1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(c) 2010-2014 Intel Corporation.
4 */
5
6 /*
7 * This code is inspired from the book "Linux Device Drivers" by
8 * Alessandro Rubini and Jonathan Corbet, published by O'Reilly & Associates
9 */
10
11 #include <linux/device.h>
12 #include <linux/module.h>
13 #include <linux/version.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h> /* eth_type_trans */
16 #include <linux/ethtool.h>
17 #include <linux/skbuff.h>
18 #include <linux/kthread.h>
19 #include <linux/delay.h>
20
21 #include <rte_kni_common.h>
22 #include <kni_fifo.h>
23
24 #include "compat.h"
25 #include "kni_dev.h"
26
27 #define WD_TIMEOUT 5 /*jiffies */
28
29 #define KNI_WAIT_RESPONSE_TIMEOUT 300 /* 3 seconds */
30
31 /* typedef for rx function */
32 typedef void (*kni_net_rx_t)(struct kni_dev *kni);
33
34 static void kni_net_rx_normal(struct kni_dev *kni);
35
36 /* kni rx function pointer, with default to normal rx */
37 static kni_net_rx_t kni_net_rx_func = kni_net_rx_normal;
38
39 #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT
40 /* iova to kernel virtual address */
41 static inline void *
iova2kva(struct kni_dev * kni,void * iova)42 iova2kva(struct kni_dev *kni, void *iova)
43 {
44 return phys_to_virt(iova_to_phys(kni->usr_tsk, (unsigned long)iova));
45 }
46
47 static inline void *
iova2data_kva(struct kni_dev * kni,struct rte_kni_mbuf * m)48 iova2data_kva(struct kni_dev *kni, struct rte_kni_mbuf *m)
49 {
50 return phys_to_virt(iova_to_phys(kni->usr_tsk, m->buf_iova) +
51 m->data_off);
52 }
53 #endif
54
55 /* physical address to kernel virtual address */
56 static void *
pa2kva(void * pa)57 pa2kva(void *pa)
58 {
59 return phys_to_virt((unsigned long)pa);
60 }
61
62 /* physical address to virtual address */
63 static void *
pa2va(void * pa,struct rte_kni_mbuf * m)64 pa2va(void *pa, struct rte_kni_mbuf *m)
65 {
66 void *va;
67
68 va = (void *)((unsigned long)pa +
69 (unsigned long)m->buf_addr -
70 (unsigned long)m->buf_iova);
71 return va;
72 }
73
74 /* mbuf data kernel virtual address from mbuf kernel virtual address */
75 static void *
kva2data_kva(struct rte_kni_mbuf * m)76 kva2data_kva(struct rte_kni_mbuf *m)
77 {
78 return phys_to_virt(m->buf_iova + m->data_off);
79 }
80
81 static inline void *
get_kva(struct kni_dev * kni,void * pa)82 get_kva(struct kni_dev *kni, void *pa)
83 {
84 #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT
85 if (kni->iova_mode == 1)
86 return iova2kva(kni, pa);
87 #endif
88 return pa2kva(pa);
89 }
90
91 static inline void *
get_data_kva(struct kni_dev * kni,void * pkt_kva)92 get_data_kva(struct kni_dev *kni, void *pkt_kva)
93 {
94 #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT
95 if (kni->iova_mode == 1)
96 return iova2data_kva(kni, pkt_kva);
97 #endif
98 return kva2data_kva(pkt_kva);
99 }
100
101 /*
102 * It can be called to process the request.
103 */
104 static int
kni_net_process_request(struct kni_dev * kni,struct rte_kni_request * req)105 kni_net_process_request(struct kni_dev *kni, struct rte_kni_request *req)
106 {
107 int ret = -1;
108 void *resp_va;
109 uint32_t num;
110 int ret_val;
111
112 if (!kni || !req) {
113 pr_err("No kni instance or request\n");
114 return -EINVAL;
115 }
116
117 mutex_lock(&kni->sync_lock);
118
119 /* Construct data */
120 memcpy(kni->sync_kva, req, sizeof(struct rte_kni_request));
121 num = kni_fifo_put(kni->req_q, &kni->sync_va, 1);
122 if (num < 1) {
123 pr_err("Cannot send to req_q\n");
124 ret = -EBUSY;
125 goto fail;
126 }
127
128 ret_val = wait_event_interruptible_timeout(kni->wq,
129 kni_fifo_count(kni->resp_q), 3 * HZ);
130 if (signal_pending(current) || ret_val <= 0) {
131 ret = -ETIME;
132 goto fail;
133 }
134 num = kni_fifo_get(kni->resp_q, (void **)&resp_va, 1);
135 if (num != 1 || resp_va != kni->sync_va) {
136 /* This should never happen */
137 pr_err("No data in resp_q\n");
138 ret = -ENODATA;
139 goto fail;
140 }
141
142 memcpy(req, kni->sync_kva, sizeof(struct rte_kni_request));
143 ret = 0;
144
145 fail:
146 mutex_unlock(&kni->sync_lock);
147 return ret;
148 }
149
150 /*
151 * Open and close
152 */
153 static int
kni_net_open(struct net_device * dev)154 kni_net_open(struct net_device *dev)
155 {
156 int ret;
157 struct rte_kni_request req;
158 struct kni_dev *kni = netdev_priv(dev);
159
160 netif_start_queue(dev);
161 if (kni_dflt_carrier == 1)
162 netif_carrier_on(dev);
163 else
164 netif_carrier_off(dev);
165
166 memset(&req, 0, sizeof(req));
167 req.req_id = RTE_KNI_REQ_CFG_NETWORK_IF;
168
169 /* Setting if_up to non-zero means up */
170 req.if_up = 1;
171 ret = kni_net_process_request(kni, &req);
172
173 return (ret == 0) ? req.result : ret;
174 }
175
176 static int
kni_net_release(struct net_device * dev)177 kni_net_release(struct net_device *dev)
178 {
179 int ret;
180 struct rte_kni_request req;
181 struct kni_dev *kni = netdev_priv(dev);
182
183 netif_stop_queue(dev); /* can't transmit any more */
184 netif_carrier_off(dev);
185
186 memset(&req, 0, sizeof(req));
187 req.req_id = RTE_KNI_REQ_CFG_NETWORK_IF;
188
189 /* Setting if_up to 0 means down */
190 req.if_up = 0;
191 ret = kni_net_process_request(kni, &req);
192
193 return (ret == 0) ? req.result : ret;
194 }
195
196 static void
kni_fifo_trans_pa2va(struct kni_dev * kni,struct rte_kni_fifo * src_pa,struct rte_kni_fifo * dst_va)197 kni_fifo_trans_pa2va(struct kni_dev *kni,
198 struct rte_kni_fifo *src_pa, struct rte_kni_fifo *dst_va)
199 {
200 uint32_t ret, i, num_dst, num_rx;
201 struct rte_kni_mbuf *kva, *prev_kva;
202 int nb_segs;
203 int kva_nb_segs;
204
205 do {
206 num_dst = kni_fifo_free_count(dst_va);
207 if (num_dst == 0)
208 return;
209
210 num_rx = min_t(uint32_t, num_dst, MBUF_BURST_SZ);
211
212 num_rx = kni_fifo_get(src_pa, kni->pa, num_rx);
213 if (num_rx == 0)
214 return;
215
216 for (i = 0; i < num_rx; i++) {
217 kva = get_kva(kni, kni->pa[i]);
218 kni->va[i] = pa2va(kni->pa[i], kva);
219
220 kva_nb_segs = kva->nb_segs;
221 for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
222 if (!kva->next)
223 break;
224
225 prev_kva = kva;
226 kva = pa2kva(kva->next);
227 /* Convert physical address to virtual address */
228 prev_kva->next = pa2va(prev_kva->next, kva);
229 }
230 }
231
232 ret = kni_fifo_put(dst_va, kni->va, num_rx);
233 if (ret != num_rx) {
234 /* Failing should not happen */
235 pr_err("Fail to enqueue entries into dst_va\n");
236 return;
237 }
238 } while (1);
239 }
240
241 /* Try to release mbufs when kni release */
kni_net_release_fifo_phy(struct kni_dev * kni)242 void kni_net_release_fifo_phy(struct kni_dev *kni)
243 {
244 /* release rx_q first, because it can't release in userspace */
245 kni_fifo_trans_pa2va(kni, kni->rx_q, kni->free_q);
246 /* release alloc_q for speeding up kni release in userspace */
247 kni_fifo_trans_pa2va(kni, kni->alloc_q, kni->free_q);
248 }
249
250 /*
251 * Configuration changes (passed on by ifconfig)
252 */
253 static int
kni_net_config(struct net_device * dev,struct ifmap * map)254 kni_net_config(struct net_device *dev, struct ifmap *map)
255 {
256 if (dev->flags & IFF_UP) /* can't act on a running interface */
257 return -EBUSY;
258
259 /* ignore other fields */
260 return 0;
261 }
262
263 /*
264 * Transmit a packet (called by the kernel)
265 */
266 static int
kni_net_tx(struct sk_buff * skb,struct net_device * dev)267 kni_net_tx(struct sk_buff *skb, struct net_device *dev)
268 {
269 int len = 0;
270 uint32_t ret;
271 struct kni_dev *kni = netdev_priv(dev);
272 struct rte_kni_mbuf *pkt_kva = NULL;
273 void *pkt_pa = NULL;
274 void *pkt_va = NULL;
275
276 /* save the timestamp */
277 #ifdef HAVE_TRANS_START_HELPER
278 netif_trans_update(dev);
279 #else
280 dev->trans_start = jiffies;
281 #endif
282
283 /* Check if the length of skb is less than mbuf size */
284 if (skb->len > kni->mbuf_size)
285 goto drop;
286
287 /**
288 * Check if it has at least one free entry in tx_q and
289 * one entry in alloc_q.
290 */
291 if (kni_fifo_free_count(kni->tx_q) == 0 ||
292 kni_fifo_count(kni->alloc_q) == 0) {
293 /**
294 * If no free entry in tx_q or no entry in alloc_q,
295 * drops skb and goes out.
296 */
297 goto drop;
298 }
299
300 /* dequeue a mbuf from alloc_q */
301 ret = kni_fifo_get(kni->alloc_q, &pkt_pa, 1);
302 if (likely(ret == 1)) {
303 void *data_kva;
304
305 pkt_kva = get_kva(kni, pkt_pa);
306 data_kva = get_data_kva(kni, pkt_kva);
307 pkt_va = pa2va(pkt_pa, pkt_kva);
308
309 len = skb->len;
310 memcpy(data_kva, skb->data, len);
311 if (unlikely(len < ETH_ZLEN)) {
312 memset(data_kva + len, 0, ETH_ZLEN - len);
313 len = ETH_ZLEN;
314 }
315 pkt_kva->pkt_len = len;
316 pkt_kva->data_len = len;
317
318 /* enqueue mbuf into tx_q */
319 ret = kni_fifo_put(kni->tx_q, &pkt_va, 1);
320 if (unlikely(ret != 1)) {
321 /* Failing should not happen */
322 pr_err("Fail to enqueue mbuf into tx_q\n");
323 goto drop;
324 }
325 } else {
326 /* Failing should not happen */
327 pr_err("Fail to dequeue mbuf from alloc_q\n");
328 goto drop;
329 }
330
331 /* Free skb and update statistics */
332 dev_kfree_skb(skb);
333 dev->stats.tx_bytes += len;
334 dev->stats.tx_packets++;
335
336 return NETDEV_TX_OK;
337
338 drop:
339 /* Free skb and update statistics */
340 dev_kfree_skb(skb);
341 dev->stats.tx_dropped++;
342
343 return NETDEV_TX_OK;
344 }
345
346 /*
347 * RX: normal working mode
348 */
349 static void
kni_net_rx_normal(struct kni_dev * kni)350 kni_net_rx_normal(struct kni_dev *kni)
351 {
352 uint32_t ret;
353 uint32_t len;
354 uint32_t i, num_rx, num_fq;
355 struct rte_kni_mbuf *kva, *prev_kva;
356 void *data_kva;
357 struct sk_buff *skb;
358 struct net_device *dev = kni->net_dev;
359
360 /* Get the number of free entries in free_q */
361 num_fq = kni_fifo_free_count(kni->free_q);
362 if (num_fq == 0) {
363 /* No room on the free_q, bail out */
364 return;
365 }
366
367 /* Calculate the number of entries to dequeue from rx_q */
368 num_rx = min_t(uint32_t, num_fq, MBUF_BURST_SZ);
369
370 /* Burst dequeue from rx_q */
371 num_rx = kni_fifo_get(kni->rx_q, kni->pa, num_rx);
372 if (num_rx == 0)
373 return;
374
375 /* Transfer received packets to netif */
376 for (i = 0; i < num_rx; i++) {
377 kva = get_kva(kni, kni->pa[i]);
378 len = kva->pkt_len;
379 data_kva = get_data_kva(kni, kva);
380 kni->va[i] = pa2va(kni->pa[i], kva);
381
382 skb = netdev_alloc_skb(dev, len);
383 if (!skb) {
384 /* Update statistics */
385 dev->stats.rx_dropped++;
386 continue;
387 }
388
389 if (kva->nb_segs == 1) {
390 memcpy(skb_put(skb, len), data_kva, len);
391 } else {
392 int nb_segs;
393 int kva_nb_segs = kva->nb_segs;
394
395 for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
396 memcpy(skb_put(skb, kva->data_len),
397 data_kva, kva->data_len);
398
399 if (!kva->next)
400 break;
401
402 prev_kva = kva;
403 kva = pa2kva(kva->next);
404 data_kva = kva2data_kva(kva);
405 /* Convert physical address to virtual address */
406 prev_kva->next = pa2va(prev_kva->next, kva);
407 }
408 }
409
410 skb->protocol = eth_type_trans(skb, dev);
411 skb->ip_summed = CHECKSUM_UNNECESSARY;
412
413 /* Call netif interface */
414 netif_rx_ni(skb);
415
416 /* Update statistics */
417 dev->stats.rx_bytes += len;
418 dev->stats.rx_packets++;
419 }
420
421 /* Burst enqueue mbufs into free_q */
422 ret = kni_fifo_put(kni->free_q, kni->va, num_rx);
423 if (ret != num_rx)
424 /* Failing should not happen */
425 pr_err("Fail to enqueue entries into free_q\n");
426 }
427
428 /*
429 * RX: loopback with enqueue/dequeue fifos.
430 */
431 static void
kni_net_rx_lo_fifo(struct kni_dev * kni)432 kni_net_rx_lo_fifo(struct kni_dev *kni)
433 {
434 uint32_t ret;
435 uint32_t len;
436 uint32_t i, num, num_rq, num_tq, num_aq, num_fq;
437 struct rte_kni_mbuf *kva, *next_kva;
438 void *data_kva;
439 struct rte_kni_mbuf *alloc_kva;
440 void *alloc_data_kva;
441 struct net_device *dev = kni->net_dev;
442
443 /* Get the number of entries in rx_q */
444 num_rq = kni_fifo_count(kni->rx_q);
445
446 /* Get the number of free entries in tx_q */
447 num_tq = kni_fifo_free_count(kni->tx_q);
448
449 /* Get the number of entries in alloc_q */
450 num_aq = kni_fifo_count(kni->alloc_q);
451
452 /* Get the number of free entries in free_q */
453 num_fq = kni_fifo_free_count(kni->free_q);
454
455 /* Calculate the number of entries to be dequeued from rx_q */
456 num = min(num_rq, num_tq);
457 num = min(num, num_aq);
458 num = min(num, num_fq);
459 num = min_t(uint32_t, num, MBUF_BURST_SZ);
460
461 /* Return if no entry to dequeue from rx_q */
462 if (num == 0)
463 return;
464
465 /* Burst dequeue from rx_q */
466 ret = kni_fifo_get(kni->rx_q, kni->pa, num);
467 if (ret == 0)
468 return; /* Failing should not happen */
469
470 /* Dequeue entries from alloc_q */
471 ret = kni_fifo_get(kni->alloc_q, kni->alloc_pa, num);
472 if (ret) {
473 num = ret;
474 /* Copy mbufs */
475 for (i = 0; i < num; i++) {
476 kva = get_kva(kni, kni->pa[i]);
477 len = kva->data_len;
478 data_kva = get_data_kva(kni, kva);
479 kni->va[i] = pa2va(kni->pa[i], kva);
480
481 while (kva->next) {
482 next_kva = pa2kva(kva->next);
483 /* Convert physical address to virtual address */
484 kva->next = pa2va(kva->next, next_kva);
485 kva = next_kva;
486 }
487
488 alloc_kva = get_kva(kni, kni->alloc_pa[i]);
489 alloc_data_kva = get_data_kva(kni, alloc_kva);
490 kni->alloc_va[i] = pa2va(kni->alloc_pa[i], alloc_kva);
491
492 memcpy(alloc_data_kva, data_kva, len);
493 alloc_kva->pkt_len = len;
494 alloc_kva->data_len = len;
495
496 dev->stats.tx_bytes += len;
497 dev->stats.rx_bytes += len;
498 }
499
500 /* Burst enqueue mbufs into tx_q */
501 ret = kni_fifo_put(kni->tx_q, kni->alloc_va, num);
502 if (ret != num)
503 /* Failing should not happen */
504 pr_err("Fail to enqueue mbufs into tx_q\n");
505 }
506
507 /* Burst enqueue mbufs into free_q */
508 ret = kni_fifo_put(kni->free_q, kni->va, num);
509 if (ret != num)
510 /* Failing should not happen */
511 pr_err("Fail to enqueue mbufs into free_q\n");
512
513 /**
514 * Update statistic, and enqueue/dequeue failure is impossible,
515 * as all queues are checked at first.
516 */
517 dev->stats.tx_packets += num;
518 dev->stats.rx_packets += num;
519 }
520
521 /*
522 * RX: loopback with enqueue/dequeue fifos and sk buffer copies.
523 */
524 static void
kni_net_rx_lo_fifo_skb(struct kni_dev * kni)525 kni_net_rx_lo_fifo_skb(struct kni_dev *kni)
526 {
527 uint32_t ret;
528 uint32_t len;
529 uint32_t i, num_rq, num_fq, num;
530 struct rte_kni_mbuf *kva, *prev_kva;
531 void *data_kva;
532 struct sk_buff *skb;
533 struct net_device *dev = kni->net_dev;
534
535 /* Get the number of entries in rx_q */
536 num_rq = kni_fifo_count(kni->rx_q);
537
538 /* Get the number of free entries in free_q */
539 num_fq = kni_fifo_free_count(kni->free_q);
540
541 /* Calculate the number of entries to dequeue from rx_q */
542 num = min(num_rq, num_fq);
543 num = min_t(uint32_t, num, MBUF_BURST_SZ);
544
545 /* Return if no entry to dequeue from rx_q */
546 if (num == 0)
547 return;
548
549 /* Burst dequeue mbufs from rx_q */
550 ret = kni_fifo_get(kni->rx_q, kni->pa, num);
551 if (ret == 0)
552 return;
553
554 /* Copy mbufs to sk buffer and then call tx interface */
555 for (i = 0; i < num; i++) {
556 kva = get_kva(kni, kni->pa[i]);
557 len = kva->pkt_len;
558 data_kva = get_data_kva(kni, kva);
559 kni->va[i] = pa2va(kni->pa[i], kva);
560
561 skb = netdev_alloc_skb(dev, len);
562 if (skb) {
563 memcpy(skb_put(skb, len), data_kva, len);
564 skb->ip_summed = CHECKSUM_UNNECESSARY;
565 dev_kfree_skb(skb);
566 }
567
568 /* Simulate real usage, allocate/copy skb twice */
569 skb = netdev_alloc_skb(dev, len);
570 if (skb == NULL) {
571 dev->stats.rx_dropped++;
572 continue;
573 }
574
575 if (kva->nb_segs == 1) {
576 memcpy(skb_put(skb, len), data_kva, len);
577 } else {
578 int nb_segs;
579 int kva_nb_segs = kva->nb_segs;
580
581 for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
582 memcpy(skb_put(skb, kva->data_len),
583 data_kva, kva->data_len);
584
585 if (!kva->next)
586 break;
587
588 prev_kva = kva;
589 kva = get_kva(kni, kva->next);
590 data_kva = get_data_kva(kni, kva);
591 /* Convert physical address to virtual address */
592 prev_kva->next = pa2va(prev_kva->next, kva);
593 }
594 }
595
596 skb->ip_summed = CHECKSUM_UNNECESSARY;
597
598 dev->stats.rx_bytes += len;
599 dev->stats.rx_packets++;
600
601 /* call tx interface */
602 kni_net_tx(skb, dev);
603 }
604
605 /* enqueue all the mbufs from rx_q into free_q */
606 ret = kni_fifo_put(kni->free_q, kni->va, num);
607 if (ret != num)
608 /* Failing should not happen */
609 pr_err("Fail to enqueue mbufs into free_q\n");
610 }
611
612 /* rx interface */
613 void
kni_net_rx(struct kni_dev * kni)614 kni_net_rx(struct kni_dev *kni)
615 {
616 /**
617 * It doesn't need to check if it is NULL pointer,
618 * as it has a default value
619 */
620 (*kni_net_rx_func)(kni);
621 }
622
623 /*
624 * Deal with a transmit timeout.
625 */
626 #ifdef HAVE_TX_TIMEOUT_TXQUEUE
627 static void
kni_net_tx_timeout(struct net_device * dev,unsigned int txqueue)628 kni_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
629 #else
630 static void
631 kni_net_tx_timeout(struct net_device *dev)
632 #endif
633 {
634 pr_debug("Transmit timeout at %ld, latency %ld\n", jiffies,
635 jiffies - dev_trans_start(dev));
636
637 dev->stats.tx_errors++;
638 netif_wake_queue(dev);
639 }
640
641 static int
kni_net_change_mtu(struct net_device * dev,int new_mtu)642 kni_net_change_mtu(struct net_device *dev, int new_mtu)
643 {
644 int ret;
645 struct rte_kni_request req;
646 struct kni_dev *kni = netdev_priv(dev);
647
648 pr_debug("kni_net_change_mtu new mtu %d to be set\n", new_mtu);
649
650 memset(&req, 0, sizeof(req));
651 req.req_id = RTE_KNI_REQ_CHANGE_MTU;
652 req.new_mtu = new_mtu;
653 ret = kni_net_process_request(kni, &req);
654 if (ret == 0 && req.result == 0)
655 dev->mtu = new_mtu;
656
657 return (ret == 0) ? req.result : ret;
658 }
659
660 static void
kni_net_change_rx_flags(struct net_device * netdev,int flags)661 kni_net_change_rx_flags(struct net_device *netdev, int flags)
662 {
663 struct rte_kni_request req;
664 struct kni_dev *kni = netdev_priv(netdev);
665
666 memset(&req, 0, sizeof(req));
667
668 if (flags & IFF_ALLMULTI) {
669 req.req_id = RTE_KNI_REQ_CHANGE_ALLMULTI;
670
671 if (netdev->flags & IFF_ALLMULTI)
672 req.allmulti = 1;
673 else
674 req.allmulti = 0;
675 }
676
677 if (flags & IFF_PROMISC) {
678 req.req_id = RTE_KNI_REQ_CHANGE_PROMISC;
679
680 if (netdev->flags & IFF_PROMISC)
681 req.promiscusity = 1;
682 else
683 req.promiscusity = 0;
684 }
685
686 kni_net_process_request(kni, &req);
687 }
688
689 /*
690 * Checks if the user space application provided the resp message
691 */
692 void
kni_net_poll_resp(struct kni_dev * kni)693 kni_net_poll_resp(struct kni_dev *kni)
694 {
695 if (kni_fifo_count(kni->resp_q))
696 wake_up_interruptible(&kni->wq);
697 }
698
699 /*
700 * Fill the eth header
701 */
702 static int
kni_net_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,uint32_t len)703 kni_net_header(struct sk_buff *skb, struct net_device *dev,
704 unsigned short type, const void *daddr,
705 const void *saddr, uint32_t len)
706 {
707 struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
708
709 memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
710 memcpy(eth->h_dest, daddr ? daddr : dev->dev_addr, dev->addr_len);
711 eth->h_proto = htons(type);
712
713 return dev->hard_header_len;
714 }
715
716 /*
717 * Re-fill the eth header
718 */
719 #ifdef HAVE_REBUILD_HEADER
720 static int
kni_net_rebuild_header(struct sk_buff * skb)721 kni_net_rebuild_header(struct sk_buff *skb)
722 {
723 struct net_device *dev = skb->dev;
724 struct ethhdr *eth = (struct ethhdr *) skb->data;
725
726 memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
727 memcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
728
729 return 0;
730 }
731 #endif /* < 4.1.0 */
732
733 /**
734 * kni_net_set_mac - Change the Ethernet Address of the KNI NIC
735 * @netdev: network interface device structure
736 * @p: pointer to an address structure
737 *
738 * Returns 0 on success, negative on failure
739 **/
740 static int
kni_net_set_mac(struct net_device * netdev,void * p)741 kni_net_set_mac(struct net_device *netdev, void *p)
742 {
743 int ret;
744 struct rte_kni_request req;
745 struct kni_dev *kni;
746 struct sockaddr *addr = p;
747
748 memset(&req, 0, sizeof(req));
749 req.req_id = RTE_KNI_REQ_CHANGE_MAC_ADDR;
750
751 if (!is_valid_ether_addr((unsigned char *)(addr->sa_data)))
752 return -EADDRNOTAVAIL;
753
754 memcpy(req.mac_addr, addr->sa_data, netdev->addr_len);
755 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
756
757 kni = netdev_priv(netdev);
758 ret = kni_net_process_request(kni, &req);
759
760 return (ret == 0 ? req.result : ret);
761 }
762
763 #ifdef HAVE_CHANGE_CARRIER_CB
764 static int
kni_net_change_carrier(struct net_device * dev,bool new_carrier)765 kni_net_change_carrier(struct net_device *dev, bool new_carrier)
766 {
767 if (new_carrier)
768 netif_carrier_on(dev);
769 else
770 netif_carrier_off(dev);
771 return 0;
772 }
773 #endif
774
775 static const struct header_ops kni_net_header_ops = {
776 .create = kni_net_header,
777 .parse = eth_header_parse,
778 #ifdef HAVE_REBUILD_HEADER
779 .rebuild = kni_net_rebuild_header,
780 #endif /* < 4.1.0 */
781 .cache = NULL, /* disable caching */
782 };
783
784 static const struct net_device_ops kni_net_netdev_ops = {
785 .ndo_open = kni_net_open,
786 .ndo_stop = kni_net_release,
787 .ndo_set_config = kni_net_config,
788 .ndo_change_rx_flags = kni_net_change_rx_flags,
789 .ndo_start_xmit = kni_net_tx,
790 .ndo_change_mtu = kni_net_change_mtu,
791 .ndo_tx_timeout = kni_net_tx_timeout,
792 .ndo_set_mac_address = kni_net_set_mac,
793 #ifdef HAVE_CHANGE_CARRIER_CB
794 .ndo_change_carrier = kni_net_change_carrier,
795 #endif
796 };
797
kni_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)798 static void kni_get_drvinfo(struct net_device *dev,
799 struct ethtool_drvinfo *info)
800 {
801 strlcpy(info->version, KNI_VERSION, sizeof(info->version));
802 strlcpy(info->driver, "kni", sizeof(info->driver));
803 }
804
805 static const struct ethtool_ops kni_net_ethtool_ops = {
806 .get_drvinfo = kni_get_drvinfo,
807 .get_link = ethtool_op_get_link,
808 };
809
810 void
kni_net_init(struct net_device * dev)811 kni_net_init(struct net_device *dev)
812 {
813 struct kni_dev *kni = netdev_priv(dev);
814
815 init_waitqueue_head(&kni->wq);
816 mutex_init(&kni->sync_lock);
817
818 ether_setup(dev); /* assign some of the fields */
819 dev->netdev_ops = &kni_net_netdev_ops;
820 dev->header_ops = &kni_net_header_ops;
821 dev->ethtool_ops = &kni_net_ethtool_ops;
822 dev->watchdog_timeo = WD_TIMEOUT;
823 }
824
825 void
kni_net_config_lo_mode(char * lo_str)826 kni_net_config_lo_mode(char *lo_str)
827 {
828 if (!lo_str) {
829 pr_debug("loopback disabled");
830 return;
831 }
832
833 if (!strcmp(lo_str, "lo_mode_none"))
834 pr_debug("loopback disabled");
835 else if (!strcmp(lo_str, "lo_mode_fifo")) {
836 pr_debug("loopback mode=lo_mode_fifo enabled");
837 kni_net_rx_func = kni_net_rx_lo_fifo;
838 } else if (!strcmp(lo_str, "lo_mode_fifo_skb")) {
839 pr_debug("loopback mode=lo_mode_fifo_skb enabled");
840 kni_net_rx_func = kni_net_rx_lo_fifo_skb;
841 } else {
842 pr_debug("Unknown loopback parameter, disabled");
843 }
844 }
845