11eaf0ac3Slogwang /*-
2*d4a07e70Sfengbojiang * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3*d4a07e70Sfengbojiang *
4*d4a07e70Sfengbojiang * Copyright (c) 2002-2019 Jeffrey Roberson <[email protected]>
51eaf0ac3Slogwang * Copyright (c) 2004, 2005 Bosko Milekic <[email protected]>
61eaf0ac3Slogwang * All rights reserved.
71eaf0ac3Slogwang *
81eaf0ac3Slogwang * Redistribution and use in source and binary forms, with or without
91eaf0ac3Slogwang * modification, are permitted provided that the following conditions
101eaf0ac3Slogwang * are met:
111eaf0ac3Slogwang * 1. Redistributions of source code must retain the above copyright
121eaf0ac3Slogwang * notice unmodified, this list of conditions, and the following
131eaf0ac3Slogwang * disclaimer.
141eaf0ac3Slogwang * 2. Redistributions in binary form must reproduce the above copyright
151eaf0ac3Slogwang * notice, this list of conditions and the following disclaimer in the
161eaf0ac3Slogwang * documentation and/or other materials provided with the distribution.
171eaf0ac3Slogwang *
181eaf0ac3Slogwang * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
191eaf0ac3Slogwang * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
201eaf0ac3Slogwang * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
211eaf0ac3Slogwang * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
221eaf0ac3Slogwang * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
231eaf0ac3Slogwang * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
241eaf0ac3Slogwang * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
251eaf0ac3Slogwang * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
261eaf0ac3Slogwang * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
271eaf0ac3Slogwang * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
281eaf0ac3Slogwang *
291eaf0ac3Slogwang * $FreeBSD$
301eaf0ac3Slogwang *
311eaf0ac3Slogwang */
321eaf0ac3Slogwang
33*d4a07e70Sfengbojiang #include <sys/counter.h>
34*d4a07e70Sfengbojiang #include <sys/_bitset.h>
35*d4a07e70Sfengbojiang #include <sys/_domainset.h>
361eaf0ac3Slogwang #include <sys/_task.h>
371eaf0ac3Slogwang
381eaf0ac3Slogwang /*
391eaf0ac3Slogwang * This file includes definitions, structures, prototypes, and inlines that
401eaf0ac3Slogwang * should not be used outside of the actual implementation of UMA.
411eaf0ac3Slogwang */
421eaf0ac3Slogwang
431eaf0ac3Slogwang /*
44*d4a07e70Sfengbojiang * The brief summary; Zones describe unique allocation types. Zones are
45*d4a07e70Sfengbojiang * organized into per-CPU caches which are filled by buckets. Buckets are
46*d4a07e70Sfengbojiang * organized according to memory domains. Buckets are filled from kegs which
47*d4a07e70Sfengbojiang * are also organized according to memory domains. Kegs describe a unique
48*d4a07e70Sfengbojiang * allocation type, backend memory provider, and layout. Kegs are associated
49*d4a07e70Sfengbojiang * with one or more zones and zones reference one or more kegs. Kegs provide
50*d4a07e70Sfengbojiang * slabs which are virtually contiguous collections of pages. Each slab is
51*d4a07e70Sfengbojiang * broken down int one or more items that will satisfy an individual allocation.
52*d4a07e70Sfengbojiang *
53*d4a07e70Sfengbojiang * Allocation is satisfied in the following order:
54*d4a07e70Sfengbojiang * 1) Per-CPU cache
55*d4a07e70Sfengbojiang * 2) Per-domain cache of buckets
56*d4a07e70Sfengbojiang * 3) Slab from any of N kegs
57*d4a07e70Sfengbojiang * 4) Backend page provider
58*d4a07e70Sfengbojiang *
59*d4a07e70Sfengbojiang * More detail on individual objects is contained below:
601eaf0ac3Slogwang *
611eaf0ac3Slogwang * Kegs contain lists of slabs which are stored in either the full bin, empty
621eaf0ac3Slogwang * bin, or partially allocated bin, to reduce fragmentation. They also contain
631eaf0ac3Slogwang * the user supplied value for size, which is adjusted for alignment purposes
641eaf0ac3Slogwang * and rsize is the result of that. The Keg also stores information for
651eaf0ac3Slogwang * managing a hash of page addresses that maps pages to uma_slab_t structures
661eaf0ac3Slogwang * for pages that don't have embedded uma_slab_t's.
671eaf0ac3Slogwang *
68*d4a07e70Sfengbojiang * Keg slab lists are organized by memory domain to support NUMA allocation
69*d4a07e70Sfengbojiang * policies. By default allocations are spread across domains to reduce the
70*d4a07e70Sfengbojiang * potential for hotspots. Special keg creation flags may be specified to
71*d4a07e70Sfengbojiang * prefer location allocation. However there is no strict enforcement as frees
72*d4a07e70Sfengbojiang * may happen on any CPU and these are returned to the CPU-local cache
73*d4a07e70Sfengbojiang * regardless of the originating domain.
74*d4a07e70Sfengbojiang *
751eaf0ac3Slogwang * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
761eaf0ac3Slogwang * be allocated off the page from a special slab zone. The free list within a
771eaf0ac3Slogwang * slab is managed with a bitmask. For item sizes that would yield more than
781eaf0ac3Slogwang * 10% memory waste we potentially allocate a separate uma_slab_t if this will
791eaf0ac3Slogwang * improve the number of items per slab that will fit.
801eaf0ac3Slogwang *
811eaf0ac3Slogwang * The only really gross cases, with regards to memory waste, are for those
821eaf0ac3Slogwang * items that are just over half the page size. You can get nearly 50% waste,
831eaf0ac3Slogwang * so you fall back to the memory footprint of the power of two allocator. I
841eaf0ac3Slogwang * have looked at memory allocation sizes on many of the machines available to
851eaf0ac3Slogwang * me, and there does not seem to be an abundance of allocations at this range
861eaf0ac3Slogwang * so at this time it may not make sense to optimize for it. This can, of
871eaf0ac3Slogwang * course, be solved with dynamic slab sizes.
881eaf0ac3Slogwang *
891eaf0ac3Slogwang * Kegs may serve multiple Zones but by far most of the time they only serve
901eaf0ac3Slogwang * one. When a Zone is created, a Keg is allocated and setup for it. While
911eaf0ac3Slogwang * the backing Keg stores slabs, the Zone caches Buckets of items allocated
921eaf0ac3Slogwang * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
931eaf0ac3Slogwang * pair, as well as with its own set of small per-CPU caches, layered above
941eaf0ac3Slogwang * the Zone's general Bucket cache.
951eaf0ac3Slogwang *
961eaf0ac3Slogwang * The PCPU caches are protected by critical sections, and may be accessed
971eaf0ac3Slogwang * safely only from their associated CPU, while the Zones backed by the same
981eaf0ac3Slogwang * Keg all share a common Keg lock (to coalesce contention on the backing
991eaf0ac3Slogwang * slabs). The backing Keg typically only serves one Zone but in the case of
100*d4a07e70Sfengbojiang * multiple Zones, one of the Zones is considered the Primary Zone and all
101*d4a07e70Sfengbojiang * Zone-related stats from the Keg are done in the Primary Zone. For an
1021eaf0ac3Slogwang * example of a Multi-Zone setup, refer to the Mbuf allocation code.
1031eaf0ac3Slogwang */
1041eaf0ac3Slogwang
1051eaf0ac3Slogwang /*
1061eaf0ac3Slogwang * This is the representation for normal (Non OFFPAGE slab)
1071eaf0ac3Slogwang *
1081eaf0ac3Slogwang * i == item
1091eaf0ac3Slogwang * s == slab pointer
1101eaf0ac3Slogwang *
1111eaf0ac3Slogwang * <---------------- Page (UMA_SLAB_SIZE) ------------------>
1121eaf0ac3Slogwang * ___________________________________________________________
1131eaf0ac3Slogwang * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
1141eaf0ac3Slogwang * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
1151eaf0ac3Slogwang * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
1161eaf0ac3Slogwang * |___________________________________________________________|
1171eaf0ac3Slogwang *
1181eaf0ac3Slogwang *
1191eaf0ac3Slogwang * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
1201eaf0ac3Slogwang *
1211eaf0ac3Slogwang * ___________________________________________________________
1221eaf0ac3Slogwang * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
1231eaf0ac3Slogwang * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
1241eaf0ac3Slogwang * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
1251eaf0ac3Slogwang * |___________________________________________________________|
1261eaf0ac3Slogwang * ___________ ^
1271eaf0ac3Slogwang * |slab header| |
1281eaf0ac3Slogwang * |___________|---*
1291eaf0ac3Slogwang *
1301eaf0ac3Slogwang */
1311eaf0ac3Slogwang
1321eaf0ac3Slogwang #ifndef VM_UMA_INT_H
1331eaf0ac3Slogwang #define VM_UMA_INT_H
1341eaf0ac3Slogwang
1351eaf0ac3Slogwang #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
1361eaf0ac3Slogwang #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
1371eaf0ac3Slogwang #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
1381eaf0ac3Slogwang
1391eaf0ac3Slogwang /* Max waste percentage before going to off page slab management */
1401eaf0ac3Slogwang #define UMA_MAX_WASTE 10
1411eaf0ac3Slogwang
142*d4a07e70Sfengbojiang /* Max size of a CACHESPREAD slab. */
143*d4a07e70Sfengbojiang #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
1441eaf0ac3Slogwang
1451eaf0ac3Slogwang /*
146*d4a07e70Sfengbojiang * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
1471eaf0ac3Slogwang */
148*d4a07e70Sfengbojiang #define UMA_ZFLAG_OFFPAGE 0x00200000 /*
149*d4a07e70Sfengbojiang * Force the slab structure
150*d4a07e70Sfengbojiang * allocation off of the real
151*d4a07e70Sfengbojiang * memory.
152*d4a07e70Sfengbojiang */
153*d4a07e70Sfengbojiang #define UMA_ZFLAG_HASH 0x00400000 /*
154*d4a07e70Sfengbojiang * Use a hash table instead of
155*d4a07e70Sfengbojiang * caching information in the
156*d4a07e70Sfengbojiang * vm_page.
157*d4a07e70Sfengbojiang */
158*d4a07e70Sfengbojiang #define UMA_ZFLAG_VTOSLAB 0x00800000 /*
159*d4a07e70Sfengbojiang * Zone uses vtoslab for
160*d4a07e70Sfengbojiang * lookup.
161*d4a07e70Sfengbojiang */
162*d4a07e70Sfengbojiang #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
163*d4a07e70Sfengbojiang #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
164*d4a07e70Sfengbojiang #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
165*d4a07e70Sfengbojiang #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */
166*d4a07e70Sfengbojiang #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
167*d4a07e70Sfengbojiang #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
168*d4a07e70Sfengbojiang #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
169*d4a07e70Sfengbojiang
170*d4a07e70Sfengbojiang #define UMA_ZFLAG_INHERIT \
171*d4a07e70Sfengbojiang (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
172*d4a07e70Sfengbojiang UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
173*d4a07e70Sfengbojiang
174*d4a07e70Sfengbojiang #define PRINT_UMA_ZFLAGS "\20" \
175*d4a07e70Sfengbojiang "\37TRASH" \
176*d4a07e70Sfengbojiang "\36INTERNAL" \
177*d4a07e70Sfengbojiang "\35BUCKET" \
178*d4a07e70Sfengbojiang "\34RECLAIMING" \
179*d4a07e70Sfengbojiang "\33CACHE" \
180*d4a07e70Sfengbojiang "\32LIMIT" \
181*d4a07e70Sfengbojiang "\31CTORDTOR" \
182*d4a07e70Sfengbojiang "\30VTOSLAB" \
183*d4a07e70Sfengbojiang "\27HASH" \
184*d4a07e70Sfengbojiang "\26OFFPAGE" \
185*d4a07e70Sfengbojiang "\23SMR" \
186*d4a07e70Sfengbojiang "\22ROUNDROBIN" \
187*d4a07e70Sfengbojiang "\21FIRSTTOUCH" \
188*d4a07e70Sfengbojiang "\20PCPU" \
189*d4a07e70Sfengbojiang "\17NODUMP" \
190*d4a07e70Sfengbojiang "\16CACHESPREAD" \
191*d4a07e70Sfengbojiang "\14MAXBUCKET" \
192*d4a07e70Sfengbojiang "\13NOBUCKET" \
193*d4a07e70Sfengbojiang "\12SECONDARY" \
194*d4a07e70Sfengbojiang "\11NOTPAGE" \
195*d4a07e70Sfengbojiang "\10VM" \
196*d4a07e70Sfengbojiang "\7MTXCLASS" \
197*d4a07e70Sfengbojiang "\6NOFREE" \
198*d4a07e70Sfengbojiang "\5MALLOC" \
199*d4a07e70Sfengbojiang "\4NOTOUCH" \
200*d4a07e70Sfengbojiang "\3CONTIG" \
201*d4a07e70Sfengbojiang "\2ZINIT"
202*d4a07e70Sfengbojiang
203*d4a07e70Sfengbojiang /*
204*d4a07e70Sfengbojiang * Hash table for freed address -> slab translation.
205*d4a07e70Sfengbojiang *
206*d4a07e70Sfengbojiang * Only zones with memory not touchable by the allocator use the
207*d4a07e70Sfengbojiang * hash table. Otherwise slabs are found with vtoslab().
208*d4a07e70Sfengbojiang */
209*d4a07e70Sfengbojiang #define UMA_HASH_SIZE_INIT 32
2101eaf0ac3Slogwang
2111eaf0ac3Slogwang #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
2121eaf0ac3Slogwang
2131eaf0ac3Slogwang #define UMA_HASH_INSERT(h, s, mem) \
214*d4a07e70Sfengbojiang LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
215*d4a07e70Sfengbojiang (mem))], slab_tohashslab(s), uhs_hlink)
2161eaf0ac3Slogwang
217*d4a07e70Sfengbojiang #define UMA_HASH_REMOVE(h, s) \
218*d4a07e70Sfengbojiang LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
2191eaf0ac3Slogwang
220*d4a07e70Sfengbojiang LIST_HEAD(slabhashhead, uma_hash_slab);
2211eaf0ac3Slogwang
2221eaf0ac3Slogwang struct uma_hash {
223*d4a07e70Sfengbojiang struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
224*d4a07e70Sfengbojiang u_int uh_hashsize; /* Current size of the hash table */
225*d4a07e70Sfengbojiang u_int uh_hashmask; /* Mask used during hashing */
2261eaf0ac3Slogwang };
2271eaf0ac3Slogwang
2281eaf0ac3Slogwang /*
229*d4a07e70Sfengbojiang * Align field or structure to cache 'sector' in intel terminology. This
230*d4a07e70Sfengbojiang * is more efficient with adjacent line prefetch.
2311eaf0ac3Slogwang */
232*d4a07e70Sfengbojiang #define CACHE_LINE_SHIFT 6
233*d4a07e70Sfengbojiang #define CACHE_LINE_SIZE (1 << CACHE_LINE_SHIFT)
234*d4a07e70Sfengbojiang
235*d4a07e70Sfengbojiang #if defined(__amd64__) || defined(__powerpc64__)
236*d4a07e70Sfengbojiang #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
237*d4a07e70Sfengbojiang #else
238*d4a07e70Sfengbojiang #define UMA_SUPER_ALIGN CACHE_LINE_SIZE
239*d4a07e70Sfengbojiang #endif
240*d4a07e70Sfengbojiang
241*d4a07e70Sfengbojiang #define UMA_ALIGN __attribute__((__aligned__(UMA_SUPER_ALIGN)))
2421eaf0ac3Slogwang
2431eaf0ac3Slogwang /*
244*d4a07e70Sfengbojiang * The uma_bucket structure is used to queue and manage buckets divorced
245*d4a07e70Sfengbojiang * from per-cpu caches. They are loaded into uma_cache_bucket structures
246*d4a07e70Sfengbojiang * for use.
2471eaf0ac3Slogwang */
2481eaf0ac3Slogwang struct uma_bucket {
249*d4a07e70Sfengbojiang STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
250*d4a07e70Sfengbojiang int16_t ub_cnt; /* Count of items in bucket. */
2511eaf0ac3Slogwang int16_t ub_entries; /* Max items. */
252*d4a07e70Sfengbojiang smr_seq_t ub_seq; /* SMR sequence number. */
2531eaf0ac3Slogwang void *ub_bucket[]; /* actual allocation storage */
2541eaf0ac3Slogwang };
2551eaf0ac3Slogwang
2561eaf0ac3Slogwang typedef struct uma_bucket * uma_bucket_t;
2571eaf0ac3Slogwang
258*d4a07e70Sfengbojiang /*
259*d4a07e70Sfengbojiang * The uma_cache_bucket structure is statically allocated on each per-cpu
260*d4a07e70Sfengbojiang * cache. Its use reduces branches and cache misses in the fast path.
261*d4a07e70Sfengbojiang */
262*d4a07e70Sfengbojiang struct uma_cache_bucket {
263*d4a07e70Sfengbojiang uma_bucket_t ucb_bucket;
264*d4a07e70Sfengbojiang int16_t ucb_cnt;
265*d4a07e70Sfengbojiang int16_t ucb_entries;
266*d4a07e70Sfengbojiang uint32_t ucb_spare;
267*d4a07e70Sfengbojiang };
268*d4a07e70Sfengbojiang
269*d4a07e70Sfengbojiang typedef struct uma_cache_bucket * uma_cache_bucket_t;
270*d4a07e70Sfengbojiang
271*d4a07e70Sfengbojiang /*
272*d4a07e70Sfengbojiang * The uma_cache structure is allocated for each cpu for every zone
273*d4a07e70Sfengbojiang * type. This optimizes synchronization out of the allocator fast path.
274*d4a07e70Sfengbojiang */
2751eaf0ac3Slogwang struct uma_cache {
276*d4a07e70Sfengbojiang struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
277*d4a07e70Sfengbojiang struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
278*d4a07e70Sfengbojiang struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
2791eaf0ac3Slogwang uint64_t uc_allocs; /* Count of allocations */
2801eaf0ac3Slogwang uint64_t uc_frees; /* Count of frees */
2811eaf0ac3Slogwang } UMA_ALIGN;
2821eaf0ac3Slogwang
2831eaf0ac3Slogwang typedef struct uma_cache * uma_cache_t;
2841eaf0ac3Slogwang
285*d4a07e70Sfengbojiang LIST_HEAD(slabhead, uma_slab);
286*d4a07e70Sfengbojiang
287*d4a07e70Sfengbojiang /*
288*d4a07e70Sfengbojiang * The cache structure pads perfectly into 64 bytes so we use spare
289*d4a07e70Sfengbojiang * bits from the embedded cache buckets to store information from the zone
290*d4a07e70Sfengbojiang * and keep all fast-path allocations accessing a single per-cpu line.
291*d4a07e70Sfengbojiang */
292*d4a07e70Sfengbojiang static inline void
cache_set_uz_flags(uma_cache_t cache,uint32_t flags)293*d4a07e70Sfengbojiang cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
294*d4a07e70Sfengbojiang {
295*d4a07e70Sfengbojiang
296*d4a07e70Sfengbojiang cache->uc_freebucket.ucb_spare = flags;
297*d4a07e70Sfengbojiang }
298*d4a07e70Sfengbojiang
299*d4a07e70Sfengbojiang static inline void
cache_set_uz_size(uma_cache_t cache,uint32_t size)300*d4a07e70Sfengbojiang cache_set_uz_size(uma_cache_t cache, uint32_t size)
301*d4a07e70Sfengbojiang {
302*d4a07e70Sfengbojiang
303*d4a07e70Sfengbojiang cache->uc_allocbucket.ucb_spare = size;
304*d4a07e70Sfengbojiang }
305*d4a07e70Sfengbojiang
306*d4a07e70Sfengbojiang static inline uint32_t
cache_uz_flags(uma_cache_t cache)307*d4a07e70Sfengbojiang cache_uz_flags(uma_cache_t cache)
308*d4a07e70Sfengbojiang {
309*d4a07e70Sfengbojiang
310*d4a07e70Sfengbojiang return (cache->uc_freebucket.ucb_spare);
311*d4a07e70Sfengbojiang }
312*d4a07e70Sfengbojiang
313*d4a07e70Sfengbojiang static inline uint32_t
cache_uz_size(uma_cache_t cache)314*d4a07e70Sfengbojiang cache_uz_size(uma_cache_t cache)
315*d4a07e70Sfengbojiang {
316*d4a07e70Sfengbojiang
317*d4a07e70Sfengbojiang return (cache->uc_allocbucket.ucb_spare);
318*d4a07e70Sfengbojiang }
319*d4a07e70Sfengbojiang
320*d4a07e70Sfengbojiang /*
321*d4a07e70Sfengbojiang * Per-domain slab lists. Embedded in the kegs.
322*d4a07e70Sfengbojiang */
323*d4a07e70Sfengbojiang struct uma_domain {
324*d4a07e70Sfengbojiang struct mtx_padalign ud_lock; /* Lock for the domain lists. */
325*d4a07e70Sfengbojiang struct slabhead ud_part_slab; /* partially allocated slabs */
326*d4a07e70Sfengbojiang struct slabhead ud_free_slab; /* completely unallocated slabs */
327*d4a07e70Sfengbojiang struct slabhead ud_full_slab; /* fully allocated slabs */
328*d4a07e70Sfengbojiang uint32_t ud_pages; /* Total page count */
329*d4a07e70Sfengbojiang uint32_t ud_free_items; /* Count of items free in all slabs */
330*d4a07e70Sfengbojiang uint32_t ud_free_slabs; /* Count of free slabs */
331*d4a07e70Sfengbojiang } __attribute__((__aligned__(CACHE_LINE_SIZE)));
332*d4a07e70Sfengbojiang
333*d4a07e70Sfengbojiang typedef struct uma_domain * uma_domain_t;
334*d4a07e70Sfengbojiang
3351eaf0ac3Slogwang /*
3361eaf0ac3Slogwang * Keg management structure
3371eaf0ac3Slogwang *
3381eaf0ac3Slogwang * TODO: Optimize for cache line size
3391eaf0ac3Slogwang *
3401eaf0ac3Slogwang */
3411eaf0ac3Slogwang struct uma_keg {
3421eaf0ac3Slogwang struct uma_hash uk_hash;
3431eaf0ac3Slogwang LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
3441eaf0ac3Slogwang
345*d4a07e70Sfengbojiang struct domainset_ref uk_dr; /* Domain selection policy. */
3461eaf0ac3Slogwang uint32_t uk_align; /* Alignment mask */
3471eaf0ac3Slogwang uint32_t uk_reserve; /* Number of reserved items. */
3481eaf0ac3Slogwang uint32_t uk_size; /* Requested size of each item */
3491eaf0ac3Slogwang uint32_t uk_rsize; /* Real size of each item */
3501eaf0ac3Slogwang
3511eaf0ac3Slogwang uma_init uk_init; /* Keg's init routine */
3521eaf0ac3Slogwang uma_fini uk_fini; /* Keg's fini routine */
3531eaf0ac3Slogwang uma_alloc uk_allocf; /* Allocation function */
3541eaf0ac3Slogwang uma_free uk_freef; /* Free routine */
3551eaf0ac3Slogwang
3561eaf0ac3Slogwang u_long uk_offset; /* Next free offset from base KVA */
3571eaf0ac3Slogwang vm_offset_t uk_kva; /* Zone base KVA */
3581eaf0ac3Slogwang
359*d4a07e70Sfengbojiang uint32_t uk_pgoff; /* Offset to uma_slab struct */
3601eaf0ac3Slogwang uint16_t uk_ppera; /* pages per allocation from backend */
3611eaf0ac3Slogwang uint16_t uk_ipers; /* Items per slab */
3621eaf0ac3Slogwang uint32_t uk_flags; /* Internal flags */
3631eaf0ac3Slogwang
3641eaf0ac3Slogwang /* Least used fields go to the last cache line. */
3651eaf0ac3Slogwang const char *uk_name; /* Name of creating zone. */
3661eaf0ac3Slogwang LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
367*d4a07e70Sfengbojiang
368*d4a07e70Sfengbojiang /* Must be last, variable sized. */
369*d4a07e70Sfengbojiang struct uma_domain uk_domain[]; /* Keg's slab lists. */
3701eaf0ac3Slogwang };
3711eaf0ac3Slogwang typedef struct uma_keg * uma_keg_t;
3721eaf0ac3Slogwang
3731eaf0ac3Slogwang /*
3741eaf0ac3Slogwang * Free bits per-slab.
3751eaf0ac3Slogwang */
376*d4a07e70Sfengbojiang #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
377*d4a07e70Sfengbojiang #define SLAB_MIN_SETSIZE _BITSET_BITS
378*d4a07e70Sfengbojiang BITSET_DEFINE(noslabbits, 0);
3791eaf0ac3Slogwang
3801eaf0ac3Slogwang /*
3811eaf0ac3Slogwang * The slab structure manages a single contiguous allocation from backing
3821eaf0ac3Slogwang * store and subdivides it into individually allocatable items.
3831eaf0ac3Slogwang */
3841eaf0ac3Slogwang struct uma_slab {
385*d4a07e70Sfengbojiang LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
3861eaf0ac3Slogwang uint16_t us_freecount; /* How many are free? */
3871eaf0ac3Slogwang uint8_t us_flags; /* Page flags see uma.h */
388*d4a07e70Sfengbojiang uint8_t us_domain; /* Backing NUMA domain. */
389*d4a07e70Sfengbojiang struct noslabbits us_free; /* Free bitmask, flexible. */
3901eaf0ac3Slogwang };
3911eaf0ac3Slogwang
3921eaf0ac3Slogwang typedef struct uma_slab * uma_slab_t;
3931eaf0ac3Slogwang
3941eaf0ac3Slogwang /*
395*d4a07e70Sfengbojiang * Slab structure with a full sized bitset and hash link for both
396*d4a07e70Sfengbojiang * HASH and OFFPAGE zones.
397*d4a07e70Sfengbojiang */
398*d4a07e70Sfengbojiang struct uma_hash_slab {
399*d4a07e70Sfengbojiang LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
400*d4a07e70Sfengbojiang uint8_t *uhs_data; /* First item */
401*d4a07e70Sfengbojiang struct uma_slab uhs_slab; /* Must be last. */
402*d4a07e70Sfengbojiang };
403*d4a07e70Sfengbojiang
404*d4a07e70Sfengbojiang typedef struct uma_hash_slab * uma_hash_slab_t;
405*d4a07e70Sfengbojiang
406*d4a07e70Sfengbojiang static inline uma_hash_slab_t
slab_tohashslab(uma_slab_t slab)407*d4a07e70Sfengbojiang slab_tohashslab(uma_slab_t slab)
408*d4a07e70Sfengbojiang {
409*d4a07e70Sfengbojiang
410*d4a07e70Sfengbojiang return NULL;
411*d4a07e70Sfengbojiang }
412*d4a07e70Sfengbojiang
413*d4a07e70Sfengbojiang static inline void *
slab_data(uma_slab_t slab,uma_keg_t keg)414*d4a07e70Sfengbojiang slab_data(uma_slab_t slab, uma_keg_t keg)
415*d4a07e70Sfengbojiang {
416*d4a07e70Sfengbojiang
417*d4a07e70Sfengbojiang if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
418*d4a07e70Sfengbojiang return ((void *)((uintptr_t)slab - keg->uk_pgoff));
419*d4a07e70Sfengbojiang else
420*d4a07e70Sfengbojiang return (slab_tohashslab(slab)->uhs_data);
421*d4a07e70Sfengbojiang }
422*d4a07e70Sfengbojiang
423*d4a07e70Sfengbojiang static inline void *
slab_item(uma_slab_t slab,uma_keg_t keg,int index)424*d4a07e70Sfengbojiang slab_item(uma_slab_t slab, uma_keg_t keg, int index)
425*d4a07e70Sfengbojiang {
426*d4a07e70Sfengbojiang uintptr_t data;
427*d4a07e70Sfengbojiang
428*d4a07e70Sfengbojiang data = (uintptr_t)slab_data(slab, keg);
429*d4a07e70Sfengbojiang return ((void *)(data + keg->uk_rsize * index));
430*d4a07e70Sfengbojiang }
431*d4a07e70Sfengbojiang
432*d4a07e70Sfengbojiang static inline int
slab_item_index(uma_slab_t slab,uma_keg_t keg,void * item)433*d4a07e70Sfengbojiang slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
434*d4a07e70Sfengbojiang {
435*d4a07e70Sfengbojiang uintptr_t data;
436*d4a07e70Sfengbojiang
437*d4a07e70Sfengbojiang data = (uintptr_t)slab_data(slab, keg);
438*d4a07e70Sfengbojiang return (((uintptr_t)item - data) / keg->uk_rsize);
439*d4a07e70Sfengbojiang }
440*d4a07e70Sfengbojiang
441*d4a07e70Sfengbojiang STAILQ_HEAD(uma_bucketlist, uma_bucket);
442*d4a07e70Sfengbojiang
443*d4a07e70Sfengbojiang struct uma_zone_domain {
444*d4a07e70Sfengbojiang struct uma_bucketlist uzd_buckets; /* full buckets */
445*d4a07e70Sfengbojiang uma_bucket_t uzd_cross; /* Fills from cross buckets. */
446*d4a07e70Sfengbojiang long uzd_nitems; /* total item count */
447*d4a07e70Sfengbojiang long uzd_imax; /* maximum item count this period */
448*d4a07e70Sfengbojiang long uzd_imin; /* minimum item count this period */
449*d4a07e70Sfengbojiang long uzd_wss; /* working set size estimate */
450*d4a07e70Sfengbojiang smr_seq_t uzd_seq; /* Lowest queued seq. */
451*d4a07e70Sfengbojiang struct mtx uzd_lock; /* Lock for the domain */
452*d4a07e70Sfengbojiang } __attribute__((__aligned__(CACHE_LINE_SIZE)));
453*d4a07e70Sfengbojiang
454*d4a07e70Sfengbojiang typedef struct uma_zone_domain * uma_zone_domain_t;
455*d4a07e70Sfengbojiang
456*d4a07e70Sfengbojiang /*
457*d4a07e70Sfengbojiang * Zone structure - per memory type.
4581eaf0ac3Slogwang */
4591eaf0ac3Slogwang struct uma_zone {
460*d4a07e70Sfengbojiang /* Offset 0, used in alloc/free fast/medium fast path and const. */
461*d4a07e70Sfengbojiang uint32_t uz_flags; /* Flags inherited from kegs */
462*d4a07e70Sfengbojiang uint32_t uz_size; /* Size inherited from kegs */
4631eaf0ac3Slogwang uma_ctor uz_ctor; /* Constructor for each allocation */
4641eaf0ac3Slogwang uma_dtor uz_dtor; /* Destructor */
465*d4a07e70Sfengbojiang smr_t uz_smr; /* Safe memory reclaim context. */
466*d4a07e70Sfengbojiang uint64_t uz_max_items; /* Maximum number of items to alloc */
467*d4a07e70Sfengbojiang uint64_t uz_bucket_max; /* Maximum bucket cache size */
468*d4a07e70Sfengbojiang uint16_t uz_bucket_size; /* Number of items in full bucket */
469*d4a07e70Sfengbojiang uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
470*d4a07e70Sfengbojiang uint32_t uz_sleepers; /* Threads sleeping on limit */
471*d4a07e70Sfengbojiang counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
472*d4a07e70Sfengbojiang
473*d4a07e70Sfengbojiang /* Offset 64, used in bucket replenish. */
474*d4a07e70Sfengbojiang uma_keg_t uz_keg; /* This zone's keg if !CACHE */
4751eaf0ac3Slogwang uma_import uz_import; /* Import new memory to cache. */
4761eaf0ac3Slogwang uma_release uz_release; /* Release memory from cache. */
4771eaf0ac3Slogwang void *uz_arg; /* Import/release argument. */
478*d4a07e70Sfengbojiang uma_init uz_init; /* Initializer for each item */
479*d4a07e70Sfengbojiang uma_fini uz_fini; /* Finalizer for each item. */
480*d4a07e70Sfengbojiang volatile uint64_t uz_items; /* Total items count & sleepers */
4811eaf0ac3Slogwang uint64_t uz_sleeps; /* Total number of alloc sleeps */
4821eaf0ac3Slogwang
483*d4a07e70Sfengbojiang /* Offset 128 Rare stats, misc read-only. */
484*d4a07e70Sfengbojiang LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
485*d4a07e70Sfengbojiang counter_u64_t uz_allocs; /* Total number of allocations */
486*d4a07e70Sfengbojiang counter_u64_t uz_frees; /* Total number of frees */
487*d4a07e70Sfengbojiang counter_u64_t uz_fails; /* Total number of alloc failures */
488*d4a07e70Sfengbojiang const char *uz_name; /* Text name of the zone */
489*d4a07e70Sfengbojiang char *uz_ctlname; /* sysctl safe name string. */
490*d4a07e70Sfengbojiang int uz_namecnt; /* duplicate name count. */
491*d4a07e70Sfengbojiang uint16_t uz_bucket_size_min; /* Min number of items in bucket */
492*d4a07e70Sfengbojiang uint16_t uz_pad0;
493*d4a07e70Sfengbojiang
494*d4a07e70Sfengbojiang /* Offset 192, rare read-only. */
495*d4a07e70Sfengbojiang struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
4961eaf0ac3Slogwang const char *uz_warning; /* Warning to print on failure */
4971eaf0ac3Slogwang struct timeval uz_ratecheck; /* Warnings rate-limiting */
4981eaf0ac3Slogwang struct task uz_maxaction; /* Task to run when at limit */
4991eaf0ac3Slogwang
500*d4a07e70Sfengbojiang /* Offset 256. */
501*d4a07e70Sfengbojiang struct mtx uz_cross_lock; /* Cross domain free lock */
502*d4a07e70Sfengbojiang
5031eaf0ac3Slogwang /*
5041eaf0ac3Slogwang * This HAS to be the last item because we adjust the zone size
5051eaf0ac3Slogwang * based on NCPU and then allocate the space for the zones.
5061eaf0ac3Slogwang */
507*d4a07e70Sfengbojiang struct uma_cache uz_cpu[]; /* Per cpu caches */
508*d4a07e70Sfengbojiang
509*d4a07e70Sfengbojiang /* domains follow here. */
5101eaf0ac3Slogwang };
5111eaf0ac3Slogwang
5121eaf0ac3Slogwang /*
513*d4a07e70Sfengbojiang * Macros for interpreting the uz_items field. 20 bits of sleeper count
514*d4a07e70Sfengbojiang * and 44 bit of item count.
5151eaf0ac3Slogwang */
516*d4a07e70Sfengbojiang #define UZ_ITEMS_SLEEPER_SHIFT 44LL
517*d4a07e70Sfengbojiang #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
518*d4a07e70Sfengbojiang #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
519*d4a07e70Sfengbojiang #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
520*d4a07e70Sfengbojiang #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
521*d4a07e70Sfengbojiang #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
5221eaf0ac3Slogwang
523*d4a07e70Sfengbojiang #define ZONE_ASSERT_COLD(z) \
524*d4a07e70Sfengbojiang KASSERT(uma_zone_get_allocs((z)) == 0, \
525*d4a07e70Sfengbojiang ("zone %s initialization after use.", (z)->uz_name))
5261eaf0ac3Slogwang
527*d4a07e70Sfengbojiang /* Domains are contiguous after the last CPU */
528*d4a07e70Sfengbojiang #define ZDOM_GET(z, n) \
529*d4a07e70Sfengbojiang (&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
5301eaf0ac3Slogwang
5311eaf0ac3Slogwang #undef UMA_ALIGN
5321eaf0ac3Slogwang
533*d4a07e70Sfengbojiang #ifdef _KERNEL
534*d4a07e70Sfengbojiang /* Internal prototypes */
535*d4a07e70Sfengbojiang static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
536*d4a07e70Sfengbojiang
537*d4a07e70Sfengbojiang /* Lock Macros */
538*d4a07e70Sfengbojiang
539*d4a07e70Sfengbojiang #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
540*d4a07e70Sfengbojiang #define KEG_LOCK_INIT(k, d, lc) \
541*d4a07e70Sfengbojiang do { \
542*d4a07e70Sfengbojiang if ((lc)) \
543*d4a07e70Sfengbojiang mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
544*d4a07e70Sfengbojiang (k)->uk_name, MTX_DEF | MTX_DUPOK); \
545*d4a07e70Sfengbojiang else \
546*d4a07e70Sfengbojiang mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
547*d4a07e70Sfengbojiang "UMA zone", MTX_DEF | MTX_DUPOK); \
548*d4a07e70Sfengbojiang } while (0)
549*d4a07e70Sfengbojiang
550*d4a07e70Sfengbojiang #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
551*d4a07e70Sfengbojiang #define KEG_LOCK(k, d) \
552*d4a07e70Sfengbojiang ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
553*d4a07e70Sfengbojiang #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
554*d4a07e70Sfengbojiang #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
555*d4a07e70Sfengbojiang
556*d4a07e70Sfengbojiang #define KEG_GET(zone, keg) do { \
557*d4a07e70Sfengbojiang (keg) = (zone)->uz_keg; \
558*d4a07e70Sfengbojiang KASSERT((void *)(keg) != NULL, \
559*d4a07e70Sfengbojiang ("%s: Invalid zone %p type", __func__, (zone))); \
560*d4a07e70Sfengbojiang } while (0)
561*d4a07e70Sfengbojiang
562*d4a07e70Sfengbojiang #define KEG_ASSERT_COLD(k) \
563*d4a07e70Sfengbojiang KASSERT(uma_keg_get_allocs((k)) == 0, \
564*d4a07e70Sfengbojiang ("keg %s initialization after use.", (k)->uk_name))
565*d4a07e70Sfengbojiang
566*d4a07e70Sfengbojiang #define ZDOM_LOCK_INIT(z, zdom, lc) \
567*d4a07e70Sfengbojiang do { \
568*d4a07e70Sfengbojiang if ((lc)) \
569*d4a07e70Sfengbojiang mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
570*d4a07e70Sfengbojiang (z)->uz_name, MTX_DEF | MTX_DUPOK); \
571*d4a07e70Sfengbojiang else \
572*d4a07e70Sfengbojiang mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
573*d4a07e70Sfengbojiang "UMA zone", MTX_DEF | MTX_DUPOK); \
574*d4a07e70Sfengbojiang } while (0)
575*d4a07e70Sfengbojiang #define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
576*d4a07e70Sfengbojiang #define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
577*d4a07e70Sfengbojiang
578*d4a07e70Sfengbojiang #define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
579*d4a07e70Sfengbojiang #define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
580*d4a07e70Sfengbojiang #define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
581*d4a07e70Sfengbojiang
582*d4a07e70Sfengbojiang #define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
583*d4a07e70Sfengbojiang #define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
584*d4a07e70Sfengbojiang
585*d4a07e70Sfengbojiang #define ZONE_CROSS_LOCK_INIT(z) \
586*d4a07e70Sfengbojiang mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
587*d4a07e70Sfengbojiang #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
588*d4a07e70Sfengbojiang #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
589*d4a07e70Sfengbojiang #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
590*d4a07e70Sfengbojiang
591*d4a07e70Sfengbojiang /*
592*d4a07e70Sfengbojiang * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
593*d4a07e70Sfengbojiang * the slab structure.
594*d4a07e70Sfengbojiang *
595*d4a07e70Sfengbojiang * Arguments:
596*d4a07e70Sfengbojiang * hash The hash table to search.
597*d4a07e70Sfengbojiang * data The base page of the item.
598*d4a07e70Sfengbojiang *
599*d4a07e70Sfengbojiang * Returns:
600*d4a07e70Sfengbojiang * A pointer to a slab if successful, else NULL.
601*d4a07e70Sfengbojiang */
602*d4a07e70Sfengbojiang static __inline uma_slab_t
hash_sfind(struct uma_hash * hash,uint8_t * data)603*d4a07e70Sfengbojiang hash_sfind(struct uma_hash *hash, uint8_t *data)
604*d4a07e70Sfengbojiang {
605*d4a07e70Sfengbojiang uma_hash_slab_t slab;
606*d4a07e70Sfengbojiang u_int hval;
607*d4a07e70Sfengbojiang
608*d4a07e70Sfengbojiang hval = UMA_HASH(hash, data);
609*d4a07e70Sfengbojiang
610*d4a07e70Sfengbojiang LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
611*d4a07e70Sfengbojiang if ((uint8_t *)slab->uhs_data == data)
612*d4a07e70Sfengbojiang return (&slab->uhs_slab);
613*d4a07e70Sfengbojiang }
614*d4a07e70Sfengbojiang return (NULL);
615*d4a07e70Sfengbojiang }
616*d4a07e70Sfengbojiang
617*d4a07e70Sfengbojiang static __inline uma_slab_t
vtoslab(vm_offset_t va)618*d4a07e70Sfengbojiang vtoslab(vm_offset_t va)
619*d4a07e70Sfengbojiang {
620*d4a07e70Sfengbojiang vm_page_t p;
621*d4a07e70Sfengbojiang
622*d4a07e70Sfengbojiang p = PHYS_TO_VM_PAGE(pmap_kextract(va));
623*d4a07e70Sfengbojiang return (p->plinks.uma.slab);
624*d4a07e70Sfengbojiang }
625*d4a07e70Sfengbojiang
626*d4a07e70Sfengbojiang static __inline void
vtozoneslab(vm_offset_t va,uma_zone_t * zone,uma_slab_t * slab)627*d4a07e70Sfengbojiang vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
628*d4a07e70Sfengbojiang {
629*d4a07e70Sfengbojiang vm_page_t p;
630*d4a07e70Sfengbojiang
631*d4a07e70Sfengbojiang p = PHYS_TO_VM_PAGE(pmap_kextract(va));
632*d4a07e70Sfengbojiang *slab = p->plinks.uma.slab;
633*d4a07e70Sfengbojiang *zone = p->plinks.uma.zone;
634*d4a07e70Sfengbojiang }
635*d4a07e70Sfengbojiang
636*d4a07e70Sfengbojiang static __inline void
vsetzoneslab(vm_offset_t va,uma_zone_t zone,uma_slab_t slab)637*d4a07e70Sfengbojiang vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
638*d4a07e70Sfengbojiang {
639*d4a07e70Sfengbojiang vm_page_t p;
640*d4a07e70Sfengbojiang
641*d4a07e70Sfengbojiang p = PHYS_TO_VM_PAGE(pmap_kextract(va));
642*d4a07e70Sfengbojiang p->plinks.uma.slab = slab;
643*d4a07e70Sfengbojiang p->plinks.uma.zone = zone;
644*d4a07e70Sfengbojiang }
645*d4a07e70Sfengbojiang
646*d4a07e70Sfengbojiang extern unsigned long uma_kmem_limit;
647*d4a07e70Sfengbojiang extern unsigned long uma_kmem_total;
648*d4a07e70Sfengbojiang
649*d4a07e70Sfengbojiang /* Adjust bytes under management by UMA. */
650*d4a07e70Sfengbojiang static inline void
uma_total_dec(unsigned long size)651*d4a07e70Sfengbojiang uma_total_dec(unsigned long size)
652*d4a07e70Sfengbojiang {
653*d4a07e70Sfengbojiang
654*d4a07e70Sfengbojiang atomic_subtract_long(&uma_kmem_total, size);
655*d4a07e70Sfengbojiang }
656*d4a07e70Sfengbojiang
657*d4a07e70Sfengbojiang static inline void
uma_total_inc(unsigned long size)658*d4a07e70Sfengbojiang uma_total_inc(unsigned long size)
659*d4a07e70Sfengbojiang {
660*d4a07e70Sfengbojiang
661*d4a07e70Sfengbojiang if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
662*d4a07e70Sfengbojiang uma_reclaim_wakeup();
663*d4a07e70Sfengbojiang }
664*d4a07e70Sfengbojiang
665*d4a07e70Sfengbojiang /*
666*d4a07e70Sfengbojiang * The following two functions may be defined by architecture specific code
667*d4a07e70Sfengbojiang * if they can provide more efficient allocation functions. This is useful
668*d4a07e70Sfengbojiang * for using direct mapped addresses.
669*d4a07e70Sfengbojiang */
670*d4a07e70Sfengbojiang void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
671*d4a07e70Sfengbojiang uint8_t *pflag, int wait);
672*d4a07e70Sfengbojiang void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
673*d4a07e70Sfengbojiang
674*d4a07e70Sfengbojiang /* Set a global soft limit on UMA managed memory. */
675*d4a07e70Sfengbojiang void uma_set_limit(unsigned long limit);
676*d4a07e70Sfengbojiang
677*d4a07e70Sfengbojiang #endif /* _KERNEL */
6781eaf0ac3Slogwang
6791eaf0ac3Slogwang #endif /* VM_UMA_INT_H */
680