1 //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interface for lazy computation of value constraint
11 // information.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/LazyValueInfo.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/ValueLattice.h"
25 #include "llvm/IR/AssemblyAnnotationWriter.h"
26 #include "llvm/IR/CFG.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/FormattedStream.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <map>
41 using namespace llvm;
42 using namespace PatternMatch;
43 
44 #define DEBUG_TYPE "lazy-value-info"
45 
46 // This is the number of worklist items we will process to try to discover an
47 // answer for a given value.
48 static const unsigned MaxProcessedPerValue = 500;
49 
50 char LazyValueInfoWrapperPass::ID = 0;
51 INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",
52                 "Lazy Value Information Analysis", false, true)
53 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
54 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
55 INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",
56                 "Lazy Value Information Analysis", false, true)
57 
58 namespace llvm {
createLazyValueInfoPass()59   FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
60 }
61 
62 AnalysisKey LazyValueAnalysis::Key;
63 
64 /// Returns true if this lattice value represents at most one possible value.
65 /// This is as precise as any lattice value can get while still representing
66 /// reachable code.
hasSingleValue(const ValueLatticeElement & Val)67 static bool hasSingleValue(const ValueLatticeElement &Val) {
68   if (Val.isConstantRange() &&
69       Val.getConstantRange().isSingleElement())
70     // Integer constants are single element ranges
71     return true;
72   if (Val.isConstant())
73     // Non integer constants
74     return true;
75   return false;
76 }
77 
78 /// Combine two sets of facts about the same value into a single set of
79 /// facts.  Note that this method is not suitable for merging facts along
80 /// different paths in a CFG; that's what the mergeIn function is for.  This
81 /// is for merging facts gathered about the same value at the same location
82 /// through two independent means.
83 /// Notes:
84 /// * This method does not promise to return the most precise possible lattice
85 ///   value implied by A and B.  It is allowed to return any lattice element
86 ///   which is at least as strong as *either* A or B (unless our facts
87 ///   conflict, see below).
88 /// * Due to unreachable code, the intersection of two lattice values could be
89 ///   contradictory.  If this happens, we return some valid lattice value so as
90 ///   not confuse the rest of LVI.  Ideally, we'd always return Undefined, but
91 ///   we do not make this guarantee.  TODO: This would be a useful enhancement.
intersect(const ValueLatticeElement & A,const ValueLatticeElement & B)92 static ValueLatticeElement intersect(const ValueLatticeElement &A,
93                                      const ValueLatticeElement &B) {
94   // Undefined is the strongest state.  It means the value is known to be along
95   // an unreachable path.
96   if (A.isUndefined())
97     return A;
98   if (B.isUndefined())
99     return B;
100 
101   // If we gave up for one, but got a useable fact from the other, use it.
102   if (A.isOverdefined())
103     return B;
104   if (B.isOverdefined())
105     return A;
106 
107   // Can't get any more precise than constants.
108   if (hasSingleValue(A))
109     return A;
110   if (hasSingleValue(B))
111     return B;
112 
113   // Could be either constant range or not constant here.
114   if (!A.isConstantRange() || !B.isConstantRange()) {
115     // TODO: Arbitrary choice, could be improved
116     return A;
117   }
118 
119   // Intersect two constant ranges
120   ConstantRange Range =
121     A.getConstantRange().intersectWith(B.getConstantRange());
122   // Note: An empty range is implicitly converted to overdefined internally.
123   // TODO: We could instead use Undefined here since we've proven a conflict
124   // and thus know this path must be unreachable.
125   return ValueLatticeElement::getRange(std::move(Range));
126 }
127 
128 //===----------------------------------------------------------------------===//
129 //                          LazyValueInfoCache Decl
130 //===----------------------------------------------------------------------===//
131 
132 namespace {
133   /// A callback value handle updates the cache when values are erased.
134   class LazyValueInfoCache;
135   struct LVIValueHandle final : public CallbackVH {
136     // Needs to access getValPtr(), which is protected.
137     friend struct DenseMapInfo<LVIValueHandle>;
138 
139     LazyValueInfoCache *Parent;
140 
LVIValueHandle__anonaa1e11710111::LVIValueHandle141     LVIValueHandle(Value *V, LazyValueInfoCache *P)
142       : CallbackVH(V), Parent(P) { }
143 
144     void deleted() override;
allUsesReplacedWith__anonaa1e11710111::LVIValueHandle145     void allUsesReplacedWith(Value *V) override {
146       deleted();
147     }
148   };
149 } // end anonymous namespace
150 
151 namespace {
152   /// This is the cache kept by LazyValueInfo which
153   /// maintains information about queries across the clients' queries.
154   class LazyValueInfoCache {
155     /// This is all of the cached block information for exactly one Value*.
156     /// The entries are sorted by the BasicBlock* of the
157     /// entries, allowing us to do a lookup with a binary search.
158     /// Over-defined lattice values are recorded in OverDefinedCache to reduce
159     /// memory overhead.
160     struct ValueCacheEntryTy {
ValueCacheEntryTy__anonaa1e11710211::LazyValueInfoCache::ValueCacheEntryTy161       ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
162       LVIValueHandle Handle;
163       SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
164     };
165 
166     /// This tracks, on a per-block basis, the set of values that are
167     /// over-defined at the end of that block.
168     typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
169         OverDefinedCacheTy;
170     /// Keep track of all blocks that we have ever seen, so we
171     /// don't spend time removing unused blocks from our caches.
172     DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
173 
174     /// This is all of the cached information for all values,
175     /// mapped from Value* to key information.
176     DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
177     OverDefinedCacheTy OverDefinedCache;
178 
179 
180   public:
insertResult(Value * Val,BasicBlock * BB,const ValueLatticeElement & Result)181     void insertResult(Value *Val, BasicBlock *BB,
182                       const ValueLatticeElement &Result) {
183       SeenBlocks.insert(BB);
184 
185       // Insert over-defined values into their own cache to reduce memory
186       // overhead.
187       if (Result.isOverdefined())
188         OverDefinedCache[BB].insert(Val);
189       else {
190         auto It = ValueCache.find_as(Val);
191         if (It == ValueCache.end()) {
192           ValueCache[Val] = make_unique<ValueCacheEntryTy>(Val, this);
193           It = ValueCache.find_as(Val);
194           assert(It != ValueCache.end() && "Val was just added to the map!");
195         }
196         It->second->BlockVals[BB] = Result;
197       }
198     }
199 
isOverdefined(Value * V,BasicBlock * BB) const200     bool isOverdefined(Value *V, BasicBlock *BB) const {
201       auto ODI = OverDefinedCache.find(BB);
202 
203       if (ODI == OverDefinedCache.end())
204         return false;
205 
206       return ODI->second.count(V);
207     }
208 
hasCachedValueInfo(Value * V,BasicBlock * BB) const209     bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
210       if (isOverdefined(V, BB))
211         return true;
212 
213       auto I = ValueCache.find_as(V);
214       if (I == ValueCache.end())
215         return false;
216 
217       return I->second->BlockVals.count(BB);
218     }
219 
getCachedValueInfo(Value * V,BasicBlock * BB) const220     ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
221       if (isOverdefined(V, BB))
222         return ValueLatticeElement::getOverdefined();
223 
224       auto I = ValueCache.find_as(V);
225       if (I == ValueCache.end())
226         return ValueLatticeElement();
227       auto BBI = I->second->BlockVals.find(BB);
228       if (BBI == I->second->BlockVals.end())
229         return ValueLatticeElement();
230       return BBI->second;
231     }
232 
233     /// clear - Empty the cache.
clear()234     void clear() {
235       SeenBlocks.clear();
236       ValueCache.clear();
237       OverDefinedCache.clear();
238     }
239 
240     /// Inform the cache that a given value has been deleted.
241     void eraseValue(Value *V);
242 
243     /// This is part of the update interface to inform the cache
244     /// that a block has been deleted.
245     void eraseBlock(BasicBlock *BB);
246 
247     /// Updates the cache to remove any influence an overdefined value in
248     /// OldSucc might have (unless also overdefined in NewSucc).  This just
249     /// flushes elements from the cache and does not add any.
250     void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
251 
252     friend struct LVIValueHandle;
253   };
254 }
255 
eraseValue(Value * V)256 void LazyValueInfoCache::eraseValue(Value *V) {
257   for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
258     // Copy and increment the iterator immediately so we can erase behind
259     // ourselves.
260     auto Iter = I++;
261     SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
262     ValueSet.erase(V);
263     if (ValueSet.empty())
264       OverDefinedCache.erase(Iter);
265   }
266 
267   ValueCache.erase(V);
268 }
269 
deleted()270 void LVIValueHandle::deleted() {
271   // This erasure deallocates *this, so it MUST happen after we're done
272   // using any and all members of *this.
273   Parent->eraseValue(*this);
274 }
275 
eraseBlock(BasicBlock * BB)276 void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
277   // Shortcut if we have never seen this block.
278   DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
279   if (I == SeenBlocks.end())
280     return;
281   SeenBlocks.erase(I);
282 
283   auto ODI = OverDefinedCache.find(BB);
284   if (ODI != OverDefinedCache.end())
285     OverDefinedCache.erase(ODI);
286 
287   for (auto &I : ValueCache)
288     I.second->BlockVals.erase(BB);
289 }
290 
threadEdgeImpl(BasicBlock * OldSucc,BasicBlock * NewSucc)291 void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
292                                         BasicBlock *NewSucc) {
293   // When an edge in the graph has been threaded, values that we could not
294   // determine a value for before (i.e. were marked overdefined) may be
295   // possible to solve now. We do NOT try to proactively update these values.
296   // Instead, we clear their entries from the cache, and allow lazy updating to
297   // recompute them when needed.
298 
299   // The updating process is fairly simple: we need to drop cached info
300   // for all values that were marked overdefined in OldSucc, and for those same
301   // values in any successor of OldSucc (except NewSucc) in which they were
302   // also marked overdefined.
303   std::vector<BasicBlock*> worklist;
304   worklist.push_back(OldSucc);
305 
306   auto I = OverDefinedCache.find(OldSucc);
307   if (I == OverDefinedCache.end())
308     return; // Nothing to process here.
309   SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
310 
311   // Use a worklist to perform a depth-first search of OldSucc's successors.
312   // NOTE: We do not need a visited list since any blocks we have already
313   // visited will have had their overdefined markers cleared already, and we
314   // thus won't loop to their successors.
315   while (!worklist.empty()) {
316     BasicBlock *ToUpdate = worklist.back();
317     worklist.pop_back();
318 
319     // Skip blocks only accessible through NewSucc.
320     if (ToUpdate == NewSucc) continue;
321 
322     // If a value was marked overdefined in OldSucc, and is here too...
323     auto OI = OverDefinedCache.find(ToUpdate);
324     if (OI == OverDefinedCache.end())
325       continue;
326     SmallPtrSetImpl<Value *> &ValueSet = OI->second;
327 
328     bool changed = false;
329     for (Value *V : ValsToClear) {
330       if (!ValueSet.erase(V))
331         continue;
332 
333       // If we removed anything, then we potentially need to update
334       // blocks successors too.
335       changed = true;
336 
337       if (ValueSet.empty()) {
338         OverDefinedCache.erase(OI);
339         break;
340       }
341     }
342 
343     if (!changed) continue;
344 
345     worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
346   }
347 }
348 
349 
350 namespace {
351 /// An assembly annotator class to print LazyValueCache information in
352 /// comments.
353 class LazyValueInfoImpl;
354 class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
355   LazyValueInfoImpl *LVIImpl;
356   // While analyzing which blocks we can solve values for, we need the dominator
357   // information. Since this is an optional parameter in LVI, we require this
358   // DomTreeAnalysis pass in the printer pass, and pass the dominator
359   // tree to the LazyValueInfoAnnotatedWriter.
360   DominatorTree &DT;
361 
362 public:
LazyValueInfoAnnotatedWriter(LazyValueInfoImpl * L,DominatorTree & DTree)363   LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
364       : LVIImpl(L), DT(DTree) {}
365 
366   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
367                                         formatted_raw_ostream &OS);
368 
369   virtual void emitInstructionAnnot(const Instruction *I,
370                                     formatted_raw_ostream &OS);
371 };
372 }
373 namespace {
374   // The actual implementation of the lazy analysis and update.  Note that the
375   // inheritance from LazyValueInfoCache is intended to be temporary while
376   // splitting the code and then transitioning to a has-a relationship.
377   class LazyValueInfoImpl {
378 
379     /// Cached results from previous queries
380     LazyValueInfoCache TheCache;
381 
382     /// This stack holds the state of the value solver during a query.
383     /// It basically emulates the callstack of the naive
384     /// recursive value lookup process.
385     SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
386 
387     /// Keeps track of which block-value pairs are in BlockValueStack.
388     DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
389 
390     /// Push BV onto BlockValueStack unless it's already in there.
391     /// Returns true on success.
pushBlockValue(const std::pair<BasicBlock *,Value * > & BV)392     bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
393       if (!BlockValueSet.insert(BV).second)
394         return false;  // It's already in the stack.
395 
396       LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "
397                         << BV.first->getName() << "\n");
398       BlockValueStack.push_back(BV);
399       return true;
400     }
401 
402     AssumptionCache *AC;  ///< A pointer to the cache of @llvm.assume calls.
403     const DataLayout &DL; ///< A mandatory DataLayout
404     DominatorTree *DT;    ///< An optional DT pointer.
405     DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
406 
407   ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
408   bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
409                     ValueLatticeElement &Result, Instruction *CxtI = nullptr);
410   bool hasBlockValue(Value *Val, BasicBlock *BB);
411 
412   // These methods process one work item and may add more. A false value
413   // returned means that the work item was not completely processed and must
414   // be revisited after going through the new items.
415   bool solveBlockValue(Value *Val, BasicBlock *BB);
416   bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
417                            BasicBlock *BB);
418   bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
419                                BasicBlock *BB);
420   bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
421                               BasicBlock *BB);
422   bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
423                              BasicBlock *BB);
424   Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
425                                              BasicBlock *BB);
426   bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
427                                BasicBlock *BB);
428   bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
429                            BasicBlock *BB);
430   void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
431                                                      ValueLatticeElement &BBLV,
432                                                      Instruction *BBI);
433 
434   void solve();
435 
436   public:
437     /// This is the query interface to determine the lattice
438     /// value for the specified Value* at the end of the specified block.
439     ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
440                                         Instruction *CxtI = nullptr);
441 
442     /// This is the query interface to determine the lattice
443     /// value for the specified Value* at the specified instruction (generally
444     /// from an assume intrinsic).
445     ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
446 
447     /// This is the query interface to determine the lattice
448     /// value for the specified Value* that is true on the specified edge.
449     ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
450                                        BasicBlock *ToBB,
451                                    Instruction *CxtI = nullptr);
452 
453     /// Complete flush all previously computed values
clear()454     void clear() {
455       TheCache.clear();
456     }
457 
458     /// Printing the LazyValueInfo Analysis.
printLVI(Function & F,DominatorTree & DTree,raw_ostream & OS)459     void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
460         LazyValueInfoAnnotatedWriter Writer(this, DTree);
461         F.print(OS, &Writer);
462     }
463 
464     /// This is part of the update interface to inform the cache
465     /// that a block has been deleted.
eraseBlock(BasicBlock * BB)466     void eraseBlock(BasicBlock *BB) {
467       TheCache.eraseBlock(BB);
468     }
469 
470     /// Disables use of the DominatorTree within LVI.
disableDT()471     void disableDT() {
472       if (DT) {
473         assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!");
474         std::swap(DT, DisabledDT);
475       }
476     }
477 
478     /// Enables use of the DominatorTree within LVI. Does nothing if the class
479     /// instance was initialized without a DT pointer.
enableDT()480     void enableDT() {
481       if (DisabledDT) {
482         assert(!DT && "Both DT and DisabledDT are not nullptr!");
483         std::swap(DT, DisabledDT);
484       }
485     }
486 
487     /// This is the update interface to inform the cache that an edge from
488     /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
489     void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
490 
LazyValueInfoImpl(AssumptionCache * AC,const DataLayout & DL,DominatorTree * DT=nullptr)491     LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
492                        DominatorTree *DT = nullptr)
493         : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
494   };
495 } // end anonymous namespace
496 
497 
solve()498 void LazyValueInfoImpl::solve() {
499   SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
500       BlockValueStack.begin(), BlockValueStack.end());
501 
502   unsigned processedCount = 0;
503   while (!BlockValueStack.empty()) {
504     processedCount++;
505     // Abort if we have to process too many values to get a result for this one.
506     // Because of the design of the overdefined cache currently being per-block
507     // to avoid naming-related issues (IE it wants to try to give different
508     // results for the same name in different blocks), overdefined results don't
509     // get cached globally, which in turn means we will often try to rediscover
510     // the same overdefined result again and again.  Once something like
511     // PredicateInfo is used in LVI or CVP, we should be able to make the
512     // overdefined cache global, and remove this throttle.
513     if (processedCount > MaxProcessedPerValue) {
514       LLVM_DEBUG(
515           dbgs() << "Giving up on stack because we are getting too deep\n");
516       // Fill in the original values
517       while (!StartingStack.empty()) {
518         std::pair<BasicBlock *, Value *> &e = StartingStack.back();
519         TheCache.insertResult(e.second, e.first,
520                               ValueLatticeElement::getOverdefined());
521         StartingStack.pop_back();
522       }
523       BlockValueSet.clear();
524       BlockValueStack.clear();
525       return;
526     }
527     std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
528     assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!");
529 
530     if (solveBlockValue(e.second, e.first)) {
531       // The work item was completely processed.
532       assert(BlockValueStack.back() == e && "Nothing should have been pushed!");
533       assert(TheCache.hasCachedValueInfo(e.second, e.first) &&
534              "Result should be in cache!");
535 
536       LLVM_DEBUG(
537           dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "
538                  << TheCache.getCachedValueInfo(e.second, e.first) << "\n");
539 
540       BlockValueStack.pop_back();
541       BlockValueSet.erase(e);
542     } else {
543       // More work needs to be done before revisiting.
544       assert(BlockValueStack.back() != e && "Stack should have been pushed!");
545     }
546   }
547 }
548 
hasBlockValue(Value * Val,BasicBlock * BB)549 bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
550   // If already a constant, there is nothing to compute.
551   if (isa<Constant>(Val))
552     return true;
553 
554   return TheCache.hasCachedValueInfo(Val, BB);
555 }
556 
getBlockValue(Value * Val,BasicBlock * BB)557 ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
558                                                      BasicBlock *BB) {
559   // If already a constant, there is nothing to compute.
560   if (Constant *VC = dyn_cast<Constant>(Val))
561     return ValueLatticeElement::get(VC);
562 
563   return TheCache.getCachedValueInfo(Val, BB);
564 }
565 
getFromRangeMetadata(Instruction * BBI)566 static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
567   switch (BBI->getOpcode()) {
568   default: break;
569   case Instruction::Load:
570   case Instruction::Call:
571   case Instruction::Invoke:
572     if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
573       if (isa<IntegerType>(BBI->getType())) {
574         return ValueLatticeElement::getRange(
575             getConstantRangeFromMetadata(*Ranges));
576       }
577     break;
578   };
579   // Nothing known - will be intersected with other facts
580   return ValueLatticeElement::getOverdefined();
581 }
582 
solveBlockValue(Value * Val,BasicBlock * BB)583 bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
584   if (isa<Constant>(Val))
585     return true;
586 
587   if (TheCache.hasCachedValueInfo(Val, BB)) {
588     // If we have a cached value, use that.
589     LLVM_DEBUG(dbgs() << "  reuse BB '" << BB->getName() << "' val="
590                       << TheCache.getCachedValueInfo(Val, BB) << '\n');
591 
592     // Since we're reusing a cached value, we don't need to update the
593     // OverDefinedCache. The cache will have been properly updated whenever the
594     // cached value was inserted.
595     return true;
596   }
597 
598   // Hold off inserting this value into the Cache in case we have to return
599   // false and come back later.
600   ValueLatticeElement Res;
601   if (!solveBlockValueImpl(Res, Val, BB))
602     // Work pushed, will revisit
603     return false;
604 
605   TheCache.insertResult(Val, BB, Res);
606   return true;
607 }
608 
solveBlockValueImpl(ValueLatticeElement & Res,Value * Val,BasicBlock * BB)609 bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
610                                             Value *Val, BasicBlock *BB) {
611 
612   Instruction *BBI = dyn_cast<Instruction>(Val);
613   if (!BBI || BBI->getParent() != BB)
614     return solveBlockValueNonLocal(Res, Val, BB);
615 
616   if (PHINode *PN = dyn_cast<PHINode>(BBI))
617     return solveBlockValuePHINode(Res, PN, BB);
618 
619   if (auto *SI = dyn_cast<SelectInst>(BBI))
620     return solveBlockValueSelect(Res, SI, BB);
621 
622   // If this value is a nonnull pointer, record it's range and bailout.  Note
623   // that for all other pointer typed values, we terminate the search at the
624   // definition.  We could easily extend this to look through geps, bitcasts,
625   // and the like to prove non-nullness, but it's not clear that's worth it
626   // compile time wise.  The context-insensitive value walk done inside
627   // isKnownNonZero gets most of the profitable cases at much less expense.
628   // This does mean that we have a sensativity to where the defining
629   // instruction is placed, even if it could legally be hoisted much higher.
630   // That is unfortunate.
631   PointerType *PT = dyn_cast<PointerType>(BBI->getType());
632   if (PT && isKnownNonZero(BBI, DL)) {
633     Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
634     return true;
635   }
636   if (BBI->getType()->isIntegerTy()) {
637     if (auto *CI = dyn_cast<CastInst>(BBI))
638       return solveBlockValueCast(Res, CI, BB);
639 
640     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
641       return solveBlockValueBinaryOp(Res, BO, BB);
642   }
643 
644   LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
645                     << "' - unknown inst def found.\n");
646   Res = getFromRangeMetadata(BBI);
647   return true;
648 }
649 
InstructionDereferencesPointer(Instruction * I,Value * Ptr)650 static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
651   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
652     return L->getPointerAddressSpace() == 0 &&
653            GetUnderlyingObject(L->getPointerOperand(),
654                                L->getModule()->getDataLayout()) == Ptr;
655   }
656   if (StoreInst *S = dyn_cast<StoreInst>(I)) {
657     return S->getPointerAddressSpace() == 0 &&
658            GetUnderlyingObject(S->getPointerOperand(),
659                                S->getModule()->getDataLayout()) == Ptr;
660   }
661   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
662     if (MI->isVolatile()) return false;
663 
664     // FIXME: check whether it has a valuerange that excludes zero?
665     ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
666     if (!Len || Len->isZero()) return false;
667 
668     if (MI->getDestAddressSpace() == 0)
669       if (GetUnderlyingObject(MI->getRawDest(),
670                               MI->getModule()->getDataLayout()) == Ptr)
671         return true;
672     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
673       if (MTI->getSourceAddressSpace() == 0)
674         if (GetUnderlyingObject(MTI->getRawSource(),
675                                 MTI->getModule()->getDataLayout()) == Ptr)
676           return true;
677   }
678   return false;
679 }
680 
681 /// Return true if the allocation associated with Val is ever dereferenced
682 /// within the given basic block.  This establishes the fact Val is not null,
683 /// but does not imply that the memory at Val is dereferenceable.  (Val may
684 /// point off the end of the dereferenceable part of the object.)
isObjectDereferencedInBlock(Value * Val,BasicBlock * BB)685 static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
686   assert(Val->getType()->isPointerTy());
687 
688   const DataLayout &DL = BB->getModule()->getDataLayout();
689   Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
690   // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
691   // inside InstructionDereferencesPointer either.
692   if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
693     for (Instruction &I : *BB)
694       if (InstructionDereferencesPointer(&I, UnderlyingVal))
695         return true;
696   return false;
697 }
698 
solveBlockValueNonLocal(ValueLatticeElement & BBLV,Value * Val,BasicBlock * BB)699 bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
700                                                  Value *Val, BasicBlock *BB) {
701   ValueLatticeElement Result;  // Start Undefined.
702 
703   // If this is the entry block, we must be asking about an argument.  The
704   // value is overdefined.
705   if (BB == &BB->getParent()->getEntryBlock()) {
706     assert(isa<Argument>(Val) && "Unknown live-in to the entry block");
707     // Before giving up, see if we can prove the pointer non-null local to
708     // this particular block.
709     PointerType *PTy = dyn_cast<PointerType>(Val->getType());
710     if (PTy &&
711         (isKnownNonZero(Val, DL) ||
712           (isObjectDereferencedInBlock(Val, BB) &&
713            !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
714       Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
715     } else {
716       Result = ValueLatticeElement::getOverdefined();
717     }
718     BBLV = Result;
719     return true;
720   }
721 
722   // Loop over all of our predecessors, merging what we know from them into
723   // result.  If we encounter an unexplored predecessor, we eagerly explore it
724   // in a depth first manner.  In practice, this has the effect of discovering
725   // paths we can't analyze eagerly without spending compile times analyzing
726   // other paths.  This heuristic benefits from the fact that predecessors are
727   // frequently arranged such that dominating ones come first and we quickly
728   // find a path to function entry.  TODO: We should consider explicitly
729   // canonicalizing to make this true rather than relying on this happy
730   // accident.
731   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
732     ValueLatticeElement EdgeResult;
733     if (!getEdgeValue(Val, *PI, BB, EdgeResult))
734       // Explore that input, then return here
735       return false;
736 
737     Result.mergeIn(EdgeResult, DL);
738 
739     // If we hit overdefined, exit early.  The BlockVals entry is already set
740     // to overdefined.
741     if (Result.isOverdefined()) {
742       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
743                         << "' - overdefined because of pred (non local).\n");
744       // Before giving up, see if we can prove the pointer non-null local to
745       // this particular block.
746       PointerType *PTy = dyn_cast<PointerType>(Val->getType());
747       if (PTy && isObjectDereferencedInBlock(Val, BB) &&
748           !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
749         Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
750       }
751 
752       BBLV = Result;
753       return true;
754     }
755   }
756 
757   // Return the merged value, which is more precise than 'overdefined'.
758   assert(!Result.isOverdefined());
759   BBLV = Result;
760   return true;
761 }
762 
solveBlockValuePHINode(ValueLatticeElement & BBLV,PHINode * PN,BasicBlock * BB)763 bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
764                                                PHINode *PN, BasicBlock *BB) {
765   ValueLatticeElement Result;  // Start Undefined.
766 
767   // Loop over all of our predecessors, merging what we know from them into
768   // result.  See the comment about the chosen traversal order in
769   // solveBlockValueNonLocal; the same reasoning applies here.
770   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
771     BasicBlock *PhiBB = PN->getIncomingBlock(i);
772     Value *PhiVal = PN->getIncomingValue(i);
773     ValueLatticeElement EdgeResult;
774     // Note that we can provide PN as the context value to getEdgeValue, even
775     // though the results will be cached, because PN is the value being used as
776     // the cache key in the caller.
777     if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
778       // Explore that input, then return here
779       return false;
780 
781     Result.mergeIn(EdgeResult, DL);
782 
783     // If we hit overdefined, exit early.  The BlockVals entry is already set
784     // to overdefined.
785     if (Result.isOverdefined()) {
786       LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
787                         << "' - overdefined because of pred (local).\n");
788 
789       BBLV = Result;
790       return true;
791     }
792   }
793 
794   // Return the merged value, which is more precise than 'overdefined'.
795   assert(!Result.isOverdefined() && "Possible PHI in entry block?");
796   BBLV = Result;
797   return true;
798 }
799 
800 static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
801                                                  bool isTrueDest = true);
802 
803 // If we can determine a constraint on the value given conditions assumed by
804 // the program, intersect those constraints with BBLV
intersectAssumeOrGuardBlockValueConstantRange(Value * Val,ValueLatticeElement & BBLV,Instruction * BBI)805 void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
806         Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
807   BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
808   if (!BBI)
809     return;
810 
811   for (auto &AssumeVH : AC->assumptionsFor(Val)) {
812     if (!AssumeVH)
813       continue;
814     auto *I = cast<CallInst>(AssumeVH);
815     if (!isValidAssumeForContext(I, BBI, DT))
816       continue;
817 
818     BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
819   }
820 
821   // If guards are not used in the module, don't spend time looking for them
822   auto *GuardDecl = BBI->getModule()->getFunction(
823           Intrinsic::getName(Intrinsic::experimental_guard));
824   if (!GuardDecl || GuardDecl->use_empty())
825     return;
826 
827   for (Instruction &I : make_range(BBI->getIterator().getReverse(),
828                                    BBI->getParent()->rend())) {
829     Value *Cond = nullptr;
830     if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
831       BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
832   }
833 }
834 
solveBlockValueSelect(ValueLatticeElement & BBLV,SelectInst * SI,BasicBlock * BB)835 bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
836                                               SelectInst *SI, BasicBlock *BB) {
837 
838   // Recurse on our inputs if needed
839   if (!hasBlockValue(SI->getTrueValue(), BB)) {
840     if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
841       return false;
842     BBLV = ValueLatticeElement::getOverdefined();
843     return true;
844   }
845   ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
846   // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
847   // extra slots in the table if we can.
848   if (TrueVal.isOverdefined()) {
849     BBLV = ValueLatticeElement::getOverdefined();
850     return true;
851   }
852 
853   if (!hasBlockValue(SI->getFalseValue(), BB)) {
854     if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
855       return false;
856     BBLV = ValueLatticeElement::getOverdefined();
857     return true;
858   }
859   ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
860   // If we hit overdefined, don't ask more queries.  We want to avoid poisoning
861   // extra slots in the table if we can.
862   if (FalseVal.isOverdefined()) {
863     BBLV = ValueLatticeElement::getOverdefined();
864     return true;
865   }
866 
867   if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
868     const ConstantRange &TrueCR = TrueVal.getConstantRange();
869     const ConstantRange &FalseCR = FalseVal.getConstantRange();
870     Value *LHS = nullptr;
871     Value *RHS = nullptr;
872     SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
873     // Is this a min specifically of our two inputs?  (Avoid the risk of
874     // ValueTracking getting smarter looking back past our immediate inputs.)
875     if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
876         LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
877       ConstantRange ResultCR = [&]() {
878         switch (SPR.Flavor) {
879         default:
880           llvm_unreachable("unexpected minmax type!");
881         case SPF_SMIN:                   /// Signed minimum
882           return TrueCR.smin(FalseCR);
883         case SPF_UMIN:                   /// Unsigned minimum
884           return TrueCR.umin(FalseCR);
885         case SPF_SMAX:                   /// Signed maximum
886           return TrueCR.smax(FalseCR);
887         case SPF_UMAX:                   /// Unsigned maximum
888           return TrueCR.umax(FalseCR);
889         };
890       }();
891       BBLV = ValueLatticeElement::getRange(ResultCR);
892       return true;
893     }
894 
895     // TODO: ABS, NABS from the SelectPatternResult
896   }
897 
898   // Can we constrain the facts about the true and false values by using the
899   // condition itself?  This shows up with idioms like e.g. select(a > 5, a, 5).
900   // TODO: We could potentially refine an overdefined true value above.
901   Value *Cond = SI->getCondition();
902   TrueVal = intersect(TrueVal,
903                       getValueFromCondition(SI->getTrueValue(), Cond, true));
904   FalseVal = intersect(FalseVal,
905                        getValueFromCondition(SI->getFalseValue(), Cond, false));
906 
907   // Handle clamp idioms such as:
908   //   %24 = constantrange<0, 17>
909   //   %39 = icmp eq i32 %24, 0
910   //   %40 = add i32 %24, -1
911   //   %siv.next = select i1 %39, i32 16, i32 %40
912   //   %siv.next = constantrange<0, 17> not <-1, 17>
913   // In general, this can handle any clamp idiom which tests the edge
914   // condition via an equality or inequality.
915   if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
916     ICmpInst::Predicate Pred = ICI->getPredicate();
917     Value *A = ICI->getOperand(0);
918     if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
919       auto addConstants = [](ConstantInt *A, ConstantInt *B) {
920         assert(A->getType() == B->getType());
921         return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
922       };
923       // See if either input is A + C2, subject to the constraint from the
924       // condition that A != C when that input is used.  We can assume that
925       // that input doesn't include C + C2.
926       ConstantInt *CIAdded;
927       switch (Pred) {
928       default: break;
929       case ICmpInst::ICMP_EQ:
930         if (match(SI->getFalseValue(), m_Add(m_Specific(A),
931                                              m_ConstantInt(CIAdded)))) {
932           auto ResNot = addConstants(CIBase, CIAdded);
933           FalseVal = intersect(FalseVal,
934                                ValueLatticeElement::getNot(ResNot));
935         }
936         break;
937       case ICmpInst::ICMP_NE:
938         if (match(SI->getTrueValue(), m_Add(m_Specific(A),
939                                             m_ConstantInt(CIAdded)))) {
940           auto ResNot = addConstants(CIBase, CIAdded);
941           TrueVal = intersect(TrueVal,
942                               ValueLatticeElement::getNot(ResNot));
943         }
944         break;
945       };
946     }
947   }
948 
949   ValueLatticeElement Result;  // Start Undefined.
950   Result.mergeIn(TrueVal, DL);
951   Result.mergeIn(FalseVal, DL);
952   BBLV = Result;
953   return true;
954 }
955 
getRangeForOperand(unsigned Op,Instruction * I,BasicBlock * BB)956 Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
957                                                               Instruction *I,
958                                                               BasicBlock *BB) {
959   if (!hasBlockValue(I->getOperand(Op), BB))
960     if (pushBlockValue(std::make_pair(BB, I->getOperand(Op))))
961       return None;
962 
963   const unsigned OperandBitWidth =
964     DL.getTypeSizeInBits(I->getOperand(Op)->getType());
965   ConstantRange Range = ConstantRange(OperandBitWidth);
966   if (hasBlockValue(I->getOperand(Op), BB)) {
967     ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB);
968     intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
969     if (Val.isConstantRange())
970       Range = Val.getConstantRange();
971   }
972   return Range;
973 }
974 
solveBlockValueCast(ValueLatticeElement & BBLV,CastInst * CI,BasicBlock * BB)975 bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
976                                             CastInst *CI,
977                                             BasicBlock *BB) {
978   if (!CI->getOperand(0)->getType()->isSized()) {
979     // Without knowing how wide the input is, we can't analyze it in any useful
980     // way.
981     BBLV = ValueLatticeElement::getOverdefined();
982     return true;
983   }
984 
985   // Filter out casts we don't know how to reason about before attempting to
986   // recurse on our operand.  This can cut a long search short if we know we're
987   // not going to be able to get any useful information anways.
988   switch (CI->getOpcode()) {
989   case Instruction::Trunc:
990   case Instruction::SExt:
991   case Instruction::ZExt:
992   case Instruction::BitCast:
993     break;
994   default:
995     // Unhandled instructions are overdefined.
996     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
997                       << "' - overdefined (unknown cast).\n");
998     BBLV = ValueLatticeElement::getOverdefined();
999     return true;
1000   }
1001 
1002   // Figure out the range of the LHS.  If that fails, we still apply the
1003   // transfer rule on the full set since we may be able to locally infer
1004   // interesting facts.
1005   Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
1006   if (!LHSRes.hasValue())
1007     // More work to do before applying this transfer rule.
1008     return false;
1009   ConstantRange LHSRange = LHSRes.getValue();
1010 
1011   const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
1012 
1013   // NOTE: We're currently limited by the set of operations that ConstantRange
1014   // can evaluate symbolically.  Enhancing that set will allows us to analyze
1015   // more definitions.
1016   BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
1017                                                        ResultBitWidth));
1018   return true;
1019 }
1020 
solveBlockValueBinaryOp(ValueLatticeElement & BBLV,BinaryOperator * BO,BasicBlock * BB)1021 bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
1022                                                 BinaryOperator *BO,
1023                                                 BasicBlock *BB) {
1024 
1025   assert(BO->getOperand(0)->getType()->isSized() &&
1026          "all operands to binary operators are sized");
1027 
1028   // Filter out operators we don't know how to reason about before attempting to
1029   // recurse on our operand(s).  This can cut a long search short if we know
1030   // we're not going to be able to get any useful information anyways.
1031   switch (BO->getOpcode()) {
1032   case Instruction::Add:
1033   case Instruction::Sub:
1034   case Instruction::Mul:
1035   case Instruction::UDiv:
1036   case Instruction::Shl:
1037   case Instruction::LShr:
1038   case Instruction::AShr:
1039   case Instruction::And:
1040   case Instruction::Or:
1041     // continue into the code below
1042     break;
1043   default:
1044     // Unhandled instructions are overdefined.
1045     LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()
1046                       << "' - overdefined (unknown binary operator).\n");
1047     BBLV = ValueLatticeElement::getOverdefined();
1048     return true;
1049   };
1050 
1051   // Figure out the ranges of the operands.  If that fails, use a
1052   // conservative range, but apply the transfer rule anyways.  This
1053   // lets us pick up facts from expressions like "and i32 (call i32
1054   // @foo()), 32"
1055   Optional<ConstantRange> LHSRes = getRangeForOperand(0, BO, BB);
1056   Optional<ConstantRange> RHSRes = getRangeForOperand(1, BO, BB);
1057 
1058   if (!LHSRes.hasValue() || !RHSRes.hasValue())
1059     // More work to do before applying this transfer rule.
1060     return false;
1061 
1062   ConstantRange LHSRange = LHSRes.getValue();
1063   ConstantRange RHSRange = RHSRes.getValue();
1064 
1065   // NOTE: We're currently limited by the set of operations that ConstantRange
1066   // can evaluate symbolically.  Enhancing that set will allows us to analyze
1067   // more definitions.
1068   Instruction::BinaryOps BinOp = BO->getOpcode();
1069   BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange));
1070   return true;
1071 }
1072 
getValueFromICmpCondition(Value * Val,ICmpInst * ICI,bool isTrueDest)1073 static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1074                                                      bool isTrueDest) {
1075   Value *LHS = ICI->getOperand(0);
1076   Value *RHS = ICI->getOperand(1);
1077   CmpInst::Predicate Predicate = ICI->getPredicate();
1078 
1079   if (isa<Constant>(RHS)) {
1080     if (ICI->isEquality() && LHS == Val) {
1081       // We know that V has the RHS constant if this is a true SETEQ or
1082       // false SETNE.
1083       if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
1084         return ValueLatticeElement::get(cast<Constant>(RHS));
1085       else
1086         return ValueLatticeElement::getNot(cast<Constant>(RHS));
1087     }
1088   }
1089 
1090   if (!Val->getType()->isIntegerTy())
1091     return ValueLatticeElement::getOverdefined();
1092 
1093   // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1094   // range of Val guaranteed by the condition. Recognize comparisons in the from
1095   // of:
1096   //  icmp <pred> Val, ...
1097   //  icmp <pred> (add Val, Offset), ...
1098   // The latter is the range checking idiom that InstCombine produces. Subtract
1099   // the offset from the allowed range for RHS in this case.
1100 
1101   // Val or (add Val, Offset) can be on either hand of the comparison
1102   if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
1103     std::swap(LHS, RHS);
1104     Predicate = CmpInst::getSwappedPredicate(Predicate);
1105   }
1106 
1107   ConstantInt *Offset = nullptr;
1108   if (LHS != Val)
1109     match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
1110 
1111   if (LHS == Val || Offset) {
1112     // Calculate the range of values that are allowed by the comparison
1113     ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1114                            /*isFullSet=*/true);
1115     if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1116       RHSRange = ConstantRange(CI->getValue());
1117     else if (Instruction *I = dyn_cast<Instruction>(RHS))
1118       if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1119         RHSRange = getConstantRangeFromMetadata(*Ranges);
1120 
1121     // If we're interested in the false dest, invert the condition
1122     CmpInst::Predicate Pred =
1123             isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
1124     ConstantRange TrueValues =
1125             ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1126 
1127     if (Offset) // Apply the offset from above.
1128       TrueValues = TrueValues.subtract(Offset->getValue());
1129 
1130     return ValueLatticeElement::getRange(std::move(TrueValues));
1131   }
1132 
1133   return ValueLatticeElement::getOverdefined();
1134 }
1135 
1136 static ValueLatticeElement
1137 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1138                       DenseMap<Value*, ValueLatticeElement> &Visited);
1139 
1140 static ValueLatticeElement
getValueFromConditionImpl(Value * Val,Value * Cond,bool isTrueDest,DenseMap<Value *,ValueLatticeElement> & Visited)1141 getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1142                           DenseMap<Value*, ValueLatticeElement> &Visited) {
1143   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1144     return getValueFromICmpCondition(Val, ICI, isTrueDest);
1145 
1146   // Handle conditions in the form of (cond1 && cond2), we know that on the
1147   // true dest path both of the conditions hold. Similarly for conditions of
1148   // the form (cond1 || cond2), we know that on the false dest path neither
1149   // condition holds.
1150   BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
1151   if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
1152              (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
1153     return ValueLatticeElement::getOverdefined();
1154 
1155   // Prevent infinite recursion if Cond references itself as in this example:
1156   //  Cond: "%tmp4 = and i1 %tmp4, undef"
1157   //    BL: "%tmp4 = and i1 %tmp4, undef"
1158   //    BR: "i1 undef"
1159   Value *BL = BO->getOperand(0);
1160   Value *BR = BO->getOperand(1);
1161   if (BL == Cond || BR == Cond)
1162     return ValueLatticeElement::getOverdefined();
1163 
1164   return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
1165                    getValueFromCondition(Val, BR, isTrueDest, Visited));
1166 }
1167 
1168 static ValueLatticeElement
getValueFromCondition(Value * Val,Value * Cond,bool isTrueDest,DenseMap<Value *,ValueLatticeElement> & Visited)1169 getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1170                       DenseMap<Value*, ValueLatticeElement> &Visited) {
1171   auto I = Visited.find(Cond);
1172   if (I != Visited.end())
1173     return I->second;
1174 
1175   auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1176   Visited[Cond] = Result;
1177   return Result;
1178 }
1179 
getValueFromCondition(Value * Val,Value * Cond,bool isTrueDest)1180 ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1181                                           bool isTrueDest) {
1182   assert(Cond && "precondition");
1183   DenseMap<Value*, ValueLatticeElement> Visited;
1184   return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1185 }
1186 
1187 // Return true if Usr has Op as an operand, otherwise false.
usesOperand(User * Usr,Value * Op)1188 static bool usesOperand(User *Usr, Value *Op) {
1189   return find(Usr->operands(), Op) != Usr->op_end();
1190 }
1191 
1192 // Return true if the instruction type of Val is supported by
1193 // constantFoldUser(). Currently CastInst and BinaryOperator only.  Call this
1194 // before calling constantFoldUser() to find out if it's even worth attempting
1195 // to call it.
isOperationFoldable(User * Usr)1196 static bool isOperationFoldable(User *Usr) {
1197   return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
1198 }
1199 
1200 // Check if Usr can be simplified to an integer constant when the value of one
1201 // of its operands Op is an integer constant OpConstVal. If so, return it as an
1202 // lattice value range with a single element or otherwise return an overdefined
1203 // lattice value.
constantFoldUser(User * Usr,Value * Op,const APInt & OpConstVal,const DataLayout & DL)1204 static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1205                                             const APInt &OpConstVal,
1206                                             const DataLayout &DL) {
1207   assert(isOperationFoldable(Usr) && "Precondition");
1208   Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1209   // Check if Usr can be simplified to a constant.
1210   if (auto *CI = dyn_cast<CastInst>(Usr)) {
1211     assert(CI->getOperand(0) == Op && "Operand 0 isn't Op");
1212     if (auto *C = dyn_cast_or_null<ConstantInt>(
1213             SimplifyCastInst(CI->getOpcode(), OpConst,
1214                              CI->getDestTy(), DL))) {
1215       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1216     }
1217   } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1218     bool Op0Match = BO->getOperand(0) == Op;
1219     bool Op1Match = BO->getOperand(1) == Op;
1220     assert((Op0Match || Op1Match) &&
1221            "Operand 0 nor Operand 1 isn't a match");
1222     Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1223     Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1224     if (auto *C = dyn_cast_or_null<ConstantInt>(
1225             SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1226       return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1227     }
1228   }
1229   return ValueLatticeElement::getOverdefined();
1230 }
1231 
1232 /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1233 /// Val is not constrained on the edge.  Result is unspecified if return value
1234 /// is false.
getEdgeValueLocal(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,ValueLatticeElement & Result)1235 static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1236                               BasicBlock *BBTo, ValueLatticeElement &Result) {
1237   // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1238   // know that v != 0.
1239   if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
1240     // If this is a conditional branch and only one successor goes to BBTo, then
1241     // we may be able to infer something from the condition.
1242     if (BI->isConditional() &&
1243         BI->getSuccessor(0) != BI->getSuccessor(1)) {
1244       bool isTrueDest = BI->getSuccessor(0) == BBTo;
1245       assert(BI->getSuccessor(!isTrueDest) == BBTo &&
1246              "BBTo isn't a successor of BBFrom");
1247       Value *Condition = BI->getCondition();
1248 
1249       // If V is the condition of the branch itself, then we know exactly what
1250       // it is.
1251       if (Condition == Val) {
1252         Result = ValueLatticeElement::get(ConstantInt::get(
1253                               Type::getInt1Ty(Val->getContext()), isTrueDest));
1254         return true;
1255       }
1256 
1257       // If the condition of the branch is an equality comparison, we may be
1258       // able to infer the value.
1259       Result = getValueFromCondition(Val, Condition, isTrueDest);
1260       if (!Result.isOverdefined())
1261         return true;
1262 
1263       if (User *Usr = dyn_cast<User>(Val)) {
1264         assert(Result.isOverdefined() && "Result isn't overdefined");
1265         // Check with isOperationFoldable() first to avoid linearly iterating
1266         // over the operands unnecessarily which can be expensive for
1267         // instructions with many operands.
1268         if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
1269           const DataLayout &DL = BBTo->getModule()->getDataLayout();
1270           if (usesOperand(Usr, Condition)) {
1271             // If Val has Condition as an operand and Val can be folded into a
1272             // constant with either Condition == true or Condition == false,
1273             // propagate the constant.
1274             // eg.
1275             //   ; %Val is true on the edge to %then.
1276             //   %Val = and i1 %Condition, true.
1277             //   br %Condition, label %then, label %else
1278             APInt ConditionVal(1, isTrueDest ? 1 : 0);
1279             Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1280           } else {
1281             // If one of Val's operand has an inferred value, we may be able to
1282             // infer the value of Val.
1283             // eg.
1284             //    ; %Val is 94 on the edge to %then.
1285             //    %Val = add i8 %Op, 1
1286             //    %Condition = icmp eq i8 %Op, 93
1287             //    br i1 %Condition, label %then, label %else
1288             for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1289               Value *Op = Usr->getOperand(i);
1290               ValueLatticeElement OpLatticeVal =
1291                   getValueFromCondition(Op, Condition, isTrueDest);
1292               if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1293                 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1294                 break;
1295               }
1296             }
1297           }
1298         }
1299       }
1300       if (!Result.isOverdefined())
1301         return true;
1302     }
1303   }
1304 
1305   // If the edge was formed by a switch on the value, then we may know exactly
1306   // what it is.
1307   if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1308     Value *Condition = SI->getCondition();
1309     if (!isa<IntegerType>(Val->getType()))
1310       return false;
1311     bool ValUsesConditionAndMayBeFoldable = false;
1312     if (Condition != Val) {
1313       // Check if Val has Condition as an operand.
1314       if (User *Usr = dyn_cast<User>(Val))
1315         ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1316             usesOperand(Usr, Condition);
1317       if (!ValUsesConditionAndMayBeFoldable)
1318         return false;
1319     }
1320     assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
1321            "Condition != Val nor Val doesn't use Condition");
1322 
1323     bool DefaultCase = SI->getDefaultDest() == BBTo;
1324     unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1325     ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1326 
1327     for (auto Case : SI->cases()) {
1328       APInt CaseValue = Case.getCaseValue()->getValue();
1329       ConstantRange EdgeVal(CaseValue);
1330       if (ValUsesConditionAndMayBeFoldable) {
1331         User *Usr = cast<User>(Val);
1332         const DataLayout &DL = BBTo->getModule()->getDataLayout();
1333         ValueLatticeElement EdgeLatticeVal =
1334             constantFoldUser(Usr, Condition, CaseValue, DL);
1335         if (EdgeLatticeVal.isOverdefined())
1336           return false;
1337         EdgeVal = EdgeLatticeVal.getConstantRange();
1338       }
1339       if (DefaultCase) {
1340         // It is possible that the default destination is the destination of
1341         // some cases. We cannot perform difference for those cases.
1342         // We know Condition != CaseValue in BBTo.  In some cases we can use
1343         // this to infer Val == f(Condition) is != f(CaseValue).  For now, we
1344         // only do this when f is identity (i.e. Val == Condition), but we
1345         // should be able to do this for any injective f.
1346         if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1347           EdgesVals = EdgesVals.difference(EdgeVal);
1348       } else if (Case.getCaseSuccessor() == BBTo)
1349         EdgesVals = EdgesVals.unionWith(EdgeVal);
1350     }
1351     Result = ValueLatticeElement::getRange(std::move(EdgesVals));
1352     return true;
1353   }
1354   return false;
1355 }
1356 
1357 /// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1358 /// the basic block if the edge does not constrain Val.
getEdgeValue(Value * Val,BasicBlock * BBFrom,BasicBlock * BBTo,ValueLatticeElement & Result,Instruction * CxtI)1359 bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1360                                      BasicBlock *BBTo,
1361                                      ValueLatticeElement &Result,
1362                                      Instruction *CxtI) {
1363   // If already a constant, there is nothing to compute.
1364   if (Constant *VC = dyn_cast<Constant>(Val)) {
1365     Result = ValueLatticeElement::get(VC);
1366     return true;
1367   }
1368 
1369   ValueLatticeElement LocalResult;
1370   if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
1371     // If we couldn't constrain the value on the edge, LocalResult doesn't
1372     // provide any information.
1373     LocalResult = ValueLatticeElement::getOverdefined();
1374 
1375   if (hasSingleValue(LocalResult)) {
1376     // Can't get any more precise here
1377     Result = LocalResult;
1378     return true;
1379   }
1380 
1381   if (!hasBlockValue(Val, BBFrom)) {
1382     if (pushBlockValue(std::make_pair(BBFrom, Val)))
1383       return false;
1384     // No new information.
1385     Result = LocalResult;
1386     return true;
1387   }
1388 
1389   // Try to intersect ranges of the BB and the constraint on the edge.
1390   ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
1391   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1392                                                 BBFrom->getTerminator());
1393   // We can use the context instruction (generically the ultimate instruction
1394   // the calling pass is trying to simplify) here, even though the result of
1395   // this function is generally cached when called from the solve* functions
1396   // (and that cached result might be used with queries using a different
1397   // context instruction), because when this function is called from the solve*
1398   // functions, the context instruction is not provided. When called from
1399   // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1400   // but then the result is not cached.
1401   intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1402 
1403   Result = intersect(LocalResult, InBlock);
1404   return true;
1405 }
1406 
getValueInBlock(Value * V,BasicBlock * BB,Instruction * CxtI)1407 ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1408                                                        Instruction *CxtI) {
1409   LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
1410                     << BB->getName() << "'\n");
1411 
1412   assert(BlockValueStack.empty() && BlockValueSet.empty());
1413   if (!hasBlockValue(V, BB)) {
1414     pushBlockValue(std::make_pair(BB, V));
1415     solve();
1416   }
1417   ValueLatticeElement Result = getBlockValue(V, BB);
1418   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1419 
1420   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1421   return Result;
1422 }
1423 
getValueAt(Value * V,Instruction * CxtI)1424 ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1425   LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()
1426                     << "'\n");
1427 
1428   if (auto *C = dyn_cast<Constant>(V))
1429     return ValueLatticeElement::get(C);
1430 
1431   ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1432   if (auto *I = dyn_cast<Instruction>(V))
1433     Result = getFromRangeMetadata(I);
1434   intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1435 
1436   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1437   return Result;
1438 }
1439 
1440 ValueLatticeElement LazyValueInfoImpl::
getValueOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1441 getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1442                Instruction *CxtI) {
1443   LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
1444                     << FromBB->getName() << "' to '" << ToBB->getName()
1445                     << "'\n");
1446 
1447   ValueLatticeElement Result;
1448   if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
1449     solve();
1450     bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1451     (void)WasFastQuery;
1452     assert(WasFastQuery && "More work to do after problem solved?");
1453   }
1454 
1455   LLVM_DEBUG(dbgs() << "  Result = " << Result << "\n");
1456   return Result;
1457 }
1458 
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1459 void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1460                                    BasicBlock *NewSucc) {
1461   TheCache.threadEdgeImpl(OldSucc, NewSucc);
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 //                            LazyValueInfo Impl
1466 //===----------------------------------------------------------------------===//
1467 
1468 /// This lazily constructs the LazyValueInfoImpl.
getImpl(void * & PImpl,AssumptionCache * AC,const DataLayout * DL,DominatorTree * DT=nullptr)1469 static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1470                                   const DataLayout *DL,
1471                                   DominatorTree *DT = nullptr) {
1472   if (!PImpl) {
1473     assert(DL && "getCache() called with a null DataLayout");
1474     PImpl = new LazyValueInfoImpl(AC, *DL, DT);
1475   }
1476   return *static_cast<LazyValueInfoImpl*>(PImpl);
1477 }
1478 
runOnFunction(Function & F)1479 bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1480   Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1481   const DataLayout &DL = F.getParent()->getDataLayout();
1482 
1483   DominatorTreeWrapperPass *DTWP =
1484       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1485   Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
1486   Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1487 
1488   if (Info.PImpl)
1489     getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
1490 
1491   // Fully lazy.
1492   return false;
1493 }
1494 
getAnalysisUsage(AnalysisUsage & AU) const1495 void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1496   AU.setPreservesAll();
1497   AU.addRequired<AssumptionCacheTracker>();
1498   AU.addRequired<TargetLibraryInfoWrapperPass>();
1499 }
1500 
getLVI()1501 LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1502 
~LazyValueInfo()1503 LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1504 
releaseMemory()1505 void LazyValueInfo::releaseMemory() {
1506   // If the cache was allocated, free it.
1507   if (PImpl) {
1508     delete &getImpl(PImpl, AC, nullptr);
1509     PImpl = nullptr;
1510   }
1511 }
1512 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)1513 bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1514                                FunctionAnalysisManager::Invalidator &Inv) {
1515   // We need to invalidate if we have either failed to preserve this analyses
1516   // result directly or if any of its dependencies have been invalidated.
1517   auto PAC = PA.getChecker<LazyValueAnalysis>();
1518   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
1519       (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
1520     return true;
1521 
1522   return false;
1523 }
1524 
releaseMemory()1525 void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1526 
run(Function & F,FunctionAnalysisManager & FAM)1527 LazyValueInfo LazyValueAnalysis::run(Function &F,
1528                                      FunctionAnalysisManager &FAM) {
1529   auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1530   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1531   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1532 
1533   return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
1534 }
1535 
1536 /// Returns true if we can statically tell that this value will never be a
1537 /// "useful" constant.  In practice, this means we've got something like an
1538 /// alloca or a malloc call for which a comparison against a constant can
1539 /// only be guarding dead code.  Note that we are potentially giving up some
1540 /// precision in dead code (a constant result) in favour of avoiding a
1541 /// expensive search for a easily answered common query.
isKnownNonConstant(Value * V)1542 static bool isKnownNonConstant(Value *V) {
1543   V = V->stripPointerCasts();
1544   // The return val of alloc cannot be a Constant.
1545   if (isa<AllocaInst>(V))
1546     return true;
1547   return false;
1548 }
1549 
getConstant(Value * V,BasicBlock * BB,Instruction * CxtI)1550 Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1551                                      Instruction *CxtI) {
1552   // Bail out early if V is known not to be a Constant.
1553   if (isKnownNonConstant(V))
1554     return nullptr;
1555 
1556   const DataLayout &DL = BB->getModule()->getDataLayout();
1557   ValueLatticeElement Result =
1558       getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1559 
1560   if (Result.isConstant())
1561     return Result.getConstant();
1562   if (Result.isConstantRange()) {
1563     const ConstantRange &CR = Result.getConstantRange();
1564     if (const APInt *SingleVal = CR.getSingleElement())
1565       return ConstantInt::get(V->getContext(), *SingleVal);
1566   }
1567   return nullptr;
1568 }
1569 
getConstantRange(Value * V,BasicBlock * BB,Instruction * CxtI)1570 ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
1571                                               Instruction *CxtI) {
1572   assert(V->getType()->isIntegerTy());
1573   unsigned Width = V->getType()->getIntegerBitWidth();
1574   const DataLayout &DL = BB->getModule()->getDataLayout();
1575   ValueLatticeElement Result =
1576       getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1577   if (Result.isUndefined())
1578     return ConstantRange(Width, /*isFullSet=*/false);
1579   if (Result.isConstantRange())
1580     return Result.getConstantRange();
1581   // We represent ConstantInt constants as constant ranges but other kinds
1582   // of integer constants, i.e. ConstantExpr will be tagged as constants
1583   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1584          "ConstantInt value must be represented as constantrange");
1585   return ConstantRange(Width, /*isFullSet=*/true);
1586 }
1587 
1588 /// Determine whether the specified value is known to be a
1589 /// constant on the specified edge. Return null if not.
getConstantOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1590 Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1591                                            BasicBlock *ToBB,
1592                                            Instruction *CxtI) {
1593   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1594   ValueLatticeElement Result =
1595       getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1596 
1597   if (Result.isConstant())
1598     return Result.getConstant();
1599   if (Result.isConstantRange()) {
1600     const ConstantRange &CR = Result.getConstantRange();
1601     if (const APInt *SingleVal = CR.getSingleElement())
1602       return ConstantInt::get(V->getContext(), *SingleVal);
1603   }
1604   return nullptr;
1605 }
1606 
getConstantRangeOnEdge(Value * V,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1607 ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1608                                                     BasicBlock *FromBB,
1609                                                     BasicBlock *ToBB,
1610                                                     Instruction *CxtI) {
1611   unsigned Width = V->getType()->getIntegerBitWidth();
1612   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1613   ValueLatticeElement Result =
1614       getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1615 
1616   if (Result.isUndefined())
1617     return ConstantRange(Width, /*isFullSet=*/false);
1618   if (Result.isConstantRange())
1619     return Result.getConstantRange();
1620   // We represent ConstantInt constants as constant ranges but other kinds
1621   // of integer constants, i.e. ConstantExpr will be tagged as constants
1622   assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&
1623          "ConstantInt value must be represented as constantrange");
1624   return ConstantRange(Width, /*isFullSet=*/true);
1625 }
1626 
1627 static LazyValueInfo::Tristate
getPredicateResult(unsigned Pred,Constant * C,const ValueLatticeElement & Val,const DataLayout & DL,TargetLibraryInfo * TLI)1628 getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1629                    const DataLayout &DL, TargetLibraryInfo *TLI) {
1630   // If we know the value is a constant, evaluate the conditional.
1631   Constant *Res = nullptr;
1632   if (Val.isConstant()) {
1633     Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1634     if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1635       return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1636     return LazyValueInfo::Unknown;
1637   }
1638 
1639   if (Val.isConstantRange()) {
1640     ConstantInt *CI = dyn_cast<ConstantInt>(C);
1641     if (!CI) return LazyValueInfo::Unknown;
1642 
1643     const ConstantRange &CR = Val.getConstantRange();
1644     if (Pred == ICmpInst::ICMP_EQ) {
1645       if (!CR.contains(CI->getValue()))
1646         return LazyValueInfo::False;
1647 
1648       if (CR.isSingleElement())
1649         return LazyValueInfo::True;
1650     } else if (Pred == ICmpInst::ICMP_NE) {
1651       if (!CR.contains(CI->getValue()))
1652         return LazyValueInfo::True;
1653 
1654       if (CR.isSingleElement())
1655         return LazyValueInfo::False;
1656     } else {
1657       // Handle more complex predicates.
1658       ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1659           (ICmpInst::Predicate)Pred, CI->getValue());
1660       if (TrueValues.contains(CR))
1661         return LazyValueInfo::True;
1662       if (TrueValues.inverse().contains(CR))
1663         return LazyValueInfo::False;
1664     }
1665     return LazyValueInfo::Unknown;
1666   }
1667 
1668   if (Val.isNotConstant()) {
1669     // If this is an equality comparison, we can try to fold it knowing that
1670     // "V != C1".
1671     if (Pred == ICmpInst::ICMP_EQ) {
1672       // !C1 == C -> false iff C1 == C.
1673       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1674                                             Val.getNotConstant(), C, DL,
1675                                             TLI);
1676       if (Res->isNullValue())
1677         return LazyValueInfo::False;
1678     } else if (Pred == ICmpInst::ICMP_NE) {
1679       // !C1 != C -> true iff C1 == C.
1680       Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1681                                             Val.getNotConstant(), C, DL,
1682                                             TLI);
1683       if (Res->isNullValue())
1684         return LazyValueInfo::True;
1685     }
1686     return LazyValueInfo::Unknown;
1687   }
1688 
1689   return LazyValueInfo::Unknown;
1690 }
1691 
1692 /// Determine whether the specified value comparison with a constant is known to
1693 /// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1694 LazyValueInfo::Tristate
getPredicateOnEdge(unsigned Pred,Value * V,Constant * C,BasicBlock * FromBB,BasicBlock * ToBB,Instruction * CxtI)1695 LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1696                                   BasicBlock *FromBB, BasicBlock *ToBB,
1697                                   Instruction *CxtI) {
1698   const DataLayout &DL = FromBB->getModule()->getDataLayout();
1699   ValueLatticeElement Result =
1700       getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1701 
1702   return getPredicateResult(Pred, C, Result, DL, TLI);
1703 }
1704 
1705 LazyValueInfo::Tristate
getPredicateAt(unsigned Pred,Value * V,Constant * C,Instruction * CxtI)1706 LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1707                               Instruction *CxtI) {
1708   // Is or is not NonNull are common predicates being queried. If
1709   // isKnownNonZero can tell us the result of the predicate, we can
1710   // return it quickly. But this is only a fastpath, and falling
1711   // through would still be correct.
1712   const DataLayout &DL = CxtI->getModule()->getDataLayout();
1713   if (V->getType()->isPointerTy() && C->isNullValue() &&
1714       isKnownNonZero(V->stripPointerCasts(), DL)) {
1715     if (Pred == ICmpInst::ICMP_EQ)
1716       return LazyValueInfo::False;
1717     else if (Pred == ICmpInst::ICMP_NE)
1718       return LazyValueInfo::True;
1719   }
1720   ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1721   Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1722   if (Ret != Unknown)
1723     return Ret;
1724 
1725   // Note: The following bit of code is somewhat distinct from the rest of LVI;
1726   // LVI as a whole tries to compute a lattice value which is conservatively
1727   // correct at a given location.  In this case, we have a predicate which we
1728   // weren't able to prove about the merged result, and we're pushing that
1729   // predicate back along each incoming edge to see if we can prove it
1730   // separately for each input.  As a motivating example, consider:
1731   // bb1:
1732   //   %v1 = ... ; constantrange<1, 5>
1733   //   br label %merge
1734   // bb2:
1735   //   %v2 = ... ; constantrange<10, 20>
1736   //   br label %merge
1737   // merge:
1738   //   %phi = phi [%v1, %v2] ; constantrange<1,20>
1739   //   %pred = icmp eq i32 %phi, 8
1740   // We can't tell from the lattice value for '%phi' that '%pred' is false
1741   // along each path, but by checking the predicate over each input separately,
1742   // we can.
1743   // We limit the search to one step backwards from the current BB and value.
1744   // We could consider extending this to search further backwards through the
1745   // CFG and/or value graph, but there are non-obvious compile time vs quality
1746   // tradeoffs.
1747   if (CxtI) {
1748     BasicBlock *BB = CxtI->getParent();
1749 
1750     // Function entry or an unreachable block.  Bail to avoid confusing
1751     // analysis below.
1752     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1753     if (PI == PE)
1754       return Unknown;
1755 
1756     // If V is a PHI node in the same block as the context, we need to ask
1757     // questions about the predicate as applied to the incoming value along
1758     // each edge. This is useful for eliminating cases where the predicate is
1759     // known along all incoming edges.
1760     if (auto *PHI = dyn_cast<PHINode>(V))
1761       if (PHI->getParent() == BB) {
1762         Tristate Baseline = Unknown;
1763         for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1764           Value *Incoming = PHI->getIncomingValue(i);
1765           BasicBlock *PredBB = PHI->getIncomingBlock(i);
1766           // Note that PredBB may be BB itself.
1767           Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1768                                                CxtI);
1769 
1770           // Keep going as long as we've seen a consistent known result for
1771           // all inputs.
1772           Baseline = (i == 0) ? Result /* First iteration */
1773             : (Baseline == Result ? Baseline : Unknown); /* All others */
1774           if (Baseline == Unknown)
1775             break;
1776         }
1777         if (Baseline != Unknown)
1778           return Baseline;
1779       }
1780 
1781     // For a comparison where the V is outside this block, it's possible
1782     // that we've branched on it before. Look to see if the value is known
1783     // on all incoming edges.
1784     if (!isa<Instruction>(V) ||
1785         cast<Instruction>(V)->getParent() != BB) {
1786       // For predecessor edge, determine if the comparison is true or false
1787       // on that edge. If they're all true or all false, we can conclude
1788       // the value of the comparison in this block.
1789       Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1790       if (Baseline != Unknown) {
1791         // Check that all remaining incoming values match the first one.
1792         while (++PI != PE) {
1793           Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1794           if (Ret != Baseline) break;
1795         }
1796         // If we terminated early, then one of the values didn't match.
1797         if (PI == PE) {
1798           return Baseline;
1799         }
1800       }
1801     }
1802   }
1803   return Unknown;
1804 }
1805 
threadEdge(BasicBlock * PredBB,BasicBlock * OldSucc,BasicBlock * NewSucc)1806 void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1807                                BasicBlock *NewSucc) {
1808   if (PImpl) {
1809     const DataLayout &DL = PredBB->getModule()->getDataLayout();
1810     getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1811   }
1812 }
1813 
eraseBlock(BasicBlock * BB)1814 void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1815   if (PImpl) {
1816     const DataLayout &DL = BB->getModule()->getDataLayout();
1817     getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
1818   }
1819 }
1820 
1821 
printLVI(Function & F,DominatorTree & DTree,raw_ostream & OS)1822 void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1823   if (PImpl) {
1824     getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
1825   }
1826 }
1827 
disableDT()1828 void LazyValueInfo::disableDT() {
1829   if (PImpl)
1830     getImpl(PImpl, AC, DL, DT).disableDT();
1831 }
1832 
enableDT()1833 void LazyValueInfo::enableDT() {
1834   if (PImpl)
1835     getImpl(PImpl, AC, DL, DT).enableDT();
1836 }
1837 
1838 // Print the LVI for the function arguments at the start of each basic block.
emitBasicBlockStartAnnot(const BasicBlock * BB,formatted_raw_ostream & OS)1839 void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1840     const BasicBlock *BB, formatted_raw_ostream &OS) {
1841   // Find if there are latticevalues defined for arguments of the function.
1842   auto *F = BB->getParent();
1843   for (auto &Arg : F->args()) {
1844     ValueLatticeElement Result = LVIImpl->getValueInBlock(
1845         const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1846     if (Result.isUndefined())
1847       continue;
1848     OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1849   }
1850 }
1851 
1852 // This function prints the LVI analysis for the instruction I at the beginning
1853 // of various basic blocks. It relies on calculated values that are stored in
1854 // the LazyValueInfoCache, and in the absence of cached values, recalculate the
1855 // LazyValueInfo for `I`, and print that info.
emitInstructionAnnot(const Instruction * I,formatted_raw_ostream & OS)1856 void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
1857     const Instruction *I, formatted_raw_ostream &OS) {
1858 
1859   auto *ParentBB = I->getParent();
1860   SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
1861   // We can generate (solve) LVI values only for blocks that are dominated by
1862   // the I's parent. However, to avoid generating LVI for all dominating blocks,
1863   // that contain redundant/uninteresting information, we print LVI for
1864   // blocks that may use this LVI information (such as immediate successor
1865   // blocks, and blocks that contain uses of `I`).
1866   auto printResult = [&](const BasicBlock *BB) {
1867     if (!BlocksContainingLVI.insert(BB).second)
1868       return;
1869     ValueLatticeElement Result = LVIImpl->getValueInBlock(
1870         const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
1871       OS << "; LatticeVal for: '" << *I << "' in BB: '";
1872       BB->printAsOperand(OS, false);
1873       OS << "' is: " << Result << "\n";
1874   };
1875 
1876   printResult(ParentBB);
1877   // Print the LVI analysis results for the immediate successor blocks, that
1878   // are dominated by `ParentBB`.
1879   for (auto *BBSucc : successors(ParentBB))
1880     if (DT.dominates(ParentBB, BBSucc))
1881       printResult(BBSucc);
1882 
1883   // Print LVI in blocks where `I` is used.
1884   for (auto *U : I->users())
1885     if (auto *UseI = dyn_cast<Instruction>(U))
1886       if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
1887         printResult(UseI->getParent());
1888 
1889 }
1890 
1891 namespace {
1892 // Printer class for LazyValueInfo results.
1893 class LazyValueInfoPrinter : public FunctionPass {
1894 public:
1895   static char ID; // Pass identification, replacement for typeid
LazyValueInfoPrinter()1896   LazyValueInfoPrinter() : FunctionPass(ID) {
1897     initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
1898   }
1899 
getAnalysisUsage(AnalysisUsage & AU) const1900   void getAnalysisUsage(AnalysisUsage &AU) const override {
1901     AU.setPreservesAll();
1902     AU.addRequired<LazyValueInfoWrapperPass>();
1903     AU.addRequired<DominatorTreeWrapperPass>();
1904   }
1905 
1906   // Get the mandatory dominator tree analysis and pass this in to the
1907   // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
runOnFunction(Function & F)1908   bool runOnFunction(Function &F) override {
1909     dbgs() << "LVI for function '" << F.getName() << "':\n";
1910     auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
1911     auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1912     LVI.printLVI(F, DTree, dbgs());
1913     return false;
1914   }
1915 };
1916 }
1917 
1918 char LazyValueInfoPrinter::ID = 0;
1919 INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",
1920                 "Lazy Value Info Printer Pass", false, false)
1921 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
1922 INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",
1923                 "Lazy Value Info Printer Pass", false, false)
1924