1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/Analysis/TargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfoImpl.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <utility>
23
24 using namespace llvm;
25 using namespace PatternMatch;
26
27 #define DEBUG_TYPE "tti"
28
29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
30 cl::Hidden,
31 cl::desc("Recognize reduction patterns."));
32
33 namespace {
34 /// No-op implementation of the TTI interface using the utility base
35 /// classes.
36 ///
37 /// This is used when no target specific information is available.
38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
NoTTIImpl__anonec99ff370111::NoTTIImpl39 explicit NoTTIImpl(const DataLayout &DL)
40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
41 };
42 }
43
TargetTransformInfo(const DataLayout & DL)44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
46
~TargetTransformInfo()47 TargetTransformInfo::~TargetTransformInfo() {}
48
TargetTransformInfo(TargetTransformInfo && Arg)49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
50 : TTIImpl(std::move(Arg.TTIImpl)) {}
51
operator =(TargetTransformInfo && RHS)52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
53 TTIImpl = std::move(RHS.TTIImpl);
54 return *this;
55 }
56
getOperationCost(unsigned Opcode,Type * Ty,Type * OpTy) const57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
58 Type *OpTy) const {
59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
60 assert(Cost >= 0 && "TTI should not produce negative costs!");
61 return Cost;
62 }
63
getCallCost(FunctionType * FTy,int NumArgs) const64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
65 int Cost = TTIImpl->getCallCost(FTy, NumArgs);
66 assert(Cost >= 0 && "TTI should not produce negative costs!");
67 return Cost;
68 }
69
getCallCost(const Function * F,ArrayRef<const Value * > Arguments) const70 int TargetTransformInfo::getCallCost(const Function *F,
71 ArrayRef<const Value *> Arguments) const {
72 int Cost = TTIImpl->getCallCost(F, Arguments);
73 assert(Cost >= 0 && "TTI should not produce negative costs!");
74 return Cost;
75 }
76
getInliningThresholdMultiplier() const77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
78 return TTIImpl->getInliningThresholdMultiplier();
79 }
80
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands) const81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
82 ArrayRef<const Value *> Operands) const {
83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
84 }
85
getExtCost(const Instruction * I,const Value * Src) const86 int TargetTransformInfo::getExtCost(const Instruction *I,
87 const Value *Src) const {
88 return TTIImpl->getExtCost(I, Src);
89 }
90
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<const Value * > Arguments) const91 int TargetTransformInfo::getIntrinsicCost(
92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
94 assert(Cost >= 0 && "TTI should not produce negative costs!");
95 return Cost;
96 }
97
98 unsigned
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize) const99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
100 unsigned &JTSize) const {
101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
102 }
103
getUserCost(const User * U,ArrayRef<const Value * > Operands) const104 int TargetTransformInfo::getUserCost(const User *U,
105 ArrayRef<const Value *> Operands) const {
106 int Cost = TTIImpl->getUserCost(U, Operands);
107 assert(Cost >= 0 && "TTI should not produce negative costs!");
108 return Cost;
109 }
110
hasBranchDivergence() const111 bool TargetTransformInfo::hasBranchDivergence() const {
112 return TTIImpl->hasBranchDivergence();
113 }
114
isSourceOfDivergence(const Value * V) const115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
116 return TTIImpl->isSourceOfDivergence(V);
117 }
118
isAlwaysUniform(const Value * V) const119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
120 return TTIImpl->isAlwaysUniform(V);
121 }
122
getFlatAddressSpace() const123 unsigned TargetTransformInfo::getFlatAddressSpace() const {
124 return TTIImpl->getFlatAddressSpace();
125 }
126
isLoweredToCall(const Function * F) const127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
128 return TTIImpl->isLoweredToCall(F);
129 }
130
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP) const131 void TargetTransformInfo::getUnrollingPreferences(
132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
133 return TTIImpl->getUnrollingPreferences(L, SE, UP);
134 }
135
isLegalAddImmediate(int64_t Imm) const136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
137 return TTIImpl->isLegalAddImmediate(Imm);
138 }
139
isLegalICmpImmediate(int64_t Imm) const140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
141 return TTIImpl->isLegalICmpImmediate(Imm);
142 }
143
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I) const144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
145 int64_t BaseOffset,
146 bool HasBaseReg,
147 int64_t Scale,
148 unsigned AddrSpace,
149 Instruction *I) const {
150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
151 Scale, AddrSpace, I);
152 }
153
isLSRCostLess(LSRCost & C1,LSRCost & C2) const154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
155 return TTIImpl->isLSRCostLess(C1, C2);
156 }
157
canMacroFuseCmp() const158 bool TargetTransformInfo::canMacroFuseCmp() const {
159 return TTIImpl->canMacroFuseCmp();
160 }
161
shouldFavorPostInc() const162 bool TargetTransformInfo::shouldFavorPostInc() const {
163 return TTIImpl->shouldFavorPostInc();
164 }
165
isLegalMaskedStore(Type * DataType) const166 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
167 return TTIImpl->isLegalMaskedStore(DataType);
168 }
169
isLegalMaskedLoad(Type * DataType) const170 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
171 return TTIImpl->isLegalMaskedLoad(DataType);
172 }
173
isLegalMaskedGather(Type * DataType) const174 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
175 return TTIImpl->isLegalMaskedGather(DataType);
176 }
177
isLegalMaskedScatter(Type * DataType) const178 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
179 return TTIImpl->isLegalMaskedScatter(DataType);
180 }
181
hasDivRemOp(Type * DataType,bool IsSigned) const182 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
183 return TTIImpl->hasDivRemOp(DataType, IsSigned);
184 }
185
hasVolatileVariant(Instruction * I,unsigned AddrSpace) const186 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
187 unsigned AddrSpace) const {
188 return TTIImpl->hasVolatileVariant(I, AddrSpace);
189 }
190
prefersVectorizedAddressing() const191 bool TargetTransformInfo::prefersVectorizedAddressing() const {
192 return TTIImpl->prefersVectorizedAddressing();
193 }
194
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace) const195 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
196 int64_t BaseOffset,
197 bool HasBaseReg,
198 int64_t Scale,
199 unsigned AddrSpace) const {
200 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
201 Scale, AddrSpace);
202 assert(Cost >= 0 && "TTI should not produce negative costs!");
203 return Cost;
204 }
205
LSRWithInstrQueries() const206 bool TargetTransformInfo::LSRWithInstrQueries() const {
207 return TTIImpl->LSRWithInstrQueries();
208 }
209
isTruncateFree(Type * Ty1,Type * Ty2) const210 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
211 return TTIImpl->isTruncateFree(Ty1, Ty2);
212 }
213
isProfitableToHoist(Instruction * I) const214 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
215 return TTIImpl->isProfitableToHoist(I);
216 }
217
useAA() const218 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
219
isTypeLegal(Type * Ty) const220 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
221 return TTIImpl->isTypeLegal(Ty);
222 }
223
getJumpBufAlignment() const224 unsigned TargetTransformInfo::getJumpBufAlignment() const {
225 return TTIImpl->getJumpBufAlignment();
226 }
227
getJumpBufSize() const228 unsigned TargetTransformInfo::getJumpBufSize() const {
229 return TTIImpl->getJumpBufSize();
230 }
231
shouldBuildLookupTables() const232 bool TargetTransformInfo::shouldBuildLookupTables() const {
233 return TTIImpl->shouldBuildLookupTables();
234 }
shouldBuildLookupTablesForConstant(Constant * C) const235 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
236 return TTIImpl->shouldBuildLookupTablesForConstant(C);
237 }
238
useColdCCForColdCall(Function & F) const239 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
240 return TTIImpl->useColdCCForColdCall(F);
241 }
242
243 unsigned TargetTransformInfo::
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract) const244 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
245 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
246 }
247
248 unsigned TargetTransformInfo::
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF) const249 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
250 unsigned VF) const {
251 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
252 }
253
supportsEfficientVectorElementLoadStore() const254 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
255 return TTIImpl->supportsEfficientVectorElementLoadStore();
256 }
257
enableAggressiveInterleaving(bool LoopHasReductions) const258 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
259 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
260 }
261
262 const TargetTransformInfo::MemCmpExpansionOptions *
enableMemCmpExpansion(bool IsZeroCmp) const263 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const {
264 return TTIImpl->enableMemCmpExpansion(IsZeroCmp);
265 }
266
enableInterleavedAccessVectorization() const267 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
268 return TTIImpl->enableInterleavedAccessVectorization();
269 }
270
enableMaskedInterleavedAccessVectorization() const271 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
272 return TTIImpl->enableMaskedInterleavedAccessVectorization();
273 }
274
isFPVectorizationPotentiallyUnsafe() const275 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
276 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
277 }
278
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast) const279 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
280 unsigned BitWidth,
281 unsigned AddressSpace,
282 unsigned Alignment,
283 bool *Fast) const {
284 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
285 Alignment, Fast);
286 }
287
288 TargetTransformInfo::PopcntSupportKind
getPopcntSupport(unsigned IntTyWidthInBit) const289 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
290 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
291 }
292
haveFastSqrt(Type * Ty) const293 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
294 return TTIImpl->haveFastSqrt(Ty);
295 }
296
isFCmpOrdCheaperThanFCmpZero(Type * Ty) const297 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
298 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
299 }
300
getFPOpCost(Type * Ty) const301 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
302 int Cost = TTIImpl->getFPOpCost(Ty);
303 assert(Cost >= 0 && "TTI should not produce negative costs!");
304 return Cost;
305 }
306
getIntImmCodeSizeCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty) const307 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
308 const APInt &Imm,
309 Type *Ty) const {
310 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
311 assert(Cost >= 0 && "TTI should not produce negative costs!");
312 return Cost;
313 }
314
getIntImmCost(const APInt & Imm,Type * Ty) const315 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
316 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
317 assert(Cost >= 0 && "TTI should not produce negative costs!");
318 return Cost;
319 }
320
getIntImmCost(unsigned Opcode,unsigned Idx,const APInt & Imm,Type * Ty) const321 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
322 const APInt &Imm, Type *Ty) const {
323 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
324 assert(Cost >= 0 && "TTI should not produce negative costs!");
325 return Cost;
326 }
327
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty) const328 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
329 const APInt &Imm, Type *Ty) const {
330 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
331 assert(Cost >= 0 && "TTI should not produce negative costs!");
332 return Cost;
333 }
334
getNumberOfRegisters(bool Vector) const335 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
336 return TTIImpl->getNumberOfRegisters(Vector);
337 }
338
getRegisterBitWidth(bool Vector) const339 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
340 return TTIImpl->getRegisterBitWidth(Vector);
341 }
342
getMinVectorRegisterBitWidth() const343 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
344 return TTIImpl->getMinVectorRegisterBitWidth();
345 }
346
shouldMaximizeVectorBandwidth(bool OptSize) const347 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
348 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
349 }
350
getMinimumVF(unsigned ElemWidth) const351 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
352 return TTIImpl->getMinimumVF(ElemWidth);
353 }
354
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader) const355 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
356 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
357 return TTIImpl->shouldConsiderAddressTypePromotion(
358 I, AllowPromotionWithoutCommonHeader);
359 }
360
getCacheLineSize() const361 unsigned TargetTransformInfo::getCacheLineSize() const {
362 return TTIImpl->getCacheLineSize();
363 }
364
getCacheSize(CacheLevel Level) const365 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
366 const {
367 return TTIImpl->getCacheSize(Level);
368 }
369
getCacheAssociativity(CacheLevel Level) const370 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
371 CacheLevel Level) const {
372 return TTIImpl->getCacheAssociativity(Level);
373 }
374
getPrefetchDistance() const375 unsigned TargetTransformInfo::getPrefetchDistance() const {
376 return TTIImpl->getPrefetchDistance();
377 }
378
getMinPrefetchStride() const379 unsigned TargetTransformInfo::getMinPrefetchStride() const {
380 return TTIImpl->getMinPrefetchStride();
381 }
382
getMaxPrefetchIterationsAhead() const383 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
384 return TTIImpl->getMaxPrefetchIterationsAhead();
385 }
386
getMaxInterleaveFactor(unsigned VF) const387 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
388 return TTIImpl->getMaxInterleaveFactor(VF);
389 }
390
391 TargetTransformInfo::OperandValueKind
getOperandInfo(Value * V,OperandValueProperties & OpProps)392 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
393 OperandValueKind OpInfo = OK_AnyValue;
394 OpProps = OP_None;
395
396 if (auto *CI = dyn_cast<ConstantInt>(V)) {
397 if (CI->getValue().isPowerOf2())
398 OpProps = OP_PowerOf2;
399 return OK_UniformConstantValue;
400 }
401
402 // A broadcast shuffle creates a uniform value.
403 // TODO: Add support for non-zero index broadcasts.
404 // TODO: Add support for different source vector width.
405 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
406 if (ShuffleInst->isZeroEltSplat())
407 OpInfo = OK_UniformValue;
408
409 const Value *Splat = getSplatValue(V);
410
411 // Check for a splat of a constant or for a non uniform vector of constants
412 // and check if the constant(s) are all powers of two.
413 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
414 OpInfo = OK_NonUniformConstantValue;
415 if (Splat) {
416 OpInfo = OK_UniformConstantValue;
417 if (auto *CI = dyn_cast<ConstantInt>(Splat))
418 if (CI->getValue().isPowerOf2())
419 OpProps = OP_PowerOf2;
420 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
421 OpProps = OP_PowerOf2;
422 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
423 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
424 if (CI->getValue().isPowerOf2())
425 continue;
426 OpProps = OP_None;
427 break;
428 }
429 }
430 }
431
432 // Check for a splat of a uniform value. This is not loop aware, so return
433 // true only for the obviously uniform cases (argument, globalvalue)
434 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
435 OpInfo = OK_UniformValue;
436
437 return OpInfo;
438 }
439
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind Opd1Info,OperandValueKind Opd2Info,OperandValueProperties Opd1PropInfo,OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args) const440 int TargetTransformInfo::getArithmeticInstrCost(
441 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
442 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
443 OperandValueProperties Opd2PropInfo,
444 ArrayRef<const Value *> Args) const {
445 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
446 Opd1PropInfo, Opd2PropInfo, Args);
447 assert(Cost >= 0 && "TTI should not produce negative costs!");
448 return Cost;
449 }
450
getShuffleCost(ShuffleKind Kind,Type * Ty,int Index,Type * SubTp) const451 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
452 Type *SubTp) const {
453 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
454 assert(Cost >= 0 && "TTI should not produce negative costs!");
455 return Cost;
456 }
457
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I) const458 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
459 Type *Src, const Instruction *I) const {
460 assert ((I == nullptr || I->getOpcode() == Opcode) &&
461 "Opcode should reflect passed instruction.");
462 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
463 assert(Cost >= 0 && "TTI should not produce negative costs!");
464 return Cost;
465 }
466
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index) const467 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
468 VectorType *VecTy,
469 unsigned Index) const {
470 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
471 assert(Cost >= 0 && "TTI should not produce negative costs!");
472 return Cost;
473 }
474
getCFInstrCost(unsigned Opcode) const475 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
476 int Cost = TTIImpl->getCFInstrCost(Opcode);
477 assert(Cost >= 0 && "TTI should not produce negative costs!");
478 return Cost;
479 }
480
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I) const481 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
482 Type *CondTy, const Instruction *I) const {
483 assert ((I == nullptr || I->getOpcode() == Opcode) &&
484 "Opcode should reflect passed instruction.");
485 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
486 assert(Cost >= 0 && "TTI should not produce negative costs!");
487 return Cost;
488 }
489
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index) const490 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
491 unsigned Index) const {
492 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
493 assert(Cost >= 0 && "TTI should not produce negative costs!");
494 return Cost;
495 }
496
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace,const Instruction * I) const497 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
498 unsigned Alignment,
499 unsigned AddressSpace,
500 const Instruction *I) const {
501 assert ((I == nullptr || I->getOpcode() == Opcode) &&
502 "Opcode should reflect passed instruction.");
503 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
504 assert(Cost >= 0 && "TTI should not produce negative costs!");
505 return Cost;
506 }
507
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace) const508 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
509 unsigned Alignment,
510 unsigned AddressSpace) const {
511 int Cost =
512 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
513 assert(Cost >= 0 && "TTI should not produce negative costs!");
514 return Cost;
515 }
516
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,Value * Ptr,bool VariableMask,unsigned Alignment) const517 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
518 Value *Ptr, bool VariableMask,
519 unsigned Alignment) const {
520 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
521 Alignment);
522 assert(Cost >= 0 && "TTI should not produce negative costs!");
523 return Cost;
524 }
525
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace,bool UseMaskForCond,bool UseMaskForGaps) const526 int TargetTransformInfo::getInterleavedMemoryOpCost(
527 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
528 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
529 bool UseMaskForGaps) const {
530 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
531 Alignment, AddressSpace,
532 UseMaskForCond,
533 UseMaskForGaps);
534 assert(Cost >= 0 && "TTI should not produce negative costs!");
535 return Cost;
536 }
537
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF,unsigned ScalarizationCostPassed) const538 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
539 ArrayRef<Type *> Tys, FastMathFlags FMF,
540 unsigned ScalarizationCostPassed) const {
541 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
542 ScalarizationCostPassed);
543 assert(Cost >= 0 && "TTI should not produce negative costs!");
544 return Cost;
545 }
546
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF,unsigned VF) const547 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
548 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
549 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
550 assert(Cost >= 0 && "TTI should not produce negative costs!");
551 return Cost;
552 }
553
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys) const554 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
555 ArrayRef<Type *> Tys) const {
556 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
557 assert(Cost >= 0 && "TTI should not produce negative costs!");
558 return Cost;
559 }
560
getNumberOfParts(Type * Tp) const561 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
562 return TTIImpl->getNumberOfParts(Tp);
563 }
564
getAddressComputationCost(Type * Tp,ScalarEvolution * SE,const SCEV * Ptr) const565 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
566 ScalarEvolution *SE,
567 const SCEV *Ptr) const {
568 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
569 assert(Cost >= 0 && "TTI should not produce negative costs!");
570 return Cost;
571 }
572
getArithmeticReductionCost(unsigned Opcode,Type * Ty,bool IsPairwiseForm) const573 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
574 bool IsPairwiseForm) const {
575 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
576 assert(Cost >= 0 && "TTI should not produce negative costs!");
577 return Cost;
578 }
579
getMinMaxReductionCost(Type * Ty,Type * CondTy,bool IsPairwiseForm,bool IsUnsigned) const580 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
581 bool IsPairwiseForm,
582 bool IsUnsigned) const {
583 int Cost =
584 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
585 assert(Cost >= 0 && "TTI should not produce negative costs!");
586 return Cost;
587 }
588
589 unsigned
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys) const590 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
591 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
592 }
593
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info) const594 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
595 MemIntrinsicInfo &Info) const {
596 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
597 }
598
getAtomicMemIntrinsicMaxElementSize() const599 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
600 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
601 }
602
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType) const603 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
604 IntrinsicInst *Inst, Type *ExpectedType) const {
605 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
606 }
607
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAlign,unsigned DestAlign) const608 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
609 Value *Length,
610 unsigned SrcAlign,
611 unsigned DestAlign) const {
612 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
613 DestAlign);
614 }
615
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAlign,unsigned DestAlign) const616 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
617 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
618 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
619 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
620 SrcAlign, DestAlign);
621 }
622
areInlineCompatible(const Function * Caller,const Function * Callee) const623 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
624 const Function *Callee) const {
625 return TTIImpl->areInlineCompatible(Caller, Callee);
626 }
627
areFunctionArgsABICompatible(const Function * Caller,const Function * Callee,SmallPtrSetImpl<Argument * > & Args) const628 bool TargetTransformInfo::areFunctionArgsABICompatible(
629 const Function *Caller, const Function *Callee,
630 SmallPtrSetImpl<Argument *> &Args) const {
631 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
632 }
633
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty) const634 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
635 Type *Ty) const {
636 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
637 }
638
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty) const639 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
640 Type *Ty) const {
641 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
642 }
643
getLoadStoreVecRegBitWidth(unsigned AS) const644 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
645 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
646 }
647
isLegalToVectorizeLoad(LoadInst * LI) const648 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
649 return TTIImpl->isLegalToVectorizeLoad(LI);
650 }
651
isLegalToVectorizeStore(StoreInst * SI) const652 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
653 return TTIImpl->isLegalToVectorizeStore(SI);
654 }
655
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace) const656 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
657 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
658 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
659 AddrSpace);
660 }
661
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace) const662 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
663 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
664 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
665 AddrSpace);
666 }
667
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy) const668 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
669 unsigned LoadSize,
670 unsigned ChainSizeInBytes,
671 VectorType *VecTy) const {
672 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
673 }
674
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy) const675 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
676 unsigned StoreSize,
677 unsigned ChainSizeInBytes,
678 VectorType *VecTy) const {
679 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
680 }
681
useReductionIntrinsic(unsigned Opcode,Type * Ty,ReductionFlags Flags) const682 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
683 Type *Ty, ReductionFlags Flags) const {
684 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
685 }
686
shouldExpandReduction(const IntrinsicInst * II) const687 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
688 return TTIImpl->shouldExpandReduction(II);
689 }
690
getInstructionLatency(const Instruction * I) const691 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
692 return TTIImpl->getInstructionLatency(I);
693 }
694
matchPairwiseShuffleMask(ShuffleVectorInst * SI,bool IsLeft,unsigned Level)695 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
696 unsigned Level) {
697 // We don't need a shuffle if we just want to have element 0 in position 0 of
698 // the vector.
699 if (!SI && Level == 0 && IsLeft)
700 return true;
701 else if (!SI)
702 return false;
703
704 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
705
706 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
707 // we look at the left or right side.
708 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
709 Mask[i] = val;
710
711 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
712 return Mask == ActualMask;
713 }
714
715 namespace {
716 /// Kind of the reduction data.
717 enum ReductionKind {
718 RK_None, /// Not a reduction.
719 RK_Arithmetic, /// Binary reduction data.
720 RK_MinMax, /// Min/max reduction data.
721 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
722 };
723 /// Contains opcode + LHS/RHS parts of the reduction operations.
724 struct ReductionData {
725 ReductionData() = delete;
ReductionData__anonec99ff370211::ReductionData726 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
727 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
728 assert(Kind != RK_None && "expected binary or min/max reduction only.");
729 }
730 unsigned Opcode = 0;
731 Value *LHS = nullptr;
732 Value *RHS = nullptr;
733 ReductionKind Kind = RK_None;
hasSameData__anonec99ff370211::ReductionData734 bool hasSameData(ReductionData &RD) const {
735 return Kind == RD.Kind && Opcode == RD.Opcode;
736 }
737 };
738 } // namespace
739
getReductionData(Instruction * I)740 static Optional<ReductionData> getReductionData(Instruction *I) {
741 Value *L, *R;
742 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
743 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
744 if (auto *SI = dyn_cast<SelectInst>(I)) {
745 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
746 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
747 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
748 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
749 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
750 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
751 auto *CI = cast<CmpInst>(SI->getCondition());
752 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
753 }
754 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
755 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
756 auto *CI = cast<CmpInst>(SI->getCondition());
757 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
758 }
759 }
760 return llvm::None;
761 }
762
matchPairwiseReductionAtLevel(Instruction * I,unsigned Level,unsigned NumLevels)763 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
764 unsigned Level,
765 unsigned NumLevels) {
766 // Match one level of pairwise operations.
767 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
768 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
769 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
770 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
771 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
772 if (!I)
773 return RK_None;
774
775 assert(I->getType()->isVectorTy() && "Expecting a vector type");
776
777 Optional<ReductionData> RD = getReductionData(I);
778 if (!RD)
779 return RK_None;
780
781 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
782 if (!LS && Level)
783 return RK_None;
784 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
785 if (!RS && Level)
786 return RK_None;
787
788 // On level 0 we can omit one shufflevector instruction.
789 if (!Level && !RS && !LS)
790 return RK_None;
791
792 // Shuffle inputs must match.
793 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
794 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
795 Value *NextLevelOp = nullptr;
796 if (NextLevelOpR && NextLevelOpL) {
797 // If we have two shuffles their operands must match.
798 if (NextLevelOpL != NextLevelOpR)
799 return RK_None;
800
801 NextLevelOp = NextLevelOpL;
802 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
803 // On the first level we can omit the shufflevector <0, undef,...>. So the
804 // input to the other shufflevector <1, undef> must match with one of the
805 // inputs to the current binary operation.
806 // Example:
807 // %NextLevelOpL = shufflevector %R, <1, undef ...>
808 // %BinOp = fadd %NextLevelOpL, %R
809 if (NextLevelOpL && NextLevelOpL != RD->RHS)
810 return RK_None;
811 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
812 return RK_None;
813
814 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
815 } else
816 return RK_None;
817
818 // Check that the next levels binary operation exists and matches with the
819 // current one.
820 if (Level + 1 != NumLevels) {
821 Optional<ReductionData> NextLevelRD =
822 getReductionData(cast<Instruction>(NextLevelOp));
823 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
824 return RK_None;
825 }
826
827 // Shuffle mask for pairwise operation must match.
828 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
829 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
830 return RK_None;
831 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
832 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
833 return RK_None;
834 } else {
835 return RK_None;
836 }
837
838 if (++Level == NumLevels)
839 return RD->Kind;
840
841 // Match next level.
842 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
843 NumLevels);
844 }
845
matchPairwiseReduction(const ExtractElementInst * ReduxRoot,unsigned & Opcode,Type * & Ty)846 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
847 unsigned &Opcode, Type *&Ty) {
848 if (!EnableReduxCost)
849 return RK_None;
850
851 // Need to extract the first element.
852 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
853 unsigned Idx = ~0u;
854 if (CI)
855 Idx = CI->getZExtValue();
856 if (Idx != 0)
857 return RK_None;
858
859 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
860 if (!RdxStart)
861 return RK_None;
862 Optional<ReductionData> RD = getReductionData(RdxStart);
863 if (!RD)
864 return RK_None;
865
866 Type *VecTy = RdxStart->getType();
867 unsigned NumVecElems = VecTy->getVectorNumElements();
868 if (!isPowerOf2_32(NumVecElems))
869 return RK_None;
870
871 // We look for a sequence of shuffle,shuffle,add triples like the following
872 // that builds a pairwise reduction tree.
873 //
874 // (X0, X1, X2, X3)
875 // (X0 + X1, X2 + X3, undef, undef)
876 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
877 //
878 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
879 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
880 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
881 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
882 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
883 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
884 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
885 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
886 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
887 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
888 // %r = extractelement <4 x float> %bin.rdx8, i32 0
889 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
890 RK_None)
891 return RK_None;
892
893 Opcode = RD->Opcode;
894 Ty = VecTy;
895
896 return RD->Kind;
897 }
898
899 static std::pair<Value *, ShuffleVectorInst *>
getShuffleAndOtherOprd(Value * L,Value * R)900 getShuffleAndOtherOprd(Value *L, Value *R) {
901 ShuffleVectorInst *S = nullptr;
902
903 if ((S = dyn_cast<ShuffleVectorInst>(L)))
904 return std::make_pair(R, S);
905
906 S = dyn_cast<ShuffleVectorInst>(R);
907 return std::make_pair(L, S);
908 }
909
910 static ReductionKind
matchVectorSplittingReduction(const ExtractElementInst * ReduxRoot,unsigned & Opcode,Type * & Ty)911 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
912 unsigned &Opcode, Type *&Ty) {
913 if (!EnableReduxCost)
914 return RK_None;
915
916 // Need to extract the first element.
917 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
918 unsigned Idx = ~0u;
919 if (CI)
920 Idx = CI->getZExtValue();
921 if (Idx != 0)
922 return RK_None;
923
924 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
925 if (!RdxStart)
926 return RK_None;
927 Optional<ReductionData> RD = getReductionData(RdxStart);
928 if (!RD)
929 return RK_None;
930
931 Type *VecTy = ReduxRoot->getOperand(0)->getType();
932 unsigned NumVecElems = VecTy->getVectorNumElements();
933 if (!isPowerOf2_32(NumVecElems))
934 return RK_None;
935
936 // We look for a sequence of shuffles and adds like the following matching one
937 // fadd, shuffle vector pair at a time.
938 //
939 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
940 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
941 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
942 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
943 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
944 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
945 // %r = extractelement <4 x float> %bin.rdx8, i32 0
946
947 unsigned MaskStart = 1;
948 Instruction *RdxOp = RdxStart;
949 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
950 unsigned NumVecElemsRemain = NumVecElems;
951 while (NumVecElemsRemain - 1) {
952 // Check for the right reduction operation.
953 if (!RdxOp)
954 return RK_None;
955 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
956 if (!RDLevel || !RDLevel->hasSameData(*RD))
957 return RK_None;
958
959 Value *NextRdxOp;
960 ShuffleVectorInst *Shuffle;
961 std::tie(NextRdxOp, Shuffle) =
962 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
963
964 // Check the current reduction operation and the shuffle use the same value.
965 if (Shuffle == nullptr)
966 return RK_None;
967 if (Shuffle->getOperand(0) != NextRdxOp)
968 return RK_None;
969
970 // Check that shuffle masks matches.
971 for (unsigned j = 0; j != MaskStart; ++j)
972 ShuffleMask[j] = MaskStart + j;
973 // Fill the rest of the mask with -1 for undef.
974 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
975
976 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
977 if (ShuffleMask != Mask)
978 return RK_None;
979
980 RdxOp = dyn_cast<Instruction>(NextRdxOp);
981 NumVecElemsRemain /= 2;
982 MaskStart *= 2;
983 }
984
985 Opcode = RD->Opcode;
986 Ty = VecTy;
987 return RD->Kind;
988 }
989
getInstructionThroughput(const Instruction * I) const990 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
991 switch (I->getOpcode()) {
992 case Instruction::GetElementPtr:
993 return getUserCost(I);
994
995 case Instruction::Ret:
996 case Instruction::PHI:
997 case Instruction::Br: {
998 return getCFInstrCost(I->getOpcode());
999 }
1000 case Instruction::Add:
1001 case Instruction::FAdd:
1002 case Instruction::Sub:
1003 case Instruction::FSub:
1004 case Instruction::Mul:
1005 case Instruction::FMul:
1006 case Instruction::UDiv:
1007 case Instruction::SDiv:
1008 case Instruction::FDiv:
1009 case Instruction::URem:
1010 case Instruction::SRem:
1011 case Instruction::FRem:
1012 case Instruction::Shl:
1013 case Instruction::LShr:
1014 case Instruction::AShr:
1015 case Instruction::And:
1016 case Instruction::Or:
1017 case Instruction::Xor: {
1018 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1019 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1020 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1021 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1022 SmallVector<const Value *, 2> Operands(I->operand_values());
1023 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1024 Op1VP, Op2VP, Operands);
1025 }
1026 case Instruction::Select: {
1027 const SelectInst *SI = cast<SelectInst>(I);
1028 Type *CondTy = SI->getCondition()->getType();
1029 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1030 }
1031 case Instruction::ICmp:
1032 case Instruction::FCmp: {
1033 Type *ValTy = I->getOperand(0)->getType();
1034 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1035 }
1036 case Instruction::Store: {
1037 const StoreInst *SI = cast<StoreInst>(I);
1038 Type *ValTy = SI->getValueOperand()->getType();
1039 return getMemoryOpCost(I->getOpcode(), ValTy,
1040 SI->getAlignment(),
1041 SI->getPointerAddressSpace(), I);
1042 }
1043 case Instruction::Load: {
1044 const LoadInst *LI = cast<LoadInst>(I);
1045 return getMemoryOpCost(I->getOpcode(), I->getType(),
1046 LI->getAlignment(),
1047 LI->getPointerAddressSpace(), I);
1048 }
1049 case Instruction::ZExt:
1050 case Instruction::SExt:
1051 case Instruction::FPToUI:
1052 case Instruction::FPToSI:
1053 case Instruction::FPExt:
1054 case Instruction::PtrToInt:
1055 case Instruction::IntToPtr:
1056 case Instruction::SIToFP:
1057 case Instruction::UIToFP:
1058 case Instruction::Trunc:
1059 case Instruction::FPTrunc:
1060 case Instruction::BitCast:
1061 case Instruction::AddrSpaceCast: {
1062 Type *SrcTy = I->getOperand(0)->getType();
1063 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1064 }
1065 case Instruction::ExtractElement: {
1066 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1067 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1068 unsigned Idx = -1;
1069 if (CI)
1070 Idx = CI->getZExtValue();
1071
1072 // Try to match a reduction sequence (series of shufflevector and vector
1073 // adds followed by a extractelement).
1074 unsigned ReduxOpCode;
1075 Type *ReduxType;
1076
1077 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1078 case RK_Arithmetic:
1079 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1080 /*IsPairwiseForm=*/false);
1081 case RK_MinMax:
1082 return getMinMaxReductionCost(
1083 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1084 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1085 case RK_UnsignedMinMax:
1086 return getMinMaxReductionCost(
1087 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1088 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1089 case RK_None:
1090 break;
1091 }
1092
1093 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1094 case RK_Arithmetic:
1095 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1096 /*IsPairwiseForm=*/true);
1097 case RK_MinMax:
1098 return getMinMaxReductionCost(
1099 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1100 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1101 case RK_UnsignedMinMax:
1102 return getMinMaxReductionCost(
1103 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1104 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1105 case RK_None:
1106 break;
1107 }
1108
1109 return getVectorInstrCost(I->getOpcode(),
1110 EEI->getOperand(0)->getType(), Idx);
1111 }
1112 case Instruction::InsertElement: {
1113 const InsertElementInst * IE = cast<InsertElementInst>(I);
1114 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1115 unsigned Idx = -1;
1116 if (CI)
1117 Idx = CI->getZExtValue();
1118 return getVectorInstrCost(I->getOpcode(),
1119 IE->getType(), Idx);
1120 }
1121 case Instruction::ShuffleVector: {
1122 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1123 Type *Ty = Shuffle->getType();
1124 Type *SrcTy = Shuffle->getOperand(0)->getType();
1125
1126 // TODO: Identify and add costs for insert subvector, etc.
1127 int SubIndex;
1128 if (Shuffle->isExtractSubvectorMask(SubIndex))
1129 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1130
1131 if (Shuffle->changesLength())
1132 return -1;
1133
1134 if (Shuffle->isIdentity())
1135 return 0;
1136
1137 if (Shuffle->isReverse())
1138 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1139
1140 if (Shuffle->isSelect())
1141 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1142
1143 if (Shuffle->isTranspose())
1144 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1145
1146 if (Shuffle->isZeroEltSplat())
1147 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1148
1149 if (Shuffle->isSingleSource())
1150 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1151
1152 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1153 }
1154 case Instruction::Call:
1155 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1156 SmallVector<Value *, 4> Args(II->arg_operands());
1157
1158 FastMathFlags FMF;
1159 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1160 FMF = FPMO->getFastMathFlags();
1161
1162 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1163 Args, FMF);
1164 }
1165 return -1;
1166 default:
1167 // We don't have any information on this instruction.
1168 return -1;
1169 }
1170 }
1171
~Concept()1172 TargetTransformInfo::Concept::~Concept() {}
1173
TargetIRAnalysis()1174 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1175
TargetIRAnalysis(std::function<Result (const Function &)> TTICallback)1176 TargetIRAnalysis::TargetIRAnalysis(
1177 std::function<Result(const Function &)> TTICallback)
1178 : TTICallback(std::move(TTICallback)) {}
1179
run(const Function & F,FunctionAnalysisManager &)1180 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1181 FunctionAnalysisManager &) {
1182 return TTICallback(F);
1183 }
1184
1185 AnalysisKey TargetIRAnalysis::Key;
1186
getDefaultTTI(const Function & F)1187 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1188 return Result(F.getParent()->getDataLayout());
1189 }
1190
1191 // Register the basic pass.
1192 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1193 "Target Transform Information", false, true)
1194 char TargetTransformInfoWrapperPass::ID = 0;
1195
anchor()1196 void TargetTransformInfoWrapperPass::anchor() {}
1197
TargetTransformInfoWrapperPass()1198 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1199 : ImmutablePass(ID) {
1200 initializeTargetTransformInfoWrapperPassPass(
1201 *PassRegistry::getPassRegistry());
1202 }
1203
TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)1204 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1205 TargetIRAnalysis TIRA)
1206 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1207 initializeTargetTransformInfoWrapperPassPass(
1208 *PassRegistry::getPassRegistry());
1209 }
1210
getTTI(const Function & F)1211 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1212 FunctionAnalysisManager DummyFAM;
1213 TTI = TIRA.run(F, DummyFAM);
1214 return *TTI;
1215 }
1216
1217 ImmutablePass *
createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA)1218 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1219 return new TargetTransformInfoWrapperPass(std::move(TIRA));
1220 }
1221