1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017-2018 Intel Corporation
3  */
4 
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <sys/queue.h>
17 #include <sys/file.h>
18 #include <unistd.h>
19 #include <limits.h>
20 #include <fcntl.h>
21 #include <sys/ioctl.h>
22 #include <sys/time.h>
23 #include <signal.h>
24 #include <setjmp.h>
25 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
26 #include <linux/memfd.h>
27 #define MEMFD_SUPPORTED
28 #endif
29 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
30 #include <numa.h>
31 #include <numaif.h>
32 #endif
33 #include <linux/falloc.h>
34 #include <linux/mman.h> /* for hugetlb-related mmap flags */
35 
36 #include <rte_common.h>
37 #include <rte_log.h>
38 #include <rte_eal.h>
39 #include <rte_errno.h>
40 #include <rte_memory.h>
41 #include <rte_spinlock.h>
42 
43 #include "eal_filesystem.h"
44 #include "eal_internal_cfg.h"
45 #include "eal_memalloc.h"
46 #include "eal_memcfg.h"
47 #include "eal_private.h"
48 
49 const int anonymous_hugepages_supported =
50 #ifdef MAP_HUGE_SHIFT
51 		1;
52 #define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
53 #else
54 		0;
55 #define RTE_MAP_HUGE_SHIFT 26
56 #endif
57 
58 /*
59  * we've already checked memfd support at compile-time, but we also need to
60  * check if we can create hugepage files with memfd.
61  *
62  * also, this is not a constant, because while we may be *compiled* with memfd
63  * hugetlbfs support, we might not be *running* on a system that supports memfd
64  * and/or memfd with hugetlbfs, so we need to be able to adjust this flag at
65  * runtime, and fall back to anonymous memory.
66  */
67 static int memfd_create_supported =
68 #ifdef MFD_HUGETLB
69 		1;
70 #define RTE_MFD_HUGETLB MFD_HUGETLB
71 #else
72 		0;
73 #define RTE_MFD_HUGETLB 4U
74 #endif
75 
76 /*
77  * not all kernel version support fallocate on hugetlbfs, so fall back to
78  * ftruncate and disallow deallocation if fallocate is not supported.
79  */
80 static int fallocate_supported = -1; /* unknown */
81 
82 /*
83  * we have two modes - single file segments, and file-per-page mode.
84  *
85  * for single-file segments, we use memseg_list_fd to store the segment fd,
86  * while the fds[] will not be allocated, and len will be set to 0.
87  *
88  * for file-per-page mode, each page will have its own fd, so 'memseg_list_fd'
89  * will be invalid (set to -1), and we'll use 'fds' to keep track of page fd's.
90  *
91  * we cannot know how many pages a system will have in advance, but we do know
92  * that they come in lists, and we know lengths of these lists. so, simply store
93  * a malloc'd array of fd's indexed by list and segment index.
94  *
95  * they will be initialized at startup, and filled as we allocate/deallocate
96  * segments.
97  */
98 static struct {
99 	int *fds; /**< dynamically allocated array of segment lock fd's */
100 	int memseg_list_fd; /**< memseg list fd */
101 	int len; /**< total length of the array */
102 	int count; /**< entries used in an array */
103 } fd_list[RTE_MAX_MEMSEG_LISTS];
104 
105 /** local copy of a memory map, used to synchronize memory hotplug in MP */
106 static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
107 
108 static sigjmp_buf huge_jmpenv;
109 
huge_sigbus_handler(int signo __rte_unused)110 static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
111 {
112 	siglongjmp(huge_jmpenv, 1);
113 }
114 
115 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
116  * non-static local variable in the stack frame calling sigsetjmp might be
117  * clobbered by a call to longjmp.
118  */
huge_wrap_sigsetjmp(void)119 static int __rte_unused huge_wrap_sigsetjmp(void)
120 {
121 	return sigsetjmp(huge_jmpenv, 1);
122 }
123 
124 static struct sigaction huge_action_old;
125 static int huge_need_recover;
126 
127 static void __rte_unused
huge_register_sigbus(void)128 huge_register_sigbus(void)
129 {
130 	sigset_t mask;
131 	struct sigaction action;
132 
133 	sigemptyset(&mask);
134 	sigaddset(&mask, SIGBUS);
135 	action.sa_flags = 0;
136 	action.sa_mask = mask;
137 	action.sa_handler = huge_sigbus_handler;
138 
139 	huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
140 }
141 
142 static void __rte_unused
huge_recover_sigbus(void)143 huge_recover_sigbus(void)
144 {
145 	if (huge_need_recover) {
146 		sigaction(SIGBUS, &huge_action_old, NULL);
147 		huge_need_recover = 0;
148 	}
149 }
150 
151 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
152 static bool
check_numa(void)153 check_numa(void)
154 {
155 	bool ret = true;
156 	/* Check if kernel supports NUMA. */
157 	if (numa_available() != 0) {
158 		RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
159 		ret = false;
160 	}
161 	return ret;
162 }
163 
164 static void
prepare_numa(int * oldpolicy,struct bitmask * oldmask,int socket_id)165 prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
166 {
167 	RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
168 	if (get_mempolicy(oldpolicy, oldmask->maskp,
169 			  oldmask->size + 1, 0, 0) < 0) {
170 		RTE_LOG(ERR, EAL,
171 			"Failed to get current mempolicy: %s. "
172 			"Assuming MPOL_DEFAULT.\n", strerror(errno));
173 		*oldpolicy = MPOL_DEFAULT;
174 	}
175 	RTE_LOG(DEBUG, EAL,
176 		"Setting policy MPOL_PREFERRED for socket %d\n",
177 		socket_id);
178 	numa_set_preferred(socket_id);
179 }
180 
181 static void
restore_numa(int * oldpolicy,struct bitmask * oldmask)182 restore_numa(int *oldpolicy, struct bitmask *oldmask)
183 {
184 	RTE_LOG(DEBUG, EAL,
185 		"Restoring previous memory policy: %d\n", *oldpolicy);
186 	if (*oldpolicy == MPOL_DEFAULT) {
187 		numa_set_localalloc();
188 	} else if (set_mempolicy(*oldpolicy, oldmask->maskp,
189 				 oldmask->size + 1) < 0) {
190 		RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
191 			strerror(errno));
192 		numa_set_localalloc();
193 	}
194 	numa_free_cpumask(oldmask);
195 }
196 #endif
197 
198 /*
199  * uses fstat to report the size of a file on disk
200  */
201 static off_t
get_file_size(int fd)202 get_file_size(int fd)
203 {
204 	struct stat st;
205 	if (fstat(fd, &st) < 0)
206 		return 0;
207 	return st.st_size;
208 }
209 
210 static int
pagesz_flags(uint64_t page_sz)211 pagesz_flags(uint64_t page_sz)
212 {
213 	/* as per mmap() manpage, all page sizes are log2 of page size
214 	 * shifted by MAP_HUGE_SHIFT
215 	 */
216 	int log2 = rte_log2_u64(page_sz);
217 	return log2 << RTE_MAP_HUGE_SHIFT;
218 }
219 
220 /* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
lock(int fd,int type)221 static int lock(int fd, int type)
222 {
223 	int ret;
224 
225 	/* flock may be interrupted */
226 	do {
227 		ret = flock(fd, type | LOCK_NB);
228 	} while (ret && errno == EINTR);
229 
230 	if (ret && errno == EWOULDBLOCK) {
231 		/* couldn't lock */
232 		return 0;
233 	} else if (ret) {
234 		RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
235 			__func__, strerror(errno));
236 		return -1;
237 	}
238 	/* lock was successful */
239 	return 1;
240 }
241 
242 static int
get_seg_memfd(struct hugepage_info * hi __rte_unused,unsigned int list_idx __rte_unused,unsigned int seg_idx __rte_unused)243 get_seg_memfd(struct hugepage_info *hi __rte_unused,
244 		unsigned int list_idx __rte_unused,
245 		unsigned int seg_idx __rte_unused)
246 {
247 #ifdef MEMFD_SUPPORTED
248 	int fd;
249 	char segname[250]; /* as per manpage, limit is 249 bytes plus null */
250 
251 	int flags = RTE_MFD_HUGETLB | pagesz_flags(hi->hugepage_sz);
252 	const struct internal_config *internal_conf =
253 		eal_get_internal_configuration();
254 
255 	if (internal_conf->single_file_segments) {
256 		fd = fd_list[list_idx].memseg_list_fd;
257 
258 		if (fd < 0) {
259 			snprintf(segname, sizeof(segname), "seg_%i", list_idx);
260 			fd = memfd_create(segname, flags);
261 			if (fd < 0) {
262 				RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
263 					__func__, strerror(errno));
264 				return -1;
265 			}
266 			fd_list[list_idx].memseg_list_fd = fd;
267 		}
268 	} else {
269 		fd = fd_list[list_idx].fds[seg_idx];
270 
271 		if (fd < 0) {
272 			snprintf(segname, sizeof(segname), "seg_%i-%i",
273 					list_idx, seg_idx);
274 			fd = memfd_create(segname, flags);
275 			if (fd < 0) {
276 				RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
277 					__func__, strerror(errno));
278 				return -1;
279 			}
280 			fd_list[list_idx].fds[seg_idx] = fd;
281 		}
282 	}
283 	return fd;
284 #endif
285 	return -1;
286 }
287 
288 static int
get_seg_fd(char * path,int buflen,struct hugepage_info * hi,unsigned int list_idx,unsigned int seg_idx)289 get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
290 		unsigned int list_idx, unsigned int seg_idx)
291 {
292 	int fd;
293 	const struct internal_config *internal_conf =
294 		eal_get_internal_configuration();
295 
296 	/* for in-memory mode, we only make it here when we're sure we support
297 	 * memfd, and this is a special case.
298 	 */
299 	if (internal_conf->in_memory)
300 		return get_seg_memfd(hi, list_idx, seg_idx);
301 
302 	if (internal_conf->single_file_segments) {
303 		/* create a hugepage file path */
304 		eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
305 
306 		fd = fd_list[list_idx].memseg_list_fd;
307 
308 		if (fd < 0) {
309 			fd = open(path, O_CREAT | O_RDWR, 0600);
310 			if (fd < 0) {
311 				RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
312 					__func__, strerror(errno));
313 				return -1;
314 			}
315 			/* take out a read lock and keep it indefinitely */
316 			if (lock(fd, LOCK_SH) < 0) {
317 				RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
318 					__func__, strerror(errno));
319 				close(fd);
320 				return -1;
321 			}
322 			fd_list[list_idx].memseg_list_fd = fd;
323 		}
324 	} else {
325 		/* create a hugepage file path */
326 		eal_get_hugefile_path(path, buflen, hi->hugedir,
327 				list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
328 
329 		fd = fd_list[list_idx].fds[seg_idx];
330 
331 		if (fd < 0) {
332 			/* A primary process is the only one creating these
333 			 * files. If there is a leftover that was not cleaned
334 			 * by clear_hugedir(), we must *now* make sure to drop
335 			 * the file or we will remap old stuff while the rest
336 			 * of the code is built on the assumption that a new
337 			 * page is clean.
338 			 */
339 			if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
340 					unlink(path) == -1 &&
341 					errno != ENOENT) {
342 				RTE_LOG(DEBUG, EAL, "%s(): could not remove '%s': %s\n",
343 					__func__, path, strerror(errno));
344 				return -1;
345 			}
346 
347 			fd = open(path, O_CREAT | O_RDWR, 0600);
348 			if (fd < 0) {
349 				RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n",
350 					__func__, strerror(errno));
351 				return -1;
352 			}
353 			/* take out a read lock */
354 			if (lock(fd, LOCK_SH) < 0) {
355 				RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
356 					__func__, strerror(errno));
357 				close(fd);
358 				return -1;
359 			}
360 			fd_list[list_idx].fds[seg_idx] = fd;
361 		}
362 	}
363 	return fd;
364 }
365 
366 static int
resize_hugefile_in_memory(int fd,uint64_t fa_offset,uint64_t page_sz,bool grow)367 resize_hugefile_in_memory(int fd, uint64_t fa_offset,
368 		uint64_t page_sz, bool grow)
369 {
370 	int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
371 			FALLOC_FL_KEEP_SIZE;
372 	int ret;
373 
374 	/* grow or shrink the file */
375 	ret = fallocate(fd, flags, fa_offset, page_sz);
376 
377 	if (ret < 0) {
378 		RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
379 				__func__,
380 				strerror(errno));
381 		return -1;
382 	}
383 	return 0;
384 }
385 
386 static int
resize_hugefile_in_filesystem(int fd,uint64_t fa_offset,uint64_t page_sz,bool grow)387 resize_hugefile_in_filesystem(int fd, uint64_t fa_offset, uint64_t page_sz,
388 		bool grow)
389 {
390 	bool again = false;
391 
392 	do {
393 		if (fallocate_supported == 0) {
394 			/* we cannot deallocate memory if fallocate() is not
395 			 * supported, and hugepage file is already locked at
396 			 * creation, so no further synchronization needed.
397 			 */
398 
399 			if (!grow) {
400 				RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
401 					__func__);
402 				return -1;
403 			}
404 			uint64_t new_size = fa_offset + page_sz;
405 			uint64_t cur_size = get_file_size(fd);
406 
407 			/* fallocate isn't supported, fall back to ftruncate */
408 			if (new_size > cur_size &&
409 					ftruncate(fd, new_size) < 0) {
410 				RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
411 					__func__, strerror(errno));
412 				return -1;
413 			}
414 		} else {
415 			int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
416 					FALLOC_FL_KEEP_SIZE;
417 			int ret;
418 
419 			/*
420 			 * technically, it is perfectly safe for both primary
421 			 * and secondary to grow and shrink the page files:
422 			 * growing the file repeatedly has no effect because
423 			 * a page can only be allocated once, while mmap ensures
424 			 * that secondaries hold on to the page even after the
425 			 * page itself is removed from the filesystem.
426 			 *
427 			 * however, leaving growing/shrinking to the primary
428 			 * tends to expose bugs in fdlist page count handling,
429 			 * so leave this here just in case.
430 			 */
431 			if (rte_eal_process_type() != RTE_PROC_PRIMARY)
432 				return 0;
433 
434 			/* grow or shrink the file */
435 			ret = fallocate(fd, flags, fa_offset, page_sz);
436 
437 			if (ret < 0) {
438 				if (fallocate_supported == -1 &&
439 						errno == ENOTSUP) {
440 					RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
441 						__func__);
442 					again = true;
443 					fallocate_supported = 0;
444 				} else {
445 					RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
446 						__func__,
447 						strerror(errno));
448 					return -1;
449 				}
450 			} else
451 				fallocate_supported = 1;
452 		}
453 	} while (again);
454 
455 	return 0;
456 }
457 
458 static void
close_hugefile(int fd,char * path,int list_idx)459 close_hugefile(int fd, char *path, int list_idx)
460 {
461 	const struct internal_config *internal_conf =
462 		eal_get_internal_configuration();
463 	/*
464 	 * primary process must unlink the file, but only when not in in-memory
465 	 * mode (as in that case there is no file to unlink).
466 	 */
467 	if (!internal_conf->in_memory &&
468 			rte_eal_process_type() == RTE_PROC_PRIMARY &&
469 			unlink(path))
470 		RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
471 			__func__, path, strerror(errno));
472 
473 	close(fd);
474 	fd_list[list_idx].memseg_list_fd = -1;
475 }
476 
477 static int
resize_hugefile(int fd,uint64_t fa_offset,uint64_t page_sz,bool grow)478 resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, bool grow)
479 {
480 	/* in-memory mode is a special case, because we can be sure that
481 	 * fallocate() is supported.
482 	 */
483 	const struct internal_config *internal_conf =
484 		eal_get_internal_configuration();
485 
486 	if (internal_conf->in_memory)
487 		return resize_hugefile_in_memory(fd, fa_offset,
488 				page_sz, grow);
489 
490 	return resize_hugefile_in_filesystem(fd, fa_offset, page_sz,
491 				grow);
492 }
493 
494 static int
alloc_seg(struct rte_memseg * ms,void * addr,int socket_id,struct hugepage_info * hi,unsigned int list_idx,unsigned int seg_idx)495 alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
496 		struct hugepage_info *hi, unsigned int list_idx,
497 		unsigned int seg_idx)
498 {
499 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
500 	int cur_socket_id = 0;
501 #endif
502 	uint64_t map_offset;
503 	rte_iova_t iova;
504 	void *va;
505 	char path[PATH_MAX];
506 	int ret = 0;
507 	int fd;
508 	size_t alloc_sz;
509 	int flags;
510 	void *new_addr;
511 	const struct internal_config *internal_conf =
512 		eal_get_internal_configuration();
513 
514 	alloc_sz = hi->hugepage_sz;
515 
516 	/* these are checked at init, but code analyzers don't know that */
517 	if (internal_conf->in_memory && !anonymous_hugepages_supported) {
518 		RTE_LOG(ERR, EAL, "Anonymous hugepages not supported, in-memory mode cannot allocate memory\n");
519 		return -1;
520 	}
521 	if (internal_conf->in_memory && !memfd_create_supported &&
522 			internal_conf->single_file_segments) {
523 		RTE_LOG(ERR, EAL, "Single-file segments are not supported without memfd support\n");
524 		return -1;
525 	}
526 
527 	/* in-memory without memfd is a special case */
528 	int mmap_flags;
529 
530 	if (internal_conf->in_memory && !memfd_create_supported) {
531 		const int in_memory_flags = MAP_HUGETLB | MAP_FIXED |
532 				MAP_PRIVATE | MAP_ANONYMOUS;
533 		int pagesz_flag;
534 
535 		pagesz_flag = pagesz_flags(alloc_sz);
536 		fd = -1;
537 		mmap_flags = in_memory_flags | pagesz_flag;
538 
539 		/* single-file segments codepath will never be active
540 		 * here because in-memory mode is incompatible with the
541 		 * fallback path, and it's stopped at EAL initialization
542 		 * stage.
543 		 */
544 		map_offset = 0;
545 	} else {
546 		/* takes out a read lock on segment or segment list */
547 		fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
548 		if (fd < 0) {
549 			RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
550 			return -1;
551 		}
552 
553 		if (internal_conf->single_file_segments) {
554 			map_offset = seg_idx * alloc_sz;
555 			ret = resize_hugefile(fd, map_offset, alloc_sz, true);
556 			if (ret < 0)
557 				goto resized;
558 
559 			fd_list[list_idx].count++;
560 		} else {
561 			map_offset = 0;
562 			if (ftruncate(fd, alloc_sz) < 0) {
563 				RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
564 					__func__, strerror(errno));
565 				goto resized;
566 			}
567 			if (internal_conf->hugepage_unlink &&
568 					!internal_conf->in_memory) {
569 				if (unlink(path)) {
570 					RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
571 						__func__, strerror(errno));
572 					goto resized;
573 				}
574 			}
575 		}
576 		mmap_flags = MAP_SHARED | MAP_POPULATE | MAP_FIXED;
577 	}
578 
579 	/*
580 	 * map the segment, and populate page tables, the kernel fills
581 	 * this segment with zeros if it's a new page.
582 	 */
583 	va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, mmap_flags, fd,
584 			map_offset);
585 
586 	if (va == MAP_FAILED) {
587 		RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
588 			strerror(errno));
589 		/* mmap failed, but the previous region might have been
590 		 * unmapped anyway. try to remap it
591 		 */
592 		goto unmapped;
593 	}
594 	if (va != addr) {
595 		RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
596 		munmap(va, alloc_sz);
597 		goto resized;
598 	}
599 
600 	/* In linux, hugetlb limitations, like cgroup, are
601 	 * enforced at fault time instead of mmap(), even
602 	 * with the option of MAP_POPULATE. Kernel will send
603 	 * a SIGBUS signal. To avoid to be killed, save stack
604 	 * environment here, if SIGBUS happens, we can jump
605 	 * back here.
606 	 */
607 	if (huge_wrap_sigsetjmp()) {
608 		RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
609 			(unsigned int)(alloc_sz >> 20));
610 		goto mapped;
611 	}
612 
613 	/* we need to trigger a write to the page to enforce page fault and
614 	 * ensure that page is accessible to us, but we can't overwrite value
615 	 * that is already there, so read the old value, and write itback.
616 	 * kernel populates the page with zeroes initially.
617 	 */
618 	*(volatile int *)addr = *(volatile int *)addr;
619 
620 	iova = rte_mem_virt2iova(addr);
621 	if (iova == RTE_BAD_PHYS_ADDR) {
622 		RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
623 			__func__);
624 		goto mapped;
625 	}
626 
627 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
628 	/*
629 	 * If the kernel has been built without NUMA support, get_mempolicy()
630 	 * will return an error. If check_numa() returns false, memory
631 	 * allocation is not NUMA aware and the socket_id should not be
632 	 * checked.
633 	 */
634 	if (check_numa()) {
635 		ret = get_mempolicy(&cur_socket_id, NULL, 0, addr,
636 					MPOL_F_NODE | MPOL_F_ADDR);
637 		if (ret < 0) {
638 			RTE_LOG(DEBUG, EAL, "%s(): get_mempolicy: %s\n",
639 				__func__, strerror(errno));
640 			goto mapped;
641 		} else if (cur_socket_id != socket_id) {
642 			RTE_LOG(DEBUG, EAL,
643 					"%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
644 				__func__, socket_id, cur_socket_id);
645 			goto mapped;
646 		}
647 	}
648 #else
649 	if (rte_socket_count() > 1)
650 		RTE_LOG(DEBUG, EAL, "%s(): not checking hugepage NUMA node.\n",
651 				__func__);
652 #endif
653 
654 	ms->addr = addr;
655 	ms->hugepage_sz = alloc_sz;
656 	ms->len = alloc_sz;
657 	ms->nchannel = rte_memory_get_nchannel();
658 	ms->nrank = rte_memory_get_nrank();
659 	ms->iova = iova;
660 	ms->socket_id = socket_id;
661 
662 	return 0;
663 
664 mapped:
665 	munmap(addr, alloc_sz);
666 unmapped:
667 	flags = EAL_RESERVE_FORCE_ADDRESS;
668 	new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
669 	if (new_addr != addr) {
670 		if (new_addr != NULL)
671 			munmap(new_addr, alloc_sz);
672 		/* we're leaving a hole in our virtual address space. if
673 		 * somebody else maps this hole now, we could accidentally
674 		 * override it in the future.
675 		 */
676 		RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
677 	}
678 	/* roll back the ref count */
679 	if (internal_conf->single_file_segments)
680 		fd_list[list_idx].count--;
681 resized:
682 	/* some codepaths will return negative fd, so exit early */
683 	if (fd < 0)
684 		return -1;
685 
686 	if (internal_conf->single_file_segments) {
687 		resize_hugefile(fd, map_offset, alloc_sz, false);
688 		/* ignore failure, can't make it any worse */
689 
690 		/* if refcount is at zero, close the file */
691 		if (fd_list[list_idx].count == 0)
692 			close_hugefile(fd, path, list_idx);
693 	} else {
694 		/* only remove file if we can take out a write lock */
695 		if (internal_conf->hugepage_unlink == 0 &&
696 				internal_conf->in_memory == 0 &&
697 				lock(fd, LOCK_EX) == 1)
698 			unlink(path);
699 		close(fd);
700 		fd_list[list_idx].fds[seg_idx] = -1;
701 	}
702 	return -1;
703 }
704 
705 static int
free_seg(struct rte_memseg * ms,struct hugepage_info * hi,unsigned int list_idx,unsigned int seg_idx)706 free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
707 		unsigned int list_idx, unsigned int seg_idx)
708 {
709 	uint64_t map_offset;
710 	char path[PATH_MAX];
711 	int fd, ret = 0;
712 	bool exit_early;
713 	const struct internal_config *internal_conf =
714 		eal_get_internal_configuration();
715 
716 	/* erase page data */
717 	memset(ms->addr, 0, ms->len);
718 
719 	if (mmap(ms->addr, ms->len, PROT_NONE,
720 			MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
721 				MAP_FAILED) {
722 		RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
723 		return -1;
724 	}
725 
726 	eal_mem_set_dump(ms->addr, ms->len, false);
727 
728 	exit_early = false;
729 
730 	/* if we're using anonymous hugepages, nothing to be done */
731 	if (internal_conf->in_memory && !memfd_create_supported)
732 		exit_early = true;
733 
734 	/* if we've already unlinked the page, nothing needs to be done */
735 	if (!internal_conf->in_memory && internal_conf->hugepage_unlink)
736 		exit_early = true;
737 
738 	if (exit_early) {
739 		memset(ms, 0, sizeof(*ms));
740 		return 0;
741 	}
742 
743 	/* if we are not in single file segments mode, we're going to unmap the
744 	 * segment and thus drop the lock on original fd, but hugepage dir is
745 	 * now locked so we can take out another one without races.
746 	 */
747 	fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
748 	if (fd < 0)
749 		return -1;
750 
751 	if (internal_conf->single_file_segments) {
752 		map_offset = seg_idx * ms->len;
753 		if (resize_hugefile(fd, map_offset, ms->len, false))
754 			return -1;
755 
756 		if (--(fd_list[list_idx].count) == 0)
757 			close_hugefile(fd, path, list_idx);
758 
759 		ret = 0;
760 	} else {
761 		/* if we're able to take out a write lock, we're the last one
762 		 * holding onto this page.
763 		 */
764 		if (!internal_conf->in_memory) {
765 			ret = lock(fd, LOCK_EX);
766 			if (ret >= 0) {
767 				/* no one else is using this page */
768 				if (ret == 1)
769 					unlink(path);
770 			}
771 		}
772 		/* closing fd will drop the lock */
773 		close(fd);
774 		fd_list[list_idx].fds[seg_idx] = -1;
775 	}
776 
777 	memset(ms, 0, sizeof(*ms));
778 
779 	return ret < 0 ? -1 : 0;
780 }
781 
782 struct alloc_walk_param {
783 	struct hugepage_info *hi;
784 	struct rte_memseg **ms;
785 	size_t page_sz;
786 	unsigned int segs_allocated;
787 	unsigned int n_segs;
788 	int socket;
789 	bool exact;
790 };
791 static int
alloc_seg_walk(const struct rte_memseg_list * msl,void * arg)792 alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
793 {
794 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
795 	struct alloc_walk_param *wa = arg;
796 	struct rte_memseg_list *cur_msl;
797 	size_t page_sz;
798 	int cur_idx, start_idx, j, dir_fd = -1;
799 	unsigned int msl_idx, need, i;
800 	const struct internal_config *internal_conf =
801 		eal_get_internal_configuration();
802 
803 	if (msl->page_sz != wa->page_sz)
804 		return 0;
805 	if (msl->socket_id != wa->socket)
806 		return 0;
807 
808 	page_sz = (size_t)msl->page_sz;
809 
810 	msl_idx = msl - mcfg->memsegs;
811 	cur_msl = &mcfg->memsegs[msl_idx];
812 
813 	need = wa->n_segs;
814 
815 	/* try finding space in memseg list */
816 	if (wa->exact) {
817 		/* if we require exact number of pages in a list, find them */
818 		cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0,
819 				need);
820 		if (cur_idx < 0)
821 			return 0;
822 		start_idx = cur_idx;
823 	} else {
824 		int cur_len;
825 
826 		/* we don't require exact number of pages, so we're going to go
827 		 * for best-effort allocation. that means finding the biggest
828 		 * unused block, and going with that.
829 		 */
830 		cur_idx = rte_fbarray_find_biggest_free(&cur_msl->memseg_arr,
831 				0);
832 		if (cur_idx < 0)
833 			return 0;
834 		start_idx = cur_idx;
835 		/* adjust the size to possibly be smaller than original
836 		 * request, but do not allow it to be bigger.
837 		 */
838 		cur_len = rte_fbarray_find_contig_free(&cur_msl->memseg_arr,
839 				cur_idx);
840 		need = RTE_MIN(need, (unsigned int)cur_len);
841 	}
842 
843 	/* do not allow any page allocations during the time we're allocating,
844 	 * because file creation and locking operations are not atomic,
845 	 * and we might be the first or the last ones to use a particular page,
846 	 * so we need to ensure atomicity of every operation.
847 	 *
848 	 * during init, we already hold a write lock, so don't try to take out
849 	 * another one.
850 	 */
851 	if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
852 		dir_fd = open(wa->hi->hugedir, O_RDONLY);
853 		if (dir_fd < 0) {
854 			RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
855 				__func__, wa->hi->hugedir, strerror(errno));
856 			return -1;
857 		}
858 		/* blocking writelock */
859 		if (flock(dir_fd, LOCK_EX)) {
860 			RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
861 				__func__, wa->hi->hugedir, strerror(errno));
862 			close(dir_fd);
863 			return -1;
864 		}
865 	}
866 
867 	for (i = 0; i < need; i++, cur_idx++) {
868 		struct rte_memseg *cur;
869 		void *map_addr;
870 
871 		cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
872 		map_addr = RTE_PTR_ADD(cur_msl->base_va,
873 				cur_idx * page_sz);
874 
875 		if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
876 				msl_idx, cur_idx)) {
877 			RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
878 				need, i);
879 
880 			/* if exact number wasn't requested, stop */
881 			if (!wa->exact)
882 				goto out;
883 
884 			/* clean up */
885 			for (j = start_idx; j < cur_idx; j++) {
886 				struct rte_memseg *tmp;
887 				struct rte_fbarray *arr =
888 						&cur_msl->memseg_arr;
889 
890 				tmp = rte_fbarray_get(arr, j);
891 				rte_fbarray_set_free(arr, j);
892 
893 				/* free_seg may attempt to create a file, which
894 				 * may fail.
895 				 */
896 				if (free_seg(tmp, wa->hi, msl_idx, j))
897 					RTE_LOG(DEBUG, EAL, "Cannot free page\n");
898 			}
899 			/* clear the list */
900 			if (wa->ms)
901 				memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
902 
903 			if (dir_fd >= 0)
904 				close(dir_fd);
905 			return -1;
906 		}
907 		if (wa->ms)
908 			wa->ms[i] = cur;
909 
910 		rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
911 	}
912 out:
913 	wa->segs_allocated = i;
914 	if (i > 0)
915 		cur_msl->version++;
916 	if (dir_fd >= 0)
917 		close(dir_fd);
918 	/* if we didn't allocate any segments, move on to the next list */
919 	return i > 0;
920 }
921 
922 struct free_walk_param {
923 	struct hugepage_info *hi;
924 	struct rte_memseg *ms;
925 };
926 static int
free_seg_walk(const struct rte_memseg_list * msl,void * arg)927 free_seg_walk(const struct rte_memseg_list *msl, void *arg)
928 {
929 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
930 	struct rte_memseg_list *found_msl;
931 	struct free_walk_param *wa = arg;
932 	uintptr_t start_addr, end_addr;
933 	int msl_idx, seg_idx, ret, dir_fd = -1;
934 	const struct internal_config *internal_conf =
935 		eal_get_internal_configuration();
936 
937 	start_addr = (uintptr_t) msl->base_va;
938 	end_addr = start_addr + msl->len;
939 
940 	if ((uintptr_t)wa->ms->addr < start_addr ||
941 			(uintptr_t)wa->ms->addr >= end_addr)
942 		return 0;
943 
944 	msl_idx = msl - mcfg->memsegs;
945 	seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
946 
947 	/* msl is const */
948 	found_msl = &mcfg->memsegs[msl_idx];
949 
950 	/* do not allow any page allocations during the time we're freeing,
951 	 * because file creation and locking operations are not atomic,
952 	 * and we might be the first or the last ones to use a particular page,
953 	 * so we need to ensure atomicity of every operation.
954 	 *
955 	 * during init, we already hold a write lock, so don't try to take out
956 	 * another one.
957 	 */
958 	if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
959 		dir_fd = open(wa->hi->hugedir, O_RDONLY);
960 		if (dir_fd < 0) {
961 			RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
962 				__func__, wa->hi->hugedir, strerror(errno));
963 			return -1;
964 		}
965 		/* blocking writelock */
966 		if (flock(dir_fd, LOCK_EX)) {
967 			RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
968 				__func__, wa->hi->hugedir, strerror(errno));
969 			close(dir_fd);
970 			return -1;
971 		}
972 	}
973 
974 	found_msl->version++;
975 
976 	rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
977 
978 	ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
979 
980 	if (dir_fd >= 0)
981 		close(dir_fd);
982 
983 	if (ret < 0)
984 		return -1;
985 
986 	return 1;
987 }
988 
989 int
eal_memalloc_alloc_seg_bulk(struct rte_memseg ** ms,int n_segs,size_t page_sz,int socket,bool exact)990 eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
991 		int socket, bool exact)
992 {
993 	int i, ret = -1;
994 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
995 	bool have_numa = false;
996 	int oldpolicy;
997 	struct bitmask *oldmask;
998 #endif
999 	struct alloc_walk_param wa;
1000 	struct hugepage_info *hi = NULL;
1001 	struct internal_config *internal_conf =
1002 		eal_get_internal_configuration();
1003 
1004 	memset(&wa, 0, sizeof(wa));
1005 
1006 	/* dynamic allocation not supported in legacy mode */
1007 	if (internal_conf->legacy_mem)
1008 		return -1;
1009 
1010 	for (i = 0; i < (int) RTE_DIM(internal_conf->hugepage_info); i++) {
1011 		if (page_sz ==
1012 				internal_conf->hugepage_info[i].hugepage_sz) {
1013 			hi = &internal_conf->hugepage_info[i];
1014 			break;
1015 		}
1016 	}
1017 	if (!hi) {
1018 		RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
1019 			__func__);
1020 		return -1;
1021 	}
1022 
1023 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1024 	if (check_numa()) {
1025 		oldmask = numa_allocate_nodemask();
1026 		prepare_numa(&oldpolicy, oldmask, socket);
1027 		have_numa = true;
1028 	}
1029 #endif
1030 
1031 	wa.exact = exact;
1032 	wa.hi = hi;
1033 	wa.ms = ms;
1034 	wa.n_segs = n_segs;
1035 	wa.page_sz = page_sz;
1036 	wa.socket = socket;
1037 	wa.segs_allocated = 0;
1038 
1039 	/* memalloc is locked, so it's safe to use thread-unsafe version */
1040 	ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
1041 	if (ret == 0) {
1042 		RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
1043 			__func__);
1044 		ret = -1;
1045 	} else if (ret > 0) {
1046 		ret = (int)wa.segs_allocated;
1047 	}
1048 
1049 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1050 	if (have_numa)
1051 		restore_numa(&oldpolicy, oldmask);
1052 #endif
1053 	return ret;
1054 }
1055 
1056 struct rte_memseg *
eal_memalloc_alloc_seg(size_t page_sz,int socket)1057 eal_memalloc_alloc_seg(size_t page_sz, int socket)
1058 {
1059 	struct rte_memseg *ms;
1060 	if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
1061 		return NULL;
1062 	/* return pointer to newly allocated memseg */
1063 	return ms;
1064 }
1065 
1066 int
eal_memalloc_free_seg_bulk(struct rte_memseg ** ms,int n_segs)1067 eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
1068 {
1069 	int seg, ret = 0;
1070 	struct internal_config *internal_conf =
1071 		eal_get_internal_configuration();
1072 
1073 	/* dynamic free not supported in legacy mode */
1074 	if (internal_conf->legacy_mem)
1075 		return -1;
1076 
1077 	for (seg = 0; seg < n_segs; seg++) {
1078 		struct rte_memseg *cur = ms[seg];
1079 		struct hugepage_info *hi = NULL;
1080 		struct free_walk_param wa;
1081 		int i, walk_res;
1082 
1083 		/* if this page is marked as unfreeable, fail */
1084 		if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
1085 			RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
1086 			ret = -1;
1087 			continue;
1088 		}
1089 
1090 		memset(&wa, 0, sizeof(wa));
1091 
1092 		for (i = 0; i < (int)RTE_DIM(internal_conf->hugepage_info);
1093 				i++) {
1094 			hi = &internal_conf->hugepage_info[i];
1095 			if (cur->hugepage_sz == hi->hugepage_sz)
1096 				break;
1097 		}
1098 		if (i == (int)RTE_DIM(internal_conf->hugepage_info)) {
1099 			RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1100 			ret = -1;
1101 			continue;
1102 		}
1103 
1104 		wa.ms = cur;
1105 		wa.hi = hi;
1106 
1107 		/* memalloc is locked, so it's safe to use thread-unsafe version
1108 		 */
1109 		walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
1110 				&wa);
1111 		if (walk_res == 1)
1112 			continue;
1113 		if (walk_res == 0)
1114 			RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
1115 		ret = -1;
1116 	}
1117 	return ret;
1118 }
1119 
1120 int
eal_memalloc_free_seg(struct rte_memseg * ms)1121 eal_memalloc_free_seg(struct rte_memseg *ms)
1122 {
1123 	const struct internal_config *internal_conf =
1124 		eal_get_internal_configuration();
1125 
1126 	/* dynamic free not supported in legacy mode */
1127 	if (internal_conf->legacy_mem)
1128 		return -1;
1129 
1130 	return eal_memalloc_free_seg_bulk(&ms, 1);
1131 }
1132 
1133 static int
sync_chunk(struct rte_memseg_list * primary_msl,struct rte_memseg_list * local_msl,struct hugepage_info * hi,unsigned int msl_idx,bool used,int start,int end)1134 sync_chunk(struct rte_memseg_list *primary_msl,
1135 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1136 		unsigned int msl_idx, bool used, int start, int end)
1137 {
1138 	struct rte_fbarray *l_arr, *p_arr;
1139 	int i, ret, chunk_len, diff_len;
1140 
1141 	l_arr = &local_msl->memseg_arr;
1142 	p_arr = &primary_msl->memseg_arr;
1143 
1144 	/* we need to aggregate allocations/deallocations into bigger chunks,
1145 	 * as we don't want to spam the user with per-page callbacks.
1146 	 *
1147 	 * to avoid any potential issues, we also want to trigger
1148 	 * deallocation callbacks *before* we actually deallocate
1149 	 * memory, so that the user application could wrap up its use
1150 	 * before it goes away.
1151 	 */
1152 
1153 	chunk_len = end - start;
1154 
1155 	/* find how many contiguous pages we can map/unmap for this chunk */
1156 	diff_len = used ?
1157 			rte_fbarray_find_contig_free(l_arr, start) :
1158 			rte_fbarray_find_contig_used(l_arr, start);
1159 
1160 	/* has to be at least one page */
1161 	if (diff_len < 1)
1162 		return -1;
1163 
1164 	diff_len = RTE_MIN(chunk_len, diff_len);
1165 
1166 	/* if we are freeing memory, notify the application */
1167 	if (!used) {
1168 		struct rte_memseg *ms;
1169 		void *start_va;
1170 		size_t len, page_sz;
1171 
1172 		ms = rte_fbarray_get(l_arr, start);
1173 		start_va = ms->addr;
1174 		page_sz = (size_t)primary_msl->page_sz;
1175 		len = page_sz * diff_len;
1176 
1177 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
1178 				start_va, len);
1179 	}
1180 
1181 	for (i = 0; i < diff_len; i++) {
1182 		struct rte_memseg *p_ms, *l_ms;
1183 		int seg_idx = start + i;
1184 
1185 		l_ms = rte_fbarray_get(l_arr, seg_idx);
1186 		p_ms = rte_fbarray_get(p_arr, seg_idx);
1187 
1188 		if (l_ms == NULL || p_ms == NULL)
1189 			return -1;
1190 
1191 		if (used) {
1192 			ret = alloc_seg(l_ms, p_ms->addr,
1193 					p_ms->socket_id, hi,
1194 					msl_idx, seg_idx);
1195 			if (ret < 0)
1196 				return -1;
1197 			rte_fbarray_set_used(l_arr, seg_idx);
1198 		} else {
1199 			ret = free_seg(l_ms, hi, msl_idx, seg_idx);
1200 			rte_fbarray_set_free(l_arr, seg_idx);
1201 			if (ret < 0)
1202 				return -1;
1203 		}
1204 	}
1205 
1206 	/* if we just allocated memory, notify the application */
1207 	if (used) {
1208 		struct rte_memseg *ms;
1209 		void *start_va;
1210 		size_t len, page_sz;
1211 
1212 		ms = rte_fbarray_get(l_arr, start);
1213 		start_va = ms->addr;
1214 		page_sz = (size_t)primary_msl->page_sz;
1215 		len = page_sz * diff_len;
1216 
1217 		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1218 				start_va, len);
1219 	}
1220 
1221 	/* calculate how much we can advance until next chunk */
1222 	diff_len = used ?
1223 			rte_fbarray_find_contig_used(l_arr, start) :
1224 			rte_fbarray_find_contig_free(l_arr, start);
1225 	ret = RTE_MIN(chunk_len, diff_len);
1226 
1227 	return ret;
1228 }
1229 
1230 static int
sync_status(struct rte_memseg_list * primary_msl,struct rte_memseg_list * local_msl,struct hugepage_info * hi,unsigned int msl_idx,bool used)1231 sync_status(struct rte_memseg_list *primary_msl,
1232 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1233 		unsigned int msl_idx, bool used)
1234 {
1235 	struct rte_fbarray *l_arr, *p_arr;
1236 	int p_idx, l_chunk_len, p_chunk_len, ret;
1237 	int start, end;
1238 
1239 	/* this is a little bit tricky, but the basic idea is - walk both lists
1240 	 * and spot any places where there are discrepancies. walking both lists
1241 	 * and noting discrepancies in a single go is a hard problem, so we do
1242 	 * it in two passes - first we spot any places where allocated segments
1243 	 * mismatch (i.e. ensure that everything that's allocated in the primary
1244 	 * is also allocated in the secondary), and then we do it by looking at
1245 	 * free segments instead.
1246 	 *
1247 	 * we also need to aggregate changes into chunks, as we have to call
1248 	 * callbacks per allocation, not per page.
1249 	 */
1250 	l_arr = &local_msl->memseg_arr;
1251 	p_arr = &primary_msl->memseg_arr;
1252 
1253 	if (used)
1254 		p_idx = rte_fbarray_find_next_used(p_arr, 0);
1255 	else
1256 		p_idx = rte_fbarray_find_next_free(p_arr, 0);
1257 
1258 	while (p_idx >= 0) {
1259 		int next_chunk_search_idx;
1260 
1261 		if (used) {
1262 			p_chunk_len = rte_fbarray_find_contig_used(p_arr,
1263 					p_idx);
1264 			l_chunk_len = rte_fbarray_find_contig_used(l_arr,
1265 					p_idx);
1266 		} else {
1267 			p_chunk_len = rte_fbarray_find_contig_free(p_arr,
1268 					p_idx);
1269 			l_chunk_len = rte_fbarray_find_contig_free(l_arr,
1270 					p_idx);
1271 		}
1272 		/* best case scenario - no differences (or bigger, which will be
1273 		 * fixed during next iteration), look for next chunk
1274 		 */
1275 		if (l_chunk_len >= p_chunk_len) {
1276 			next_chunk_search_idx = p_idx + p_chunk_len;
1277 			goto next_chunk;
1278 		}
1279 
1280 		/* if both chunks start at the same point, skip parts we know
1281 		 * are identical, and sync the rest. each call to sync_chunk
1282 		 * will only sync contiguous segments, so we need to call this
1283 		 * until we are sure there are no more differences in this
1284 		 * chunk.
1285 		 */
1286 		start = p_idx + l_chunk_len;
1287 		end = p_idx + p_chunk_len;
1288 		do {
1289 			ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
1290 					used, start, end);
1291 			start += ret;
1292 		} while (start < end && ret >= 0);
1293 		/* if ret is negative, something went wrong */
1294 		if (ret < 0)
1295 			return -1;
1296 
1297 		next_chunk_search_idx = p_idx + p_chunk_len;
1298 next_chunk:
1299 		/* skip to end of this chunk */
1300 		if (used) {
1301 			p_idx = rte_fbarray_find_next_used(p_arr,
1302 					next_chunk_search_idx);
1303 		} else {
1304 			p_idx = rte_fbarray_find_next_free(p_arr,
1305 					next_chunk_search_idx);
1306 		}
1307 	}
1308 	return 0;
1309 }
1310 
1311 static int
sync_existing(struct rte_memseg_list * primary_msl,struct rte_memseg_list * local_msl,struct hugepage_info * hi,unsigned int msl_idx)1312 sync_existing(struct rte_memseg_list *primary_msl,
1313 		struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1314 		unsigned int msl_idx)
1315 {
1316 	int ret, dir_fd;
1317 
1318 	/* do not allow any page allocations during the time we're allocating,
1319 	 * because file creation and locking operations are not atomic,
1320 	 * and we might be the first or the last ones to use a particular page,
1321 	 * so we need to ensure atomicity of every operation.
1322 	 */
1323 	dir_fd = open(hi->hugedir, O_RDONLY);
1324 	if (dir_fd < 0) {
1325 		RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
1326 			hi->hugedir, strerror(errno));
1327 		return -1;
1328 	}
1329 	/* blocking writelock */
1330 	if (flock(dir_fd, LOCK_EX)) {
1331 		RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
1332 			hi->hugedir, strerror(errno));
1333 		close(dir_fd);
1334 		return -1;
1335 	}
1336 
1337 	/* ensure all allocated space is the same in both lists */
1338 	ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
1339 	if (ret < 0)
1340 		goto fail;
1341 
1342 	/* ensure all unallocated space is the same in both lists */
1343 	ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
1344 	if (ret < 0)
1345 		goto fail;
1346 
1347 	/* update version number */
1348 	local_msl->version = primary_msl->version;
1349 
1350 	close(dir_fd);
1351 
1352 	return 0;
1353 fail:
1354 	close(dir_fd);
1355 	return -1;
1356 }
1357 
1358 static int
sync_walk(const struct rte_memseg_list * msl,void * arg __rte_unused)1359 sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
1360 {
1361 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1362 	struct rte_memseg_list *primary_msl, *local_msl;
1363 	struct hugepage_info *hi = NULL;
1364 	unsigned int i;
1365 	int msl_idx;
1366 	struct internal_config *internal_conf =
1367 		eal_get_internal_configuration();
1368 
1369 	if (msl->external)
1370 		return 0;
1371 
1372 	msl_idx = msl - mcfg->memsegs;
1373 	primary_msl = &mcfg->memsegs[msl_idx];
1374 	local_msl = &local_memsegs[msl_idx];
1375 
1376 	for (i = 0; i < RTE_DIM(internal_conf->hugepage_info); i++) {
1377 		uint64_t cur_sz =
1378 			internal_conf->hugepage_info[i].hugepage_sz;
1379 		uint64_t msl_sz = primary_msl->page_sz;
1380 		if (msl_sz == cur_sz) {
1381 			hi = &internal_conf->hugepage_info[i];
1382 			break;
1383 		}
1384 	}
1385 	if (!hi) {
1386 		RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1387 		return -1;
1388 	}
1389 
1390 	/* if versions don't match, synchronize everything */
1391 	if (local_msl->version != primary_msl->version &&
1392 			sync_existing(primary_msl, local_msl, hi, msl_idx))
1393 		return -1;
1394 	return 0;
1395 }
1396 
1397 
1398 int
eal_memalloc_sync_with_primary(void)1399 eal_memalloc_sync_with_primary(void)
1400 {
1401 	/* nothing to be done in primary */
1402 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
1403 		return 0;
1404 
1405 	/* memalloc is locked, so it's safe to call thread-unsafe version */
1406 	if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
1407 		return -1;
1408 	return 0;
1409 }
1410 
1411 static int
secondary_msl_create_walk(const struct rte_memseg_list * msl,void * arg __rte_unused)1412 secondary_msl_create_walk(const struct rte_memseg_list *msl,
1413 		void *arg __rte_unused)
1414 {
1415 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1416 	struct rte_memseg_list *primary_msl, *local_msl;
1417 	char name[PATH_MAX];
1418 	int msl_idx, ret;
1419 
1420 	if (msl->external)
1421 		return 0;
1422 
1423 	msl_idx = msl - mcfg->memsegs;
1424 	primary_msl = &mcfg->memsegs[msl_idx];
1425 	local_msl = &local_memsegs[msl_idx];
1426 
1427 	/* create distinct fbarrays for each secondary */
1428 	snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
1429 		primary_msl->memseg_arr.name, getpid());
1430 
1431 	ret = rte_fbarray_init(&local_msl->memseg_arr, name,
1432 		primary_msl->memseg_arr.len,
1433 		primary_msl->memseg_arr.elt_sz);
1434 	if (ret < 0) {
1435 		RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
1436 		return -1;
1437 	}
1438 	local_msl->base_va = primary_msl->base_va;
1439 	local_msl->len = primary_msl->len;
1440 
1441 	return 0;
1442 }
1443 
1444 static int
alloc_list(int list_idx,int len)1445 alloc_list(int list_idx, int len)
1446 {
1447 	int *data;
1448 	int i;
1449 	const struct internal_config *internal_conf =
1450 		eal_get_internal_configuration();
1451 
1452 	/* single-file segments mode does not need fd list */
1453 	if (!internal_conf->single_file_segments) {
1454 		/* ensure we have space to store fd per each possible segment */
1455 		data = malloc(sizeof(int) * len);
1456 		if (data == NULL) {
1457 			RTE_LOG(ERR, EAL, "Unable to allocate space for file descriptors\n");
1458 			return -1;
1459 		}
1460 		/* set all fd's as invalid */
1461 		for (i = 0; i < len; i++)
1462 			data[i] = -1;
1463 		fd_list[list_idx].fds = data;
1464 		fd_list[list_idx].len = len;
1465 	} else {
1466 		fd_list[list_idx].fds = NULL;
1467 		fd_list[list_idx].len = 0;
1468 	}
1469 
1470 	fd_list[list_idx].count = 0;
1471 	fd_list[list_idx].memseg_list_fd = -1;
1472 
1473 	return 0;
1474 }
1475 
1476 static int
fd_list_create_walk(const struct rte_memseg_list * msl,void * arg __rte_unused)1477 fd_list_create_walk(const struct rte_memseg_list *msl,
1478 		void *arg __rte_unused)
1479 {
1480 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1481 	unsigned int len;
1482 	int msl_idx;
1483 
1484 	if (msl->external)
1485 		return 0;
1486 
1487 	msl_idx = msl - mcfg->memsegs;
1488 	len = msl->memseg_arr.len;
1489 
1490 	return alloc_list(msl_idx, len);
1491 }
1492 
1493 int
eal_memalloc_set_seg_fd(int list_idx,int seg_idx,int fd)1494 eal_memalloc_set_seg_fd(int list_idx, int seg_idx, int fd)
1495 {
1496 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1497 	const struct internal_config *internal_conf =
1498 		eal_get_internal_configuration();
1499 
1500 	/* single file segments mode doesn't support individual segment fd's */
1501 	if (internal_conf->single_file_segments)
1502 		return -ENOTSUP;
1503 
1504 	/* if list is not allocated, allocate it */
1505 	if (fd_list[list_idx].len == 0) {
1506 		int len = mcfg->memsegs[list_idx].memseg_arr.len;
1507 
1508 		if (alloc_list(list_idx, len) < 0)
1509 			return -ENOMEM;
1510 	}
1511 	fd_list[list_idx].fds[seg_idx] = fd;
1512 
1513 	return 0;
1514 }
1515 
1516 int
eal_memalloc_set_seg_list_fd(int list_idx,int fd)1517 eal_memalloc_set_seg_list_fd(int list_idx, int fd)
1518 {
1519 	const struct internal_config *internal_conf =
1520 		eal_get_internal_configuration();
1521 
1522 	/* non-single file segment mode doesn't support segment list fd's */
1523 	if (!internal_conf->single_file_segments)
1524 		return -ENOTSUP;
1525 
1526 	fd_list[list_idx].memseg_list_fd = fd;
1527 
1528 	return 0;
1529 }
1530 
1531 int
eal_memalloc_get_seg_fd(int list_idx,int seg_idx)1532 eal_memalloc_get_seg_fd(int list_idx, int seg_idx)
1533 {
1534 	int fd;
1535 	const struct internal_config *internal_conf =
1536 		eal_get_internal_configuration();
1537 
1538 	if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1539 #ifndef MEMFD_SUPPORTED
1540 		/* in in-memory or no-huge mode, we rely on memfd support */
1541 		return -ENOTSUP;
1542 #endif
1543 		/* memfd supported, but hugetlbfs memfd may not be */
1544 		if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1545 			return -ENOTSUP;
1546 	}
1547 
1548 	if (internal_conf->single_file_segments) {
1549 		fd = fd_list[list_idx].memseg_list_fd;
1550 	} else if (fd_list[list_idx].len == 0) {
1551 		/* list not initialized */
1552 		fd = -1;
1553 	} else {
1554 		fd = fd_list[list_idx].fds[seg_idx];
1555 	}
1556 	if (fd < 0)
1557 		return -ENODEV;
1558 	return fd;
1559 }
1560 
1561 static int
test_memfd_create(void)1562 test_memfd_create(void)
1563 {
1564 #ifdef MEMFD_SUPPORTED
1565 	const struct internal_config *internal_conf =
1566 		eal_get_internal_configuration();
1567 	unsigned int i;
1568 	for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
1569 		uint64_t pagesz = internal_conf->hugepage_info[i].hugepage_sz;
1570 		int pagesz_flag = pagesz_flags(pagesz);
1571 		int flags;
1572 
1573 		flags = pagesz_flag | RTE_MFD_HUGETLB;
1574 		int fd = memfd_create("test", flags);
1575 		if (fd < 0) {
1576 			/* we failed - let memalloc know this isn't working */
1577 			if (errno == EINVAL) {
1578 				memfd_create_supported = 0;
1579 				return 0; /* not supported */
1580 			}
1581 
1582 			/* we got other error - something's wrong */
1583 			return -1; /* error */
1584 		}
1585 		close(fd);
1586 		return 1; /* supported */
1587 	}
1588 #endif
1589 	return 0; /* not supported */
1590 }
1591 
1592 int
eal_memalloc_get_seg_fd_offset(int list_idx,int seg_idx,size_t * offset)1593 eal_memalloc_get_seg_fd_offset(int list_idx, int seg_idx, size_t *offset)
1594 {
1595 	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1596 	const struct internal_config *internal_conf =
1597 		eal_get_internal_configuration();
1598 
1599 	if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1600 #ifndef MEMFD_SUPPORTED
1601 		/* in in-memory or no-huge mode, we rely on memfd support */
1602 		return -ENOTSUP;
1603 #endif
1604 		/* memfd supported, but hugetlbfs memfd may not be */
1605 		if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1606 			return -ENOTSUP;
1607 	}
1608 
1609 	if (internal_conf->single_file_segments) {
1610 		size_t pgsz = mcfg->memsegs[list_idx].page_sz;
1611 
1612 		/* segment not active? */
1613 		if (fd_list[list_idx].memseg_list_fd < 0)
1614 			return -ENOENT;
1615 		*offset = pgsz * seg_idx;
1616 	} else {
1617 		/* fd_list not initialized? */
1618 		if (fd_list[list_idx].len == 0)
1619 			return -ENODEV;
1620 
1621 		/* segment not active? */
1622 		if (fd_list[list_idx].fds[seg_idx] < 0)
1623 			return -ENOENT;
1624 		*offset = 0;
1625 	}
1626 	return 0;
1627 }
1628 
1629 int
eal_memalloc_init(void)1630 eal_memalloc_init(void)
1631 {
1632 	const struct internal_config *internal_conf =
1633 		eal_get_internal_configuration();
1634 
1635 	if (rte_eal_process_type() == RTE_PROC_SECONDARY)
1636 		if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
1637 			return -1;
1638 	if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
1639 			internal_conf->in_memory) {
1640 		int mfd_res = test_memfd_create();
1641 
1642 		if (mfd_res < 0) {
1643 			RTE_LOG(ERR, EAL, "Unable to check if memfd is supported\n");
1644 			return -1;
1645 		}
1646 		if (mfd_res == 1)
1647 			RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
1648 		else
1649 			RTE_LOG(INFO, EAL, "Using memfd is not supported, falling back to anonymous hugepages\n");
1650 
1651 		/* we only support single-file segments mode with in-memory mode
1652 		 * if we support hugetlbfs with memfd_create. this code will
1653 		 * test if we do.
1654 		 */
1655 		if (internal_conf->single_file_segments &&
1656 				mfd_res != 1) {
1657 			RTE_LOG(ERR, EAL, "Single-file segments mode cannot be used without memfd support\n");
1658 			return -1;
1659 		}
1660 		/* this cannot ever happen but better safe than sorry */
1661 		if (!anonymous_hugepages_supported) {
1662 			RTE_LOG(ERR, EAL, "Using anonymous memory is not supported\n");
1663 			return -1;
1664 		}
1665 	}
1666 
1667 	/* initialize all of the fd lists */
1668 	if (rte_memseg_list_walk(fd_list_create_walk, NULL))
1669 		return -1;
1670 	return 0;
1671 }
1672