1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2002-2019 Jeffrey Roberson <[email protected]>
5 * Copyright (c) 2004, 2005 Bosko Milekic <[email protected]>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice unmodified, this list of conditions, and the following
13 * disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * $FreeBSD$
30 *
31 */
32
33 #include <sys/counter.h>
34 #include <sys/_bitset.h>
35 #include <sys/_domainset.h>
36 #include <sys/_task.h>
37
38 /*
39 * This file includes definitions, structures, prototypes, and inlines that
40 * should not be used outside of the actual implementation of UMA.
41 */
42
43 /*
44 * The brief summary; Zones describe unique allocation types. Zones are
45 * organized into per-CPU caches which are filled by buckets. Buckets are
46 * organized according to memory domains. Buckets are filled from kegs which
47 * are also organized according to memory domains. Kegs describe a unique
48 * allocation type, backend memory provider, and layout. Kegs are associated
49 * with one or more zones and zones reference one or more kegs. Kegs provide
50 * slabs which are virtually contiguous collections of pages. Each slab is
51 * broken down int one or more items that will satisfy an individual allocation.
52 *
53 * Allocation is satisfied in the following order:
54 * 1) Per-CPU cache
55 * 2) Per-domain cache of buckets
56 * 3) Slab from any of N kegs
57 * 4) Backend page provider
58 *
59 * More detail on individual objects is contained below:
60 *
61 * Kegs contain lists of slabs which are stored in either the full bin, empty
62 * bin, or partially allocated bin, to reduce fragmentation. They also contain
63 * the user supplied value for size, which is adjusted for alignment purposes
64 * and rsize is the result of that. The Keg also stores information for
65 * managing a hash of page addresses that maps pages to uma_slab_t structures
66 * for pages that don't have embedded uma_slab_t's.
67 *
68 * Keg slab lists are organized by memory domain to support NUMA allocation
69 * policies. By default allocations are spread across domains to reduce the
70 * potential for hotspots. Special keg creation flags may be specified to
71 * prefer location allocation. However there is no strict enforcement as frees
72 * may happen on any CPU and these are returned to the CPU-local cache
73 * regardless of the originating domain.
74 *
75 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may
76 * be allocated off the page from a special slab zone. The free list within a
77 * slab is managed with a bitmask. For item sizes that would yield more than
78 * 10% memory waste we potentially allocate a separate uma_slab_t if this will
79 * improve the number of items per slab that will fit.
80 *
81 * The only really gross cases, with regards to memory waste, are for those
82 * items that are just over half the page size. You can get nearly 50% waste,
83 * so you fall back to the memory footprint of the power of two allocator. I
84 * have looked at memory allocation sizes on many of the machines available to
85 * me, and there does not seem to be an abundance of allocations at this range
86 * so at this time it may not make sense to optimize for it. This can, of
87 * course, be solved with dynamic slab sizes.
88 *
89 * Kegs may serve multiple Zones but by far most of the time they only serve
90 * one. When a Zone is created, a Keg is allocated and setup for it. While
91 * the backing Keg stores slabs, the Zone caches Buckets of items allocated
92 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor
93 * pair, as well as with its own set of small per-CPU caches, layered above
94 * the Zone's general Bucket cache.
95 *
96 * The PCPU caches are protected by critical sections, and may be accessed
97 * safely only from their associated CPU, while the Zones backed by the same
98 * Keg all share a common Keg lock (to coalesce contention on the backing
99 * slabs). The backing Keg typically only serves one Zone but in the case of
100 * multiple Zones, one of the Zones is considered the Primary Zone and all
101 * Zone-related stats from the Keg are done in the Primary Zone. For an
102 * example of a Multi-Zone setup, refer to the Mbuf allocation code.
103 */
104
105 /*
106 * This is the representation for normal (Non OFFPAGE slab)
107 *
108 * i == item
109 * s == slab pointer
110 *
111 * <---------------- Page (UMA_SLAB_SIZE) ------------------>
112 * ___________________________________________________________
113 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ |
114 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header||
115 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________||
116 * |___________________________________________________________|
117 *
118 *
119 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE.
120 *
121 * ___________________________________________________________
122 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
123 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |
124 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |
125 * |___________________________________________________________|
126 * ___________ ^
127 * |slab header| |
128 * |___________|---*
129 *
130 */
131
132 #ifndef VM_UMA_INT_H
133 #define VM_UMA_INT_H
134
135 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */
136 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */
137 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */
138
139 /* Max waste percentage before going to off page slab management */
140 #define UMA_MAX_WASTE 10
141
142 /* Max size of a CACHESPREAD slab. */
143 #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024)
144
145 /*
146 * These flags must not overlap with the UMA_ZONE flags specified in uma.h.
147 */
148 #define UMA_ZFLAG_OFFPAGE 0x00200000 /*
149 * Force the slab structure
150 * allocation off of the real
151 * memory.
152 */
153 #define UMA_ZFLAG_HASH 0x00400000 /*
154 * Use a hash table instead of
155 * caching information in the
156 * vm_page.
157 */
158 #define UMA_ZFLAG_VTOSLAB 0x00800000 /*
159 * Zone uses vtoslab for
160 * lookup.
161 */
162 #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */
163 #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */
164 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */
165 #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */
166 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */
167 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */
168 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */
169
170 #define UMA_ZFLAG_INHERIT \
171 (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \
172 UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL)
173
174 #define PRINT_UMA_ZFLAGS "\20" \
175 "\37TRASH" \
176 "\36INTERNAL" \
177 "\35BUCKET" \
178 "\34RECLAIMING" \
179 "\33CACHE" \
180 "\32LIMIT" \
181 "\31CTORDTOR" \
182 "\30VTOSLAB" \
183 "\27HASH" \
184 "\26OFFPAGE" \
185 "\23SMR" \
186 "\22ROUNDROBIN" \
187 "\21FIRSTTOUCH" \
188 "\20PCPU" \
189 "\17NODUMP" \
190 "\16CACHESPREAD" \
191 "\14MAXBUCKET" \
192 "\13NOBUCKET" \
193 "\12SECONDARY" \
194 "\11NOTPAGE" \
195 "\10VM" \
196 "\7MTXCLASS" \
197 "\6NOFREE" \
198 "\5MALLOC" \
199 "\4NOTOUCH" \
200 "\3CONTIG" \
201 "\2ZINIT"
202
203 /*
204 * Hash table for freed address -> slab translation.
205 *
206 * Only zones with memory not touchable by the allocator use the
207 * hash table. Otherwise slabs are found with vtoslab().
208 */
209 #define UMA_HASH_SIZE_INIT 32
210
211 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask)
212
213 #define UMA_HASH_INSERT(h, s, mem) \
214 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \
215 (mem))], slab_tohashslab(s), uhs_hlink)
216
217 #define UMA_HASH_REMOVE(h, s) \
218 LIST_REMOVE(slab_tohashslab(s), uhs_hlink)
219
220 LIST_HEAD(slabhashhead, uma_hash_slab);
221
222 struct uma_hash {
223 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */
224 u_int uh_hashsize; /* Current size of the hash table */
225 u_int uh_hashmask; /* Mask used during hashing */
226 };
227
228 /*
229 * Align field or structure to cache 'sector' in intel terminology. This
230 * is more efficient with adjacent line prefetch.
231 */
232 #define CACHE_LINE_SHIFT 6
233 #define CACHE_LINE_SIZE (1 << CACHE_LINE_SHIFT)
234
235 #if defined(__amd64__) || defined(__powerpc64__)
236 #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2)
237 #else
238 #define UMA_SUPER_ALIGN CACHE_LINE_SIZE
239 #endif
240
241 #define UMA_ALIGN __attribute__((__aligned__(UMA_SUPER_ALIGN)))
242
243 /*
244 * The uma_bucket structure is used to queue and manage buckets divorced
245 * from per-cpu caches. They are loaded into uma_cache_bucket structures
246 * for use.
247 */
248 struct uma_bucket {
249 STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */
250 int16_t ub_cnt; /* Count of items in bucket. */
251 int16_t ub_entries; /* Max items. */
252 smr_seq_t ub_seq; /* SMR sequence number. */
253 void *ub_bucket[]; /* actual allocation storage */
254 };
255
256 typedef struct uma_bucket * uma_bucket_t;
257
258 /*
259 * The uma_cache_bucket structure is statically allocated on each per-cpu
260 * cache. Its use reduces branches and cache misses in the fast path.
261 */
262 struct uma_cache_bucket {
263 uma_bucket_t ucb_bucket;
264 int16_t ucb_cnt;
265 int16_t ucb_entries;
266 uint32_t ucb_spare;
267 };
268
269 typedef struct uma_cache_bucket * uma_cache_bucket_t;
270
271 /*
272 * The uma_cache structure is allocated for each cpu for every zone
273 * type. This optimizes synchronization out of the allocator fast path.
274 */
275 struct uma_cache {
276 struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */
277 struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */
278 struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */
279 uint64_t uc_allocs; /* Count of allocations */
280 uint64_t uc_frees; /* Count of frees */
281 } UMA_ALIGN;
282
283 typedef struct uma_cache * uma_cache_t;
284
285 LIST_HEAD(slabhead, uma_slab);
286
287 /*
288 * The cache structure pads perfectly into 64 bytes so we use spare
289 * bits from the embedded cache buckets to store information from the zone
290 * and keep all fast-path allocations accessing a single per-cpu line.
291 */
292 static inline void
cache_set_uz_flags(uma_cache_t cache,uint32_t flags)293 cache_set_uz_flags(uma_cache_t cache, uint32_t flags)
294 {
295
296 cache->uc_freebucket.ucb_spare = flags;
297 }
298
299 static inline void
cache_set_uz_size(uma_cache_t cache,uint32_t size)300 cache_set_uz_size(uma_cache_t cache, uint32_t size)
301 {
302
303 cache->uc_allocbucket.ucb_spare = size;
304 }
305
306 static inline uint32_t
cache_uz_flags(uma_cache_t cache)307 cache_uz_flags(uma_cache_t cache)
308 {
309
310 return (cache->uc_freebucket.ucb_spare);
311 }
312
313 static inline uint32_t
cache_uz_size(uma_cache_t cache)314 cache_uz_size(uma_cache_t cache)
315 {
316
317 return (cache->uc_allocbucket.ucb_spare);
318 }
319
320 /*
321 * Per-domain slab lists. Embedded in the kegs.
322 */
323 struct uma_domain {
324 struct mtx_padalign ud_lock; /* Lock for the domain lists. */
325 struct slabhead ud_part_slab; /* partially allocated slabs */
326 struct slabhead ud_free_slab; /* completely unallocated slabs */
327 struct slabhead ud_full_slab; /* fully allocated slabs */
328 uint32_t ud_pages; /* Total page count */
329 uint32_t ud_free_items; /* Count of items free in all slabs */
330 uint32_t ud_free_slabs; /* Count of free slabs */
331 } __attribute__((__aligned__(CACHE_LINE_SIZE)));
332
333 typedef struct uma_domain * uma_domain_t;
334
335 /*
336 * Keg management structure
337 *
338 * TODO: Optimize for cache line size
339 *
340 */
341 struct uma_keg {
342 struct uma_hash uk_hash;
343 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */
344
345 struct domainset_ref uk_dr; /* Domain selection policy. */
346 uint32_t uk_align; /* Alignment mask */
347 uint32_t uk_reserve; /* Number of reserved items. */
348 uint32_t uk_size; /* Requested size of each item */
349 uint32_t uk_rsize; /* Real size of each item */
350
351 uma_init uk_init; /* Keg's init routine */
352 uma_fini uk_fini; /* Keg's fini routine */
353 uma_alloc uk_allocf; /* Allocation function */
354 uma_free uk_freef; /* Free routine */
355
356 u_long uk_offset; /* Next free offset from base KVA */
357 vm_offset_t uk_kva; /* Zone base KVA */
358
359 uint32_t uk_pgoff; /* Offset to uma_slab struct */
360 uint16_t uk_ppera; /* pages per allocation from backend */
361 uint16_t uk_ipers; /* Items per slab */
362 uint32_t uk_flags; /* Internal flags */
363
364 /* Least used fields go to the last cache line. */
365 const char *uk_name; /* Name of creating zone. */
366 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */
367
368 /* Must be last, variable sized. */
369 struct uma_domain uk_domain[]; /* Keg's slab lists. */
370 };
371 typedef struct uma_keg * uma_keg_t;
372
373 /*
374 * Free bits per-slab.
375 */
376 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT)
377 #define SLAB_MIN_SETSIZE _BITSET_BITS
378 BITSET_DEFINE(noslabbits, 0);
379
380 /*
381 * The slab structure manages a single contiguous allocation from backing
382 * store and subdivides it into individually allocatable items.
383 */
384 struct uma_slab {
385 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */
386 uint16_t us_freecount; /* How many are free? */
387 uint8_t us_flags; /* Page flags see uma.h */
388 uint8_t us_domain; /* Backing NUMA domain. */
389 struct noslabbits us_free; /* Free bitmask, flexible. */
390 };
391
392 typedef struct uma_slab * uma_slab_t;
393
394 /*
395 * Slab structure with a full sized bitset and hash link for both
396 * HASH and OFFPAGE zones.
397 */
398 struct uma_hash_slab {
399 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */
400 uint8_t *uhs_data; /* First item */
401 struct uma_slab uhs_slab; /* Must be last. */
402 };
403
404 typedef struct uma_hash_slab * uma_hash_slab_t;
405
406 static inline uma_hash_slab_t
slab_tohashslab(uma_slab_t slab)407 slab_tohashslab(uma_slab_t slab)
408 {
409
410 return NULL;
411 }
412
413 static inline void *
slab_data(uma_slab_t slab,uma_keg_t keg)414 slab_data(uma_slab_t slab, uma_keg_t keg)
415 {
416
417 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0)
418 return ((void *)((uintptr_t)slab - keg->uk_pgoff));
419 else
420 return (slab_tohashslab(slab)->uhs_data);
421 }
422
423 static inline void *
slab_item(uma_slab_t slab,uma_keg_t keg,int index)424 slab_item(uma_slab_t slab, uma_keg_t keg, int index)
425 {
426 uintptr_t data;
427
428 data = (uintptr_t)slab_data(slab, keg);
429 return ((void *)(data + keg->uk_rsize * index));
430 }
431
432 static inline int
slab_item_index(uma_slab_t slab,uma_keg_t keg,void * item)433 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item)
434 {
435 uintptr_t data;
436
437 data = (uintptr_t)slab_data(slab, keg);
438 return (((uintptr_t)item - data) / keg->uk_rsize);
439 }
440
441 STAILQ_HEAD(uma_bucketlist, uma_bucket);
442
443 struct uma_zone_domain {
444 struct uma_bucketlist uzd_buckets; /* full buckets */
445 uma_bucket_t uzd_cross; /* Fills from cross buckets. */
446 long uzd_nitems; /* total item count */
447 long uzd_imax; /* maximum item count this period */
448 long uzd_imin; /* minimum item count this period */
449 long uzd_wss; /* working set size estimate */
450 smr_seq_t uzd_seq; /* Lowest queued seq. */
451 struct mtx uzd_lock; /* Lock for the domain */
452 } __attribute__((__aligned__(CACHE_LINE_SIZE)));
453
454 typedef struct uma_zone_domain * uma_zone_domain_t;
455
456 /*
457 * Zone structure - per memory type.
458 */
459 struct uma_zone {
460 /* Offset 0, used in alloc/free fast/medium fast path and const. */
461 uint32_t uz_flags; /* Flags inherited from kegs */
462 uint32_t uz_size; /* Size inherited from kegs */
463 uma_ctor uz_ctor; /* Constructor for each allocation */
464 uma_dtor uz_dtor; /* Destructor */
465 smr_t uz_smr; /* Safe memory reclaim context. */
466 uint64_t uz_max_items; /* Maximum number of items to alloc */
467 uint64_t uz_bucket_max; /* Maximum bucket cache size */
468 uint16_t uz_bucket_size; /* Number of items in full bucket */
469 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */
470 uint32_t uz_sleepers; /* Threads sleeping on limit */
471 counter_u64_t uz_xdomain; /* Total number of cross-domain frees */
472
473 /* Offset 64, used in bucket replenish. */
474 uma_keg_t uz_keg; /* This zone's keg if !CACHE */
475 uma_import uz_import; /* Import new memory to cache. */
476 uma_release uz_release; /* Release memory from cache. */
477 void *uz_arg; /* Import/release argument. */
478 uma_init uz_init; /* Initializer for each item */
479 uma_fini uz_fini; /* Finalizer for each item. */
480 volatile uint64_t uz_items; /* Total items count & sleepers */
481 uint64_t uz_sleeps; /* Total number of alloc sleeps */
482
483 /* Offset 128 Rare stats, misc read-only. */
484 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */
485 counter_u64_t uz_allocs; /* Total number of allocations */
486 counter_u64_t uz_frees; /* Total number of frees */
487 counter_u64_t uz_fails; /* Total number of alloc failures */
488 const char *uz_name; /* Text name of the zone */
489 char *uz_ctlname; /* sysctl safe name string. */
490 int uz_namecnt; /* duplicate name count. */
491 uint16_t uz_bucket_size_min; /* Min number of items in bucket */
492 uint16_t uz_pad0;
493
494 /* Offset 192, rare read-only. */
495 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */
496 const char *uz_warning; /* Warning to print on failure */
497 struct timeval uz_ratecheck; /* Warnings rate-limiting */
498 struct task uz_maxaction; /* Task to run when at limit */
499
500 /* Offset 256. */
501 struct mtx uz_cross_lock; /* Cross domain free lock */
502
503 /*
504 * This HAS to be the last item because we adjust the zone size
505 * based on NCPU and then allocate the space for the zones.
506 */
507 struct uma_cache uz_cpu[]; /* Per cpu caches */
508
509 /* domains follow here. */
510 };
511
512 /*
513 * Macros for interpreting the uz_items field. 20 bits of sleeper count
514 * and 44 bit of item count.
515 */
516 #define UZ_ITEMS_SLEEPER_SHIFT 44LL
517 #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1)
518 #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1)
519 #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK)
520 #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT)
521 #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT)
522
523 #define ZONE_ASSERT_COLD(z) \
524 KASSERT(uma_zone_get_allocs((z)) == 0, \
525 ("zone %s initialization after use.", (z)->uz_name))
526
527 /* Domains are contiguous after the last CPU */
528 #define ZDOM_GET(z, n) \
529 (&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n])
530
531 #undef UMA_ALIGN
532
533 #ifdef _KERNEL
534 /* Internal prototypes */
535 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data);
536
537 /* Lock Macros */
538
539 #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock
540 #define KEG_LOCK_INIT(k, d, lc) \
541 do { \
542 if ((lc)) \
543 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
544 (k)->uk_name, MTX_DEF | MTX_DUPOK); \
545 else \
546 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \
547 "UMA zone", MTX_DEF | MTX_DUPOK); \
548 } while (0)
549
550 #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d))
551 #define KEG_LOCK(k, d) \
552 ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); })
553 #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d))
554 #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED)
555
556 #define KEG_GET(zone, keg) do { \
557 (keg) = (zone)->uz_keg; \
558 KASSERT((void *)(keg) != NULL, \
559 ("%s: Invalid zone %p type", __func__, (zone))); \
560 } while (0)
561
562 #define KEG_ASSERT_COLD(k) \
563 KASSERT(uma_keg_get_allocs((k)) == 0, \
564 ("keg %s initialization after use.", (k)->uk_name))
565
566 #define ZDOM_LOCK_INIT(z, zdom, lc) \
567 do { \
568 if ((lc)) \
569 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
570 (z)->uz_name, MTX_DEF | MTX_DUPOK); \
571 else \
572 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \
573 "UMA zone", MTX_DEF | MTX_DUPOK); \
574 } while (0)
575 #define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock)
576 #define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED)
577
578 #define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock)
579 #define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL)
580 #define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock)
581
582 #define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0))
583 #define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0))
584
585 #define ZONE_CROSS_LOCK_INIT(z) \
586 mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF)
587 #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock)
588 #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock)
589 #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock)
590
591 /*
592 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup
593 * the slab structure.
594 *
595 * Arguments:
596 * hash The hash table to search.
597 * data The base page of the item.
598 *
599 * Returns:
600 * A pointer to a slab if successful, else NULL.
601 */
602 static __inline uma_slab_t
hash_sfind(struct uma_hash * hash,uint8_t * data)603 hash_sfind(struct uma_hash *hash, uint8_t *data)
604 {
605 uma_hash_slab_t slab;
606 u_int hval;
607
608 hval = UMA_HASH(hash, data);
609
610 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) {
611 if ((uint8_t *)slab->uhs_data == data)
612 return (&slab->uhs_slab);
613 }
614 return (NULL);
615 }
616
617 static __inline uma_slab_t
vtoslab(vm_offset_t va)618 vtoslab(vm_offset_t va)
619 {
620 vm_page_t p;
621
622 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
623 return (p->plinks.uma.slab);
624 }
625
626 static __inline void
vtozoneslab(vm_offset_t va,uma_zone_t * zone,uma_slab_t * slab)627 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab)
628 {
629 vm_page_t p;
630
631 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
632 *slab = p->plinks.uma.slab;
633 *zone = p->plinks.uma.zone;
634 }
635
636 static __inline void
vsetzoneslab(vm_offset_t va,uma_zone_t zone,uma_slab_t slab)637 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab)
638 {
639 vm_page_t p;
640
641 p = PHYS_TO_VM_PAGE(pmap_kextract(va));
642 p->plinks.uma.slab = slab;
643 p->plinks.uma.zone = zone;
644 }
645
646 extern unsigned long uma_kmem_limit;
647 extern unsigned long uma_kmem_total;
648
649 /* Adjust bytes under management by UMA. */
650 static inline void
uma_total_dec(unsigned long size)651 uma_total_dec(unsigned long size)
652 {
653
654 atomic_subtract_long(&uma_kmem_total, size);
655 }
656
657 static inline void
uma_total_inc(unsigned long size)658 uma_total_inc(unsigned long size)
659 {
660
661 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit)
662 uma_reclaim_wakeup();
663 }
664
665 /*
666 * The following two functions may be defined by architecture specific code
667 * if they can provide more efficient allocation functions. This is useful
668 * for using direct mapped addresses.
669 */
670 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
671 uint8_t *pflag, int wait);
672 void uma_small_free(void *mem, vm_size_t size, uint8_t flags);
673
674 /* Set a global soft limit on UMA managed memory. */
675 void uma_set_limit(unsigned long limit);
676
677 #endif /* _KERNEL */
678
679 #endif /* VM_UMA_INT_H */
680