 1318 dbgs() << " from BB#" << MI->getParent()->getNumber(); 1319 if (Preheader->getBasicBlock()) 1320 dbgs() << " to BB#" << Preheader->getNumber(); 1321 dbgs() << "\n"; 1322 }); 1323 1324 // If this is the first instruction being hoisted to the preheader, 1325 // initialize the CSE map with potential common expressions. 1326 if (FirstInLoop) { 1327 InitCSEMap(Preheader); 1328 FirstInLoop = false; 1329 } 1330 1331 // Look for opportunity to CSE the hoisted instruction. 1332 unsigned Opcode = MI->getOpcode(); 1333 DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator 1334 CI = CSEMap.find(Opcode); 1335 if (!EliminateCSE(MI, CI)) { 1336 // Otherwise, splice the instruction to the preheader. 1337 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); 1338 1339 // Since we are moving the instruction out of its basic block, we do not 1340 // retain its debug location. Doing so would degrade the debugging 1341 // experience and adversely affect the accuracy of profiling information. 1342 MI->setDebugLoc(DebugLoc()); 1343 1344 // Update register pressure for BBs from header to this block. 1345 UpdateBackTraceRegPressure(MI); 1346 1347 // Clear the kill flags of any register this instruction defines, 1348 // since they may need to be live throughout the entire loop 1349 // rather than just live for part of it. 1350 for (MachineOperand &MO : MI->operands()) 1351 if (MO.isReg() && MO.isDef() && !MO.isDead()) 1352 MRI->clearKillFlags(MO.getReg()); 1353 1354 // Add to the CSE map. 1355 if (CI != CSEMap.end()) 1356 CI->second.push_back(MI); 1357 else 1358 CSEMap[Opcode].push_back(MI); 1359 } 1360 1361 ++NumHoisted; 1362 Changed = true; 1363 1364 return true; 1365 } 1366 1367 /// Get the preheader for the current loop, splitting a critical edge if needed. 1368 MachineBasicBlock *MachineLICM::getCurPreheader() { 1369 // Determine the block to which to hoist instructions. If we can't find a 1370 // suitable loop predecessor, we can't do any hoisting. 1371 1372 // If we've tried to get a preheader and failed, don't try again. 1373 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) 1374 return nullptr; 1375 1376 if (!CurPreheader) { 1377 CurPreheader = CurLoop->getLoopPreheader(); 1378 if (!CurPreheader) { 1379 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); 1380 if (!Pred) { 1381 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1382 return nullptr; 1383 } 1384 1385 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this); 1386 if (!CurPreheader) { 1387 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); 1388 return nullptr; 1389 } 1390 } 1391 } 1392 return CurPreheader; 1393 } 1394