1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2 //Implementation -==//
3 //
4 // The LLVM Compiler Infrastructure
5 //
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file implements divergence analysis which determines whether a branch
12 // in a GPU program is divergent.It can help branch optimizations such as jump
13 // threading and loop unswitching to make better decisions.
14 //
15 // GPU programs typically use the SIMD execution model, where multiple threads
16 // in the same execution group have to execute in lock-step. Therefore, if the
17 // code contains divergent branches (i.e., threads in a group do not agree on
18 // which path of the branch to take), the group of threads has to execute all
19 // the paths from that branch with different subsets of threads enabled until
20 // they converge at the immediately post-dominating BB of the paths.
21 //
22 // Due to this execution model, some optimizations such as jump
23 // threading and loop unswitching can be unfortunately harmful when performed on
24 // divergent branches. Therefore, an analysis that computes which branches in a
25 // GPU program are divergent can help the compiler to selectively run these
26 // optimizations.
27 //
28 // This file defines divergence analysis which computes a conservative but
29 // non-trivial approximation of all divergent branches in a GPU program. It
30 // partially implements the approach described in
31 //
32 // Divergence Analysis
33 // Sampaio, Souza, Collange, Pereira
34 // TOPLAS '13
35 //
36 // The divergence analysis identifies the sources of divergence (e.g., special
37 // variables that hold the thread ID), and recursively marks variables that are
38 // data or sync dependent on a source of divergence as divergent.
39 //
40 // While data dependency is a well-known concept, the notion of sync dependency
41 // is worth more explanation. Sync dependence characterizes the control flow
42 // aspect of the propagation of branch divergence. For example,
43 //
44 // %cond = icmp slt i32 %tid, 10
45 // br i1 %cond, label %then, label %else
46 // then:
47 // br label %merge
48 // else:
49 // br label %merge
50 // merge:
51 // %a = phi i32 [ 0, %then ], [ 1, %else ]
52 //
53 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
54 // because %tid is not on its use-def chains, %a is sync dependent on %tid
55 // because the branch "br i1 %cond" depends on %tid and affects which value %a
56 // is assigned to.
57 //
58 // The current implementation has the following limitations:
59 // 1. intra-procedural. It conservatively considers the arguments of a
60 // non-kernel-entry function and the return value of a function call as
61 // divergent.
62 // 2. memory as black box. It conservatively considers values loaded from
63 // generic or local address as divergent. This can be improved by leveraging
64 // pointer analysis.
65 //
66 //===----------------------------------------------------------------------===//
67
68 #include "llvm/ADT/PostOrderIterator.h"
69 #include "llvm/Analysis/CFG.h"
70 #include "llvm/Analysis/DivergenceAnalysis.h"
71 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
72 #include "llvm/Analysis/Passes.h"
73 #include "llvm/Analysis/PostDominators.h"
74 #include "llvm/Analysis/TargetTransformInfo.h"
75 #include "llvm/IR/Dominators.h"
76 #include "llvm/IR/InstIterator.h"
77 #include "llvm/IR/Instructions.h"
78 #include "llvm/IR/Value.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <vector>
82 using namespace llvm;
83
84 #define DEBUG_TYPE "divergence"
85
86 // transparently use the GPUDivergenceAnalysis
87 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
88 cl::Hidden,
89 cl::desc("turn the LegacyDivergenceAnalysis into "
90 "a wrapper for GPUDivergenceAnalysis"));
91
92 namespace {
93
94 class DivergencePropagator {
95 public:
DivergencePropagator(Function & F,TargetTransformInfo & TTI,DominatorTree & DT,PostDominatorTree & PDT,DenseSet<const Value * > & DV)96 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
97 PostDominatorTree &PDT, DenseSet<const Value *> &DV)
98 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
99 void populateWithSourcesOfDivergence();
100 void propagate();
101
102 private:
103 // A helper function that explores data dependents of V.
104 void exploreDataDependency(Value *V);
105 // A helper function that explores sync dependents of TI.
106 void exploreSyncDependency(Instruction *TI);
107 // Computes the influence region from Start to End. This region includes all
108 // basic blocks on any simple path from Start to End.
109 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
110 DenseSet<BasicBlock *> &InfluenceRegion);
111 // Finds all users of I that are outside the influence region, and add these
112 // users to Worklist.
113 void findUsersOutsideInfluenceRegion(
114 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
115
116 Function &F;
117 TargetTransformInfo &TTI;
118 DominatorTree &DT;
119 PostDominatorTree &PDT;
120 std::vector<Value *> Worklist; // Stack for DFS.
121 DenseSet<const Value *> &DV; // Stores all divergent values.
122 };
123
populateWithSourcesOfDivergence()124 void DivergencePropagator::populateWithSourcesOfDivergence() {
125 Worklist.clear();
126 DV.clear();
127 for (auto &I : instructions(F)) {
128 if (TTI.isSourceOfDivergence(&I)) {
129 Worklist.push_back(&I);
130 DV.insert(&I);
131 }
132 }
133 for (auto &Arg : F.args()) {
134 if (TTI.isSourceOfDivergence(&Arg)) {
135 Worklist.push_back(&Arg);
136 DV.insert(&Arg);
137 }
138 }
139 }
140
exploreSyncDependency(Instruction * TI)141 void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
142 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
143 // immediate post dominator are divergent. This rule handles if-then-else
144 // patterns. For example,
145 //
146 // if (tid < 5)
147 // a1 = 1;
148 // else
149 // a2 = 2;
150 // a = phi(a1, a2); // sync dependent on (tid < 5)
151 BasicBlock *ThisBB = TI->getParent();
152
153 // Unreachable blocks may not be in the dominator tree.
154 if (!DT.isReachableFromEntry(ThisBB))
155 return;
156
157 // If the function has no exit blocks or doesn't reach any exit blocks, the
158 // post dominator may be null.
159 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
160 if (!ThisNode)
161 return;
162
163 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
164 if (IPostDom == nullptr)
165 return;
166
167 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
168 // A PHINode is uniform if it returns the same value no matter which path is
169 // taken.
170 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
171 Worklist.push_back(&*I);
172 }
173
174 // Propagation rule 2: if a value defined in a loop is used outside, the user
175 // is sync dependent on the condition of the loop exits that dominate the
176 // user. For example,
177 //
178 // int i = 0;
179 // do {
180 // i++;
181 // if (foo(i)) ... // uniform
182 // } while (i < tid);
183 // if (bar(i)) ... // divergent
184 //
185 // A program may contain unstructured loops. Therefore, we cannot leverage
186 // LoopInfo, which only recognizes natural loops.
187 //
188 // The algorithm used here handles both natural and unstructured loops. Given
189 // a branch TI, we first compute its influence region, the union of all simple
190 // paths from TI to its immediate post dominator (IPostDom). Then, we search
191 // for all the values defined in the influence region but used outside. All
192 // these users are sync dependent on TI.
193 DenseSet<BasicBlock *> InfluenceRegion;
194 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
195 // An insight that can speed up the search process is that all the in-region
196 // values that are used outside must dominate TI. Therefore, instead of
197 // searching every basic blocks in the influence region, we search all the
198 // dominators of TI until it is outside the influence region.
199 BasicBlock *InfluencedBB = ThisBB;
200 while (InfluenceRegion.count(InfluencedBB)) {
201 for (auto &I : *InfluencedBB)
202 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
203 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
204 if (IDomNode == nullptr)
205 break;
206 InfluencedBB = IDomNode->getBlock();
207 }
208 }
209
findUsersOutsideInfluenceRegion(Instruction & I,const DenseSet<BasicBlock * > & InfluenceRegion)210 void DivergencePropagator::findUsersOutsideInfluenceRegion(
211 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
212 for (User *U : I.users()) {
213 Instruction *UserInst = cast<Instruction>(U);
214 if (!InfluenceRegion.count(UserInst->getParent())) {
215 if (DV.insert(UserInst).second)
216 Worklist.push_back(UserInst);
217 }
218 }
219 }
220
221 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
222 // to the influence region.
223 static void
addSuccessorsToInfluenceRegion(BasicBlock * ThisBB,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion,std::vector<BasicBlock * > & InfluenceStack)224 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
225 DenseSet<BasicBlock *> &InfluenceRegion,
226 std::vector<BasicBlock *> &InfluenceStack) {
227 for (BasicBlock *Succ : successors(ThisBB)) {
228 if (Succ != End && InfluenceRegion.insert(Succ).second)
229 InfluenceStack.push_back(Succ);
230 }
231 }
232
computeInfluenceRegion(BasicBlock * Start,BasicBlock * End,DenseSet<BasicBlock * > & InfluenceRegion)233 void DivergencePropagator::computeInfluenceRegion(
234 BasicBlock *Start, BasicBlock *End,
235 DenseSet<BasicBlock *> &InfluenceRegion) {
236 assert(PDT.properlyDominates(End, Start) &&
237 "End does not properly dominate Start");
238
239 // The influence region starts from the end of "Start" to the beginning of
240 // "End". Therefore, "Start" should not be in the region unless "Start" is in
241 // a loop that doesn't contain "End".
242 std::vector<BasicBlock *> InfluenceStack;
243 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
244 while (!InfluenceStack.empty()) {
245 BasicBlock *BB = InfluenceStack.back();
246 InfluenceStack.pop_back();
247 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
248 }
249 }
250
exploreDataDependency(Value * V)251 void DivergencePropagator::exploreDataDependency(Value *V) {
252 // Follow def-use chains of V.
253 for (User *U : V->users()) {
254 Instruction *UserInst = cast<Instruction>(U);
255 if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
256 Worklist.push_back(UserInst);
257 }
258 }
259
propagate()260 void DivergencePropagator::propagate() {
261 // Traverse the dependency graph using DFS.
262 while (!Worklist.empty()) {
263 Value *V = Worklist.back();
264 Worklist.pop_back();
265 if (Instruction *I = dyn_cast<Instruction>(V)) {
266 // Terminators with less than two successors won't introduce sync
267 // dependency. Ignore them.
268 if (I->isTerminator() && I->getNumSuccessors() > 1)
269 exploreSyncDependency(I);
270 }
271 exploreDataDependency(V);
272 }
273 }
274
275 } // namespace
276
277 // Register this pass.
278 char LegacyDivergenceAnalysis::ID = 0;
279 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
280 "Legacy Divergence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)281 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
283 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
284 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
285 "Legacy Divergence Analysis", false, true)
286
287 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
288 return new LegacyDivergenceAnalysis();
289 }
290
getAnalysisUsage(AnalysisUsage & AU) const291 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
292 AU.addRequired<DominatorTreeWrapperPass>();
293 AU.addRequired<PostDominatorTreeWrapperPass>();
294 if (UseGPUDA)
295 AU.addRequired<LoopInfoWrapperPass>();
296 AU.setPreservesAll();
297 }
298
shouldUseGPUDivergenceAnalysis(const Function & F) const299 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
300 const Function &F) const {
301 if (!UseGPUDA)
302 return false;
303
304 // GPUDivergenceAnalysis requires a reducible CFG.
305 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
306 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
307 RPOTraversal FuncRPOT(&F);
308 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
309 const LoopInfo>(FuncRPOT, LI);
310 }
311
runOnFunction(Function & F)312 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
313 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
314 if (TTIWP == nullptr)
315 return false;
316
317 TargetTransformInfo &TTI = TTIWP->getTTI(F);
318 // Fast path: if the target does not have branch divergence, we do not mark
319 // any branch as divergent.
320 if (!TTI.hasBranchDivergence())
321 return false;
322
323 DivergentValues.clear();
324 gpuDA = nullptr;
325
326 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
327 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
328
329 if (shouldUseGPUDivergenceAnalysis(F)) {
330 // run the new GPU divergence analysis
331 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
332 gpuDA = llvm::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI);
333
334 } else {
335 // run LLVM's existing DivergenceAnalysis
336 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues);
337 DP.populateWithSourcesOfDivergence();
338 DP.propagate();
339 }
340
341 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
342 << ":\n";
343 print(dbgs(), F.getParent()));
344
345 return false;
346 }
347
isDivergent(const Value * V) const348 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
349 if (gpuDA) {
350 return gpuDA->isDivergent(*V);
351 }
352 return DivergentValues.count(V);
353 }
354
print(raw_ostream & OS,const Module *) const355 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
356 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
357 return;
358
359 const Function *F = nullptr;
360 if (!DivergentValues.empty()) {
361 const Value *FirstDivergentValue = *DivergentValues.begin();
362 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
363 F = Arg->getParent();
364 } else if (const Instruction *I =
365 dyn_cast<Instruction>(FirstDivergentValue)) {
366 F = I->getParent()->getParent();
367 } else {
368 llvm_unreachable("Only arguments and instructions can be divergent");
369 }
370 } else if (gpuDA) {
371 F = &gpuDA->getFunction();
372 }
373 if (!F)
374 return;
375
376 // Dumps all divergent values in F, arguments and then instructions.
377 for (auto &Arg : F->args()) {
378 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " ");
379 OS << Arg << "\n";
380 }
381 // Iterate instructions using instructions() to ensure a deterministic order.
382 for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
383 auto &BB = *BI;
384 OS << "\n " << BB.getName() << ":\n";
385 for (auto &I : BB.instructionsWithoutDebug()) {
386 OS << (isDivergent(&I) ? "DIVERGENT: " : " ");
387 OS << I << "\n";
388 }
389 }
390 OS << "\n";
391 }
392