xref: /f-stack/dpdk/kernel/linux/kni/kni_net.c (revision 2d9fd380)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(c) 2010-2014 Intel Corporation.
4  */
5 
6 /*
7  * This code is inspired from the book "Linux Device Drivers" by
8  * Alessandro Rubini and Jonathan Corbet, published by O'Reilly & Associates
9  */
10 
11 #include <linux/device.h>
12 #include <linux/module.h>
13 #include <linux/version.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h> /* eth_type_trans */
16 #include <linux/ethtool.h>
17 #include <linux/skbuff.h>
18 #include <linux/kthread.h>
19 #include <linux/delay.h>
20 
21 #include <rte_kni_common.h>
22 #include <kni_fifo.h>
23 
24 #include "compat.h"
25 #include "kni_dev.h"
26 
27 #define WD_TIMEOUT 5 /*jiffies */
28 
29 #define KNI_WAIT_RESPONSE_TIMEOUT 300 /* 3 seconds */
30 
31 /* typedef for rx function */
32 typedef void (*kni_net_rx_t)(struct kni_dev *kni);
33 
34 static void kni_net_rx_normal(struct kni_dev *kni);
35 
36 /* kni rx function pointer, with default to normal rx */
37 static kni_net_rx_t kni_net_rx_func = kni_net_rx_normal;
38 
39 #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT
40 /* iova to kernel virtual address */
41 static inline void *
iova2kva(struct kni_dev * kni,void * iova)42 iova2kva(struct kni_dev *kni, void *iova)
43 {
44 	return phys_to_virt(iova_to_phys(kni->usr_tsk, (unsigned long)iova));
45 }
46 
47 static inline void *
iova2data_kva(struct kni_dev * kni,struct rte_kni_mbuf * m)48 iova2data_kva(struct kni_dev *kni, struct rte_kni_mbuf *m)
49 {
50 	return phys_to_virt(iova_to_phys(kni->usr_tsk, m->buf_iova) +
51 			    m->data_off);
52 }
53 #endif
54 
55 /* physical address to kernel virtual address */
56 static void *
pa2kva(void * pa)57 pa2kva(void *pa)
58 {
59 	return phys_to_virt((unsigned long)pa);
60 }
61 
62 /* physical address to virtual address */
63 static void *
pa2va(void * pa,struct rte_kni_mbuf * m)64 pa2va(void *pa, struct rte_kni_mbuf *m)
65 {
66 	void *va;
67 
68 	va = (void *)((unsigned long)pa +
69 			(unsigned long)m->buf_addr -
70 			(unsigned long)m->buf_iova);
71 	return va;
72 }
73 
74 /* mbuf data kernel virtual address from mbuf kernel virtual address */
75 static void *
kva2data_kva(struct rte_kni_mbuf * m)76 kva2data_kva(struct rte_kni_mbuf *m)
77 {
78 	return phys_to_virt(m->buf_iova + m->data_off);
79 }
80 
81 static inline void *
get_kva(struct kni_dev * kni,void * pa)82 get_kva(struct kni_dev *kni, void *pa)
83 {
84 #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT
85 	if (kni->iova_mode == 1)
86 		return iova2kva(kni, pa);
87 #endif
88 	return pa2kva(pa);
89 }
90 
91 static inline void *
get_data_kva(struct kni_dev * kni,void * pkt_kva)92 get_data_kva(struct kni_dev *kni, void *pkt_kva)
93 {
94 #ifdef HAVE_IOVA_TO_KVA_MAPPING_SUPPORT
95 	if (kni->iova_mode == 1)
96 		return iova2data_kva(kni, pkt_kva);
97 #endif
98 	return kva2data_kva(pkt_kva);
99 }
100 
101 /*
102  * It can be called to process the request.
103  */
104 static int
kni_net_process_request(struct kni_dev * kni,struct rte_kni_request * req)105 kni_net_process_request(struct kni_dev *kni, struct rte_kni_request *req)
106 {
107 	int ret = -1;
108 	void *resp_va;
109 	uint32_t num;
110 	int ret_val;
111 
112 	if (!kni || !req) {
113 		pr_err("No kni instance or request\n");
114 		return -EINVAL;
115 	}
116 
117 	mutex_lock(&kni->sync_lock);
118 
119 	/* Construct data */
120 	memcpy(kni->sync_kva, req, sizeof(struct rte_kni_request));
121 	num = kni_fifo_put(kni->req_q, &kni->sync_va, 1);
122 	if (num < 1) {
123 		pr_err("Cannot send to req_q\n");
124 		ret = -EBUSY;
125 		goto fail;
126 	}
127 
128 	ret_val = wait_event_interruptible_timeout(kni->wq,
129 			kni_fifo_count(kni->resp_q), 3 * HZ);
130 	if (signal_pending(current) || ret_val <= 0) {
131 		ret = -ETIME;
132 		goto fail;
133 	}
134 	num = kni_fifo_get(kni->resp_q, (void **)&resp_va, 1);
135 	if (num != 1 || resp_va != kni->sync_va) {
136 		/* This should never happen */
137 		pr_err("No data in resp_q\n");
138 		ret = -ENODATA;
139 		goto fail;
140 	}
141 
142 	memcpy(req, kni->sync_kva, sizeof(struct rte_kni_request));
143 	ret = 0;
144 
145 fail:
146 	mutex_unlock(&kni->sync_lock);
147 	return ret;
148 }
149 
150 /*
151  * Open and close
152  */
153 static int
kni_net_open(struct net_device * dev)154 kni_net_open(struct net_device *dev)
155 {
156 	int ret;
157 	struct rte_kni_request req;
158 	struct kni_dev *kni = netdev_priv(dev);
159 
160 	netif_start_queue(dev);
161 	if (kni_dflt_carrier == 1)
162 		netif_carrier_on(dev);
163 	else
164 		netif_carrier_off(dev);
165 
166 	memset(&req, 0, sizeof(req));
167 	req.req_id = RTE_KNI_REQ_CFG_NETWORK_IF;
168 
169 	/* Setting if_up to non-zero means up */
170 	req.if_up = 1;
171 	ret = kni_net_process_request(kni, &req);
172 
173 	return (ret == 0) ? req.result : ret;
174 }
175 
176 static int
kni_net_release(struct net_device * dev)177 kni_net_release(struct net_device *dev)
178 {
179 	int ret;
180 	struct rte_kni_request req;
181 	struct kni_dev *kni = netdev_priv(dev);
182 
183 	netif_stop_queue(dev); /* can't transmit any more */
184 	netif_carrier_off(dev);
185 
186 	memset(&req, 0, sizeof(req));
187 	req.req_id = RTE_KNI_REQ_CFG_NETWORK_IF;
188 
189 	/* Setting if_up to 0 means down */
190 	req.if_up = 0;
191 	ret = kni_net_process_request(kni, &req);
192 
193 	return (ret == 0) ? req.result : ret;
194 }
195 
196 static void
kni_fifo_trans_pa2va(struct kni_dev * kni,struct rte_kni_fifo * src_pa,struct rte_kni_fifo * dst_va)197 kni_fifo_trans_pa2va(struct kni_dev *kni,
198 	struct rte_kni_fifo *src_pa, struct rte_kni_fifo *dst_va)
199 {
200 	uint32_t ret, i, num_dst, num_rx;
201 	struct rte_kni_mbuf *kva, *prev_kva;
202 	int nb_segs;
203 	int kva_nb_segs;
204 
205 	do {
206 		num_dst = kni_fifo_free_count(dst_va);
207 		if (num_dst == 0)
208 			return;
209 
210 		num_rx = min_t(uint32_t, num_dst, MBUF_BURST_SZ);
211 
212 		num_rx = kni_fifo_get(src_pa, kni->pa, num_rx);
213 		if (num_rx == 0)
214 			return;
215 
216 		for (i = 0; i < num_rx; i++) {
217 			kva = get_kva(kni, kni->pa[i]);
218 			kni->va[i] = pa2va(kni->pa[i], kva);
219 
220 			kva_nb_segs = kva->nb_segs;
221 			for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
222 				if (!kva->next)
223 					break;
224 
225 				prev_kva = kva;
226 				kva = pa2kva(kva->next);
227 				/* Convert physical address to virtual address */
228 				prev_kva->next = pa2va(prev_kva->next, kva);
229 			}
230 		}
231 
232 		ret = kni_fifo_put(dst_va, kni->va, num_rx);
233 		if (ret != num_rx) {
234 			/* Failing should not happen */
235 			pr_err("Fail to enqueue entries into dst_va\n");
236 			return;
237 		}
238 	} while (1);
239 }
240 
241 /* Try to release mbufs when kni release */
kni_net_release_fifo_phy(struct kni_dev * kni)242 void kni_net_release_fifo_phy(struct kni_dev *kni)
243 {
244 	/* release rx_q first, because it can't release in userspace */
245 	kni_fifo_trans_pa2va(kni, kni->rx_q, kni->free_q);
246 	/* release alloc_q for speeding up kni release in userspace */
247 	kni_fifo_trans_pa2va(kni, kni->alloc_q, kni->free_q);
248 }
249 
250 /*
251  * Configuration changes (passed on by ifconfig)
252  */
253 static int
kni_net_config(struct net_device * dev,struct ifmap * map)254 kni_net_config(struct net_device *dev, struct ifmap *map)
255 {
256 	if (dev->flags & IFF_UP) /* can't act on a running interface */
257 		return -EBUSY;
258 
259 	/* ignore other fields */
260 	return 0;
261 }
262 
263 /*
264  * Transmit a packet (called by the kernel)
265  */
266 static int
kni_net_tx(struct sk_buff * skb,struct net_device * dev)267 kni_net_tx(struct sk_buff *skb, struct net_device *dev)
268 {
269 	int len = 0;
270 	uint32_t ret;
271 	struct kni_dev *kni = netdev_priv(dev);
272 	struct rte_kni_mbuf *pkt_kva = NULL;
273 	void *pkt_pa = NULL;
274 	void *pkt_va = NULL;
275 
276 	/* save the timestamp */
277 #ifdef HAVE_TRANS_START_HELPER
278 	netif_trans_update(dev);
279 #else
280 	dev->trans_start = jiffies;
281 #endif
282 
283 	/* Check if the length of skb is less than mbuf size */
284 	if (skb->len > kni->mbuf_size)
285 		goto drop;
286 
287 	/**
288 	 * Check if it has at least one free entry in tx_q and
289 	 * one entry in alloc_q.
290 	 */
291 	if (kni_fifo_free_count(kni->tx_q) == 0 ||
292 			kni_fifo_count(kni->alloc_q) == 0) {
293 		/**
294 		 * If no free entry in tx_q or no entry in alloc_q,
295 		 * drops skb and goes out.
296 		 */
297 		goto drop;
298 	}
299 
300 	/* dequeue a mbuf from alloc_q */
301 	ret = kni_fifo_get(kni->alloc_q, &pkt_pa, 1);
302 	if (likely(ret == 1)) {
303 		void *data_kva;
304 
305 		pkt_kva = get_kva(kni, pkt_pa);
306 		data_kva = get_data_kva(kni, pkt_kva);
307 		pkt_va = pa2va(pkt_pa, pkt_kva);
308 
309 		len = skb->len;
310 		memcpy(data_kva, skb->data, len);
311 		if (unlikely(len < ETH_ZLEN)) {
312 			memset(data_kva + len, 0, ETH_ZLEN - len);
313 			len = ETH_ZLEN;
314 		}
315 		pkt_kva->pkt_len = len;
316 		pkt_kva->data_len = len;
317 
318 		/* enqueue mbuf into tx_q */
319 		ret = kni_fifo_put(kni->tx_q, &pkt_va, 1);
320 		if (unlikely(ret != 1)) {
321 			/* Failing should not happen */
322 			pr_err("Fail to enqueue mbuf into tx_q\n");
323 			goto drop;
324 		}
325 	} else {
326 		/* Failing should not happen */
327 		pr_err("Fail to dequeue mbuf from alloc_q\n");
328 		goto drop;
329 	}
330 
331 	/* Free skb and update statistics */
332 	dev_kfree_skb(skb);
333 	dev->stats.tx_bytes += len;
334 	dev->stats.tx_packets++;
335 
336 	return NETDEV_TX_OK;
337 
338 drop:
339 	/* Free skb and update statistics */
340 	dev_kfree_skb(skb);
341 	dev->stats.tx_dropped++;
342 
343 	return NETDEV_TX_OK;
344 }
345 
346 /*
347  * RX: normal working mode
348  */
349 static void
kni_net_rx_normal(struct kni_dev * kni)350 kni_net_rx_normal(struct kni_dev *kni)
351 {
352 	uint32_t ret;
353 	uint32_t len;
354 	uint32_t i, num_rx, num_fq;
355 	struct rte_kni_mbuf *kva, *prev_kva;
356 	void *data_kva;
357 	struct sk_buff *skb;
358 	struct net_device *dev = kni->net_dev;
359 
360 	/* Get the number of free entries in free_q */
361 	num_fq = kni_fifo_free_count(kni->free_q);
362 	if (num_fq == 0) {
363 		/* No room on the free_q, bail out */
364 		return;
365 	}
366 
367 	/* Calculate the number of entries to dequeue from rx_q */
368 	num_rx = min_t(uint32_t, num_fq, MBUF_BURST_SZ);
369 
370 	/* Burst dequeue from rx_q */
371 	num_rx = kni_fifo_get(kni->rx_q, kni->pa, num_rx);
372 	if (num_rx == 0)
373 		return;
374 
375 	/* Transfer received packets to netif */
376 	for (i = 0; i < num_rx; i++) {
377 		kva = get_kva(kni, kni->pa[i]);
378 		len = kva->pkt_len;
379 		data_kva = get_data_kva(kni, kva);
380 		kni->va[i] = pa2va(kni->pa[i], kva);
381 
382 		skb = netdev_alloc_skb(dev, len);
383 		if (!skb) {
384 			/* Update statistics */
385 			dev->stats.rx_dropped++;
386 			continue;
387 		}
388 
389 		if (kva->nb_segs == 1) {
390 			memcpy(skb_put(skb, len), data_kva, len);
391 		} else {
392 			int nb_segs;
393 			int kva_nb_segs = kva->nb_segs;
394 
395 			for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
396 				memcpy(skb_put(skb, kva->data_len),
397 					data_kva, kva->data_len);
398 
399 				if (!kva->next)
400 					break;
401 
402 				prev_kva = kva;
403 				kva = pa2kva(kva->next);
404 				data_kva = kva2data_kva(kva);
405 				/* Convert physical address to virtual address */
406 				prev_kva->next = pa2va(prev_kva->next, kva);
407 			}
408 		}
409 
410 		skb->protocol = eth_type_trans(skb, dev);
411 		skb->ip_summed = CHECKSUM_UNNECESSARY;
412 
413 		/* Call netif interface */
414 		netif_rx_ni(skb);
415 
416 		/* Update statistics */
417 		dev->stats.rx_bytes += len;
418 		dev->stats.rx_packets++;
419 	}
420 
421 	/* Burst enqueue mbufs into free_q */
422 	ret = kni_fifo_put(kni->free_q, kni->va, num_rx);
423 	if (ret != num_rx)
424 		/* Failing should not happen */
425 		pr_err("Fail to enqueue entries into free_q\n");
426 }
427 
428 /*
429  * RX: loopback with enqueue/dequeue fifos.
430  */
431 static void
kni_net_rx_lo_fifo(struct kni_dev * kni)432 kni_net_rx_lo_fifo(struct kni_dev *kni)
433 {
434 	uint32_t ret;
435 	uint32_t len;
436 	uint32_t i, num, num_rq, num_tq, num_aq, num_fq;
437 	struct rte_kni_mbuf *kva, *next_kva;
438 	void *data_kva;
439 	struct rte_kni_mbuf *alloc_kva;
440 	void *alloc_data_kva;
441 	struct net_device *dev = kni->net_dev;
442 
443 	/* Get the number of entries in rx_q */
444 	num_rq = kni_fifo_count(kni->rx_q);
445 
446 	/* Get the number of free entries in tx_q */
447 	num_tq = kni_fifo_free_count(kni->tx_q);
448 
449 	/* Get the number of entries in alloc_q */
450 	num_aq = kni_fifo_count(kni->alloc_q);
451 
452 	/* Get the number of free entries in free_q */
453 	num_fq = kni_fifo_free_count(kni->free_q);
454 
455 	/* Calculate the number of entries to be dequeued from rx_q */
456 	num = min(num_rq, num_tq);
457 	num = min(num, num_aq);
458 	num = min(num, num_fq);
459 	num = min_t(uint32_t, num, MBUF_BURST_SZ);
460 
461 	/* Return if no entry to dequeue from rx_q */
462 	if (num == 0)
463 		return;
464 
465 	/* Burst dequeue from rx_q */
466 	ret = kni_fifo_get(kni->rx_q, kni->pa, num);
467 	if (ret == 0)
468 		return; /* Failing should not happen */
469 
470 	/* Dequeue entries from alloc_q */
471 	ret = kni_fifo_get(kni->alloc_q, kni->alloc_pa, num);
472 	if (ret) {
473 		num = ret;
474 		/* Copy mbufs */
475 		for (i = 0; i < num; i++) {
476 			kva = get_kva(kni, kni->pa[i]);
477 			len = kva->data_len;
478 			data_kva = get_data_kva(kni, kva);
479 			kni->va[i] = pa2va(kni->pa[i], kva);
480 
481 			while (kva->next) {
482 				next_kva = pa2kva(kva->next);
483 				/* Convert physical address to virtual address */
484 				kva->next = pa2va(kva->next, next_kva);
485 				kva = next_kva;
486 			}
487 
488 			alloc_kva = get_kva(kni, kni->alloc_pa[i]);
489 			alloc_data_kva = get_data_kva(kni, alloc_kva);
490 			kni->alloc_va[i] = pa2va(kni->alloc_pa[i], alloc_kva);
491 
492 			memcpy(alloc_data_kva, data_kva, len);
493 			alloc_kva->pkt_len = len;
494 			alloc_kva->data_len = len;
495 
496 			dev->stats.tx_bytes += len;
497 			dev->stats.rx_bytes += len;
498 		}
499 
500 		/* Burst enqueue mbufs into tx_q */
501 		ret = kni_fifo_put(kni->tx_q, kni->alloc_va, num);
502 		if (ret != num)
503 			/* Failing should not happen */
504 			pr_err("Fail to enqueue mbufs into tx_q\n");
505 	}
506 
507 	/* Burst enqueue mbufs into free_q */
508 	ret = kni_fifo_put(kni->free_q, kni->va, num);
509 	if (ret != num)
510 		/* Failing should not happen */
511 		pr_err("Fail to enqueue mbufs into free_q\n");
512 
513 	/**
514 	 * Update statistic, and enqueue/dequeue failure is impossible,
515 	 * as all queues are checked at first.
516 	 */
517 	dev->stats.tx_packets += num;
518 	dev->stats.rx_packets += num;
519 }
520 
521 /*
522  * RX: loopback with enqueue/dequeue fifos and sk buffer copies.
523  */
524 static void
kni_net_rx_lo_fifo_skb(struct kni_dev * kni)525 kni_net_rx_lo_fifo_skb(struct kni_dev *kni)
526 {
527 	uint32_t ret;
528 	uint32_t len;
529 	uint32_t i, num_rq, num_fq, num;
530 	struct rte_kni_mbuf *kva, *prev_kva;
531 	void *data_kva;
532 	struct sk_buff *skb;
533 	struct net_device *dev = kni->net_dev;
534 
535 	/* Get the number of entries in rx_q */
536 	num_rq = kni_fifo_count(kni->rx_q);
537 
538 	/* Get the number of free entries in free_q */
539 	num_fq = kni_fifo_free_count(kni->free_q);
540 
541 	/* Calculate the number of entries to dequeue from rx_q */
542 	num = min(num_rq, num_fq);
543 	num = min_t(uint32_t, num, MBUF_BURST_SZ);
544 
545 	/* Return if no entry to dequeue from rx_q */
546 	if (num == 0)
547 		return;
548 
549 	/* Burst dequeue mbufs from rx_q */
550 	ret = kni_fifo_get(kni->rx_q, kni->pa, num);
551 	if (ret == 0)
552 		return;
553 
554 	/* Copy mbufs to sk buffer and then call tx interface */
555 	for (i = 0; i < num; i++) {
556 		kva = get_kva(kni, kni->pa[i]);
557 		len = kva->pkt_len;
558 		data_kva = get_data_kva(kni, kva);
559 		kni->va[i] = pa2va(kni->pa[i], kva);
560 
561 		skb = netdev_alloc_skb(dev, len);
562 		if (skb) {
563 			memcpy(skb_put(skb, len), data_kva, len);
564 			skb->ip_summed = CHECKSUM_UNNECESSARY;
565 			dev_kfree_skb(skb);
566 		}
567 
568 		/* Simulate real usage, allocate/copy skb twice */
569 		skb = netdev_alloc_skb(dev, len);
570 		if (skb == NULL) {
571 			dev->stats.rx_dropped++;
572 			continue;
573 		}
574 
575 		if (kva->nb_segs == 1) {
576 			memcpy(skb_put(skb, len), data_kva, len);
577 		} else {
578 			int nb_segs;
579 			int kva_nb_segs = kva->nb_segs;
580 
581 			for (nb_segs = 0; nb_segs < kva_nb_segs; nb_segs++) {
582 				memcpy(skb_put(skb, kva->data_len),
583 					data_kva, kva->data_len);
584 
585 				if (!kva->next)
586 					break;
587 
588 				prev_kva = kva;
589 				kva = get_kva(kni, kva->next);
590 				data_kva = get_data_kva(kni, kva);
591 				/* Convert physical address to virtual address */
592 				prev_kva->next = pa2va(prev_kva->next, kva);
593 			}
594 		}
595 
596 		skb->ip_summed = CHECKSUM_UNNECESSARY;
597 
598 		dev->stats.rx_bytes += len;
599 		dev->stats.rx_packets++;
600 
601 		/* call tx interface */
602 		kni_net_tx(skb, dev);
603 	}
604 
605 	/* enqueue all the mbufs from rx_q into free_q */
606 	ret = kni_fifo_put(kni->free_q, kni->va, num);
607 	if (ret != num)
608 		/* Failing should not happen */
609 		pr_err("Fail to enqueue mbufs into free_q\n");
610 }
611 
612 /* rx interface */
613 void
kni_net_rx(struct kni_dev * kni)614 kni_net_rx(struct kni_dev *kni)
615 {
616 	/**
617 	 * It doesn't need to check if it is NULL pointer,
618 	 * as it has a default value
619 	 */
620 	(*kni_net_rx_func)(kni);
621 }
622 
623 /*
624  * Deal with a transmit timeout.
625  */
626 #ifdef HAVE_TX_TIMEOUT_TXQUEUE
627 static void
kni_net_tx_timeout(struct net_device * dev,unsigned int txqueue)628 kni_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
629 #else
630 static void
631 kni_net_tx_timeout(struct net_device *dev)
632 #endif
633 {
634 	pr_debug("Transmit timeout at %ld, latency %ld\n", jiffies,
635 			jiffies - dev_trans_start(dev));
636 
637 	dev->stats.tx_errors++;
638 	netif_wake_queue(dev);
639 }
640 
641 static int
kni_net_change_mtu(struct net_device * dev,int new_mtu)642 kni_net_change_mtu(struct net_device *dev, int new_mtu)
643 {
644 	int ret;
645 	struct rte_kni_request req;
646 	struct kni_dev *kni = netdev_priv(dev);
647 
648 	pr_debug("kni_net_change_mtu new mtu %d to be set\n", new_mtu);
649 
650 	memset(&req, 0, sizeof(req));
651 	req.req_id = RTE_KNI_REQ_CHANGE_MTU;
652 	req.new_mtu = new_mtu;
653 	ret = kni_net_process_request(kni, &req);
654 	if (ret == 0 && req.result == 0)
655 		dev->mtu = new_mtu;
656 
657 	return (ret == 0) ? req.result : ret;
658 }
659 
660 static void
kni_net_change_rx_flags(struct net_device * netdev,int flags)661 kni_net_change_rx_flags(struct net_device *netdev, int flags)
662 {
663 	struct rte_kni_request req;
664 	struct kni_dev *kni = netdev_priv(netdev);
665 
666 	memset(&req, 0, sizeof(req));
667 
668 	if (flags & IFF_ALLMULTI) {
669 		req.req_id = RTE_KNI_REQ_CHANGE_ALLMULTI;
670 
671 		if (netdev->flags & IFF_ALLMULTI)
672 			req.allmulti = 1;
673 		else
674 			req.allmulti = 0;
675 	}
676 
677 	if (flags & IFF_PROMISC) {
678 		req.req_id = RTE_KNI_REQ_CHANGE_PROMISC;
679 
680 		if (netdev->flags & IFF_PROMISC)
681 			req.promiscusity = 1;
682 		else
683 			req.promiscusity = 0;
684 	}
685 
686 	kni_net_process_request(kni, &req);
687 }
688 
689 /*
690  * Checks if the user space application provided the resp message
691  */
692 void
kni_net_poll_resp(struct kni_dev * kni)693 kni_net_poll_resp(struct kni_dev *kni)
694 {
695 	if (kni_fifo_count(kni->resp_q))
696 		wake_up_interruptible(&kni->wq);
697 }
698 
699 /*
700  *  Fill the eth header
701  */
702 static int
kni_net_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,uint32_t len)703 kni_net_header(struct sk_buff *skb, struct net_device *dev,
704 		unsigned short type, const void *daddr,
705 		const void *saddr, uint32_t len)
706 {
707 	struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
708 
709 	memcpy(eth->h_source, saddr ? saddr : dev->dev_addr, dev->addr_len);
710 	memcpy(eth->h_dest,   daddr ? daddr : dev->dev_addr, dev->addr_len);
711 	eth->h_proto = htons(type);
712 
713 	return dev->hard_header_len;
714 }
715 
716 /*
717  * Re-fill the eth header
718  */
719 #ifdef HAVE_REBUILD_HEADER
720 static int
kni_net_rebuild_header(struct sk_buff * skb)721 kni_net_rebuild_header(struct sk_buff *skb)
722 {
723 	struct net_device *dev = skb->dev;
724 	struct ethhdr *eth = (struct ethhdr *) skb->data;
725 
726 	memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
727 	memcpy(eth->h_dest, dev->dev_addr, dev->addr_len);
728 
729 	return 0;
730 }
731 #endif /* < 4.1.0  */
732 
733 /**
734  * kni_net_set_mac - Change the Ethernet Address of the KNI NIC
735  * @netdev: network interface device structure
736  * @p: pointer to an address structure
737  *
738  * Returns 0 on success, negative on failure
739  **/
740 static int
kni_net_set_mac(struct net_device * netdev,void * p)741 kni_net_set_mac(struct net_device *netdev, void *p)
742 {
743 	int ret;
744 	struct rte_kni_request req;
745 	struct kni_dev *kni;
746 	struct sockaddr *addr = p;
747 
748 	memset(&req, 0, sizeof(req));
749 	req.req_id = RTE_KNI_REQ_CHANGE_MAC_ADDR;
750 
751 	if (!is_valid_ether_addr((unsigned char *)(addr->sa_data)))
752 		return -EADDRNOTAVAIL;
753 
754 	memcpy(req.mac_addr, addr->sa_data, netdev->addr_len);
755 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
756 
757 	kni = netdev_priv(netdev);
758 	ret = kni_net_process_request(kni, &req);
759 
760 	return (ret == 0 ? req.result : ret);
761 }
762 
763 #ifdef HAVE_CHANGE_CARRIER_CB
764 static int
kni_net_change_carrier(struct net_device * dev,bool new_carrier)765 kni_net_change_carrier(struct net_device *dev, bool new_carrier)
766 {
767 	if (new_carrier)
768 		netif_carrier_on(dev);
769 	else
770 		netif_carrier_off(dev);
771 	return 0;
772 }
773 #endif
774 
775 static const struct header_ops kni_net_header_ops = {
776 	.create  = kni_net_header,
777 	.parse   = eth_header_parse,
778 #ifdef HAVE_REBUILD_HEADER
779 	.rebuild = kni_net_rebuild_header,
780 #endif /* < 4.1.0  */
781 	.cache   = NULL,  /* disable caching */
782 };
783 
784 static const struct net_device_ops kni_net_netdev_ops = {
785 	.ndo_open = kni_net_open,
786 	.ndo_stop = kni_net_release,
787 	.ndo_set_config = kni_net_config,
788 	.ndo_change_rx_flags = kni_net_change_rx_flags,
789 	.ndo_start_xmit = kni_net_tx,
790 	.ndo_change_mtu = kni_net_change_mtu,
791 	.ndo_tx_timeout = kni_net_tx_timeout,
792 	.ndo_set_mac_address = kni_net_set_mac,
793 #ifdef HAVE_CHANGE_CARRIER_CB
794 	.ndo_change_carrier = kni_net_change_carrier,
795 #endif
796 };
797 
kni_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)798 static void kni_get_drvinfo(struct net_device *dev,
799 			    struct ethtool_drvinfo *info)
800 {
801 	strlcpy(info->version, KNI_VERSION, sizeof(info->version));
802 	strlcpy(info->driver, "kni", sizeof(info->driver));
803 }
804 
805 static const struct ethtool_ops kni_net_ethtool_ops = {
806 	.get_drvinfo	= kni_get_drvinfo,
807 	.get_link	= ethtool_op_get_link,
808 };
809 
810 void
kni_net_init(struct net_device * dev)811 kni_net_init(struct net_device *dev)
812 {
813 	struct kni_dev *kni = netdev_priv(dev);
814 
815 	init_waitqueue_head(&kni->wq);
816 	mutex_init(&kni->sync_lock);
817 
818 	ether_setup(dev); /* assign some of the fields */
819 	dev->netdev_ops      = &kni_net_netdev_ops;
820 	dev->header_ops      = &kni_net_header_ops;
821 	dev->ethtool_ops     = &kni_net_ethtool_ops;
822 	dev->watchdog_timeo = WD_TIMEOUT;
823 }
824 
825 void
kni_net_config_lo_mode(char * lo_str)826 kni_net_config_lo_mode(char *lo_str)
827 {
828 	if (!lo_str) {
829 		pr_debug("loopback disabled");
830 		return;
831 	}
832 
833 	if (!strcmp(lo_str, "lo_mode_none"))
834 		pr_debug("loopback disabled");
835 	else if (!strcmp(lo_str, "lo_mode_fifo")) {
836 		pr_debug("loopback mode=lo_mode_fifo enabled");
837 		kni_net_rx_func = kni_net_rx_lo_fifo;
838 	} else if (!strcmp(lo_str, "lo_mode_fifo_skb")) {
839 		pr_debug("loopback mode=lo_mode_fifo_skb enabled");
840 		kni_net_rx_func = kni_net_rx_lo_fifo_skb;
841 	} else {
842 		pr_debug("Unknown loopback parameter, disabled");
843 	}
844 }
845