1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1988, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)radix.c 8.5 (Berkeley) 5/19/95
32 * $FreeBSD$
33 */
34
35 /*
36 * Routines to build and maintain radix trees for routing lookups.
37 */
38 #include <sys/param.h>
39 #ifdef _KERNEL
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/rmlock.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/syslog.h>
46 #include <net/radix.h>
47 #else /* !_KERNEL */
48 #include <stdio.h>
49 #include <strings.h>
50 #include <stdlib.h>
51 #define log(x, arg...) fprintf(stderr, ## arg)
52 #define panic(x) fprintf(stderr, "PANIC: %s", x), exit(1)
53 #define min(a, b) ((a) < (b) ? (a) : (b) )
54 #include <net/radix.h>
55 #endif /* !_KERNEL */
56
57 static struct radix_node
58 *rn_insert(void *, struct radix_head *, int *,
59 struct radix_node [2]),
60 *rn_newpair(void *, int, struct radix_node[2]),
61 *rn_search(void *, struct radix_node *),
62 *rn_search_m(void *, struct radix_node *, void *);
63 static struct radix_node *rn_addmask(void *, struct radix_mask_head *, int,int);
64
65 static void rn_detachhead_internal(struct radix_head *);
66
67 #define RADIX_MAX_KEY_LEN 32
68
69 static char rn_zeros[RADIX_MAX_KEY_LEN];
70 static char rn_ones[RADIX_MAX_KEY_LEN] = {
71 -1, -1, -1, -1, -1, -1, -1, -1,
72 -1, -1, -1, -1, -1, -1, -1, -1,
73 -1, -1, -1, -1, -1, -1, -1, -1,
74 -1, -1, -1, -1, -1, -1, -1, -1,
75 };
76
77 static int rn_lexobetter(void *m_arg, void *n_arg);
78 static struct radix_mask *
79 rn_new_radix_mask(struct radix_node *tt,
80 struct radix_mask *next);
81 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf,
82 int skip);
83
84 /*
85 * The data structure for the keys is a radix tree with one way
86 * branching removed. The index rn_bit at an internal node n represents a bit
87 * position to be tested. The tree is arranged so that all descendants
88 * of a node n have keys whose bits all agree up to position rn_bit - 1.
89 * (We say the index of n is rn_bit.)
90 *
91 * There is at least one descendant which has a one bit at position rn_bit,
92 * and at least one with a zero there.
93 *
94 * A route is determined by a pair of key and mask. We require that the
95 * bit-wise logical and of the key and mask to be the key.
96 * We define the index of a route to associated with the mask to be
97 * the first bit number in the mask where 0 occurs (with bit number 0
98 * representing the highest order bit).
99 *
100 * We say a mask is normal if every bit is 0, past the index of the mask.
101 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
102 * and m is a normal mask, then the route applies to every descendant of n.
103 * If the index(m) < rn_bit, this implies the trailing last few bits of k
104 * before bit b are all 0, (and hence consequently true of every descendant
105 * of n), so the route applies to all descendants of the node as well.
106 *
107 * Similar logic shows that a non-normal mask m such that
108 * index(m) <= index(n) could potentially apply to many children of n.
109 * Thus, for each non-host route, we attach its mask to a list at an internal
110 * node as high in the tree as we can go.
111 *
112 * The present version of the code makes use of normal routes in short-
113 * circuiting an explict mask and compare operation when testing whether
114 * a key satisfies a normal route, and also in remembering the unique leaf
115 * that governs a subtree.
116 */
117
118 /*
119 * Most of the functions in this code assume that the key/mask arguments
120 * are sockaddr-like structures, where the first byte is an u_char
121 * indicating the size of the entire structure.
122 *
123 * To make the assumption more explicit, we use the LEN() macro to access
124 * this field. It is safe to pass an expression with side effects
125 * to LEN() as the argument is evaluated only once.
126 * We cast the result to int as this is the dominant usage.
127 */
128 #define LEN(x) ( (int) (*(const u_char *)(x)) )
129
130 /*
131 * XXX THIS NEEDS TO BE FIXED
132 * In the code, pointers to keys and masks are passed as either
133 * 'void *' (because callers use to pass pointers of various kinds), or
134 * 'caddr_t' (which is fine for pointer arithmetics, but not very
135 * clean when you dereference it to access data). Furthermore, caddr_t
136 * is really 'char *', while the natural type to operate on keys and
137 * masks would be 'u_char'. This mismatch require a lot of casts and
138 * intermediate variables to adapt types that clutter the code.
139 */
140
141 /*
142 * Search a node in the tree matching the key.
143 */
144 static struct radix_node *
rn_search(void * v_arg,struct radix_node * head)145 rn_search(void *v_arg, struct radix_node *head)
146 {
147 struct radix_node *x;
148 caddr_t v;
149
150 for (x = head, v = v_arg; x->rn_bit >= 0;) {
151 if (x->rn_bmask & v[x->rn_offset])
152 x = x->rn_right;
153 else
154 x = x->rn_left;
155 }
156 return (x);
157 }
158
159 /*
160 * Same as above, but with an additional mask.
161 * XXX note this function is used only once.
162 */
163 static struct radix_node *
rn_search_m(void * v_arg,struct radix_node * head,void * m_arg)164 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
165 {
166 struct radix_node *x;
167 caddr_t v = v_arg, m = m_arg;
168
169 for (x = head; x->rn_bit >= 0;) {
170 if ((x->rn_bmask & m[x->rn_offset]) &&
171 (x->rn_bmask & v[x->rn_offset]))
172 x = x->rn_right;
173 else
174 x = x->rn_left;
175 }
176 return (x);
177 }
178
179 int
rn_refines(void * m_arg,void * n_arg)180 rn_refines(void *m_arg, void *n_arg)
181 {
182 caddr_t m = m_arg, n = n_arg;
183 caddr_t lim, lim2 = lim = n + LEN(n);
184 int longer = LEN(n++) - LEN(m++);
185 int masks_are_equal = 1;
186
187 if (longer > 0)
188 lim -= longer;
189 while (n < lim) {
190 if (*n & ~(*m))
191 return (0);
192 if (*n++ != *m++)
193 masks_are_equal = 0;
194 }
195 while (n < lim2)
196 if (*n++)
197 return (0);
198 if (masks_are_equal && (longer < 0))
199 for (lim2 = m - longer; m < lim2; )
200 if (*m++)
201 return (1);
202 return (!masks_are_equal);
203 }
204
205 /*
206 * Search for exact match in given @head.
207 * Assume host bits are cleared in @v_arg if @m_arg is not NULL
208 * Note that prefixes with /32 or /128 masks are treated differently
209 * from host routes.
210 */
211 struct radix_node *
rn_lookup(void * v_arg,void * m_arg,struct radix_head * head)212 rn_lookup(void *v_arg, void *m_arg, struct radix_head *head)
213 {
214 struct radix_node *x;
215 caddr_t netmask;
216
217 if (m_arg != NULL) {
218 /*
219 * Most common case: search exact prefix/mask
220 */
221 x = rn_addmask(m_arg, head->rnh_masks, 1,
222 head->rnh_treetop->rn_offset);
223 if (x == NULL)
224 return (NULL);
225 netmask = x->rn_key;
226
227 x = rn_match(v_arg, head);
228
229 while (x != NULL && x->rn_mask != netmask)
230 x = x->rn_dupedkey;
231
232 return (x);
233 }
234
235 /*
236 * Search for host address.
237 */
238 if ((x = rn_match(v_arg, head)) == NULL)
239 return (NULL);
240
241 /* Check if found key is the same */
242 if (LEN(x->rn_key) != LEN(v_arg) || bcmp(x->rn_key, v_arg, LEN(v_arg)))
243 return (NULL);
244
245 /* Check if this is not host route */
246 if (x->rn_mask != NULL)
247 return (NULL);
248
249 return (x);
250 }
251
252 static int
rn_satisfies_leaf(char * trial,struct radix_node * leaf,int skip)253 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip)
254 {
255 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
256 char *cplim;
257 int length = min(LEN(cp), LEN(cp2));
258
259 if (cp3 == NULL)
260 cp3 = rn_ones;
261 else
262 length = min(length, LEN(cp3));
263 cplim = cp + length; cp3 += skip; cp2 += skip;
264 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
265 if ((*cp ^ *cp2) & *cp3)
266 return (0);
267 return (1);
268 }
269
270 /*
271 * Search for longest-prefix match in given @head
272 */
273 struct radix_node *
rn_match(void * v_arg,struct radix_head * head)274 rn_match(void *v_arg, struct radix_head *head)
275 {
276 caddr_t v = v_arg;
277 struct radix_node *t = head->rnh_treetop, *x;
278 caddr_t cp = v, cp2;
279 caddr_t cplim;
280 struct radix_node *saved_t, *top = t;
281 int off = t->rn_offset, vlen = LEN(cp), matched_off;
282 int test, b, rn_bit;
283
284 /*
285 * Open code rn_search(v, top) to avoid overhead of extra
286 * subroutine call.
287 */
288 for (; t->rn_bit >= 0; ) {
289 if (t->rn_bmask & cp[t->rn_offset])
290 t = t->rn_right;
291 else
292 t = t->rn_left;
293 }
294 /*
295 * See if we match exactly as a host destination
296 * or at least learn how many bits match, for normal mask finesse.
297 *
298 * It doesn't hurt us to limit how many bytes to check
299 * to the length of the mask, since if it matches we had a genuine
300 * match and the leaf we have is the most specific one anyway;
301 * if it didn't match with a shorter length it would fail
302 * with a long one. This wins big for class B&C netmasks which
303 * are probably the most common case...
304 */
305 if (t->rn_mask)
306 vlen = *(u_char *)t->rn_mask;
307 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
308 for (; cp < cplim; cp++, cp2++)
309 if (*cp != *cp2)
310 goto on1;
311 /*
312 * This extra grot is in case we are explicitly asked
313 * to look up the default. Ugh!
314 *
315 * Never return the root node itself, it seems to cause a
316 * lot of confusion.
317 */
318 if (t->rn_flags & RNF_ROOT)
319 t = t->rn_dupedkey;
320 return (t);
321 on1:
322 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
323 for (b = 7; (test >>= 1) > 0;)
324 b--;
325 matched_off = cp - v;
326 b += matched_off << 3;
327 rn_bit = -1 - b;
328 /*
329 * If there is a host route in a duped-key chain, it will be first.
330 */
331 if ((saved_t = t)->rn_mask == 0)
332 t = t->rn_dupedkey;
333 for (; t; t = t->rn_dupedkey)
334 /*
335 * Even if we don't match exactly as a host,
336 * we may match if the leaf we wound up at is
337 * a route to a net.
338 */
339 if (t->rn_flags & RNF_NORMAL) {
340 if (rn_bit <= t->rn_bit)
341 return (t);
342 } else if (rn_satisfies_leaf(v, t, matched_off))
343 return (t);
344 t = saved_t;
345 /* start searching up the tree */
346 do {
347 struct radix_mask *m;
348 t = t->rn_parent;
349 m = t->rn_mklist;
350 /*
351 * If non-contiguous masks ever become important
352 * we can restore the masking and open coding of
353 * the search and satisfaction test and put the
354 * calculation of "off" back before the "do".
355 */
356 while (m) {
357 if (m->rm_flags & RNF_NORMAL) {
358 if (rn_bit <= m->rm_bit)
359 return (m->rm_leaf);
360 } else {
361 off = min(t->rn_offset, matched_off);
362 x = rn_search_m(v, t, m->rm_mask);
363 while (x && x->rn_mask != m->rm_mask)
364 x = x->rn_dupedkey;
365 if (x && rn_satisfies_leaf(v, x, off))
366 return (x);
367 }
368 m = m->rm_mklist;
369 }
370 } while (t != top);
371 return (0);
372 }
373
374 #ifdef RN_DEBUG
375 int rn_nodenum;
376 struct radix_node *rn_clist;
377 int rn_saveinfo;
378 int rn_debug = 1;
379 #endif
380
381 /*
382 * Whenever we add a new leaf to the tree, we also add a parent node,
383 * so we allocate them as an array of two elements: the first one must be
384 * the leaf (see RNTORT() in route.c), the second one is the parent.
385 * This routine initializes the relevant fields of the nodes, so that
386 * the leaf is the left child of the parent node, and both nodes have
387 * (almost) all all fields filled as appropriate.
388 * (XXX some fields are left unset, see the '#if 0' section).
389 * The function returns a pointer to the parent node.
390 */
391
392 static struct radix_node *
rn_newpair(void * v,int b,struct radix_node nodes[2])393 rn_newpair(void *v, int b, struct radix_node nodes[2])
394 {
395 struct radix_node *tt = nodes, *t = tt + 1;
396 t->rn_bit = b;
397 t->rn_bmask = 0x80 >> (b & 7);
398 t->rn_left = tt;
399 t->rn_offset = b >> 3;
400
401 #if 0 /* XXX perhaps we should fill these fields as well. */
402 t->rn_parent = t->rn_right = NULL;
403
404 tt->rn_mask = NULL;
405 tt->rn_dupedkey = NULL;
406 tt->rn_bmask = 0;
407 #endif
408 tt->rn_bit = -1;
409 tt->rn_key = (caddr_t)v;
410 tt->rn_parent = t;
411 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
412 tt->rn_mklist = t->rn_mklist = 0;
413 #ifdef RN_DEBUG
414 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
415 tt->rn_twin = t;
416 tt->rn_ybro = rn_clist;
417 rn_clist = tt;
418 #endif
419 return (t);
420 }
421
422 static struct radix_node *
rn_insert(void * v_arg,struct radix_head * head,int * dupentry,struct radix_node nodes[2])423 rn_insert(void *v_arg, struct radix_head *head, int *dupentry,
424 struct radix_node nodes[2])
425 {
426 caddr_t v = v_arg;
427 struct radix_node *top = head->rnh_treetop;
428 int head_off = top->rn_offset, vlen = LEN(v);
429 struct radix_node *t = rn_search(v_arg, top);
430 caddr_t cp = v + head_off;
431 int b;
432 struct radix_node *p, *tt, *x;
433 /*
434 * Find first bit at which v and t->rn_key differ
435 */
436 caddr_t cp2 = t->rn_key + head_off;
437 int cmp_res;
438 caddr_t cplim = v + vlen;
439
440 while (cp < cplim)
441 if (*cp2++ != *cp++)
442 goto on1;
443 *dupentry = 1;
444 return (t);
445 on1:
446 *dupentry = 0;
447 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
448 for (b = (cp - v) << 3; cmp_res; b--)
449 cmp_res >>= 1;
450
451 x = top;
452 cp = v;
453 do {
454 p = x;
455 if (cp[x->rn_offset] & x->rn_bmask)
456 x = x->rn_right;
457 else
458 x = x->rn_left;
459 } while (b > (unsigned) x->rn_bit);
460 /* x->rn_bit < b && x->rn_bit >= 0 */
461 #ifdef RN_DEBUG
462 if (rn_debug)
463 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
464 #endif
465 t = rn_newpair(v_arg, b, nodes);
466 tt = t->rn_left;
467 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
468 p->rn_left = t;
469 else
470 p->rn_right = t;
471 x->rn_parent = t;
472 t->rn_parent = p; /* frees x, p as temp vars below */
473 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
474 t->rn_right = x;
475 } else {
476 t->rn_right = tt;
477 t->rn_left = x;
478 }
479 #ifdef RN_DEBUG
480 if (rn_debug)
481 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
482 #endif
483 return (tt);
484 }
485
486 static struct radix_node *
rn_addmask(void * n_arg,struct radix_mask_head * maskhead,int search,int skip)487 rn_addmask(void *n_arg, struct radix_mask_head *maskhead, int search, int skip)
488 {
489 unsigned char *netmask = n_arg;
490 unsigned char *cp, *cplim;
491 struct radix_node *x;
492 int b = 0, mlen, j;
493 int maskduplicated, isnormal;
494 struct radix_node *saved_x;
495 unsigned char addmask_key[RADIX_MAX_KEY_LEN];
496
497 if ((mlen = LEN(netmask)) > RADIX_MAX_KEY_LEN)
498 mlen = RADIX_MAX_KEY_LEN;
499 if (skip == 0)
500 skip = 1;
501 if (mlen <= skip)
502 return (maskhead->mask_nodes);
503
504 bzero(addmask_key, RADIX_MAX_KEY_LEN);
505 if (skip > 1)
506 bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
507 bcopy(netmask + skip, addmask_key + skip, mlen - skip);
508 /*
509 * Trim trailing zeroes.
510 */
511 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
512 cp--;
513 mlen = cp - addmask_key;
514 if (mlen <= skip)
515 return (maskhead->mask_nodes);
516 *addmask_key = mlen;
517 x = rn_search(addmask_key, maskhead->head.rnh_treetop);
518 if (bcmp(addmask_key, x->rn_key, mlen) != 0)
519 x = NULL;
520 if (x || search)
521 return (x);
522 R_Zalloc(x, struct radix_node *, RADIX_MAX_KEY_LEN + 2 * sizeof (*x));
523 if ((saved_x = x) == NULL)
524 return (0);
525 netmask = cp = (unsigned char *)(x + 2);
526 bcopy(addmask_key, cp, mlen);
527 x = rn_insert(cp, &maskhead->head, &maskduplicated, x);
528 if (maskduplicated) {
529 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
530 R_Free(saved_x);
531 return (x);
532 }
533 /*
534 * Calculate index of mask, and check for normalcy.
535 * First find the first byte with a 0 bit, then if there are
536 * more bits left (remember we already trimmed the trailing 0's),
537 * the bits should be contiguous, otherwise we have got
538 * a non-contiguous mask.
539 */
540 #define CONTIG(_c) (((~(_c) + 1) & (_c)) == (unsigned char)(~(_c) + 1))
541 cplim = netmask + mlen;
542 isnormal = 1;
543 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
544 cp++;
545 if (cp != cplim) {
546 for (j = 0x80; (j & *cp) != 0; j >>= 1)
547 b++;
548 if (!CONTIG(*cp) || cp != (cplim - 1))
549 isnormal = 0;
550 }
551 b += (cp - netmask) << 3;
552 x->rn_bit = -1 - b;
553 if (isnormal)
554 x->rn_flags |= RNF_NORMAL;
555 return (x);
556 }
557
558 static int /* XXX: arbitrary ordering for non-contiguous masks */
rn_lexobetter(void * m_arg,void * n_arg)559 rn_lexobetter(void *m_arg, void *n_arg)
560 {
561 u_char *mp = m_arg, *np = n_arg, *lim;
562
563 if (LEN(mp) > LEN(np))
564 return (1); /* not really, but need to check longer one first */
565 if (LEN(mp) == LEN(np))
566 for (lim = mp + LEN(mp); mp < lim;)
567 if (*mp++ > *np++)
568 return (1);
569 return (0);
570 }
571
572 static struct radix_mask *
rn_new_radix_mask(struct radix_node * tt,struct radix_mask * next)573 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
574 {
575 struct radix_mask *m;
576
577 R_Malloc(m, struct radix_mask *, sizeof (struct radix_mask));
578 if (m == NULL) {
579 log(LOG_ERR, "Failed to allocate route mask\n");
580 return (0);
581 }
582 bzero(m, sizeof(*m));
583 m->rm_bit = tt->rn_bit;
584 m->rm_flags = tt->rn_flags;
585 if (tt->rn_flags & RNF_NORMAL)
586 m->rm_leaf = tt;
587 else
588 m->rm_mask = tt->rn_mask;
589 m->rm_mklist = next;
590 tt->rn_mklist = m;
591 return (m);
592 }
593
594 struct radix_node *
rn_addroute(void * v_arg,void * n_arg,struct radix_head * head,struct radix_node treenodes[2])595 rn_addroute(void *v_arg, void *n_arg, struct radix_head *head,
596 struct radix_node treenodes[2])
597 {
598 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
599 struct radix_node *t, *x = NULL, *tt;
600 struct radix_node *saved_tt, *top = head->rnh_treetop;
601 short b = 0, b_leaf = 0;
602 int keyduplicated;
603 caddr_t mmask;
604 struct radix_mask *m, **mp;
605
606 /*
607 * In dealing with non-contiguous masks, there may be
608 * many different routes which have the same mask.
609 * We will find it useful to have a unique pointer to
610 * the mask to speed avoiding duplicate references at
611 * nodes and possibly save time in calculating indices.
612 */
613 if (netmask) {
614 x = rn_addmask(netmask, head->rnh_masks, 0, top->rn_offset);
615 if (x == NULL)
616 return (0);
617 b_leaf = x->rn_bit;
618 b = -1 - x->rn_bit;
619 netmask = x->rn_key;
620 }
621 /*
622 * Deal with duplicated keys: attach node to previous instance
623 */
624 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
625 if (keyduplicated) {
626 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
627 if (tt->rn_mask == netmask)
628 return (0);
629 if (netmask == 0 ||
630 (tt->rn_mask &&
631 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
632 || rn_refines(netmask, tt->rn_mask)
633 || rn_lexobetter(netmask, tt->rn_mask))))
634 break;
635 }
636 /*
637 * If the mask is not duplicated, we wouldn't
638 * find it among possible duplicate key entries
639 * anyway, so the above test doesn't hurt.
640 *
641 * We sort the masks for a duplicated key the same way as
642 * in a masklist -- most specific to least specific.
643 * This may require the unfortunate nuisance of relocating
644 * the head of the list.
645 *
646 * We also reverse, or doubly link the list through the
647 * parent pointer.
648 */
649 if (tt == saved_tt) {
650 struct radix_node *xx = x;
651 /* link in at head of list */
652 (tt = treenodes)->rn_dupedkey = t;
653 tt->rn_flags = t->rn_flags;
654 tt->rn_parent = x = t->rn_parent;
655 t->rn_parent = tt; /* parent */
656 if (x->rn_left == t)
657 x->rn_left = tt;
658 else
659 x->rn_right = tt;
660 saved_tt = tt; x = xx;
661 } else {
662 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
663 t->rn_dupedkey = tt;
664 tt->rn_parent = t; /* parent */
665 if (tt->rn_dupedkey) /* parent */
666 tt->rn_dupedkey->rn_parent = tt; /* parent */
667 }
668 #ifdef RN_DEBUG
669 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
670 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
671 #endif
672 tt->rn_key = (caddr_t) v;
673 tt->rn_bit = -1;
674 tt->rn_flags = RNF_ACTIVE;
675 }
676 /*
677 * Put mask in tree.
678 */
679 if (netmask) {
680 tt->rn_mask = netmask;
681 tt->rn_bit = x->rn_bit;
682 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
683 }
684 t = saved_tt->rn_parent;
685 if (keyduplicated)
686 goto on2;
687 b_leaf = -1 - t->rn_bit;
688 if (t->rn_right == saved_tt)
689 x = t->rn_left;
690 else
691 x = t->rn_right;
692 /* Promote general routes from below */
693 if (x->rn_bit < 0) {
694 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
695 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
696 *mp = m = rn_new_radix_mask(x, 0);
697 if (m)
698 mp = &m->rm_mklist;
699 }
700 } else if (x->rn_mklist) {
701 /*
702 * Skip over masks whose index is > that of new node
703 */
704 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
705 if (m->rm_bit >= b_leaf)
706 break;
707 t->rn_mklist = m; *mp = NULL;
708 }
709 on2:
710 /* Add new route to highest possible ancestor's list */
711 if ((netmask == 0) || (b > t->rn_bit ))
712 return (tt); /* can't lift at all */
713 b_leaf = tt->rn_bit;
714 do {
715 x = t;
716 t = t->rn_parent;
717 } while (b <= t->rn_bit && x != top);
718 /*
719 * Search through routes associated with node to
720 * insert new route according to index.
721 * Need same criteria as when sorting dupedkeys to avoid
722 * double loop on deletion.
723 */
724 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
725 if (m->rm_bit < b_leaf)
726 continue;
727 if (m->rm_bit > b_leaf)
728 break;
729 if (m->rm_flags & RNF_NORMAL) {
730 mmask = m->rm_leaf->rn_mask;
731 if (tt->rn_flags & RNF_NORMAL) {
732 log(LOG_ERR,
733 "Non-unique normal route, mask not entered\n");
734 return (tt);
735 }
736 } else
737 mmask = m->rm_mask;
738 if (mmask == netmask) {
739 m->rm_refs++;
740 tt->rn_mklist = m;
741 return (tt);
742 }
743 if (rn_refines(netmask, mmask)
744 || rn_lexobetter(netmask, mmask))
745 break;
746 }
747 *mp = rn_new_radix_mask(tt, *mp);
748 return (tt);
749 }
750
751 struct radix_node *
rn_delete(void * v_arg,void * netmask_arg,struct radix_head * head)752 rn_delete(void *v_arg, void *netmask_arg, struct radix_head *head)
753 {
754 struct radix_node *t, *p, *x, *tt;
755 struct radix_mask *m, *saved_m, **mp;
756 struct radix_node *dupedkey, *saved_tt, *top;
757 caddr_t v, netmask;
758 int b, head_off, vlen;
759
760 v = v_arg;
761 netmask = netmask_arg;
762 x = head->rnh_treetop;
763 tt = rn_search(v, x);
764 head_off = x->rn_offset;
765 vlen = LEN(v);
766 saved_tt = tt;
767 top = x;
768 if (tt == NULL ||
769 bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
770 return (0);
771 /*
772 * Delete our route from mask lists.
773 */
774 if (netmask) {
775 x = rn_addmask(netmask, head->rnh_masks, 1, head_off);
776 if (x == NULL)
777 return (0);
778 netmask = x->rn_key;
779 while (tt->rn_mask != netmask)
780 if ((tt = tt->rn_dupedkey) == NULL)
781 return (0);
782 }
783 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == NULL)
784 goto on1;
785 if (tt->rn_flags & RNF_NORMAL) {
786 if (m->rm_leaf != tt || m->rm_refs > 0) {
787 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
788 return (0); /* dangling ref could cause disaster */
789 }
790 } else {
791 if (m->rm_mask != tt->rn_mask) {
792 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
793 goto on1;
794 }
795 if (--m->rm_refs >= 0)
796 goto on1;
797 }
798 b = -1 - tt->rn_bit;
799 t = saved_tt->rn_parent;
800 if (b > t->rn_bit)
801 goto on1; /* Wasn't lifted at all */
802 do {
803 x = t;
804 t = t->rn_parent;
805 } while (b <= t->rn_bit && x != top);
806 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
807 if (m == saved_m) {
808 *mp = m->rm_mklist;
809 R_Free(m);
810 break;
811 }
812 if (m == NULL) {
813 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
814 if (tt->rn_flags & RNF_NORMAL)
815 return (0); /* Dangling ref to us */
816 }
817 on1:
818 /*
819 * Eliminate us from tree
820 */
821 if (tt->rn_flags & RNF_ROOT)
822 return (0);
823 #ifdef RN_DEBUG
824 /* Get us out of the creation list */
825 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
826 if (t) t->rn_ybro = tt->rn_ybro;
827 #endif
828 t = tt->rn_parent;
829 dupedkey = saved_tt->rn_dupedkey;
830 if (dupedkey) {
831 /*
832 * Here, tt is the deletion target and
833 * saved_tt is the head of the dupekey chain.
834 */
835 if (tt == saved_tt) {
836 /* remove from head of chain */
837 x = dupedkey; x->rn_parent = t;
838 if (t->rn_left == tt)
839 t->rn_left = x;
840 else
841 t->rn_right = x;
842 } else {
843 /* find node in front of tt on the chain */
844 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
845 p = p->rn_dupedkey;
846 if (p) {
847 p->rn_dupedkey = tt->rn_dupedkey;
848 if (tt->rn_dupedkey) /* parent */
849 tt->rn_dupedkey->rn_parent = p;
850 /* parent */
851 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
852 }
853 t = tt + 1;
854 if (t->rn_flags & RNF_ACTIVE) {
855 #ifndef RN_DEBUG
856 *++x = *t;
857 p = t->rn_parent;
858 #else
859 b = t->rn_info;
860 *++x = *t;
861 t->rn_info = b;
862 p = t->rn_parent;
863 #endif
864 if (p->rn_left == t)
865 p->rn_left = x;
866 else
867 p->rn_right = x;
868 x->rn_left->rn_parent = x;
869 x->rn_right->rn_parent = x;
870 }
871 goto out;
872 }
873 if (t->rn_left == tt)
874 x = t->rn_right;
875 else
876 x = t->rn_left;
877 p = t->rn_parent;
878 if (p->rn_right == t)
879 p->rn_right = x;
880 else
881 p->rn_left = x;
882 x->rn_parent = p;
883 /*
884 * Demote routes attached to us.
885 */
886 if (t->rn_mklist) {
887 if (x->rn_bit >= 0) {
888 for (mp = &x->rn_mklist; (m = *mp);)
889 mp = &m->rm_mklist;
890 *mp = t->rn_mklist;
891 } else {
892 /* If there are any key,mask pairs in a sibling
893 duped-key chain, some subset will appear sorted
894 in the same order attached to our mklist */
895 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
896 if (m == x->rn_mklist) {
897 struct radix_mask *mm = m->rm_mklist;
898 x->rn_mklist = 0;
899 if (--(m->rm_refs) < 0)
900 R_Free(m);
901 m = mm;
902 }
903 if (m)
904 log(LOG_ERR,
905 "rn_delete: Orphaned Mask %p at %p\n",
906 m, x);
907 }
908 }
909 /*
910 * We may be holding an active internal node in the tree.
911 */
912 x = tt + 1;
913 if (t != x) {
914 #ifndef RN_DEBUG
915 *t = *x;
916 #else
917 b = t->rn_info;
918 *t = *x;
919 t->rn_info = b;
920 #endif
921 t->rn_left->rn_parent = t;
922 t->rn_right->rn_parent = t;
923 p = x->rn_parent;
924 if (p->rn_left == x)
925 p->rn_left = t;
926 else
927 p->rn_right = t;
928 }
929 out:
930 tt->rn_flags &= ~RNF_ACTIVE;
931 tt[1].rn_flags &= ~RNF_ACTIVE;
932 return (tt);
933 }
934
935 /*
936 * This is the same as rn_walktree() except for the parameters and the
937 * exit.
938 */
939 int
rn_walktree_from(struct radix_head * h,void * a,void * m,walktree_f_t * f,void * w)940 rn_walktree_from(struct radix_head *h, void *a, void *m,
941 walktree_f_t *f, void *w)
942 {
943 int error;
944 struct radix_node *base, *next;
945 u_char *xa = (u_char *)a;
946 u_char *xm = (u_char *)m;
947 struct radix_node *rn, *last = NULL; /* shut up gcc */
948 int stopping = 0;
949 int lastb;
950
951 KASSERT(m != NULL, ("%s: mask needs to be specified", __func__));
952
953 /*
954 * rn_search_m is sort-of-open-coded here. We cannot use the
955 * function because we need to keep track of the last node seen.
956 */
957 /* printf("about to search\n"); */
958 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
959 last = rn;
960 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
961 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
962 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
963 break;
964 }
965 if (rn->rn_bmask & xa[rn->rn_offset]) {
966 rn = rn->rn_right;
967 } else {
968 rn = rn->rn_left;
969 }
970 }
971 /* printf("done searching\n"); */
972
973 /*
974 * Two cases: either we stepped off the end of our mask,
975 * in which case last == rn, or we reached a leaf, in which
976 * case we want to start from the leaf.
977 */
978 if (rn->rn_bit >= 0)
979 rn = last;
980 lastb = last->rn_bit;
981
982 /* printf("rn %p, lastb %d\n", rn, lastb);*/
983
984 /*
985 * This gets complicated because we may delete the node
986 * while applying the function f to it, so we need to calculate
987 * the successor node in advance.
988 */
989 while (rn->rn_bit >= 0)
990 rn = rn->rn_left;
991
992 while (!stopping) {
993 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
994 base = rn;
995 /* If at right child go back up, otherwise, go right */
996 while (rn->rn_parent->rn_right == rn
997 && !(rn->rn_flags & RNF_ROOT)) {
998 rn = rn->rn_parent;
999
1000 /* if went up beyond last, stop */
1001 if (rn->rn_bit <= lastb) {
1002 stopping = 1;
1003 /* printf("up too far\n"); */
1004 /*
1005 * XXX we should jump to the 'Process leaves'
1006 * part, because the values of 'rn' and 'next'
1007 * we compute will not be used. Not a big deal
1008 * because this loop will terminate, but it is
1009 * inefficient and hard to understand!
1010 */
1011 }
1012 }
1013
1014 /*
1015 * At the top of the tree, no need to traverse the right
1016 * half, prevent the traversal of the entire tree in the
1017 * case of default route.
1018 */
1019 if (rn->rn_parent->rn_flags & RNF_ROOT)
1020 stopping = 1;
1021
1022 /* Find the next *leaf* since next node might vanish, too */
1023 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1024 rn = rn->rn_left;
1025 next = rn;
1026 /* Process leaves */
1027 while ((rn = base) != NULL) {
1028 base = rn->rn_dupedkey;
1029 /* printf("leaf %p\n", rn); */
1030 if (!(rn->rn_flags & RNF_ROOT)
1031 && (error = (*f)(rn, w)))
1032 return (error);
1033 }
1034 rn = next;
1035
1036 if (rn->rn_flags & RNF_ROOT) {
1037 /* printf("root, stopping"); */
1038 stopping = 1;
1039 }
1040 }
1041 return (0);
1042 }
1043
1044 int
rn_walktree(struct radix_head * h,walktree_f_t * f,void * w)1045 rn_walktree(struct radix_head *h, walktree_f_t *f, void *w)
1046 {
1047 int error;
1048 struct radix_node *base, *next;
1049 struct radix_node *rn = h->rnh_treetop;
1050 /*
1051 * This gets complicated because we may delete the node
1052 * while applying the function f to it, so we need to calculate
1053 * the successor node in advance.
1054 */
1055
1056 /* First time through node, go left */
1057 while (rn->rn_bit >= 0)
1058 rn = rn->rn_left;
1059 for (;;) {
1060 base = rn;
1061 /* If at right child go back up, otherwise, go right */
1062 while (rn->rn_parent->rn_right == rn
1063 && (rn->rn_flags & RNF_ROOT) == 0)
1064 rn = rn->rn_parent;
1065 /* Find the next *leaf* since next node might vanish, too */
1066 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1067 rn = rn->rn_left;
1068 next = rn;
1069 /* Process leaves */
1070 while ((rn = base)) {
1071 base = rn->rn_dupedkey;
1072 if (!(rn->rn_flags & RNF_ROOT)
1073 && (error = (*f)(rn, w)))
1074 return (error);
1075 }
1076 rn = next;
1077 if (rn->rn_flags & RNF_ROOT)
1078 return (0);
1079 }
1080 /* NOTREACHED */
1081 }
1082
1083 /*
1084 * Initialize an empty tree. This has 3 nodes, which are passed
1085 * via base_nodes (in the order <left,root,right>) and are
1086 * marked RNF_ROOT so they cannot be freed.
1087 * The leaves have all-zero and all-one keys, with significant
1088 * bits starting at 'off'.
1089 */
1090 void
rn_inithead_internal(struct radix_head * rh,struct radix_node * base_nodes,int off)1091 rn_inithead_internal(struct radix_head *rh, struct radix_node *base_nodes, int off)
1092 {
1093 struct radix_node *t, *tt, *ttt;
1094
1095 t = rn_newpair(rn_zeros, off, base_nodes);
1096 ttt = base_nodes + 2;
1097 t->rn_right = ttt;
1098 t->rn_parent = t;
1099 tt = t->rn_left; /* ... which in turn is base_nodes */
1100 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1101 tt->rn_bit = -1 - off;
1102 *ttt = *tt;
1103 ttt->rn_key = rn_ones;
1104
1105 rh->rnh_treetop = t;
1106 }
1107
1108 static void
rn_detachhead_internal(struct radix_head * head)1109 rn_detachhead_internal(struct radix_head *head)
1110 {
1111
1112 KASSERT((head != NULL),
1113 ("%s: head already freed", __func__));
1114
1115 /* Free <left,root,right> nodes. */
1116 R_Free(head);
1117 }
1118
1119 /* Functions used by 'struct radix_node_head' users */
1120
1121 int
rn_inithead(void ** head,int off)1122 rn_inithead(void **head, int off)
1123 {
1124 struct radix_node_head *rnh;
1125 struct radix_mask_head *rmh;
1126
1127 rnh = *head;
1128 rmh = NULL;
1129
1130 if (*head != NULL)
1131 return (1);
1132
1133 R_Zalloc(rnh, struct radix_node_head *, sizeof (*rnh));
1134 R_Zalloc(rmh, struct radix_mask_head *, sizeof (*rmh));
1135 if (rnh == NULL || rmh == NULL) {
1136 if (rnh != NULL)
1137 R_Free(rnh);
1138 if (rmh != NULL)
1139 R_Free(rmh);
1140 return (0);
1141 }
1142
1143 /* Init trees */
1144 rn_inithead_internal(&rnh->rh, rnh->rnh_nodes, off);
1145 rn_inithead_internal(&rmh->head, rmh->mask_nodes, 0);
1146 *head = rnh;
1147 rnh->rh.rnh_masks = rmh;
1148
1149 /* Finally, set base callbacks */
1150 rnh->rnh_addaddr = rn_addroute;
1151 rnh->rnh_deladdr = rn_delete;
1152 rnh->rnh_matchaddr = rn_match;
1153 rnh->rnh_lookup = rn_lookup;
1154 rnh->rnh_walktree = rn_walktree;
1155 rnh->rnh_walktree_from = rn_walktree_from;
1156
1157 return (1);
1158 }
1159
1160 static int
rn_freeentry(struct radix_node * rn,void * arg)1161 rn_freeentry(struct radix_node *rn, void *arg)
1162 {
1163 struct radix_head * const rnh = arg;
1164 struct radix_node *x;
1165
1166 x = (struct radix_node *)rn_delete(rn + 2, NULL, rnh);
1167 if (x != NULL)
1168 R_Free(x);
1169 return (0);
1170 }
1171
1172 int
rn_detachhead(void ** head)1173 rn_detachhead(void **head)
1174 {
1175 struct radix_node_head *rnh;
1176
1177 KASSERT((head != NULL && *head != NULL),
1178 ("%s: head already freed", __func__));
1179
1180 rnh = (struct radix_node_head *)(*head);
1181
1182 rn_walktree(&rnh->rh.rnh_masks->head, rn_freeentry, rnh->rh.rnh_masks);
1183 rn_detachhead_internal(&rnh->rh.rnh_masks->head);
1184 rn_detachhead_internal(&rnh->rh);
1185
1186 *head = NULL;
1187
1188 return (1);
1189 }
1190