1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)sys_generic.c 8.5 (Berkeley) 1/21/94
37 */
38
39 #include <sys/cdefs.h>
40 __FBSDID("$FreeBSD$");
41
42 #include "opt_capsicum.h"
43 #include "opt_ktrace.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/sysproto.h>
48 #include <sys/capsicum.h>
49 #include <sys/filedesc.h>
50 #include <sys/filio.h>
51 #include <sys/fcntl.h>
52 #include <sys/file.h>
53 #include <sys/lock.h>
54 #include <sys/proc.h>
55 #include <sys/signalvar.h>
56 #include <sys/socketvar.h>
57 #include <sys/uio.h>
58 #include <sys/eventfd.h>
59 #include <sys/kernel.h>
60 #include <sys/ktr.h>
61 #include <sys/limits.h>
62 #include <sys/malloc.h>
63 #include <sys/poll.h>
64 #include <sys/resourcevar.h>
65 #include <sys/selinfo.h>
66 #include <sys/sleepqueue.h>
67 #include <sys/specialfd.h>
68 #include <sys/syscallsubr.h>
69 #include <sys/sysctl.h>
70 #include <sys/sysent.h>
71 #include <sys/vnode.h>
72 #include <sys/bio.h>
73 #include <sys/buf.h>
74 #include <sys/condvar.h>
75 #ifdef KTRACE
76 #include <sys/ktrace.h>
77 #endif
78
79 #include <security/audit/audit.h>
80
81 /*
82 * The following macro defines how many bytes will be allocated from
83 * the stack instead of memory allocated when passing the IOCTL data
84 * structures from userspace and to the kernel. Some IOCTLs having
85 * small data structures are used very frequently and this small
86 * buffer on the stack gives a significant speedup improvement for
87 * those requests. The value of this define should be greater or equal
88 * to 64 bytes and should also be power of two. The data structure is
89 * currently hard-aligned to a 8-byte boundary on the stack. This
90 * should currently be sufficient for all supported platforms.
91 */
92 #define SYS_IOCTL_SMALL_SIZE 128 /* bytes */
93 #define SYS_IOCTL_SMALL_ALIGN 8 /* bytes */
94
95 #ifdef __LP64__
96 static int iosize_max_clamp = 0;
97 SYSCTL_INT(_debug, OID_AUTO, iosize_max_clamp, CTLFLAG_RW,
98 &iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX");
99 static int devfs_iosize_max_clamp = 1;
100 SYSCTL_INT(_debug, OID_AUTO, devfs_iosize_max_clamp, CTLFLAG_RW,
101 &devfs_iosize_max_clamp, 0, "Clamp max i/o size to INT_MAX for devices");
102 #endif
103
104 /*
105 * Assert that the return value of read(2) and write(2) syscalls fits
106 * into a register. If not, an architecture will need to provide the
107 * usermode wrappers to reconstruct the result.
108 */
109 CTASSERT(sizeof(register_t) >= sizeof(size_t));
110
111 static MALLOC_DEFINE(M_IOCTLOPS, "ioctlops", "ioctl data buffer");
112 static MALLOC_DEFINE(M_SELECT, "select", "select() buffer");
113 MALLOC_DEFINE(M_IOV, "iov", "large iov's");
114
115 static int pollout(struct thread *, struct pollfd *, struct pollfd *,
116 u_int);
117 static int pollscan(struct thread *, struct pollfd *, u_int);
118 static int pollrescan(struct thread *);
119 static int selscan(struct thread *, fd_mask **, fd_mask **, int);
120 static int selrescan(struct thread *, fd_mask **, fd_mask **);
121 static void selfdalloc(struct thread *, void *);
122 static void selfdfree(struct seltd *, struct selfd *);
123 static int dofileread(struct thread *, int, struct file *, struct uio *,
124 off_t, int);
125 static int dofilewrite(struct thread *, int, struct file *, struct uio *,
126 off_t, int);
127 static void doselwakeup(struct selinfo *, int);
128 static void seltdinit(struct thread *);
129 static int seltdwait(struct thread *, sbintime_t, sbintime_t);
130 static void seltdclear(struct thread *);
131
132 /*
133 * One seltd per-thread allocated on demand as needed.
134 *
135 * t - protected by st_mtx
136 * k - Only accessed by curthread or read-only
137 */
138 struct seltd {
139 STAILQ_HEAD(, selfd) st_selq; /* (k) List of selfds. */
140 struct selfd *st_free1; /* (k) free fd for read set. */
141 struct selfd *st_free2; /* (k) free fd for write set. */
142 struct mtx st_mtx; /* Protects struct seltd */
143 struct cv st_wait; /* (t) Wait channel. */
144 int st_flags; /* (t) SELTD_ flags. */
145 };
146
147 #define SELTD_PENDING 0x0001 /* We have pending events. */
148 #define SELTD_RESCAN 0x0002 /* Doing a rescan. */
149
150 /*
151 * One selfd allocated per-thread per-file-descriptor.
152 * f - protected by sf_mtx
153 */
154 struct selfd {
155 STAILQ_ENTRY(selfd) sf_link; /* (k) fds owned by this td. */
156 TAILQ_ENTRY(selfd) sf_threads; /* (f) fds on this selinfo. */
157 struct selinfo *sf_si; /* (f) selinfo when linked. */
158 struct mtx *sf_mtx; /* Pointer to selinfo mtx. */
159 struct seltd *sf_td; /* (k) owning seltd. */
160 void *sf_cookie; /* (k) fd or pollfd. */
161 };
162
163 MALLOC_DEFINE(M_SELFD, "selfd", "selfd");
164 static struct mtx_pool *mtxpool_select;
165
166 #ifdef __LP64__
167 size_t
devfs_iosize_max(void)168 devfs_iosize_max(void)
169 {
170
171 return (devfs_iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
172 INT_MAX : SSIZE_MAX);
173 }
174
175 size_t
iosize_max(void)176 iosize_max(void)
177 {
178
179 return (iosize_max_clamp || SV_CURPROC_FLAG(SV_ILP32) ?
180 INT_MAX : SSIZE_MAX);
181 }
182 #endif
183
184 #ifndef _SYS_SYSPROTO_H_
185 struct read_args {
186 int fd;
187 void *buf;
188 size_t nbyte;
189 };
190 #endif
191 int
sys_read(struct thread * td,struct read_args * uap)192 sys_read(struct thread *td, struct read_args *uap)
193 {
194 struct uio auio;
195 struct iovec aiov;
196 int error;
197
198 if (uap->nbyte > IOSIZE_MAX)
199 return (EINVAL);
200 aiov.iov_base = uap->buf;
201 aiov.iov_len = uap->nbyte;
202 auio.uio_iov = &aiov;
203 auio.uio_iovcnt = 1;
204 auio.uio_resid = uap->nbyte;
205 auio.uio_segflg = UIO_USERSPACE;
206 error = kern_readv(td, uap->fd, &auio);
207 return (error);
208 }
209
210 /*
211 * Positioned read system call
212 */
213 #ifndef _SYS_SYSPROTO_H_
214 struct pread_args {
215 int fd;
216 void *buf;
217 size_t nbyte;
218 int pad;
219 off_t offset;
220 };
221 #endif
222 int
sys_pread(struct thread * td,struct pread_args * uap)223 sys_pread(struct thread *td, struct pread_args *uap)
224 {
225
226 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
227 }
228
229 int
kern_pread(struct thread * td,int fd,void * buf,size_t nbyte,off_t offset)230 kern_pread(struct thread *td, int fd, void *buf, size_t nbyte, off_t offset)
231 {
232 struct uio auio;
233 struct iovec aiov;
234 int error;
235
236 if (nbyte > IOSIZE_MAX)
237 return (EINVAL);
238 aiov.iov_base = buf;
239 aiov.iov_len = nbyte;
240 auio.uio_iov = &aiov;
241 auio.uio_iovcnt = 1;
242 auio.uio_resid = nbyte;
243 auio.uio_segflg = UIO_USERSPACE;
244 error = kern_preadv(td, fd, &auio, offset);
245 return (error);
246 }
247
248 #if defined(COMPAT_FREEBSD6)
249 int
freebsd6_pread(struct thread * td,struct freebsd6_pread_args * uap)250 freebsd6_pread(struct thread *td, struct freebsd6_pread_args *uap)
251 {
252
253 return (kern_pread(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
254 }
255 #endif
256
257 /*
258 * Scatter read system call.
259 */
260 #ifndef _SYS_SYSPROTO_H_
261 struct readv_args {
262 int fd;
263 struct iovec *iovp;
264 u_int iovcnt;
265 };
266 #endif
267 int
sys_readv(struct thread * td,struct readv_args * uap)268 sys_readv(struct thread *td, struct readv_args *uap)
269 {
270 struct uio *auio;
271 int error;
272
273 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
274 if (error)
275 return (error);
276 error = kern_readv(td, uap->fd, auio);
277 free(auio, M_IOV);
278 return (error);
279 }
280
281 int
kern_readv(struct thread * td,int fd,struct uio * auio)282 kern_readv(struct thread *td, int fd, struct uio *auio)
283 {
284 struct file *fp;
285 int error;
286
287 error = fget_read(td, fd, &cap_read_rights, &fp);
288 if (error)
289 return (error);
290 error = dofileread(td, fd, fp, auio, (off_t)-1, 0);
291 fdrop(fp, td);
292 return (error);
293 }
294
295 /*
296 * Scatter positioned read system call.
297 */
298 #ifndef _SYS_SYSPROTO_H_
299 struct preadv_args {
300 int fd;
301 struct iovec *iovp;
302 u_int iovcnt;
303 off_t offset;
304 };
305 #endif
306 int
sys_preadv(struct thread * td,struct preadv_args * uap)307 sys_preadv(struct thread *td, struct preadv_args *uap)
308 {
309 struct uio *auio;
310 int error;
311
312 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
313 if (error)
314 return (error);
315 error = kern_preadv(td, uap->fd, auio, uap->offset);
316 free(auio, M_IOV);
317 return (error);
318 }
319
320 int
kern_preadv(struct thread * td,int fd,struct uio * auio,off_t offset)321 kern_preadv(struct thread *td, int fd, struct uio *auio, off_t offset)
322 {
323 struct file *fp;
324 int error;
325
326 error = fget_read(td, fd, &cap_pread_rights, &fp);
327 if (error)
328 return (error);
329 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
330 error = ESPIPE;
331 else if (offset < 0 &&
332 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
333 error = EINVAL;
334 else
335 error = dofileread(td, fd, fp, auio, offset, FOF_OFFSET);
336 fdrop(fp, td);
337 return (error);
338 }
339
340 /*
341 * Common code for readv and preadv that reads data in
342 * from a file using the passed in uio, offset, and flags.
343 */
344 static int
dofileread(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)345 dofileread(struct thread *td, int fd, struct file *fp, struct uio *auio,
346 off_t offset, int flags)
347 {
348 ssize_t cnt;
349 int error;
350 #ifdef KTRACE
351 struct uio *ktruio = NULL;
352 #endif
353
354 AUDIT_ARG_FD(fd);
355
356 /* Finish zero length reads right here */
357 if (auio->uio_resid == 0) {
358 td->td_retval[0] = 0;
359 return (0);
360 }
361 auio->uio_rw = UIO_READ;
362 auio->uio_offset = offset;
363 auio->uio_td = td;
364 #ifdef KTRACE
365 if (KTRPOINT(td, KTR_GENIO))
366 ktruio = cloneuio(auio);
367 #endif
368 cnt = auio->uio_resid;
369 if ((error = fo_read(fp, auio, td->td_ucred, flags, td))) {
370 if (auio->uio_resid != cnt && (error == ERESTART ||
371 error == EINTR || error == EWOULDBLOCK))
372 error = 0;
373 }
374 cnt -= auio->uio_resid;
375 #ifdef KTRACE
376 if (ktruio != NULL) {
377 ktruio->uio_resid = cnt;
378 ktrgenio(fd, UIO_READ, ktruio, error);
379 }
380 #endif
381 td->td_retval[0] = cnt;
382 return (error);
383 }
384
385 #ifndef _SYS_SYSPROTO_H_
386 struct write_args {
387 int fd;
388 const void *buf;
389 size_t nbyte;
390 };
391 #endif
392 int
sys_write(struct thread * td,struct write_args * uap)393 sys_write(struct thread *td, struct write_args *uap)
394 {
395 struct uio auio;
396 struct iovec aiov;
397 int error;
398
399 if (uap->nbyte > IOSIZE_MAX)
400 return (EINVAL);
401 aiov.iov_base = (void *)(uintptr_t)uap->buf;
402 aiov.iov_len = uap->nbyte;
403 auio.uio_iov = &aiov;
404 auio.uio_iovcnt = 1;
405 auio.uio_resid = uap->nbyte;
406 auio.uio_segflg = UIO_USERSPACE;
407 error = kern_writev(td, uap->fd, &auio);
408 return (error);
409 }
410
411 /*
412 * Positioned write system call.
413 */
414 #ifndef _SYS_SYSPROTO_H_
415 struct pwrite_args {
416 int fd;
417 const void *buf;
418 size_t nbyte;
419 int pad;
420 off_t offset;
421 };
422 #endif
423 int
sys_pwrite(struct thread * td,struct pwrite_args * uap)424 sys_pwrite(struct thread *td, struct pwrite_args *uap)
425 {
426
427 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
428 }
429
430 int
kern_pwrite(struct thread * td,int fd,const void * buf,size_t nbyte,off_t offset)431 kern_pwrite(struct thread *td, int fd, const void *buf, size_t nbyte,
432 off_t offset)
433 {
434 struct uio auio;
435 struct iovec aiov;
436 int error;
437
438 if (nbyte > IOSIZE_MAX)
439 return (EINVAL);
440 aiov.iov_base = (void *)(uintptr_t)buf;
441 aiov.iov_len = nbyte;
442 auio.uio_iov = &aiov;
443 auio.uio_iovcnt = 1;
444 auio.uio_resid = nbyte;
445 auio.uio_segflg = UIO_USERSPACE;
446 error = kern_pwritev(td, fd, &auio, offset);
447 return (error);
448 }
449
450 #if defined(COMPAT_FREEBSD6)
451 int
freebsd6_pwrite(struct thread * td,struct freebsd6_pwrite_args * uap)452 freebsd6_pwrite(struct thread *td, struct freebsd6_pwrite_args *uap)
453 {
454
455 return (kern_pwrite(td, uap->fd, uap->buf, uap->nbyte, uap->offset));
456 }
457 #endif
458
459 /*
460 * Gather write system call.
461 */
462 #ifndef _SYS_SYSPROTO_H_
463 struct writev_args {
464 int fd;
465 struct iovec *iovp;
466 u_int iovcnt;
467 };
468 #endif
469 int
sys_writev(struct thread * td,struct writev_args * uap)470 sys_writev(struct thread *td, struct writev_args *uap)
471 {
472 struct uio *auio;
473 int error;
474
475 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
476 if (error)
477 return (error);
478 error = kern_writev(td, uap->fd, auio);
479 free(auio, M_IOV);
480 return (error);
481 }
482
483 int
kern_writev(struct thread * td,int fd,struct uio * auio)484 kern_writev(struct thread *td, int fd, struct uio *auio)
485 {
486 struct file *fp;
487 int error;
488
489 error = fget_write(td, fd, &cap_write_rights, &fp);
490 if (error)
491 return (error);
492 error = dofilewrite(td, fd, fp, auio, (off_t)-1, 0);
493 fdrop(fp, td);
494 return (error);
495 }
496
497 /*
498 * Gather positioned write system call.
499 */
500 #ifndef _SYS_SYSPROTO_H_
501 struct pwritev_args {
502 int fd;
503 struct iovec *iovp;
504 u_int iovcnt;
505 off_t offset;
506 };
507 #endif
508 int
sys_pwritev(struct thread * td,struct pwritev_args * uap)509 sys_pwritev(struct thread *td, struct pwritev_args *uap)
510 {
511 struct uio *auio;
512 int error;
513
514 error = copyinuio(uap->iovp, uap->iovcnt, &auio);
515 if (error)
516 return (error);
517 error = kern_pwritev(td, uap->fd, auio, uap->offset);
518 free(auio, M_IOV);
519 return (error);
520 }
521
522 int
kern_pwritev(struct thread * td,int fd,struct uio * auio,off_t offset)523 kern_pwritev(struct thread *td, int fd, struct uio *auio, off_t offset)
524 {
525 struct file *fp;
526 int error;
527
528 error = fget_write(td, fd, &cap_pwrite_rights, &fp);
529 if (error)
530 return (error);
531 if (!(fp->f_ops->fo_flags & DFLAG_SEEKABLE))
532 error = ESPIPE;
533 else if (offset < 0 &&
534 (fp->f_vnode == NULL || fp->f_vnode->v_type != VCHR))
535 error = EINVAL;
536 else
537 error = dofilewrite(td, fd, fp, auio, offset, FOF_OFFSET);
538 fdrop(fp, td);
539 return (error);
540 }
541
542 /*
543 * Common code for writev and pwritev that writes data to
544 * a file using the passed in uio, offset, and flags.
545 */
546 static int
dofilewrite(struct thread * td,int fd,struct file * fp,struct uio * auio,off_t offset,int flags)547 dofilewrite(struct thread *td, int fd, struct file *fp, struct uio *auio,
548 off_t offset, int flags)
549 {
550 ssize_t cnt;
551 int error;
552 #ifdef KTRACE
553 struct uio *ktruio = NULL;
554 #endif
555
556 AUDIT_ARG_FD(fd);
557 auio->uio_rw = UIO_WRITE;
558 auio->uio_td = td;
559 auio->uio_offset = offset;
560 #ifdef KTRACE
561 if (KTRPOINT(td, KTR_GENIO))
562 ktruio = cloneuio(auio);
563 #endif
564 cnt = auio->uio_resid;
565 if ((error = fo_write(fp, auio, td->td_ucred, flags, td))) {
566 if (auio->uio_resid != cnt && (error == ERESTART ||
567 error == EINTR || error == EWOULDBLOCK))
568 error = 0;
569 /* Socket layer is responsible for issuing SIGPIPE. */
570 if (fp->f_type != DTYPE_SOCKET && error == EPIPE) {
571 PROC_LOCK(td->td_proc);
572 tdsignal(td, SIGPIPE);
573 PROC_UNLOCK(td->td_proc);
574 }
575 }
576 cnt -= auio->uio_resid;
577 #ifdef KTRACE
578 if (ktruio != NULL) {
579 ktruio->uio_resid = cnt;
580 ktrgenio(fd, UIO_WRITE, ktruio, error);
581 }
582 #endif
583 td->td_retval[0] = cnt;
584 return (error);
585 }
586
587 /*
588 * Truncate a file given a file descriptor.
589 *
590 * Can't use fget_write() here, since must return EINVAL and not EBADF if the
591 * descriptor isn't writable.
592 */
593 int
kern_ftruncate(struct thread * td,int fd,off_t length)594 kern_ftruncate(struct thread *td, int fd, off_t length)
595 {
596 struct file *fp;
597 int error;
598
599 AUDIT_ARG_FD(fd);
600 if (length < 0)
601 return (EINVAL);
602 error = fget(td, fd, &cap_ftruncate_rights, &fp);
603 if (error)
604 return (error);
605 AUDIT_ARG_FILE(td->td_proc, fp);
606 if (!(fp->f_flag & FWRITE)) {
607 fdrop(fp, td);
608 return (EINVAL);
609 }
610 error = fo_truncate(fp, length, td->td_ucred, td);
611 fdrop(fp, td);
612 return (error);
613 }
614
615 #ifndef _SYS_SYSPROTO_H_
616 struct ftruncate_args {
617 int fd;
618 int pad;
619 off_t length;
620 };
621 #endif
622 int
sys_ftruncate(struct thread * td,struct ftruncate_args * uap)623 sys_ftruncate(struct thread *td, struct ftruncate_args *uap)
624 {
625
626 return (kern_ftruncate(td, uap->fd, uap->length));
627 }
628
629 #if defined(COMPAT_43)
630 #ifndef _SYS_SYSPROTO_H_
631 struct oftruncate_args {
632 int fd;
633 long length;
634 };
635 #endif
636 int
oftruncate(struct thread * td,struct oftruncate_args * uap)637 oftruncate(struct thread *td, struct oftruncate_args *uap)
638 {
639
640 return (kern_ftruncate(td, uap->fd, uap->length));
641 }
642 #endif /* COMPAT_43 */
643
644 #ifndef _SYS_SYSPROTO_H_
645 struct ioctl_args {
646 int fd;
647 u_long com;
648 caddr_t data;
649 };
650 #endif
651 /* ARGSUSED */
652 int
sys_ioctl(struct thread * td,struct ioctl_args * uap)653 sys_ioctl(struct thread *td, struct ioctl_args *uap)
654 {
655 u_char smalldata[SYS_IOCTL_SMALL_SIZE] __aligned(SYS_IOCTL_SMALL_ALIGN);
656 uint32_t com;
657 int arg, error;
658 u_int size;
659 caddr_t data;
660
661 #ifdef INVARIANTS
662 if (uap->com > 0xffffffff) {
663 printf(
664 "WARNING pid %d (%s): ioctl sign-extension ioctl %lx\n",
665 td->td_proc->p_pid, td->td_name, uap->com);
666 }
667 #endif
668 com = (uint32_t)uap->com;
669
670 /*
671 * Interpret high order word to find amount of data to be
672 * copied to/from the user's address space.
673 */
674 size = IOCPARM_LEN(com);
675 if ((size > IOCPARM_MAX) ||
676 ((com & (IOC_VOID | IOC_IN | IOC_OUT)) == 0) ||
677 #if defined(COMPAT_FREEBSD5) || defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
678 ((com & IOC_OUT) && size == 0) ||
679 #else
680 ((com & (IOC_IN | IOC_OUT)) && size == 0) ||
681 #endif
682 ((com & IOC_VOID) && size > 0 && size != sizeof(int)))
683 return (ENOTTY);
684
685 if (size > 0) {
686 if (com & IOC_VOID) {
687 /* Integer argument. */
688 arg = (intptr_t)uap->data;
689 data = (void *)&arg;
690 size = 0;
691 } else {
692 if (size > SYS_IOCTL_SMALL_SIZE)
693 data = malloc((u_long)size, M_IOCTLOPS, M_WAITOK);
694 else
695 data = smalldata;
696 }
697 } else
698 data = (void *)&uap->data;
699 if (com & IOC_IN) {
700 error = copyin(uap->data, data, (u_int)size);
701 if (error != 0)
702 goto out;
703 } else if (com & IOC_OUT) {
704 /*
705 * Zero the buffer so the user always
706 * gets back something deterministic.
707 */
708 bzero(data, size);
709 }
710
711 error = kern_ioctl(td, uap->fd, com, data);
712
713 if (error == 0 && (com & IOC_OUT))
714 error = copyout(data, uap->data, (u_int)size);
715
716 out:
717 if (size > SYS_IOCTL_SMALL_SIZE)
718 free(data, M_IOCTLOPS);
719 return (error);
720 }
721
722 int
kern_ioctl(struct thread * td,int fd,u_long com,caddr_t data)723 kern_ioctl(struct thread *td, int fd, u_long com, caddr_t data)
724 {
725 struct file *fp;
726 struct filedesc *fdp;
727 int error, tmp, locked;
728
729 AUDIT_ARG_FD(fd);
730 AUDIT_ARG_CMD(com);
731
732 fdp = td->td_proc->p_fd;
733
734 switch (com) {
735 case FIONCLEX:
736 case FIOCLEX:
737 FILEDESC_XLOCK(fdp);
738 locked = LA_XLOCKED;
739 break;
740 default:
741 #ifdef CAPABILITIES
742 FILEDESC_SLOCK(fdp);
743 locked = LA_SLOCKED;
744 #else
745 locked = LA_UNLOCKED;
746 #endif
747 break;
748 }
749
750 #ifdef CAPABILITIES
751 if ((fp = fget_locked(fdp, fd)) == NULL) {
752 error = EBADF;
753 goto out;
754 }
755 if ((error = cap_ioctl_check(fdp, fd, com)) != 0) {
756 fp = NULL; /* fhold() was not called yet */
757 goto out;
758 }
759 if (!fhold(fp)) {
760 error = EBADF;
761 fp = NULL;
762 goto out;
763 }
764 if (locked == LA_SLOCKED) {
765 FILEDESC_SUNLOCK(fdp);
766 locked = LA_UNLOCKED;
767 }
768 #else
769 error = fget(td, fd, &cap_ioctl_rights, &fp);
770 if (error != 0) {
771 fp = NULL;
772 goto out;
773 }
774 #endif
775 if ((fp->f_flag & (FREAD | FWRITE)) == 0) {
776 error = EBADF;
777 goto out;
778 }
779
780 switch (com) {
781 case FIONCLEX:
782 fdp->fd_ofiles[fd].fde_flags &= ~UF_EXCLOSE;
783 goto out;
784 case FIOCLEX:
785 fdp->fd_ofiles[fd].fde_flags |= UF_EXCLOSE;
786 goto out;
787 case FIONBIO:
788 if ((tmp = *(int *)data))
789 atomic_set_int(&fp->f_flag, FNONBLOCK);
790 else
791 atomic_clear_int(&fp->f_flag, FNONBLOCK);
792 data = (void *)&tmp;
793 break;
794 case FIOASYNC:
795 if ((tmp = *(int *)data))
796 atomic_set_int(&fp->f_flag, FASYNC);
797 else
798 atomic_clear_int(&fp->f_flag, FASYNC);
799 data = (void *)&tmp;
800 break;
801 }
802
803 error = fo_ioctl(fp, com, data, td->td_ucred, td);
804 out:
805 switch (locked) {
806 case LA_XLOCKED:
807 FILEDESC_XUNLOCK(fdp);
808 break;
809 #ifdef CAPABILITIES
810 case LA_SLOCKED:
811 FILEDESC_SUNLOCK(fdp);
812 break;
813 #endif
814 default:
815 FILEDESC_UNLOCK_ASSERT(fdp);
816 break;
817 }
818 if (fp != NULL)
819 fdrop(fp, td);
820 return (error);
821 }
822
823 int
sys_posix_fallocate(struct thread * td,struct posix_fallocate_args * uap)824 sys_posix_fallocate(struct thread *td, struct posix_fallocate_args *uap)
825 {
826 int error;
827
828 error = kern_posix_fallocate(td, uap->fd, uap->offset, uap->len);
829 return (kern_posix_error(td, error));
830 }
831
832 int
kern_posix_fallocate(struct thread * td,int fd,off_t offset,off_t len)833 kern_posix_fallocate(struct thread *td, int fd, off_t offset, off_t len)
834 {
835 struct file *fp;
836 int error;
837
838 AUDIT_ARG_FD(fd);
839 if (offset < 0 || len <= 0)
840 return (EINVAL);
841 /* Check for wrap. */
842 if (offset > OFF_MAX - len)
843 return (EFBIG);
844 AUDIT_ARG_FD(fd);
845 error = fget(td, fd, &cap_pwrite_rights, &fp);
846 if (error != 0)
847 return (error);
848 AUDIT_ARG_FILE(td->td_proc, fp);
849 if ((fp->f_ops->fo_flags & DFLAG_SEEKABLE) == 0) {
850 error = ESPIPE;
851 goto out;
852 }
853 if ((fp->f_flag & FWRITE) == 0) {
854 error = EBADF;
855 goto out;
856 }
857
858 error = fo_fallocate(fp, offset, len, td);
859 out:
860 fdrop(fp, td);
861 return (error);
862 }
863
864 int
kern_specialfd(struct thread * td,int type,void * arg)865 kern_specialfd(struct thread *td, int type, void *arg)
866 {
867 struct file *fp;
868 struct specialfd_eventfd *ae;
869 int error, fd, fflags;
870
871 fflags = 0;
872 error = falloc_noinstall(td, &fp);
873 if (error != 0)
874 return (error);
875
876 switch (type) {
877 case SPECIALFD_EVENTFD:
878 ae = arg;
879 if ((ae->flags & EFD_CLOEXEC) != 0)
880 fflags |= O_CLOEXEC;
881 error = eventfd_create_file(td, fp, ae->initval, ae->flags);
882 break;
883 default:
884 error = EINVAL;
885 break;
886 }
887
888 if (error == 0)
889 error = finstall(td, fp, &fd, fflags, NULL);
890 fdrop(fp, td);
891 if (error == 0)
892 td->td_retval[0] = fd;
893 return (error);
894 }
895
896 int
sys___specialfd(struct thread * td,struct __specialfd_args * args)897 sys___specialfd(struct thread *td, struct __specialfd_args *args)
898 {
899 struct specialfd_eventfd ae;
900 int error;
901
902 switch (args->type) {
903 case SPECIALFD_EVENTFD:
904 if (args->len != sizeof(struct specialfd_eventfd)) {
905 error = EINVAL;
906 break;
907 }
908 error = copyin(args->req, &ae, sizeof(ae));
909 if (error != 0)
910 break;
911 if ((ae.flags & ~(EFD_CLOEXEC | EFD_NONBLOCK |
912 EFD_SEMAPHORE)) != 0) {
913 error = EINVAL;
914 break;
915 }
916 error = kern_specialfd(td, args->type, &ae);
917 break;
918 default:
919 error = EINVAL;
920 break;
921 }
922 return (error);
923 }
924
925 int
poll_no_poll(int events)926 poll_no_poll(int events)
927 {
928 /*
929 * Return true for read/write. If the user asked for something
930 * special, return POLLNVAL, so that clients have a way of
931 * determining reliably whether or not the extended
932 * functionality is present without hard-coding knowledge
933 * of specific filesystem implementations.
934 */
935 if (events & ~POLLSTANDARD)
936 return (POLLNVAL);
937
938 return (events & (POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM));
939 }
940
941 int
sys_pselect(struct thread * td,struct pselect_args * uap)942 sys_pselect(struct thread *td, struct pselect_args *uap)
943 {
944 struct timespec ts;
945 struct timeval tv, *tvp;
946 sigset_t set, *uset;
947 int error;
948
949 if (uap->ts != NULL) {
950 error = copyin(uap->ts, &ts, sizeof(ts));
951 if (error != 0)
952 return (error);
953 TIMESPEC_TO_TIMEVAL(&tv, &ts);
954 tvp = &tv;
955 } else
956 tvp = NULL;
957 if (uap->sm != NULL) {
958 error = copyin(uap->sm, &set, sizeof(set));
959 if (error != 0)
960 return (error);
961 uset = &set;
962 } else
963 uset = NULL;
964 return (kern_pselect(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
965 uset, NFDBITS));
966 }
967
968 int
kern_pselect(struct thread * td,int nd,fd_set * in,fd_set * ou,fd_set * ex,struct timeval * tvp,sigset_t * uset,int abi_nfdbits)969 kern_pselect(struct thread *td, int nd, fd_set *in, fd_set *ou, fd_set *ex,
970 struct timeval *tvp, sigset_t *uset, int abi_nfdbits)
971 {
972 int error;
973 #ifndef FSTACK
974 if (uset != NULL) {
975 error = kern_sigprocmask(td, SIG_SETMASK, uset,
976 &td->td_oldsigmask, 0);
977 if (error != 0)
978 return (error);
979 td->td_pflags |= TDP_OLDMASK;
980 /*
981 * Make sure that ast() is called on return to
982 * usermode and TDP_OLDMASK is cleared, restoring old
983 * sigmask.
984 */
985 thread_lock(td);
986 td->td_flags |= TDF_ASTPENDING;
987 thread_unlock(td);
988 }
989 #endif
990 error = kern_select(td, nd, in, ou, ex, tvp, abi_nfdbits);
991 return (error);
992 }
993
994 #ifndef _SYS_SYSPROTO_H_
995 struct select_args {
996 int nd;
997 fd_set *in, *ou, *ex;
998 struct timeval *tv;
999 };
1000 #endif
1001 int
sys_select(struct thread * td,struct select_args * uap)1002 sys_select(struct thread *td, struct select_args *uap)
1003 {
1004 struct timeval tv, *tvp;
1005 int error;
1006
1007 if (uap->tv != NULL) {
1008 error = copyin(uap->tv, &tv, sizeof(tv));
1009 if (error)
1010 return (error);
1011 tvp = &tv;
1012 } else
1013 tvp = NULL;
1014
1015 return (kern_select(td, uap->nd, uap->in, uap->ou, uap->ex, tvp,
1016 NFDBITS));
1017 }
1018
1019 /*
1020 * In the unlikely case when user specified n greater then the last
1021 * open file descriptor, check that no bits are set after the last
1022 * valid fd. We must return EBADF if any is set.
1023 *
1024 * There are applications that rely on the behaviour.
1025 *
1026 * nd is fd_nfiles.
1027 */
1028 static int
select_check_badfd(fd_set * fd_in,int nd,int ndu,int abi_nfdbits)1029 select_check_badfd(fd_set *fd_in, int nd, int ndu, int abi_nfdbits)
1030 {
1031 char *addr, *oaddr;
1032 int b, i, res;
1033 uint8_t bits;
1034
1035 if (nd >= ndu || fd_in == NULL)
1036 return (0);
1037
1038 oaddr = NULL;
1039 bits = 0; /* silence gcc */
1040 for (i = nd; i < ndu; i++) {
1041 b = i / NBBY;
1042 #if BYTE_ORDER == LITTLE_ENDIAN
1043 addr = (char *)fd_in + b;
1044 #else
1045 addr = (char *)fd_in;
1046 if (abi_nfdbits == NFDBITS) {
1047 addr += rounddown(b, sizeof(fd_mask)) +
1048 sizeof(fd_mask) - 1 - b % sizeof(fd_mask);
1049 } else {
1050 addr += rounddown(b, sizeof(uint32_t)) +
1051 sizeof(uint32_t) - 1 - b % sizeof(uint32_t);
1052 }
1053 #endif
1054 if (addr != oaddr) {
1055 res = fubyte(addr);
1056 if (res == -1)
1057 return (EFAULT);
1058 oaddr = addr;
1059 bits = res;
1060 }
1061 if ((bits & (1 << (i % NBBY))) != 0)
1062 return (EBADF);
1063 }
1064 return (0);
1065 }
1066
1067 int
kern_select(struct thread * td,int nd,fd_set * fd_in,fd_set * fd_ou,fd_set * fd_ex,struct timeval * tvp,int abi_nfdbits)1068 kern_select(struct thread *td, int nd, fd_set *fd_in, fd_set *fd_ou,
1069 fd_set *fd_ex, struct timeval *tvp, int abi_nfdbits)
1070 {
1071 struct filedesc *fdp;
1072 /*
1073 * The magic 2048 here is chosen to be just enough for FD_SETSIZE
1074 * infds with the new FD_SETSIZE of 1024, and more than enough for
1075 * FD_SETSIZE infds, outfds and exceptfds with the old FD_SETSIZE
1076 * of 256.
1077 */
1078 fd_mask s_selbits[howmany(2048, NFDBITS)];
1079 fd_mask *ibits[3], *obits[3], *selbits, *sbp;
1080 struct timeval rtv;
1081 sbintime_t asbt, precision, rsbt;
1082 u_int nbufbytes, ncpbytes, ncpubytes, nfdbits;
1083 int error, lf, ndu;
1084
1085 if (nd < 0)
1086 return (EINVAL);
1087 fdp = td->td_proc->p_fd;
1088 ndu = nd;
1089 lf = fdp->fd_nfiles;
1090 if (nd > lf)
1091 nd = lf;
1092
1093 error = select_check_badfd(fd_in, nd, ndu, abi_nfdbits);
1094 if (error != 0)
1095 return (error);
1096 error = select_check_badfd(fd_ou, nd, ndu, abi_nfdbits);
1097 if (error != 0)
1098 return (error);
1099 error = select_check_badfd(fd_ex, nd, ndu, abi_nfdbits);
1100 if (error != 0)
1101 return (error);
1102
1103 /*
1104 * Allocate just enough bits for the non-null fd_sets. Use the
1105 * preallocated auto buffer if possible.
1106 */
1107 nfdbits = roundup(nd, NFDBITS);
1108 ncpbytes = nfdbits / NBBY;
1109 ncpubytes = roundup(nd, abi_nfdbits) / NBBY;
1110 nbufbytes = 0;
1111 if (fd_in != NULL)
1112 nbufbytes += 2 * ncpbytes;
1113 if (fd_ou != NULL)
1114 nbufbytes += 2 * ncpbytes;
1115 if (fd_ex != NULL)
1116 nbufbytes += 2 * ncpbytes;
1117 if (nbufbytes <= sizeof s_selbits)
1118 selbits = &s_selbits[0];
1119 else
1120 selbits = malloc(nbufbytes, M_SELECT, M_WAITOK);
1121
1122 /*
1123 * Assign pointers into the bit buffers and fetch the input bits.
1124 * Put the output buffers together so that they can be bzeroed
1125 * together.
1126 */
1127 sbp = selbits;
1128 #define getbits(name, x) \
1129 do { \
1130 if (name == NULL) { \
1131 ibits[x] = NULL; \
1132 obits[x] = NULL; \
1133 } else { \
1134 ibits[x] = sbp + nbufbytes / 2 / sizeof *sbp; \
1135 obits[x] = sbp; \
1136 sbp += ncpbytes / sizeof *sbp; \
1137 error = copyin(name, ibits[x], ncpubytes); \
1138 if (error != 0) \
1139 goto done; \
1140 if (ncpbytes != ncpubytes) \
1141 bzero((char *)ibits[x] + ncpubytes, \
1142 ncpbytes - ncpubytes); \
1143 } \
1144 } while (0)
1145 getbits(fd_in, 0);
1146 getbits(fd_ou, 1);
1147 getbits(fd_ex, 2);
1148 #undef getbits
1149
1150 #if BYTE_ORDER == BIG_ENDIAN && defined(__LP64__)
1151 /*
1152 * XXX: swizzle_fdset assumes that if abi_nfdbits != NFDBITS,
1153 * we are running under 32-bit emulation. This should be more
1154 * generic.
1155 */
1156 #define swizzle_fdset(bits) \
1157 if (abi_nfdbits != NFDBITS && bits != NULL) { \
1158 int i; \
1159 for (i = 0; i < ncpbytes / sizeof *sbp; i++) \
1160 bits[i] = (bits[i] >> 32) | (bits[i] << 32); \
1161 }
1162 #else
1163 #define swizzle_fdset(bits)
1164 #endif
1165
1166 /* Make sure the bit order makes it through an ABI transition */
1167 swizzle_fdset(ibits[0]);
1168 swizzle_fdset(ibits[1]);
1169 swizzle_fdset(ibits[2]);
1170
1171 if (nbufbytes != 0)
1172 bzero(selbits, nbufbytes / 2);
1173
1174 precision = 0;
1175 if (tvp != NULL) {
1176 rtv = *tvp;
1177 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1178 rtv.tv_usec >= 1000000) {
1179 error = EINVAL;
1180 goto done;
1181 }
1182 if (!timevalisset(&rtv))
1183 asbt = 0;
1184 else if (rtv.tv_sec <= INT32_MAX) {
1185 rsbt = tvtosbt(rtv);
1186 precision = rsbt;
1187 precision >>= tc_precexp;
1188 if (TIMESEL(&asbt, rsbt))
1189 asbt += tc_tick_sbt;
1190 if (asbt <= SBT_MAX - rsbt)
1191 asbt += rsbt;
1192 else
1193 asbt = -1;
1194 } else
1195 asbt = -1;
1196 } else
1197 asbt = -1;
1198 seltdinit(td);
1199 /* Iterate until the timeout expires or descriptors become ready. */
1200 for (;;) {
1201 error = selscan(td, ibits, obits, nd);
1202 if (error || td->td_retval[0] != 0)
1203 break;
1204 error = seltdwait(td, asbt, precision);
1205 if (error)
1206 break;
1207 error = selrescan(td, ibits, obits);
1208 if (error || td->td_retval[0] != 0)
1209 break;
1210 }
1211 seltdclear(td);
1212
1213 done:
1214 /* select is not restarted after signals... */
1215 if (error == ERESTART)
1216 error = EINTR;
1217 if (error == EWOULDBLOCK)
1218 error = 0;
1219
1220 /* swizzle bit order back, if necessary */
1221 swizzle_fdset(obits[0]);
1222 swizzle_fdset(obits[1]);
1223 swizzle_fdset(obits[2]);
1224 #undef swizzle_fdset
1225
1226 #define putbits(name, x) \
1227 if (name && (error2 = copyout(obits[x], name, ncpubytes))) \
1228 error = error2;
1229 if (error == 0) {
1230 int error2;
1231
1232 putbits(fd_in, 0);
1233 putbits(fd_ou, 1);
1234 putbits(fd_ex, 2);
1235 #undef putbits
1236 }
1237 if (selbits != &s_selbits[0])
1238 free(selbits, M_SELECT);
1239
1240 return (error);
1241 }
1242 /*
1243 * Convert a select bit set to poll flags.
1244 *
1245 * The backend always returns POLLHUP/POLLERR if appropriate and we
1246 * return this as a set bit in any set.
1247 */
1248 static int select_flags[3] = {
1249 POLLRDNORM | POLLHUP | POLLERR,
1250 POLLWRNORM | POLLHUP | POLLERR,
1251 POLLRDBAND | POLLERR
1252 };
1253
1254 /*
1255 * Compute the fo_poll flags required for a fd given by the index and
1256 * bit position in the fd_mask array.
1257 */
1258 static __inline int
selflags(fd_mask ** ibits,int idx,fd_mask bit)1259 selflags(fd_mask **ibits, int idx, fd_mask bit)
1260 {
1261 int flags;
1262 int msk;
1263
1264 flags = 0;
1265 for (msk = 0; msk < 3; msk++) {
1266 if (ibits[msk] == NULL)
1267 continue;
1268 if ((ibits[msk][idx] & bit) == 0)
1269 continue;
1270 flags |= select_flags[msk];
1271 }
1272 return (flags);
1273 }
1274
1275 /*
1276 * Set the appropriate output bits given a mask of fired events and the
1277 * input bits originally requested.
1278 */
1279 static __inline int
selsetbits(fd_mask ** ibits,fd_mask ** obits,int idx,fd_mask bit,int events)1280 selsetbits(fd_mask **ibits, fd_mask **obits, int idx, fd_mask bit, int events)
1281 {
1282 int msk;
1283 int n;
1284
1285 n = 0;
1286 for (msk = 0; msk < 3; msk++) {
1287 if ((events & select_flags[msk]) == 0)
1288 continue;
1289 if (ibits[msk] == NULL)
1290 continue;
1291 if ((ibits[msk][idx] & bit) == 0)
1292 continue;
1293 /*
1294 * XXX Check for a duplicate set. This can occur because a
1295 * socket calls selrecord() twice for each poll() call
1296 * resulting in two selfds per real fd. selrescan() will
1297 * call selsetbits twice as a result.
1298 */
1299 if ((obits[msk][idx] & bit) != 0)
1300 continue;
1301 obits[msk][idx] |= bit;
1302 n++;
1303 }
1304
1305 return (n);
1306 }
1307
1308 /*
1309 * Traverse the list of fds attached to this thread's seltd and check for
1310 * completion.
1311 */
1312 static int
selrescan(struct thread * td,fd_mask ** ibits,fd_mask ** obits)1313 selrescan(struct thread *td, fd_mask **ibits, fd_mask **obits)
1314 {
1315 struct filedesc *fdp;
1316 struct selinfo *si;
1317 struct seltd *stp;
1318 struct selfd *sfp;
1319 struct selfd *sfn;
1320 struct file *fp;
1321 fd_mask bit;
1322 int fd, ev, n, idx;
1323 int error;
1324 bool only_user;
1325
1326 fdp = td->td_proc->p_fd;
1327 stp = td->td_sel;
1328 n = 0;
1329 only_user = FILEDESC_IS_ONLY_USER(fdp);
1330 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1331 fd = (int)(uintptr_t)sfp->sf_cookie;
1332 si = sfp->sf_si;
1333 selfdfree(stp, sfp);
1334 /* If the selinfo wasn't cleared the event didn't fire. */
1335 if (si != NULL)
1336 continue;
1337 if (only_user)
1338 error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1339 else
1340 error = fget_unlocked(fdp, fd, &cap_event_rights, &fp);
1341 if (__predict_false(error != 0))
1342 return (error);
1343 idx = fd / NFDBITS;
1344 bit = (fd_mask)1 << (fd % NFDBITS);
1345 ev = fo_poll(fp, selflags(ibits, idx, bit), td->td_ucred, td);
1346 if (only_user)
1347 fput_only_user(fdp, fp);
1348 else
1349 fdrop(fp, td);
1350 if (ev != 0)
1351 n += selsetbits(ibits, obits, idx, bit, ev);
1352 }
1353 stp->st_flags = 0;
1354 td->td_retval[0] = n;
1355 return (0);
1356 }
1357
1358 /*
1359 * Perform the initial filedescriptor scan and register ourselves with
1360 * each selinfo.
1361 */
1362 static int
selscan(struct thread * td,fd_mask ** ibits,fd_mask ** obits,int nfd)1363 selscan(struct thread *td, fd_mask **ibits, fd_mask **obits, int nfd)
1364 {
1365 struct filedesc *fdp;
1366 struct file *fp;
1367 fd_mask bit;
1368 int ev, flags, end, fd;
1369 int n, idx;
1370 int error;
1371 bool only_user;
1372
1373 fdp = td->td_proc->p_fd;
1374 n = 0;
1375 only_user = FILEDESC_IS_ONLY_USER(fdp);
1376 for (idx = 0, fd = 0; fd < nfd; idx++) {
1377 end = imin(fd + NFDBITS, nfd);
1378 for (bit = 1; fd < end; bit <<= 1, fd++) {
1379 /* Compute the list of events we're interested in. */
1380 flags = selflags(ibits, idx, bit);
1381 if (flags == 0)
1382 continue;
1383 if (only_user)
1384 error = fget_only_user(fdp, fd, &cap_event_rights, &fp);
1385 else
1386 error = fget_unlocked(fdp, fd, &cap_event_rights, &fp);
1387 if (__predict_false(error != 0))
1388 return (error);
1389 selfdalloc(td, (void *)(uintptr_t)fd);
1390 ev = fo_poll(fp, flags, td->td_ucred, td);
1391 if (only_user)
1392 fput_only_user(fdp, fp);
1393 else
1394 fdrop(fp, td);
1395 if (ev != 0)
1396 n += selsetbits(ibits, obits, idx, bit, ev);
1397 }
1398 }
1399
1400 td->td_retval[0] = n;
1401 return (0);
1402 }
1403
1404 int
sys_poll(struct thread * td,struct poll_args * uap)1405 sys_poll(struct thread *td, struct poll_args *uap)
1406 {
1407 struct timespec ts, *tsp;
1408
1409 if (uap->timeout != INFTIM) {
1410 if (uap->timeout < 0)
1411 return (EINVAL);
1412 ts.tv_sec = uap->timeout / 1000;
1413 ts.tv_nsec = (uap->timeout % 1000) * 1000000;
1414 tsp = &ts;
1415 } else
1416 tsp = NULL;
1417
1418 return (kern_poll(td, uap->fds, uap->nfds, tsp, NULL));
1419 }
1420
1421 int
kern_poll(struct thread * td,struct pollfd * ufds,u_int nfds,struct timespec * tsp,sigset_t * uset)1422 kern_poll(struct thread *td, struct pollfd *ufds, u_int nfds,
1423 struct timespec *tsp, sigset_t *uset)
1424 {
1425 struct pollfd *kfds;
1426 struct pollfd stackfds[32];
1427 sbintime_t sbt, precision, tmp;
1428 time_t over;
1429 struct timespec ts;
1430 int error;
1431
1432 precision = 0;
1433 if (tsp != NULL) {
1434 if (tsp->tv_sec < 0)
1435 return (EINVAL);
1436 if (tsp->tv_nsec < 0 || tsp->tv_nsec >= 1000000000)
1437 return (EINVAL);
1438 if (tsp->tv_sec == 0 && tsp->tv_nsec == 0)
1439 sbt = 0;
1440 else {
1441 ts = *tsp;
1442 if (ts.tv_sec > INT32_MAX / 2) {
1443 over = ts.tv_sec - INT32_MAX / 2;
1444 ts.tv_sec -= over;
1445 } else
1446 over = 0;
1447 tmp = tstosbt(ts);
1448 precision = tmp;
1449 precision >>= tc_precexp;
1450 if (TIMESEL(&sbt, tmp))
1451 sbt += tc_tick_sbt;
1452 sbt += tmp;
1453 }
1454 } else
1455 sbt = -1;
1456
1457 /*
1458 * This is kinda bogus. We have fd limits, but that is not
1459 * really related to the size of the pollfd array. Make sure
1460 * we let the process use at least FD_SETSIZE entries and at
1461 * least enough for the system-wide limits. We want to be reasonably
1462 * safe, but not overly restrictive.
1463 */
1464 if (nfds > maxfilesperproc && nfds > FD_SETSIZE)
1465 return (EINVAL);
1466 if (nfds > nitems(stackfds))
1467 kfds = mallocarray(nfds, sizeof(*kfds), M_TEMP, M_WAITOK);
1468 else
1469 kfds = stackfds;
1470 error = copyin(ufds, kfds, nfds * sizeof(*kfds));
1471 if (error)
1472 goto done;
1473
1474 #ifndef FSTACK
1475 if (uset != NULL) {
1476 error = kern_sigprocmask(td, SIG_SETMASK, uset,
1477 &td->td_oldsigmask, 0);
1478 if (error)
1479 goto done;
1480 td->td_pflags |= TDP_OLDMASK;
1481 /*
1482 * Make sure that ast() is called on return to
1483 * usermode and TDP_OLDMASK is cleared, restoring old
1484 * sigmask.
1485 */
1486 thread_lock(td);
1487 td->td_flags |= TDF_ASTPENDING;
1488 thread_unlock(td);
1489 }
1490 #endif
1491
1492 seltdinit(td);
1493 /* Iterate until the timeout expires or descriptors become ready. */
1494 for (;;) {
1495 error = pollscan(td, kfds, nfds);
1496 if (error || td->td_retval[0] != 0)
1497 break;
1498 error = seltdwait(td, sbt, precision);
1499 if (error)
1500 break;
1501 error = pollrescan(td);
1502 if (error || td->td_retval[0] != 0)
1503 break;
1504 }
1505 seltdclear(td);
1506
1507 done:
1508 /* poll is not restarted after signals... */
1509 if (error == ERESTART)
1510 error = EINTR;
1511 if (error == EWOULDBLOCK)
1512 error = 0;
1513 if (error == 0) {
1514 error = pollout(td, kfds, ufds, nfds);
1515 if (error)
1516 goto out;
1517 }
1518 out:
1519 if (nfds > nitems(stackfds))
1520 free(kfds, M_TEMP);
1521 return (error);
1522 }
1523
1524 int
sys_ppoll(struct thread * td,struct ppoll_args * uap)1525 sys_ppoll(struct thread *td, struct ppoll_args *uap)
1526 {
1527 struct timespec ts, *tsp;
1528 sigset_t set, *ssp;
1529 int error;
1530
1531 if (uap->ts != NULL) {
1532 error = copyin(uap->ts, &ts, sizeof(ts));
1533 if (error)
1534 return (error);
1535 tsp = &ts;
1536 } else
1537 tsp = NULL;
1538 if (uap->set != NULL) {
1539 error = copyin(uap->set, &set, sizeof(set));
1540 if (error)
1541 return (error);
1542 ssp = &set;
1543 } else
1544 ssp = NULL;
1545 /*
1546 * fds is still a pointer to user space. kern_poll() will
1547 * take care of copyin that array to the kernel space.
1548 */
1549
1550 return (kern_poll(td, uap->fds, uap->nfds, tsp, ssp));
1551 }
1552
1553 static int
pollrescan(struct thread * td)1554 pollrescan(struct thread *td)
1555 {
1556 struct seltd *stp;
1557 struct selfd *sfp;
1558 struct selfd *sfn;
1559 struct selinfo *si;
1560 struct filedesc *fdp;
1561 struct file *fp;
1562 struct pollfd *fd;
1563 int n, error;
1564 bool only_user;
1565
1566 n = 0;
1567 fdp = td->td_proc->p_fd;
1568 stp = td->td_sel;
1569 only_user = FILEDESC_IS_ONLY_USER(fdp);
1570 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn) {
1571 fd = (struct pollfd *)sfp->sf_cookie;
1572 si = sfp->sf_si;
1573 selfdfree(stp, sfp);
1574 /* If the selinfo wasn't cleared the event didn't fire. */
1575 if (si != NULL)
1576 continue;
1577 if (only_user)
1578 error = fget_only_user(fdp, fd->fd, &cap_event_rights, &fp);
1579 else
1580 error = fget_unlocked(fdp, fd->fd, &cap_event_rights, &fp);
1581 if (__predict_false(error != 0)) {
1582 fd->revents = POLLNVAL;
1583 n++;
1584 continue;
1585 }
1586 /*
1587 * Note: backend also returns POLLHUP and
1588 * POLLERR if appropriate.
1589 */
1590 fd->revents = fo_poll(fp, fd->events, td->td_ucred, td);
1591 if (only_user)
1592 fput_only_user(fdp, fp);
1593 else
1594 fdrop(fp, td);
1595 if (fd->revents != 0)
1596 n++;
1597 }
1598 stp->st_flags = 0;
1599 td->td_retval[0] = n;
1600 return (0);
1601 }
1602
1603 static int
pollout(struct thread * td,struct pollfd * fds,struct pollfd * ufds,u_int nfd)1604 pollout(struct thread *td, struct pollfd *fds, struct pollfd *ufds, u_int nfd)
1605 {
1606 int error = 0;
1607 u_int i = 0;
1608 u_int n = 0;
1609
1610 for (i = 0; i < nfd; i++) {
1611 error = copyout(&fds->revents, &ufds->revents,
1612 sizeof(ufds->revents));
1613 if (error)
1614 return (error);
1615 if (fds->revents != 0)
1616 n++;
1617 fds++;
1618 ufds++;
1619 }
1620 td->td_retval[0] = n;
1621 return (0);
1622 }
1623
1624 static int
pollscan(struct thread * td,struct pollfd * fds,u_int nfd)1625 pollscan(struct thread *td, struct pollfd *fds, u_int nfd)
1626 {
1627 struct filedesc *fdp;
1628 struct file *fp;
1629 int i, n, error;
1630 bool only_user;
1631
1632 n = 0;
1633 fdp = td->td_proc->p_fd;
1634 only_user = FILEDESC_IS_ONLY_USER(fdp);
1635 for (i = 0; i < nfd; i++, fds++) {
1636 if (fds->fd < 0) {
1637 fds->revents = 0;
1638 continue;
1639 }
1640 if (only_user)
1641 error = fget_only_user(fdp, fds->fd, &cap_event_rights, &fp);
1642 else
1643 error = fget_unlocked(fdp, fds->fd, &cap_event_rights, &fp);
1644 if (__predict_false(error != 0)) {
1645 fds->revents = POLLNVAL;
1646 n++;
1647 continue;
1648 }
1649 /*
1650 * Note: backend also returns POLLHUP and
1651 * POLLERR if appropriate.
1652 */
1653 selfdalloc(td, fds);
1654 fds->revents = fo_poll(fp, fds->events,
1655 td->td_ucred, td);
1656 if (only_user)
1657 fput_only_user(fdp, fp);
1658 else
1659 fdrop(fp, td);
1660 /*
1661 * POSIX requires POLLOUT to be never
1662 * set simultaneously with POLLHUP.
1663 */
1664 if ((fds->revents & POLLHUP) != 0)
1665 fds->revents &= ~POLLOUT;
1666
1667 if (fds->revents != 0)
1668 n++;
1669 }
1670 td->td_retval[0] = n;
1671 return (0);
1672 }
1673
1674 /*
1675 * XXX This was created specifically to support netncp and netsmb. This
1676 * allows the caller to specify a socket to wait for events on. It returns
1677 * 0 if any events matched and an error otherwise. There is no way to
1678 * determine which events fired.
1679 */
1680 int
selsocket(struct socket * so,int events,struct timeval * tvp,struct thread * td)1681 selsocket(struct socket *so, int events, struct timeval *tvp, struct thread *td)
1682 {
1683 struct timeval rtv;
1684 sbintime_t asbt, precision, rsbt;
1685 int error;
1686
1687 precision = 0; /* stupid gcc! */
1688 if (tvp != NULL) {
1689 rtv = *tvp;
1690 if (rtv.tv_sec < 0 || rtv.tv_usec < 0 ||
1691 rtv.tv_usec >= 1000000)
1692 return (EINVAL);
1693 if (!timevalisset(&rtv))
1694 asbt = 0;
1695 else if (rtv.tv_sec <= INT32_MAX) {
1696 rsbt = tvtosbt(rtv);
1697 precision = rsbt;
1698 precision >>= tc_precexp;
1699 if (TIMESEL(&asbt, rsbt))
1700 asbt += tc_tick_sbt;
1701 if (asbt <= SBT_MAX - rsbt)
1702 asbt += rsbt;
1703 else
1704 asbt = -1;
1705 } else
1706 asbt = -1;
1707 } else
1708 asbt = -1;
1709 seltdinit(td);
1710 /*
1711 * Iterate until the timeout expires or the socket becomes ready.
1712 */
1713 for (;;) {
1714 selfdalloc(td, NULL);
1715 error = sopoll(so, events, NULL, td);
1716 /* error here is actually the ready events. */
1717 if (error)
1718 return (0);
1719 error = seltdwait(td, asbt, precision);
1720 if (error)
1721 break;
1722 }
1723 seltdclear(td);
1724 /* XXX Duplicates ncp/smb behavior. */
1725 if (error == ERESTART)
1726 error = 0;
1727 return (error);
1728 }
1729
1730 /*
1731 * Preallocate two selfds associated with 'cookie'. Some fo_poll routines
1732 * have two select sets, one for read and another for write.
1733 */
1734 static void
selfdalloc(struct thread * td,void * cookie)1735 selfdalloc(struct thread *td, void *cookie)
1736 {
1737 struct seltd *stp;
1738
1739 stp = td->td_sel;
1740 if (stp->st_free1 == NULL)
1741 stp->st_free1 = malloc(sizeof(*stp->st_free1), M_SELFD, M_WAITOK|M_ZERO);
1742 stp->st_free1->sf_td = stp;
1743 stp->st_free1->sf_cookie = cookie;
1744 if (stp->st_free2 == NULL)
1745 stp->st_free2 = malloc(sizeof(*stp->st_free2), M_SELFD, M_WAITOK|M_ZERO);
1746 stp->st_free2->sf_td = stp;
1747 stp->st_free2->sf_cookie = cookie;
1748 }
1749
1750 static void
selfdfree(struct seltd * stp,struct selfd * sfp)1751 selfdfree(struct seltd *stp, struct selfd *sfp)
1752 {
1753 STAILQ_REMOVE(&stp->st_selq, sfp, selfd, sf_link);
1754 /*
1755 * Paired with doselwakeup.
1756 */
1757 if (atomic_load_acq_ptr((uintptr_t *)&sfp->sf_si) != (uintptr_t)NULL) {
1758 mtx_lock(sfp->sf_mtx);
1759 if (sfp->sf_si != NULL) {
1760 TAILQ_REMOVE(&sfp->sf_si->si_tdlist, sfp, sf_threads);
1761 }
1762 mtx_unlock(sfp->sf_mtx);
1763 }
1764 free(sfp, M_SELFD);
1765 }
1766
1767 /* Drain the waiters tied to all the selfd belonging the specified selinfo. */
1768 void
seldrain(struct selinfo * sip)1769 seldrain(struct selinfo *sip)
1770 {
1771
1772 /*
1773 * This feature is already provided by doselwakeup(), thus it is
1774 * enough to go for it.
1775 * Eventually, the context, should take care to avoid races
1776 * between thread calling select()/poll() and file descriptor
1777 * detaching, but, again, the races are just the same as
1778 * selwakeup().
1779 */
1780 doselwakeup(sip, -1);
1781 }
1782
1783 /*
1784 * Record a select request.
1785 */
1786 void
selrecord(struct thread * selector,struct selinfo * sip)1787 selrecord(struct thread *selector, struct selinfo *sip)
1788 {
1789 struct selfd *sfp;
1790 struct seltd *stp;
1791 struct mtx *mtxp;
1792
1793 stp = selector->td_sel;
1794 /*
1795 * Don't record when doing a rescan.
1796 */
1797 if (stp->st_flags & SELTD_RESCAN)
1798 return;
1799 /*
1800 * Grab one of the preallocated descriptors.
1801 */
1802 sfp = NULL;
1803 if ((sfp = stp->st_free1) != NULL)
1804 stp->st_free1 = NULL;
1805 else if ((sfp = stp->st_free2) != NULL)
1806 stp->st_free2 = NULL;
1807 else
1808 panic("selrecord: No free selfd on selq");
1809 mtxp = sip->si_mtx;
1810 if (mtxp == NULL)
1811 mtxp = mtx_pool_find(mtxpool_select, sip);
1812 /*
1813 * Initialize the sfp and queue it in the thread.
1814 */
1815 sfp->sf_si = sip;
1816 sfp->sf_mtx = mtxp;
1817 STAILQ_INSERT_TAIL(&stp->st_selq, sfp, sf_link);
1818 /*
1819 * Now that we've locked the sip, check for initialization.
1820 */
1821 mtx_lock(mtxp);
1822 if (sip->si_mtx == NULL) {
1823 sip->si_mtx = mtxp;
1824 TAILQ_INIT(&sip->si_tdlist);
1825 }
1826 /*
1827 * Add this thread to the list of selfds listening on this selinfo.
1828 */
1829 TAILQ_INSERT_TAIL(&sip->si_tdlist, sfp, sf_threads);
1830 mtx_unlock(sip->si_mtx);
1831 }
1832
1833 /* Wake up a selecting thread. */
1834 void
selwakeup(struct selinfo * sip)1835 selwakeup(struct selinfo *sip)
1836 {
1837 doselwakeup(sip, -1);
1838 }
1839
1840 /* Wake up a selecting thread, and set its priority. */
1841 void
selwakeuppri(struct selinfo * sip,int pri)1842 selwakeuppri(struct selinfo *sip, int pri)
1843 {
1844 doselwakeup(sip, pri);
1845 }
1846
1847 /*
1848 * Do a wakeup when a selectable event occurs.
1849 */
1850 static void
doselwakeup(struct selinfo * sip,int pri)1851 doselwakeup(struct selinfo *sip, int pri)
1852 {
1853 struct selfd *sfp;
1854 struct selfd *sfn;
1855 struct seltd *stp;
1856
1857 /* If it's not initialized there can't be any waiters. */
1858 if (sip->si_mtx == NULL)
1859 return;
1860 /*
1861 * Locking the selinfo locks all selfds associated with it.
1862 */
1863 mtx_lock(sip->si_mtx);
1864 TAILQ_FOREACH_SAFE(sfp, &sip->si_tdlist, sf_threads, sfn) {
1865 /*
1866 * Once we remove this sfp from the list and clear the
1867 * sf_si seltdclear will know to ignore this si.
1868 */
1869 TAILQ_REMOVE(&sip->si_tdlist, sfp, sf_threads);
1870 stp = sfp->sf_td;
1871 mtx_lock(&stp->st_mtx);
1872 stp->st_flags |= SELTD_PENDING;
1873 cv_broadcastpri(&stp->st_wait, pri);
1874 mtx_unlock(&stp->st_mtx);
1875 /*
1876 * Paired with selfdfree.
1877 *
1878 * Storing this only after the wakeup provides an invariant that
1879 * stp is not used after selfdfree returns.
1880 */
1881 atomic_store_rel_ptr((uintptr_t *)&sfp->sf_si, (uintptr_t)NULL);
1882 }
1883 mtx_unlock(sip->si_mtx);
1884 }
1885
1886 static void
seltdinit(struct thread * td)1887 seltdinit(struct thread *td)
1888 {
1889 struct seltd *stp;
1890
1891 stp = td->td_sel;
1892 if (stp != NULL) {
1893 MPASS(stp->st_flags == 0);
1894 MPASS(STAILQ_EMPTY(&stp->st_selq));
1895 return;
1896 }
1897 stp = malloc(sizeof(*stp), M_SELECT, M_WAITOK|M_ZERO);
1898 mtx_init(&stp->st_mtx, "sellck", NULL, MTX_DEF);
1899 cv_init(&stp->st_wait, "select");
1900 stp->st_flags = 0;
1901 STAILQ_INIT(&stp->st_selq);
1902 td->td_sel = stp;
1903 }
1904
1905 static int
seltdwait(struct thread * td,sbintime_t sbt,sbintime_t precision)1906 seltdwait(struct thread *td, sbintime_t sbt, sbintime_t precision)
1907 {
1908 struct seltd *stp;
1909 int error;
1910
1911 stp = td->td_sel;
1912 /*
1913 * An event of interest may occur while we do not hold the seltd
1914 * locked so check the pending flag before we sleep.
1915 */
1916 mtx_lock(&stp->st_mtx);
1917 /*
1918 * Any further calls to selrecord will be a rescan.
1919 */
1920 stp->st_flags |= SELTD_RESCAN;
1921 if (stp->st_flags & SELTD_PENDING) {
1922 mtx_unlock(&stp->st_mtx);
1923 return (0);
1924 }
1925 if (sbt == 0)
1926 error = EWOULDBLOCK;
1927 else if (sbt != -1)
1928 error = cv_timedwait_sig_sbt(&stp->st_wait, &stp->st_mtx,
1929 sbt, precision, C_ABSOLUTE);
1930 else
1931 error = cv_wait_sig(&stp->st_wait, &stp->st_mtx);
1932 mtx_unlock(&stp->st_mtx);
1933
1934 return (error);
1935 }
1936
1937 void
seltdfini(struct thread * td)1938 seltdfini(struct thread *td)
1939 {
1940 struct seltd *stp;
1941
1942 stp = td->td_sel;
1943 if (stp == NULL)
1944 return;
1945 MPASS(stp->st_flags == 0);
1946 MPASS(STAILQ_EMPTY(&stp->st_selq));
1947 if (stp->st_free1)
1948 free(stp->st_free1, M_SELFD);
1949 if (stp->st_free2)
1950 free(stp->st_free2, M_SELFD);
1951 td->td_sel = NULL;
1952 cv_destroy(&stp->st_wait);
1953 mtx_destroy(&stp->st_mtx);
1954 free(stp, M_SELECT);
1955 }
1956
1957 /*
1958 * Remove the references to the thread from all of the objects we were
1959 * polling.
1960 */
1961 static void
seltdclear(struct thread * td)1962 seltdclear(struct thread *td)
1963 {
1964 struct seltd *stp;
1965 struct selfd *sfp;
1966 struct selfd *sfn;
1967
1968 stp = td->td_sel;
1969 STAILQ_FOREACH_SAFE(sfp, &stp->st_selq, sf_link, sfn)
1970 selfdfree(stp, sfp);
1971 stp->st_flags = 0;
1972 }
1973
1974 static void selectinit(void *);
1975 SYSINIT(select, SI_SUB_SYSCALLS, SI_ORDER_ANY, selectinit, NULL);
1976 static void
selectinit(void * dummy __unused)1977 selectinit(void *dummy __unused)
1978 {
1979
1980 mtxpool_select = mtx_pool_create("select mtxpool", 128, MTX_DEF);
1981 }
1982
1983 /*
1984 * Set up a syscall return value that follows the convention specified for
1985 * posix_* functions.
1986 */
1987 int
kern_posix_error(struct thread * td,int error)1988 kern_posix_error(struct thread *td, int error)
1989 {
1990
1991 if (error <= 0)
1992 return (error);
1993 td->td_errno = error;
1994 td->td_pflags |= TDP_NERRNO;
1995 td->td_retval[0] = error;
1996 return (0);
1997 }
1998