1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017-2018 Intel Corporation
3 */
4
5 #include <errno.h>
6 #include <stdarg.h>
7 #include <stdbool.h>
8 #include <stdlib.h>
9 #include <stdio.h>
10 #include <stdint.h>
11 #include <inttypes.h>
12 #include <string.h>
13 #include <sys/mman.h>
14 #include <sys/types.h>
15 #include <sys/stat.h>
16 #include <sys/queue.h>
17 #include <sys/file.h>
18 #include <unistd.h>
19 #include <limits.h>
20 #include <fcntl.h>
21 #include <sys/ioctl.h>
22 #include <sys/time.h>
23 #include <signal.h>
24 #include <setjmp.h>
25 #ifdef F_ADD_SEALS /* if file sealing is supported, so is memfd */
26 #include <linux/memfd.h>
27 #define MEMFD_SUPPORTED
28 #endif
29 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
30 #include <numa.h>
31 #include <numaif.h>
32 #endif
33 #include <linux/falloc.h>
34 #include <linux/mman.h> /* for hugetlb-related mmap flags */
35
36 #include <rte_common.h>
37 #include <rte_log.h>
38 #include <rte_eal.h>
39 #include <rte_errno.h>
40 #include <rte_memory.h>
41 #include <rte_spinlock.h>
42
43 #include "eal_filesystem.h"
44 #include "eal_internal_cfg.h"
45 #include "eal_memalloc.h"
46 #include "eal_memcfg.h"
47 #include "eal_private.h"
48
49 const int anonymous_hugepages_supported =
50 #ifdef MAP_HUGE_SHIFT
51 1;
52 #define RTE_MAP_HUGE_SHIFT MAP_HUGE_SHIFT
53 #else
54 0;
55 #define RTE_MAP_HUGE_SHIFT 26
56 #endif
57
58 /*
59 * we've already checked memfd support at compile-time, but we also need to
60 * check if we can create hugepage files with memfd.
61 *
62 * also, this is not a constant, because while we may be *compiled* with memfd
63 * hugetlbfs support, we might not be *running* on a system that supports memfd
64 * and/or memfd with hugetlbfs, so we need to be able to adjust this flag at
65 * runtime, and fall back to anonymous memory.
66 */
67 static int memfd_create_supported =
68 #ifdef MFD_HUGETLB
69 1;
70 #define RTE_MFD_HUGETLB MFD_HUGETLB
71 #else
72 0;
73 #define RTE_MFD_HUGETLB 4U
74 #endif
75
76 /*
77 * not all kernel version support fallocate on hugetlbfs, so fall back to
78 * ftruncate and disallow deallocation if fallocate is not supported.
79 */
80 static int fallocate_supported = -1; /* unknown */
81
82 /*
83 * we have two modes - single file segments, and file-per-page mode.
84 *
85 * for single-file segments, we use memseg_list_fd to store the segment fd,
86 * while the fds[] will not be allocated, and len will be set to 0.
87 *
88 * for file-per-page mode, each page will have its own fd, so 'memseg_list_fd'
89 * will be invalid (set to -1), and we'll use 'fds' to keep track of page fd's.
90 *
91 * we cannot know how many pages a system will have in advance, but we do know
92 * that they come in lists, and we know lengths of these lists. so, simply store
93 * a malloc'd array of fd's indexed by list and segment index.
94 *
95 * they will be initialized at startup, and filled as we allocate/deallocate
96 * segments.
97 */
98 static struct {
99 int *fds; /**< dynamically allocated array of segment lock fd's */
100 int memseg_list_fd; /**< memseg list fd */
101 int len; /**< total length of the array */
102 int count; /**< entries used in an array */
103 } fd_list[RTE_MAX_MEMSEG_LISTS];
104
105 /** local copy of a memory map, used to synchronize memory hotplug in MP */
106 static struct rte_memseg_list local_memsegs[RTE_MAX_MEMSEG_LISTS];
107
108 static sigjmp_buf huge_jmpenv;
109
huge_sigbus_handler(int signo __rte_unused)110 static void __rte_unused huge_sigbus_handler(int signo __rte_unused)
111 {
112 siglongjmp(huge_jmpenv, 1);
113 }
114
115 /* Put setjmp into a wrap method to avoid compiling error. Any non-volatile,
116 * non-static local variable in the stack frame calling sigsetjmp might be
117 * clobbered by a call to longjmp.
118 */
huge_wrap_sigsetjmp(void)119 static int __rte_unused huge_wrap_sigsetjmp(void)
120 {
121 return sigsetjmp(huge_jmpenv, 1);
122 }
123
124 static struct sigaction huge_action_old;
125 static int huge_need_recover;
126
127 static void __rte_unused
huge_register_sigbus(void)128 huge_register_sigbus(void)
129 {
130 sigset_t mask;
131 struct sigaction action;
132
133 sigemptyset(&mask);
134 sigaddset(&mask, SIGBUS);
135 action.sa_flags = 0;
136 action.sa_mask = mask;
137 action.sa_handler = huge_sigbus_handler;
138
139 huge_need_recover = !sigaction(SIGBUS, &action, &huge_action_old);
140 }
141
142 static void __rte_unused
huge_recover_sigbus(void)143 huge_recover_sigbus(void)
144 {
145 if (huge_need_recover) {
146 sigaction(SIGBUS, &huge_action_old, NULL);
147 huge_need_recover = 0;
148 }
149 }
150
151 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
152 static bool
check_numa(void)153 check_numa(void)
154 {
155 bool ret = true;
156 /* Check if kernel supports NUMA. */
157 if (numa_available() != 0) {
158 RTE_LOG(DEBUG, EAL, "NUMA is not supported.\n");
159 ret = false;
160 }
161 return ret;
162 }
163
164 static void
prepare_numa(int * oldpolicy,struct bitmask * oldmask,int socket_id)165 prepare_numa(int *oldpolicy, struct bitmask *oldmask, int socket_id)
166 {
167 RTE_LOG(DEBUG, EAL, "Trying to obtain current memory policy.\n");
168 if (get_mempolicy(oldpolicy, oldmask->maskp,
169 oldmask->size + 1, 0, 0) < 0) {
170 RTE_LOG(ERR, EAL,
171 "Failed to get current mempolicy: %s. "
172 "Assuming MPOL_DEFAULT.\n", strerror(errno));
173 *oldpolicy = MPOL_DEFAULT;
174 }
175 RTE_LOG(DEBUG, EAL,
176 "Setting policy MPOL_PREFERRED for socket %d\n",
177 socket_id);
178 numa_set_preferred(socket_id);
179 }
180
181 static void
restore_numa(int * oldpolicy,struct bitmask * oldmask)182 restore_numa(int *oldpolicy, struct bitmask *oldmask)
183 {
184 RTE_LOG(DEBUG, EAL,
185 "Restoring previous memory policy: %d\n", *oldpolicy);
186 if (*oldpolicy == MPOL_DEFAULT) {
187 numa_set_localalloc();
188 } else if (set_mempolicy(*oldpolicy, oldmask->maskp,
189 oldmask->size + 1) < 0) {
190 RTE_LOG(ERR, EAL, "Failed to restore mempolicy: %s\n",
191 strerror(errno));
192 numa_set_localalloc();
193 }
194 numa_free_cpumask(oldmask);
195 }
196 #endif
197
198 /*
199 * uses fstat to report the size of a file on disk
200 */
201 static off_t
get_file_size(int fd)202 get_file_size(int fd)
203 {
204 struct stat st;
205 if (fstat(fd, &st) < 0)
206 return 0;
207 return st.st_size;
208 }
209
210 static int
pagesz_flags(uint64_t page_sz)211 pagesz_flags(uint64_t page_sz)
212 {
213 /* as per mmap() manpage, all page sizes are log2 of page size
214 * shifted by MAP_HUGE_SHIFT
215 */
216 int log2 = rte_log2_u64(page_sz);
217 return log2 << RTE_MAP_HUGE_SHIFT;
218 }
219
220 /* returns 1 on successful lock, 0 on unsuccessful lock, -1 on error */
lock(int fd,int type)221 static int lock(int fd, int type)
222 {
223 int ret;
224
225 /* flock may be interrupted */
226 do {
227 ret = flock(fd, type | LOCK_NB);
228 } while (ret && errno == EINTR);
229
230 if (ret && errno == EWOULDBLOCK) {
231 /* couldn't lock */
232 return 0;
233 } else if (ret) {
234 RTE_LOG(ERR, EAL, "%s(): error calling flock(): %s\n",
235 __func__, strerror(errno));
236 return -1;
237 }
238 /* lock was successful */
239 return 1;
240 }
241
242 static int
get_seg_memfd(struct hugepage_info * hi __rte_unused,unsigned int list_idx __rte_unused,unsigned int seg_idx __rte_unused)243 get_seg_memfd(struct hugepage_info *hi __rte_unused,
244 unsigned int list_idx __rte_unused,
245 unsigned int seg_idx __rte_unused)
246 {
247 #ifdef MEMFD_SUPPORTED
248 int fd;
249 char segname[250]; /* as per manpage, limit is 249 bytes plus null */
250
251 int flags = RTE_MFD_HUGETLB | pagesz_flags(hi->hugepage_sz);
252 const struct internal_config *internal_conf =
253 eal_get_internal_configuration();
254
255 if (internal_conf->single_file_segments) {
256 fd = fd_list[list_idx].memseg_list_fd;
257
258 if (fd < 0) {
259 snprintf(segname, sizeof(segname), "seg_%i", list_idx);
260 fd = memfd_create(segname, flags);
261 if (fd < 0) {
262 RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
263 __func__, strerror(errno));
264 return -1;
265 }
266 fd_list[list_idx].memseg_list_fd = fd;
267 }
268 } else {
269 fd = fd_list[list_idx].fds[seg_idx];
270
271 if (fd < 0) {
272 snprintf(segname, sizeof(segname), "seg_%i-%i",
273 list_idx, seg_idx);
274 fd = memfd_create(segname, flags);
275 if (fd < 0) {
276 RTE_LOG(DEBUG, EAL, "%s(): memfd create failed: %s\n",
277 __func__, strerror(errno));
278 return -1;
279 }
280 fd_list[list_idx].fds[seg_idx] = fd;
281 }
282 }
283 return fd;
284 #endif
285 return -1;
286 }
287
288 static int
get_seg_fd(char * path,int buflen,struct hugepage_info * hi,unsigned int list_idx,unsigned int seg_idx)289 get_seg_fd(char *path, int buflen, struct hugepage_info *hi,
290 unsigned int list_idx, unsigned int seg_idx)
291 {
292 int fd;
293 const struct internal_config *internal_conf =
294 eal_get_internal_configuration();
295
296 /* for in-memory mode, we only make it here when we're sure we support
297 * memfd, and this is a special case.
298 */
299 if (internal_conf->in_memory)
300 return get_seg_memfd(hi, list_idx, seg_idx);
301
302 if (internal_conf->single_file_segments) {
303 /* create a hugepage file path */
304 eal_get_hugefile_path(path, buflen, hi->hugedir, list_idx);
305
306 fd = fd_list[list_idx].memseg_list_fd;
307
308 if (fd < 0) {
309 fd = open(path, O_CREAT | O_RDWR, 0600);
310 if (fd < 0) {
311 RTE_LOG(ERR, EAL, "%s(): open failed: %s\n",
312 __func__, strerror(errno));
313 return -1;
314 }
315 /* take out a read lock and keep it indefinitely */
316 if (lock(fd, LOCK_SH) < 0) {
317 RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
318 __func__, strerror(errno));
319 close(fd);
320 return -1;
321 }
322 fd_list[list_idx].memseg_list_fd = fd;
323 }
324 } else {
325 /* create a hugepage file path */
326 eal_get_hugefile_path(path, buflen, hi->hugedir,
327 list_idx * RTE_MAX_MEMSEG_PER_LIST + seg_idx);
328
329 fd = fd_list[list_idx].fds[seg_idx];
330
331 if (fd < 0) {
332 /* A primary process is the only one creating these
333 * files. If there is a leftover that was not cleaned
334 * by clear_hugedir(), we must *now* make sure to drop
335 * the file or we will remap old stuff while the rest
336 * of the code is built on the assumption that a new
337 * page is clean.
338 */
339 if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
340 unlink(path) == -1 &&
341 errno != ENOENT) {
342 RTE_LOG(DEBUG, EAL, "%s(): could not remove '%s': %s\n",
343 __func__, path, strerror(errno));
344 return -1;
345 }
346
347 fd = open(path, O_CREAT | O_RDWR, 0600);
348 if (fd < 0) {
349 RTE_LOG(DEBUG, EAL, "%s(): open failed: %s\n",
350 __func__, strerror(errno));
351 return -1;
352 }
353 /* take out a read lock */
354 if (lock(fd, LOCK_SH) < 0) {
355 RTE_LOG(ERR, EAL, "%s(): lock failed: %s\n",
356 __func__, strerror(errno));
357 close(fd);
358 return -1;
359 }
360 fd_list[list_idx].fds[seg_idx] = fd;
361 }
362 }
363 return fd;
364 }
365
366 static int
resize_hugefile_in_memory(int fd,uint64_t fa_offset,uint64_t page_sz,bool grow)367 resize_hugefile_in_memory(int fd, uint64_t fa_offset,
368 uint64_t page_sz, bool grow)
369 {
370 int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
371 FALLOC_FL_KEEP_SIZE;
372 int ret;
373
374 /* grow or shrink the file */
375 ret = fallocate(fd, flags, fa_offset, page_sz);
376
377 if (ret < 0) {
378 RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
379 __func__,
380 strerror(errno));
381 return -1;
382 }
383 return 0;
384 }
385
386 static int
resize_hugefile_in_filesystem(int fd,uint64_t fa_offset,uint64_t page_sz,bool grow)387 resize_hugefile_in_filesystem(int fd, uint64_t fa_offset, uint64_t page_sz,
388 bool grow)
389 {
390 bool again = false;
391
392 do {
393 if (fallocate_supported == 0) {
394 /* we cannot deallocate memory if fallocate() is not
395 * supported, and hugepage file is already locked at
396 * creation, so no further synchronization needed.
397 */
398
399 if (!grow) {
400 RTE_LOG(DEBUG, EAL, "%s(): fallocate not supported, not freeing page back to the system\n",
401 __func__);
402 return -1;
403 }
404 uint64_t new_size = fa_offset + page_sz;
405 uint64_t cur_size = get_file_size(fd);
406
407 /* fallocate isn't supported, fall back to ftruncate */
408 if (new_size > cur_size &&
409 ftruncate(fd, new_size) < 0) {
410 RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
411 __func__, strerror(errno));
412 return -1;
413 }
414 } else {
415 int flags = grow ? 0 : FALLOC_FL_PUNCH_HOLE |
416 FALLOC_FL_KEEP_SIZE;
417 int ret;
418
419 /*
420 * technically, it is perfectly safe for both primary
421 * and secondary to grow and shrink the page files:
422 * growing the file repeatedly has no effect because
423 * a page can only be allocated once, while mmap ensures
424 * that secondaries hold on to the page even after the
425 * page itself is removed from the filesystem.
426 *
427 * however, leaving growing/shrinking to the primary
428 * tends to expose bugs in fdlist page count handling,
429 * so leave this here just in case.
430 */
431 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
432 return 0;
433
434 /* grow or shrink the file */
435 ret = fallocate(fd, flags, fa_offset, page_sz);
436
437 if (ret < 0) {
438 if (fallocate_supported == -1 &&
439 errno == ENOTSUP) {
440 RTE_LOG(ERR, EAL, "%s(): fallocate() not supported, hugepage deallocation will be disabled\n",
441 __func__);
442 again = true;
443 fallocate_supported = 0;
444 } else {
445 RTE_LOG(DEBUG, EAL, "%s(): fallocate() failed: %s\n",
446 __func__,
447 strerror(errno));
448 return -1;
449 }
450 } else
451 fallocate_supported = 1;
452 }
453 } while (again);
454
455 return 0;
456 }
457
458 static void
close_hugefile(int fd,char * path,int list_idx)459 close_hugefile(int fd, char *path, int list_idx)
460 {
461 const struct internal_config *internal_conf =
462 eal_get_internal_configuration();
463 /*
464 * primary process must unlink the file, but only when not in in-memory
465 * mode (as in that case there is no file to unlink).
466 */
467 if (!internal_conf->in_memory &&
468 rte_eal_process_type() == RTE_PROC_PRIMARY &&
469 unlink(path))
470 RTE_LOG(ERR, EAL, "%s(): unlinking '%s' failed: %s\n",
471 __func__, path, strerror(errno));
472
473 close(fd);
474 fd_list[list_idx].memseg_list_fd = -1;
475 }
476
477 static int
resize_hugefile(int fd,uint64_t fa_offset,uint64_t page_sz,bool grow)478 resize_hugefile(int fd, uint64_t fa_offset, uint64_t page_sz, bool grow)
479 {
480 /* in-memory mode is a special case, because we can be sure that
481 * fallocate() is supported.
482 */
483 const struct internal_config *internal_conf =
484 eal_get_internal_configuration();
485
486 if (internal_conf->in_memory)
487 return resize_hugefile_in_memory(fd, fa_offset,
488 page_sz, grow);
489
490 return resize_hugefile_in_filesystem(fd, fa_offset, page_sz,
491 grow);
492 }
493
494 static int
alloc_seg(struct rte_memseg * ms,void * addr,int socket_id,struct hugepage_info * hi,unsigned int list_idx,unsigned int seg_idx)495 alloc_seg(struct rte_memseg *ms, void *addr, int socket_id,
496 struct hugepage_info *hi, unsigned int list_idx,
497 unsigned int seg_idx)
498 {
499 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
500 int cur_socket_id = 0;
501 #endif
502 uint64_t map_offset;
503 rte_iova_t iova;
504 void *va;
505 char path[PATH_MAX];
506 int ret = 0;
507 int fd;
508 size_t alloc_sz;
509 int flags;
510 void *new_addr;
511 const struct internal_config *internal_conf =
512 eal_get_internal_configuration();
513
514 alloc_sz = hi->hugepage_sz;
515
516 /* these are checked at init, but code analyzers don't know that */
517 if (internal_conf->in_memory && !anonymous_hugepages_supported) {
518 RTE_LOG(ERR, EAL, "Anonymous hugepages not supported, in-memory mode cannot allocate memory\n");
519 return -1;
520 }
521 if (internal_conf->in_memory && !memfd_create_supported &&
522 internal_conf->single_file_segments) {
523 RTE_LOG(ERR, EAL, "Single-file segments are not supported without memfd support\n");
524 return -1;
525 }
526
527 /* in-memory without memfd is a special case */
528 int mmap_flags;
529
530 if (internal_conf->in_memory && !memfd_create_supported) {
531 const int in_memory_flags = MAP_HUGETLB | MAP_FIXED |
532 MAP_PRIVATE | MAP_ANONYMOUS;
533 int pagesz_flag;
534
535 pagesz_flag = pagesz_flags(alloc_sz);
536 fd = -1;
537 mmap_flags = in_memory_flags | pagesz_flag;
538
539 /* single-file segments codepath will never be active
540 * here because in-memory mode is incompatible with the
541 * fallback path, and it's stopped at EAL initialization
542 * stage.
543 */
544 map_offset = 0;
545 } else {
546 /* takes out a read lock on segment or segment list */
547 fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
548 if (fd < 0) {
549 RTE_LOG(ERR, EAL, "Couldn't get fd on hugepage file\n");
550 return -1;
551 }
552
553 if (internal_conf->single_file_segments) {
554 map_offset = seg_idx * alloc_sz;
555 ret = resize_hugefile(fd, map_offset, alloc_sz, true);
556 if (ret < 0)
557 goto resized;
558
559 fd_list[list_idx].count++;
560 } else {
561 map_offset = 0;
562 if (ftruncate(fd, alloc_sz) < 0) {
563 RTE_LOG(DEBUG, EAL, "%s(): ftruncate() failed: %s\n",
564 __func__, strerror(errno));
565 goto resized;
566 }
567 if (internal_conf->hugepage_unlink &&
568 !internal_conf->in_memory) {
569 if (unlink(path)) {
570 RTE_LOG(DEBUG, EAL, "%s(): unlink() failed: %s\n",
571 __func__, strerror(errno));
572 goto resized;
573 }
574 }
575 }
576 mmap_flags = MAP_SHARED | MAP_POPULATE | MAP_FIXED;
577 }
578
579 /*
580 * map the segment, and populate page tables, the kernel fills
581 * this segment with zeros if it's a new page.
582 */
583 va = mmap(addr, alloc_sz, PROT_READ | PROT_WRITE, mmap_flags, fd,
584 map_offset);
585
586 if (va == MAP_FAILED) {
587 RTE_LOG(DEBUG, EAL, "%s(): mmap() failed: %s\n", __func__,
588 strerror(errno));
589 /* mmap failed, but the previous region might have been
590 * unmapped anyway. try to remap it
591 */
592 goto unmapped;
593 }
594 if (va != addr) {
595 RTE_LOG(DEBUG, EAL, "%s(): wrong mmap() address\n", __func__);
596 munmap(va, alloc_sz);
597 goto resized;
598 }
599
600 /* In linux, hugetlb limitations, like cgroup, are
601 * enforced at fault time instead of mmap(), even
602 * with the option of MAP_POPULATE. Kernel will send
603 * a SIGBUS signal. To avoid to be killed, save stack
604 * environment here, if SIGBUS happens, we can jump
605 * back here.
606 */
607 if (huge_wrap_sigsetjmp()) {
608 RTE_LOG(DEBUG, EAL, "SIGBUS: Cannot mmap more hugepages of size %uMB\n",
609 (unsigned int)(alloc_sz >> 20));
610 goto mapped;
611 }
612
613 /* we need to trigger a write to the page to enforce page fault and
614 * ensure that page is accessible to us, but we can't overwrite value
615 * that is already there, so read the old value, and write itback.
616 * kernel populates the page with zeroes initially.
617 */
618 *(volatile int *)addr = *(volatile int *)addr;
619
620 iova = rte_mem_virt2iova(addr);
621 if (iova == RTE_BAD_PHYS_ADDR) {
622 RTE_LOG(DEBUG, EAL, "%s(): can't get IOVA addr\n",
623 __func__);
624 goto mapped;
625 }
626
627 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
628 /*
629 * If the kernel has been built without NUMA support, get_mempolicy()
630 * will return an error. If check_numa() returns false, memory
631 * allocation is not NUMA aware and the socket_id should not be
632 * checked.
633 */
634 if (check_numa()) {
635 ret = get_mempolicy(&cur_socket_id, NULL, 0, addr,
636 MPOL_F_NODE | MPOL_F_ADDR);
637 if (ret < 0) {
638 RTE_LOG(DEBUG, EAL, "%s(): get_mempolicy: %s\n",
639 __func__, strerror(errno));
640 goto mapped;
641 } else if (cur_socket_id != socket_id) {
642 RTE_LOG(DEBUG, EAL,
643 "%s(): allocation happened on wrong socket (wanted %d, got %d)\n",
644 __func__, socket_id, cur_socket_id);
645 goto mapped;
646 }
647 }
648 #else
649 if (rte_socket_count() > 1)
650 RTE_LOG(DEBUG, EAL, "%s(): not checking hugepage NUMA node.\n",
651 __func__);
652 #endif
653
654 ms->addr = addr;
655 ms->hugepage_sz = alloc_sz;
656 ms->len = alloc_sz;
657 ms->nchannel = rte_memory_get_nchannel();
658 ms->nrank = rte_memory_get_nrank();
659 ms->iova = iova;
660 ms->socket_id = socket_id;
661
662 return 0;
663
664 mapped:
665 munmap(addr, alloc_sz);
666 unmapped:
667 flags = EAL_RESERVE_FORCE_ADDRESS;
668 new_addr = eal_get_virtual_area(addr, &alloc_sz, alloc_sz, 0, flags);
669 if (new_addr != addr) {
670 if (new_addr != NULL)
671 munmap(new_addr, alloc_sz);
672 /* we're leaving a hole in our virtual address space. if
673 * somebody else maps this hole now, we could accidentally
674 * override it in the future.
675 */
676 RTE_LOG(CRIT, EAL, "Can't mmap holes in our virtual address space\n");
677 }
678 /* roll back the ref count */
679 if (internal_conf->single_file_segments)
680 fd_list[list_idx].count--;
681 resized:
682 /* some codepaths will return negative fd, so exit early */
683 if (fd < 0)
684 return -1;
685
686 if (internal_conf->single_file_segments) {
687 resize_hugefile(fd, map_offset, alloc_sz, false);
688 /* ignore failure, can't make it any worse */
689
690 /* if refcount is at zero, close the file */
691 if (fd_list[list_idx].count == 0)
692 close_hugefile(fd, path, list_idx);
693 } else {
694 /* only remove file if we can take out a write lock */
695 if (internal_conf->hugepage_unlink == 0 &&
696 internal_conf->in_memory == 0 &&
697 lock(fd, LOCK_EX) == 1)
698 unlink(path);
699 close(fd);
700 fd_list[list_idx].fds[seg_idx] = -1;
701 }
702 return -1;
703 }
704
705 static int
free_seg(struct rte_memseg * ms,struct hugepage_info * hi,unsigned int list_idx,unsigned int seg_idx)706 free_seg(struct rte_memseg *ms, struct hugepage_info *hi,
707 unsigned int list_idx, unsigned int seg_idx)
708 {
709 uint64_t map_offset;
710 char path[PATH_MAX];
711 int fd, ret = 0;
712 bool exit_early;
713 const struct internal_config *internal_conf =
714 eal_get_internal_configuration();
715
716 /* erase page data */
717 memset(ms->addr, 0, ms->len);
718
719 if (mmap(ms->addr, ms->len, PROT_NONE,
720 MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0) ==
721 MAP_FAILED) {
722 RTE_LOG(DEBUG, EAL, "couldn't unmap page\n");
723 return -1;
724 }
725
726 eal_mem_set_dump(ms->addr, ms->len, false);
727
728 exit_early = false;
729
730 /* if we're using anonymous hugepages, nothing to be done */
731 if (internal_conf->in_memory && !memfd_create_supported)
732 exit_early = true;
733
734 /* if we've already unlinked the page, nothing needs to be done */
735 if (!internal_conf->in_memory && internal_conf->hugepage_unlink)
736 exit_early = true;
737
738 if (exit_early) {
739 memset(ms, 0, sizeof(*ms));
740 return 0;
741 }
742
743 /* if we are not in single file segments mode, we're going to unmap the
744 * segment and thus drop the lock on original fd, but hugepage dir is
745 * now locked so we can take out another one without races.
746 */
747 fd = get_seg_fd(path, sizeof(path), hi, list_idx, seg_idx);
748 if (fd < 0)
749 return -1;
750
751 if (internal_conf->single_file_segments) {
752 map_offset = seg_idx * ms->len;
753 if (resize_hugefile(fd, map_offset, ms->len, false))
754 return -1;
755
756 if (--(fd_list[list_idx].count) == 0)
757 close_hugefile(fd, path, list_idx);
758
759 ret = 0;
760 } else {
761 /* if we're able to take out a write lock, we're the last one
762 * holding onto this page.
763 */
764 if (!internal_conf->in_memory) {
765 ret = lock(fd, LOCK_EX);
766 if (ret >= 0) {
767 /* no one else is using this page */
768 if (ret == 1)
769 unlink(path);
770 }
771 }
772 /* closing fd will drop the lock */
773 close(fd);
774 fd_list[list_idx].fds[seg_idx] = -1;
775 }
776
777 memset(ms, 0, sizeof(*ms));
778
779 return ret < 0 ? -1 : 0;
780 }
781
782 struct alloc_walk_param {
783 struct hugepage_info *hi;
784 struct rte_memseg **ms;
785 size_t page_sz;
786 unsigned int segs_allocated;
787 unsigned int n_segs;
788 int socket;
789 bool exact;
790 };
791 static int
alloc_seg_walk(const struct rte_memseg_list * msl,void * arg)792 alloc_seg_walk(const struct rte_memseg_list *msl, void *arg)
793 {
794 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
795 struct alloc_walk_param *wa = arg;
796 struct rte_memseg_list *cur_msl;
797 size_t page_sz;
798 int cur_idx, start_idx, j, dir_fd = -1;
799 unsigned int msl_idx, need, i;
800 const struct internal_config *internal_conf =
801 eal_get_internal_configuration();
802
803 if (msl->page_sz != wa->page_sz)
804 return 0;
805 if (msl->socket_id != wa->socket)
806 return 0;
807
808 page_sz = (size_t)msl->page_sz;
809
810 msl_idx = msl - mcfg->memsegs;
811 cur_msl = &mcfg->memsegs[msl_idx];
812
813 need = wa->n_segs;
814
815 /* try finding space in memseg list */
816 if (wa->exact) {
817 /* if we require exact number of pages in a list, find them */
818 cur_idx = rte_fbarray_find_next_n_free(&cur_msl->memseg_arr, 0,
819 need);
820 if (cur_idx < 0)
821 return 0;
822 start_idx = cur_idx;
823 } else {
824 int cur_len;
825
826 /* we don't require exact number of pages, so we're going to go
827 * for best-effort allocation. that means finding the biggest
828 * unused block, and going with that.
829 */
830 cur_idx = rte_fbarray_find_biggest_free(&cur_msl->memseg_arr,
831 0);
832 if (cur_idx < 0)
833 return 0;
834 start_idx = cur_idx;
835 /* adjust the size to possibly be smaller than original
836 * request, but do not allow it to be bigger.
837 */
838 cur_len = rte_fbarray_find_contig_free(&cur_msl->memseg_arr,
839 cur_idx);
840 need = RTE_MIN(need, (unsigned int)cur_len);
841 }
842
843 /* do not allow any page allocations during the time we're allocating,
844 * because file creation and locking operations are not atomic,
845 * and we might be the first or the last ones to use a particular page,
846 * so we need to ensure atomicity of every operation.
847 *
848 * during init, we already hold a write lock, so don't try to take out
849 * another one.
850 */
851 if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
852 dir_fd = open(wa->hi->hugedir, O_RDONLY);
853 if (dir_fd < 0) {
854 RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
855 __func__, wa->hi->hugedir, strerror(errno));
856 return -1;
857 }
858 /* blocking writelock */
859 if (flock(dir_fd, LOCK_EX)) {
860 RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
861 __func__, wa->hi->hugedir, strerror(errno));
862 close(dir_fd);
863 return -1;
864 }
865 }
866
867 for (i = 0; i < need; i++, cur_idx++) {
868 struct rte_memseg *cur;
869 void *map_addr;
870
871 cur = rte_fbarray_get(&cur_msl->memseg_arr, cur_idx);
872 map_addr = RTE_PTR_ADD(cur_msl->base_va,
873 cur_idx * page_sz);
874
875 if (alloc_seg(cur, map_addr, wa->socket, wa->hi,
876 msl_idx, cur_idx)) {
877 RTE_LOG(DEBUG, EAL, "attempted to allocate %i segments, but only %i were allocated\n",
878 need, i);
879
880 /* if exact number wasn't requested, stop */
881 if (!wa->exact)
882 goto out;
883
884 /* clean up */
885 for (j = start_idx; j < cur_idx; j++) {
886 struct rte_memseg *tmp;
887 struct rte_fbarray *arr =
888 &cur_msl->memseg_arr;
889
890 tmp = rte_fbarray_get(arr, j);
891 rte_fbarray_set_free(arr, j);
892
893 /* free_seg may attempt to create a file, which
894 * may fail.
895 */
896 if (free_seg(tmp, wa->hi, msl_idx, j))
897 RTE_LOG(DEBUG, EAL, "Cannot free page\n");
898 }
899 /* clear the list */
900 if (wa->ms)
901 memset(wa->ms, 0, sizeof(*wa->ms) * wa->n_segs);
902
903 if (dir_fd >= 0)
904 close(dir_fd);
905 return -1;
906 }
907 if (wa->ms)
908 wa->ms[i] = cur;
909
910 rte_fbarray_set_used(&cur_msl->memseg_arr, cur_idx);
911 }
912 out:
913 wa->segs_allocated = i;
914 if (i > 0)
915 cur_msl->version++;
916 if (dir_fd >= 0)
917 close(dir_fd);
918 /* if we didn't allocate any segments, move on to the next list */
919 return i > 0;
920 }
921
922 struct free_walk_param {
923 struct hugepage_info *hi;
924 struct rte_memseg *ms;
925 };
926 static int
free_seg_walk(const struct rte_memseg_list * msl,void * arg)927 free_seg_walk(const struct rte_memseg_list *msl, void *arg)
928 {
929 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
930 struct rte_memseg_list *found_msl;
931 struct free_walk_param *wa = arg;
932 uintptr_t start_addr, end_addr;
933 int msl_idx, seg_idx, ret, dir_fd = -1;
934 const struct internal_config *internal_conf =
935 eal_get_internal_configuration();
936
937 start_addr = (uintptr_t) msl->base_va;
938 end_addr = start_addr + msl->len;
939
940 if ((uintptr_t)wa->ms->addr < start_addr ||
941 (uintptr_t)wa->ms->addr >= end_addr)
942 return 0;
943
944 msl_idx = msl - mcfg->memsegs;
945 seg_idx = RTE_PTR_DIFF(wa->ms->addr, start_addr) / msl->page_sz;
946
947 /* msl is const */
948 found_msl = &mcfg->memsegs[msl_idx];
949
950 /* do not allow any page allocations during the time we're freeing,
951 * because file creation and locking operations are not atomic,
952 * and we might be the first or the last ones to use a particular page,
953 * so we need to ensure atomicity of every operation.
954 *
955 * during init, we already hold a write lock, so don't try to take out
956 * another one.
957 */
958 if (wa->hi->lock_descriptor == -1 && !internal_conf->in_memory) {
959 dir_fd = open(wa->hi->hugedir, O_RDONLY);
960 if (dir_fd < 0) {
961 RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n",
962 __func__, wa->hi->hugedir, strerror(errno));
963 return -1;
964 }
965 /* blocking writelock */
966 if (flock(dir_fd, LOCK_EX)) {
967 RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n",
968 __func__, wa->hi->hugedir, strerror(errno));
969 close(dir_fd);
970 return -1;
971 }
972 }
973
974 found_msl->version++;
975
976 rte_fbarray_set_free(&found_msl->memseg_arr, seg_idx);
977
978 ret = free_seg(wa->ms, wa->hi, msl_idx, seg_idx);
979
980 if (dir_fd >= 0)
981 close(dir_fd);
982
983 if (ret < 0)
984 return -1;
985
986 return 1;
987 }
988
989 int
eal_memalloc_alloc_seg_bulk(struct rte_memseg ** ms,int n_segs,size_t page_sz,int socket,bool exact)990 eal_memalloc_alloc_seg_bulk(struct rte_memseg **ms, int n_segs, size_t page_sz,
991 int socket, bool exact)
992 {
993 int i, ret = -1;
994 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
995 bool have_numa = false;
996 int oldpolicy;
997 struct bitmask *oldmask;
998 #endif
999 struct alloc_walk_param wa;
1000 struct hugepage_info *hi = NULL;
1001 struct internal_config *internal_conf =
1002 eal_get_internal_configuration();
1003
1004 memset(&wa, 0, sizeof(wa));
1005
1006 /* dynamic allocation not supported in legacy mode */
1007 if (internal_conf->legacy_mem)
1008 return -1;
1009
1010 for (i = 0; i < (int) RTE_DIM(internal_conf->hugepage_info); i++) {
1011 if (page_sz ==
1012 internal_conf->hugepage_info[i].hugepage_sz) {
1013 hi = &internal_conf->hugepage_info[i];
1014 break;
1015 }
1016 }
1017 if (!hi) {
1018 RTE_LOG(ERR, EAL, "%s(): can't find relevant hugepage_info entry\n",
1019 __func__);
1020 return -1;
1021 }
1022
1023 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1024 if (check_numa()) {
1025 oldmask = numa_allocate_nodemask();
1026 prepare_numa(&oldpolicy, oldmask, socket);
1027 have_numa = true;
1028 }
1029 #endif
1030
1031 wa.exact = exact;
1032 wa.hi = hi;
1033 wa.ms = ms;
1034 wa.n_segs = n_segs;
1035 wa.page_sz = page_sz;
1036 wa.socket = socket;
1037 wa.segs_allocated = 0;
1038
1039 /* memalloc is locked, so it's safe to use thread-unsafe version */
1040 ret = rte_memseg_list_walk_thread_unsafe(alloc_seg_walk, &wa);
1041 if (ret == 0) {
1042 RTE_LOG(ERR, EAL, "%s(): couldn't find suitable memseg_list\n",
1043 __func__);
1044 ret = -1;
1045 } else if (ret > 0) {
1046 ret = (int)wa.segs_allocated;
1047 }
1048
1049 #ifdef RTE_EAL_NUMA_AWARE_HUGEPAGES
1050 if (have_numa)
1051 restore_numa(&oldpolicy, oldmask);
1052 #endif
1053 return ret;
1054 }
1055
1056 struct rte_memseg *
eal_memalloc_alloc_seg(size_t page_sz,int socket)1057 eal_memalloc_alloc_seg(size_t page_sz, int socket)
1058 {
1059 struct rte_memseg *ms;
1060 if (eal_memalloc_alloc_seg_bulk(&ms, 1, page_sz, socket, true) < 0)
1061 return NULL;
1062 /* return pointer to newly allocated memseg */
1063 return ms;
1064 }
1065
1066 int
eal_memalloc_free_seg_bulk(struct rte_memseg ** ms,int n_segs)1067 eal_memalloc_free_seg_bulk(struct rte_memseg **ms, int n_segs)
1068 {
1069 int seg, ret = 0;
1070 struct internal_config *internal_conf =
1071 eal_get_internal_configuration();
1072
1073 /* dynamic free not supported in legacy mode */
1074 if (internal_conf->legacy_mem)
1075 return -1;
1076
1077 for (seg = 0; seg < n_segs; seg++) {
1078 struct rte_memseg *cur = ms[seg];
1079 struct hugepage_info *hi = NULL;
1080 struct free_walk_param wa;
1081 int i, walk_res;
1082
1083 /* if this page is marked as unfreeable, fail */
1084 if (cur->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
1085 RTE_LOG(DEBUG, EAL, "Page is not allowed to be freed\n");
1086 ret = -1;
1087 continue;
1088 }
1089
1090 memset(&wa, 0, sizeof(wa));
1091
1092 for (i = 0; i < (int)RTE_DIM(internal_conf->hugepage_info);
1093 i++) {
1094 hi = &internal_conf->hugepage_info[i];
1095 if (cur->hugepage_sz == hi->hugepage_sz)
1096 break;
1097 }
1098 if (i == (int)RTE_DIM(internal_conf->hugepage_info)) {
1099 RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1100 ret = -1;
1101 continue;
1102 }
1103
1104 wa.ms = cur;
1105 wa.hi = hi;
1106
1107 /* memalloc is locked, so it's safe to use thread-unsafe version
1108 */
1109 walk_res = rte_memseg_list_walk_thread_unsafe(free_seg_walk,
1110 &wa);
1111 if (walk_res == 1)
1112 continue;
1113 if (walk_res == 0)
1114 RTE_LOG(ERR, EAL, "Couldn't find memseg list\n");
1115 ret = -1;
1116 }
1117 return ret;
1118 }
1119
1120 int
eal_memalloc_free_seg(struct rte_memseg * ms)1121 eal_memalloc_free_seg(struct rte_memseg *ms)
1122 {
1123 const struct internal_config *internal_conf =
1124 eal_get_internal_configuration();
1125
1126 /* dynamic free not supported in legacy mode */
1127 if (internal_conf->legacy_mem)
1128 return -1;
1129
1130 return eal_memalloc_free_seg_bulk(&ms, 1);
1131 }
1132
1133 static int
sync_chunk(struct rte_memseg_list * primary_msl,struct rte_memseg_list * local_msl,struct hugepage_info * hi,unsigned int msl_idx,bool used,int start,int end)1134 sync_chunk(struct rte_memseg_list *primary_msl,
1135 struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1136 unsigned int msl_idx, bool used, int start, int end)
1137 {
1138 struct rte_fbarray *l_arr, *p_arr;
1139 int i, ret, chunk_len, diff_len;
1140
1141 l_arr = &local_msl->memseg_arr;
1142 p_arr = &primary_msl->memseg_arr;
1143
1144 /* we need to aggregate allocations/deallocations into bigger chunks,
1145 * as we don't want to spam the user with per-page callbacks.
1146 *
1147 * to avoid any potential issues, we also want to trigger
1148 * deallocation callbacks *before* we actually deallocate
1149 * memory, so that the user application could wrap up its use
1150 * before it goes away.
1151 */
1152
1153 chunk_len = end - start;
1154
1155 /* find how many contiguous pages we can map/unmap for this chunk */
1156 diff_len = used ?
1157 rte_fbarray_find_contig_free(l_arr, start) :
1158 rte_fbarray_find_contig_used(l_arr, start);
1159
1160 /* has to be at least one page */
1161 if (diff_len < 1)
1162 return -1;
1163
1164 diff_len = RTE_MIN(chunk_len, diff_len);
1165
1166 /* if we are freeing memory, notify the application */
1167 if (!used) {
1168 struct rte_memseg *ms;
1169 void *start_va;
1170 size_t len, page_sz;
1171
1172 ms = rte_fbarray_get(l_arr, start);
1173 start_va = ms->addr;
1174 page_sz = (size_t)primary_msl->page_sz;
1175 len = page_sz * diff_len;
1176
1177 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
1178 start_va, len);
1179 }
1180
1181 for (i = 0; i < diff_len; i++) {
1182 struct rte_memseg *p_ms, *l_ms;
1183 int seg_idx = start + i;
1184
1185 l_ms = rte_fbarray_get(l_arr, seg_idx);
1186 p_ms = rte_fbarray_get(p_arr, seg_idx);
1187
1188 if (l_ms == NULL || p_ms == NULL)
1189 return -1;
1190
1191 if (used) {
1192 ret = alloc_seg(l_ms, p_ms->addr,
1193 p_ms->socket_id, hi,
1194 msl_idx, seg_idx);
1195 if (ret < 0)
1196 return -1;
1197 rte_fbarray_set_used(l_arr, seg_idx);
1198 } else {
1199 ret = free_seg(l_ms, hi, msl_idx, seg_idx);
1200 rte_fbarray_set_free(l_arr, seg_idx);
1201 if (ret < 0)
1202 return -1;
1203 }
1204 }
1205
1206 /* if we just allocated memory, notify the application */
1207 if (used) {
1208 struct rte_memseg *ms;
1209 void *start_va;
1210 size_t len, page_sz;
1211
1212 ms = rte_fbarray_get(l_arr, start);
1213 start_va = ms->addr;
1214 page_sz = (size_t)primary_msl->page_sz;
1215 len = page_sz * diff_len;
1216
1217 eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC,
1218 start_va, len);
1219 }
1220
1221 /* calculate how much we can advance until next chunk */
1222 diff_len = used ?
1223 rte_fbarray_find_contig_used(l_arr, start) :
1224 rte_fbarray_find_contig_free(l_arr, start);
1225 ret = RTE_MIN(chunk_len, diff_len);
1226
1227 return ret;
1228 }
1229
1230 static int
sync_status(struct rte_memseg_list * primary_msl,struct rte_memseg_list * local_msl,struct hugepage_info * hi,unsigned int msl_idx,bool used)1231 sync_status(struct rte_memseg_list *primary_msl,
1232 struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1233 unsigned int msl_idx, bool used)
1234 {
1235 struct rte_fbarray *l_arr, *p_arr;
1236 int p_idx, l_chunk_len, p_chunk_len, ret;
1237 int start, end;
1238
1239 /* this is a little bit tricky, but the basic idea is - walk both lists
1240 * and spot any places where there are discrepancies. walking both lists
1241 * and noting discrepancies in a single go is a hard problem, so we do
1242 * it in two passes - first we spot any places where allocated segments
1243 * mismatch (i.e. ensure that everything that's allocated in the primary
1244 * is also allocated in the secondary), and then we do it by looking at
1245 * free segments instead.
1246 *
1247 * we also need to aggregate changes into chunks, as we have to call
1248 * callbacks per allocation, not per page.
1249 */
1250 l_arr = &local_msl->memseg_arr;
1251 p_arr = &primary_msl->memseg_arr;
1252
1253 if (used)
1254 p_idx = rte_fbarray_find_next_used(p_arr, 0);
1255 else
1256 p_idx = rte_fbarray_find_next_free(p_arr, 0);
1257
1258 while (p_idx >= 0) {
1259 int next_chunk_search_idx;
1260
1261 if (used) {
1262 p_chunk_len = rte_fbarray_find_contig_used(p_arr,
1263 p_idx);
1264 l_chunk_len = rte_fbarray_find_contig_used(l_arr,
1265 p_idx);
1266 } else {
1267 p_chunk_len = rte_fbarray_find_contig_free(p_arr,
1268 p_idx);
1269 l_chunk_len = rte_fbarray_find_contig_free(l_arr,
1270 p_idx);
1271 }
1272 /* best case scenario - no differences (or bigger, which will be
1273 * fixed during next iteration), look for next chunk
1274 */
1275 if (l_chunk_len >= p_chunk_len) {
1276 next_chunk_search_idx = p_idx + p_chunk_len;
1277 goto next_chunk;
1278 }
1279
1280 /* if both chunks start at the same point, skip parts we know
1281 * are identical, and sync the rest. each call to sync_chunk
1282 * will only sync contiguous segments, so we need to call this
1283 * until we are sure there are no more differences in this
1284 * chunk.
1285 */
1286 start = p_idx + l_chunk_len;
1287 end = p_idx + p_chunk_len;
1288 do {
1289 ret = sync_chunk(primary_msl, local_msl, hi, msl_idx,
1290 used, start, end);
1291 start += ret;
1292 } while (start < end && ret >= 0);
1293 /* if ret is negative, something went wrong */
1294 if (ret < 0)
1295 return -1;
1296
1297 next_chunk_search_idx = p_idx + p_chunk_len;
1298 next_chunk:
1299 /* skip to end of this chunk */
1300 if (used) {
1301 p_idx = rte_fbarray_find_next_used(p_arr,
1302 next_chunk_search_idx);
1303 } else {
1304 p_idx = rte_fbarray_find_next_free(p_arr,
1305 next_chunk_search_idx);
1306 }
1307 }
1308 return 0;
1309 }
1310
1311 static int
sync_existing(struct rte_memseg_list * primary_msl,struct rte_memseg_list * local_msl,struct hugepage_info * hi,unsigned int msl_idx)1312 sync_existing(struct rte_memseg_list *primary_msl,
1313 struct rte_memseg_list *local_msl, struct hugepage_info *hi,
1314 unsigned int msl_idx)
1315 {
1316 int ret, dir_fd;
1317
1318 /* do not allow any page allocations during the time we're allocating,
1319 * because file creation and locking operations are not atomic,
1320 * and we might be the first or the last ones to use a particular page,
1321 * so we need to ensure atomicity of every operation.
1322 */
1323 dir_fd = open(hi->hugedir, O_RDONLY);
1324 if (dir_fd < 0) {
1325 RTE_LOG(ERR, EAL, "%s(): Cannot open '%s': %s\n", __func__,
1326 hi->hugedir, strerror(errno));
1327 return -1;
1328 }
1329 /* blocking writelock */
1330 if (flock(dir_fd, LOCK_EX)) {
1331 RTE_LOG(ERR, EAL, "%s(): Cannot lock '%s': %s\n", __func__,
1332 hi->hugedir, strerror(errno));
1333 close(dir_fd);
1334 return -1;
1335 }
1336
1337 /* ensure all allocated space is the same in both lists */
1338 ret = sync_status(primary_msl, local_msl, hi, msl_idx, true);
1339 if (ret < 0)
1340 goto fail;
1341
1342 /* ensure all unallocated space is the same in both lists */
1343 ret = sync_status(primary_msl, local_msl, hi, msl_idx, false);
1344 if (ret < 0)
1345 goto fail;
1346
1347 /* update version number */
1348 local_msl->version = primary_msl->version;
1349
1350 close(dir_fd);
1351
1352 return 0;
1353 fail:
1354 close(dir_fd);
1355 return -1;
1356 }
1357
1358 static int
sync_walk(const struct rte_memseg_list * msl,void * arg __rte_unused)1359 sync_walk(const struct rte_memseg_list *msl, void *arg __rte_unused)
1360 {
1361 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1362 struct rte_memseg_list *primary_msl, *local_msl;
1363 struct hugepage_info *hi = NULL;
1364 unsigned int i;
1365 int msl_idx;
1366 struct internal_config *internal_conf =
1367 eal_get_internal_configuration();
1368
1369 if (msl->external)
1370 return 0;
1371
1372 msl_idx = msl - mcfg->memsegs;
1373 primary_msl = &mcfg->memsegs[msl_idx];
1374 local_msl = &local_memsegs[msl_idx];
1375
1376 for (i = 0; i < RTE_DIM(internal_conf->hugepage_info); i++) {
1377 uint64_t cur_sz =
1378 internal_conf->hugepage_info[i].hugepage_sz;
1379 uint64_t msl_sz = primary_msl->page_sz;
1380 if (msl_sz == cur_sz) {
1381 hi = &internal_conf->hugepage_info[i];
1382 break;
1383 }
1384 }
1385 if (!hi) {
1386 RTE_LOG(ERR, EAL, "Can't find relevant hugepage_info entry\n");
1387 return -1;
1388 }
1389
1390 /* if versions don't match, synchronize everything */
1391 if (local_msl->version != primary_msl->version &&
1392 sync_existing(primary_msl, local_msl, hi, msl_idx))
1393 return -1;
1394 return 0;
1395 }
1396
1397
1398 int
eal_memalloc_sync_with_primary(void)1399 eal_memalloc_sync_with_primary(void)
1400 {
1401 /* nothing to be done in primary */
1402 if (rte_eal_process_type() == RTE_PROC_PRIMARY)
1403 return 0;
1404
1405 /* memalloc is locked, so it's safe to call thread-unsafe version */
1406 if (rte_memseg_list_walk_thread_unsafe(sync_walk, NULL))
1407 return -1;
1408 return 0;
1409 }
1410
1411 static int
secondary_msl_create_walk(const struct rte_memseg_list * msl,void * arg __rte_unused)1412 secondary_msl_create_walk(const struct rte_memseg_list *msl,
1413 void *arg __rte_unused)
1414 {
1415 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1416 struct rte_memseg_list *primary_msl, *local_msl;
1417 char name[PATH_MAX];
1418 int msl_idx, ret;
1419
1420 if (msl->external)
1421 return 0;
1422
1423 msl_idx = msl - mcfg->memsegs;
1424 primary_msl = &mcfg->memsegs[msl_idx];
1425 local_msl = &local_memsegs[msl_idx];
1426
1427 /* create distinct fbarrays for each secondary */
1428 snprintf(name, RTE_FBARRAY_NAME_LEN, "%s_%i",
1429 primary_msl->memseg_arr.name, getpid());
1430
1431 ret = rte_fbarray_init(&local_msl->memseg_arr, name,
1432 primary_msl->memseg_arr.len,
1433 primary_msl->memseg_arr.elt_sz);
1434 if (ret < 0) {
1435 RTE_LOG(ERR, EAL, "Cannot initialize local memory map\n");
1436 return -1;
1437 }
1438 local_msl->base_va = primary_msl->base_va;
1439 local_msl->len = primary_msl->len;
1440
1441 return 0;
1442 }
1443
1444 static int
alloc_list(int list_idx,int len)1445 alloc_list(int list_idx, int len)
1446 {
1447 int *data;
1448 int i;
1449 const struct internal_config *internal_conf =
1450 eal_get_internal_configuration();
1451
1452 /* single-file segments mode does not need fd list */
1453 if (!internal_conf->single_file_segments) {
1454 /* ensure we have space to store fd per each possible segment */
1455 data = malloc(sizeof(int) * len);
1456 if (data == NULL) {
1457 RTE_LOG(ERR, EAL, "Unable to allocate space for file descriptors\n");
1458 return -1;
1459 }
1460 /* set all fd's as invalid */
1461 for (i = 0; i < len; i++)
1462 data[i] = -1;
1463 fd_list[list_idx].fds = data;
1464 fd_list[list_idx].len = len;
1465 } else {
1466 fd_list[list_idx].fds = NULL;
1467 fd_list[list_idx].len = 0;
1468 }
1469
1470 fd_list[list_idx].count = 0;
1471 fd_list[list_idx].memseg_list_fd = -1;
1472
1473 return 0;
1474 }
1475
1476 static int
fd_list_create_walk(const struct rte_memseg_list * msl,void * arg __rte_unused)1477 fd_list_create_walk(const struct rte_memseg_list *msl,
1478 void *arg __rte_unused)
1479 {
1480 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1481 unsigned int len;
1482 int msl_idx;
1483
1484 if (msl->external)
1485 return 0;
1486
1487 msl_idx = msl - mcfg->memsegs;
1488 len = msl->memseg_arr.len;
1489
1490 return alloc_list(msl_idx, len);
1491 }
1492
1493 int
eal_memalloc_set_seg_fd(int list_idx,int seg_idx,int fd)1494 eal_memalloc_set_seg_fd(int list_idx, int seg_idx, int fd)
1495 {
1496 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1497 const struct internal_config *internal_conf =
1498 eal_get_internal_configuration();
1499
1500 /* single file segments mode doesn't support individual segment fd's */
1501 if (internal_conf->single_file_segments)
1502 return -ENOTSUP;
1503
1504 /* if list is not allocated, allocate it */
1505 if (fd_list[list_idx].len == 0) {
1506 int len = mcfg->memsegs[list_idx].memseg_arr.len;
1507
1508 if (alloc_list(list_idx, len) < 0)
1509 return -ENOMEM;
1510 }
1511 fd_list[list_idx].fds[seg_idx] = fd;
1512
1513 return 0;
1514 }
1515
1516 int
eal_memalloc_set_seg_list_fd(int list_idx,int fd)1517 eal_memalloc_set_seg_list_fd(int list_idx, int fd)
1518 {
1519 const struct internal_config *internal_conf =
1520 eal_get_internal_configuration();
1521
1522 /* non-single file segment mode doesn't support segment list fd's */
1523 if (!internal_conf->single_file_segments)
1524 return -ENOTSUP;
1525
1526 fd_list[list_idx].memseg_list_fd = fd;
1527
1528 return 0;
1529 }
1530
1531 int
eal_memalloc_get_seg_fd(int list_idx,int seg_idx)1532 eal_memalloc_get_seg_fd(int list_idx, int seg_idx)
1533 {
1534 int fd;
1535 const struct internal_config *internal_conf =
1536 eal_get_internal_configuration();
1537
1538 if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1539 #ifndef MEMFD_SUPPORTED
1540 /* in in-memory or no-huge mode, we rely on memfd support */
1541 return -ENOTSUP;
1542 #endif
1543 /* memfd supported, but hugetlbfs memfd may not be */
1544 if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1545 return -ENOTSUP;
1546 }
1547
1548 if (internal_conf->single_file_segments) {
1549 fd = fd_list[list_idx].memseg_list_fd;
1550 } else if (fd_list[list_idx].len == 0) {
1551 /* list not initialized */
1552 fd = -1;
1553 } else {
1554 fd = fd_list[list_idx].fds[seg_idx];
1555 }
1556 if (fd < 0)
1557 return -ENODEV;
1558 return fd;
1559 }
1560
1561 static int
test_memfd_create(void)1562 test_memfd_create(void)
1563 {
1564 #ifdef MEMFD_SUPPORTED
1565 const struct internal_config *internal_conf =
1566 eal_get_internal_configuration();
1567 unsigned int i;
1568 for (i = 0; i < internal_conf->num_hugepage_sizes; i++) {
1569 uint64_t pagesz = internal_conf->hugepage_info[i].hugepage_sz;
1570 int pagesz_flag = pagesz_flags(pagesz);
1571 int flags;
1572
1573 flags = pagesz_flag | RTE_MFD_HUGETLB;
1574 int fd = memfd_create("test", flags);
1575 if (fd < 0) {
1576 /* we failed - let memalloc know this isn't working */
1577 if (errno == EINVAL) {
1578 memfd_create_supported = 0;
1579 return 0; /* not supported */
1580 }
1581
1582 /* we got other error - something's wrong */
1583 return -1; /* error */
1584 }
1585 close(fd);
1586 return 1; /* supported */
1587 }
1588 #endif
1589 return 0; /* not supported */
1590 }
1591
1592 int
eal_memalloc_get_seg_fd_offset(int list_idx,int seg_idx,size_t * offset)1593 eal_memalloc_get_seg_fd_offset(int list_idx, int seg_idx, size_t *offset)
1594 {
1595 struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
1596 const struct internal_config *internal_conf =
1597 eal_get_internal_configuration();
1598
1599 if (internal_conf->in_memory || internal_conf->no_hugetlbfs) {
1600 #ifndef MEMFD_SUPPORTED
1601 /* in in-memory or no-huge mode, we rely on memfd support */
1602 return -ENOTSUP;
1603 #endif
1604 /* memfd supported, but hugetlbfs memfd may not be */
1605 if (!internal_conf->no_hugetlbfs && !memfd_create_supported)
1606 return -ENOTSUP;
1607 }
1608
1609 if (internal_conf->single_file_segments) {
1610 size_t pgsz = mcfg->memsegs[list_idx].page_sz;
1611
1612 /* segment not active? */
1613 if (fd_list[list_idx].memseg_list_fd < 0)
1614 return -ENOENT;
1615 *offset = pgsz * seg_idx;
1616 } else {
1617 /* fd_list not initialized? */
1618 if (fd_list[list_idx].len == 0)
1619 return -ENODEV;
1620
1621 /* segment not active? */
1622 if (fd_list[list_idx].fds[seg_idx] < 0)
1623 return -ENOENT;
1624 *offset = 0;
1625 }
1626 return 0;
1627 }
1628
1629 int
eal_memalloc_init(void)1630 eal_memalloc_init(void)
1631 {
1632 const struct internal_config *internal_conf =
1633 eal_get_internal_configuration();
1634
1635 if (rte_eal_process_type() == RTE_PROC_SECONDARY)
1636 if (rte_memseg_list_walk(secondary_msl_create_walk, NULL) < 0)
1637 return -1;
1638 if (rte_eal_process_type() == RTE_PROC_PRIMARY &&
1639 internal_conf->in_memory) {
1640 int mfd_res = test_memfd_create();
1641
1642 if (mfd_res < 0) {
1643 RTE_LOG(ERR, EAL, "Unable to check if memfd is supported\n");
1644 return -1;
1645 }
1646 if (mfd_res == 1)
1647 RTE_LOG(DEBUG, EAL, "Using memfd for anonymous memory\n");
1648 else
1649 RTE_LOG(INFO, EAL, "Using memfd is not supported, falling back to anonymous hugepages\n");
1650
1651 /* we only support single-file segments mode with in-memory mode
1652 * if we support hugetlbfs with memfd_create. this code will
1653 * test if we do.
1654 */
1655 if (internal_conf->single_file_segments &&
1656 mfd_res != 1) {
1657 RTE_LOG(ERR, EAL, "Single-file segments mode cannot be used without memfd support\n");
1658 return -1;
1659 }
1660 /* this cannot ever happen but better safe than sorry */
1661 if (!anonymous_hugepages_supported) {
1662 RTE_LOG(ERR, EAL, "Using anonymous memory is not supported\n");
1663 return -1;
1664 }
1665 }
1666
1667 /* initialize all of the fd lists */
1668 if (rte_memseg_list_walk(fd_list_create_walk, NULL))
1669 return -1;
1670 return 0;
1671 }
1672