1 /* SPDX-License-Identifier: BSD-3-Clause
2 *
3 * Copyright(c) 2019-2020 Xilinx, Inc.
4 * Copyright(c) 2016-2019 Solarflare Communications Inc.
5 *
6 * This software was jointly developed between OKTET Labs (under contract
7 * for Solarflare) and Solarflare Communications, Inc.
8 */
9
10 #include <rte_mempool.h>
11
12 #include "efx.h"
13
14 #include "sfc.h"
15 #include "sfc_debug.h"
16 #include "sfc_log.h"
17 #include "sfc_ev.h"
18 #include "sfc_rx.h"
19 #include "sfc_kvargs.h"
20 #include "sfc_tweak.h"
21
22 /*
23 * Maximum number of Rx queue flush attempt in the case of failure or
24 * flush timeout
25 */
26 #define SFC_RX_QFLUSH_ATTEMPTS (3)
27
28 /*
29 * Time to wait between event queue polling attempts when waiting for Rx
30 * queue flush done or failed events.
31 */
32 #define SFC_RX_QFLUSH_POLL_WAIT_MS (1)
33
34 /*
35 * Maximum number of event queue polling attempts when waiting for Rx queue
36 * flush done or failed events. It defines Rx queue flush attempt timeout
37 * together with SFC_RX_QFLUSH_POLL_WAIT_MS.
38 */
39 #define SFC_RX_QFLUSH_POLL_ATTEMPTS (2000)
40
41 void
sfc_rx_qflush_done(struct sfc_rxq_info * rxq_info)42 sfc_rx_qflush_done(struct sfc_rxq_info *rxq_info)
43 {
44 rxq_info->state |= SFC_RXQ_FLUSHED;
45 rxq_info->state &= ~SFC_RXQ_FLUSHING;
46 }
47
48 void
sfc_rx_qflush_failed(struct sfc_rxq_info * rxq_info)49 sfc_rx_qflush_failed(struct sfc_rxq_info *rxq_info)
50 {
51 rxq_info->state |= SFC_RXQ_FLUSH_FAILED;
52 rxq_info->state &= ~SFC_RXQ_FLUSHING;
53 }
54
55 static int
sfc_efx_rx_qprime(struct sfc_efx_rxq * rxq)56 sfc_efx_rx_qprime(struct sfc_efx_rxq *rxq)
57 {
58 int rc = 0;
59
60 if (rxq->evq->read_ptr_primed != rxq->evq->read_ptr) {
61 rc = efx_ev_qprime(rxq->evq->common, rxq->evq->read_ptr);
62 if (rc == 0)
63 rxq->evq->read_ptr_primed = rxq->evq->read_ptr;
64 }
65 return rc;
66 }
67
68 static void
sfc_efx_rx_qrefill(struct sfc_efx_rxq * rxq)69 sfc_efx_rx_qrefill(struct sfc_efx_rxq *rxq)
70 {
71 unsigned int free_space;
72 unsigned int bulks;
73 void *objs[SFC_RX_REFILL_BULK];
74 efsys_dma_addr_t addr[RTE_DIM(objs)];
75 unsigned int added = rxq->added;
76 unsigned int id;
77 unsigned int i;
78 struct sfc_efx_rx_sw_desc *rxd;
79 struct rte_mbuf *m;
80 uint16_t port_id = rxq->dp.dpq.port_id;
81
82 free_space = rxq->max_fill_level - (added - rxq->completed);
83
84 if (free_space < rxq->refill_threshold)
85 return;
86
87 bulks = free_space / RTE_DIM(objs);
88 /* refill_threshold guarantees that bulks is positive */
89 SFC_ASSERT(bulks > 0);
90
91 id = added & rxq->ptr_mask;
92 do {
93 if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
94 RTE_DIM(objs)) < 0)) {
95 /*
96 * It is hardly a safe way to increment counter
97 * from different contexts, but all PMDs do it.
98 */
99 rxq->evq->sa->eth_dev->data->rx_mbuf_alloc_failed +=
100 RTE_DIM(objs);
101 /* Return if we have posted nothing yet */
102 if (added == rxq->added)
103 return;
104 /* Push posted */
105 break;
106 }
107
108 for (i = 0; i < RTE_DIM(objs);
109 ++i, id = (id + 1) & rxq->ptr_mask) {
110 m = objs[i];
111
112 __rte_mbuf_raw_sanity_check(m);
113
114 rxd = &rxq->sw_desc[id];
115 rxd->mbuf = m;
116
117 m->data_off = RTE_PKTMBUF_HEADROOM;
118 m->port = port_id;
119
120 addr[i] = rte_pktmbuf_iova(m);
121 }
122
123 efx_rx_qpost(rxq->common, addr, rxq->buf_size,
124 RTE_DIM(objs), rxq->completed, added);
125 added += RTE_DIM(objs);
126 } while (--bulks > 0);
127
128 SFC_ASSERT(added != rxq->added);
129 rxq->added = added;
130 efx_rx_qpush(rxq->common, added, &rxq->pushed);
131 }
132
133 static uint64_t
sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)134 sfc_efx_rx_desc_flags_to_offload_flags(const unsigned int desc_flags)
135 {
136 uint64_t mbuf_flags = 0;
137
138 switch (desc_flags & (EFX_PKT_IPV4 | EFX_CKSUM_IPV4)) {
139 case (EFX_PKT_IPV4 | EFX_CKSUM_IPV4):
140 mbuf_flags |= PKT_RX_IP_CKSUM_GOOD;
141 break;
142 case EFX_PKT_IPV4:
143 mbuf_flags |= PKT_RX_IP_CKSUM_BAD;
144 break;
145 default:
146 RTE_BUILD_BUG_ON(PKT_RX_IP_CKSUM_UNKNOWN != 0);
147 SFC_ASSERT((mbuf_flags & PKT_RX_IP_CKSUM_MASK) ==
148 PKT_RX_IP_CKSUM_UNKNOWN);
149 break;
150 }
151
152 switch ((desc_flags &
153 (EFX_PKT_TCP | EFX_PKT_UDP | EFX_CKSUM_TCPUDP))) {
154 case (EFX_PKT_TCP | EFX_CKSUM_TCPUDP):
155 case (EFX_PKT_UDP | EFX_CKSUM_TCPUDP):
156 mbuf_flags |= PKT_RX_L4_CKSUM_GOOD;
157 break;
158 case EFX_PKT_TCP:
159 case EFX_PKT_UDP:
160 mbuf_flags |= PKT_RX_L4_CKSUM_BAD;
161 break;
162 default:
163 RTE_BUILD_BUG_ON(PKT_RX_L4_CKSUM_UNKNOWN != 0);
164 SFC_ASSERT((mbuf_flags & PKT_RX_L4_CKSUM_MASK) ==
165 PKT_RX_L4_CKSUM_UNKNOWN);
166 break;
167 }
168
169 return mbuf_flags;
170 }
171
172 static uint32_t
sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)173 sfc_efx_rx_desc_flags_to_packet_type(const unsigned int desc_flags)
174 {
175 return RTE_PTYPE_L2_ETHER |
176 ((desc_flags & EFX_PKT_IPV4) ?
177 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN : 0) |
178 ((desc_flags & EFX_PKT_IPV6) ?
179 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN : 0) |
180 ((desc_flags & EFX_PKT_TCP) ? RTE_PTYPE_L4_TCP : 0) |
181 ((desc_flags & EFX_PKT_UDP) ? RTE_PTYPE_L4_UDP : 0);
182 }
183
184 static const uint32_t *
sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)185 sfc_efx_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
186 {
187 static const uint32_t ptypes[] = {
188 RTE_PTYPE_L2_ETHER,
189 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
190 RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
191 RTE_PTYPE_L4_TCP,
192 RTE_PTYPE_L4_UDP,
193 RTE_PTYPE_UNKNOWN
194 };
195
196 return ptypes;
197 }
198
199 static void
sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq * rxq,unsigned int flags,struct rte_mbuf * m)200 sfc_efx_rx_set_rss_hash(struct sfc_efx_rxq *rxq, unsigned int flags,
201 struct rte_mbuf *m)
202 {
203 uint8_t *mbuf_data;
204
205
206 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RSS_HASH) == 0)
207 return;
208
209 mbuf_data = rte_pktmbuf_mtod(m, uint8_t *);
210
211 if (flags & (EFX_PKT_IPV4 | EFX_PKT_IPV6)) {
212 m->hash.rss = efx_pseudo_hdr_hash_get(rxq->common,
213 EFX_RX_HASHALG_TOEPLITZ,
214 mbuf_data);
215
216 m->ol_flags |= PKT_RX_RSS_HASH;
217 }
218 }
219
220 static uint16_t
sfc_efx_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)221 sfc_efx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
222 {
223 struct sfc_dp_rxq *dp_rxq = rx_queue;
224 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
225 unsigned int completed;
226 unsigned int prefix_size = rxq->prefix_size;
227 unsigned int done_pkts = 0;
228 boolean_t discard_next = B_FALSE;
229 struct rte_mbuf *scatter_pkt = NULL;
230
231 if (unlikely((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0))
232 return 0;
233
234 sfc_ev_qpoll(rxq->evq);
235
236 completed = rxq->completed;
237 while (completed != rxq->pending && done_pkts < nb_pkts) {
238 unsigned int id;
239 struct sfc_efx_rx_sw_desc *rxd;
240 struct rte_mbuf *m;
241 unsigned int seg_len;
242 unsigned int desc_flags;
243
244 id = completed++ & rxq->ptr_mask;
245 rxd = &rxq->sw_desc[id];
246 m = rxd->mbuf;
247 desc_flags = rxd->flags;
248
249 if (discard_next)
250 goto discard;
251
252 if (desc_flags & (EFX_ADDR_MISMATCH | EFX_DISCARD))
253 goto discard;
254
255 if (desc_flags & EFX_PKT_PREFIX_LEN) {
256 uint16_t tmp_size;
257 int rc __rte_unused;
258
259 rc = efx_pseudo_hdr_pkt_length_get(rxq->common,
260 rte_pktmbuf_mtod(m, uint8_t *), &tmp_size);
261 SFC_ASSERT(rc == 0);
262 seg_len = tmp_size;
263 } else {
264 seg_len = rxd->size - prefix_size;
265 }
266
267 rte_pktmbuf_data_len(m) = seg_len;
268 rte_pktmbuf_pkt_len(m) = seg_len;
269
270 if (scatter_pkt != NULL) {
271 if (rte_pktmbuf_chain(scatter_pkt, m) != 0) {
272 rte_pktmbuf_free(scatter_pkt);
273 goto discard;
274 }
275 /* The packet to deliver */
276 m = scatter_pkt;
277 }
278
279 if (desc_flags & EFX_PKT_CONT) {
280 /* The packet is scattered, more fragments to come */
281 scatter_pkt = m;
282 /* Further fragments have no prefix */
283 prefix_size = 0;
284 continue;
285 }
286
287 /* Scattered packet is done */
288 scatter_pkt = NULL;
289 /* The first fragment of the packet has prefix */
290 prefix_size = rxq->prefix_size;
291
292 m->ol_flags =
293 sfc_efx_rx_desc_flags_to_offload_flags(desc_flags);
294 m->packet_type =
295 sfc_efx_rx_desc_flags_to_packet_type(desc_flags);
296
297 /*
298 * Extract RSS hash from the packet prefix and
299 * set the corresponding field (if needed and possible)
300 */
301 sfc_efx_rx_set_rss_hash(rxq, desc_flags, m);
302
303 m->data_off += prefix_size;
304
305 *rx_pkts++ = m;
306 done_pkts++;
307 continue;
308
309 discard:
310 discard_next = ((desc_flags & EFX_PKT_CONT) != 0);
311 rte_mbuf_raw_free(m);
312 rxd->mbuf = NULL;
313 }
314
315 /* pending is only moved when entire packet is received */
316 SFC_ASSERT(scatter_pkt == NULL);
317
318 rxq->completed = completed;
319
320 sfc_efx_rx_qrefill(rxq);
321
322 if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN)
323 sfc_efx_rx_qprime(rxq);
324
325 return done_pkts;
326 }
327
328 static sfc_dp_rx_qdesc_npending_t sfc_efx_rx_qdesc_npending;
329 static unsigned int
sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq * dp_rxq)330 sfc_efx_rx_qdesc_npending(struct sfc_dp_rxq *dp_rxq)
331 {
332 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
333
334 if ((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) == 0)
335 return 0;
336
337 sfc_ev_qpoll(rxq->evq);
338
339 return rxq->pending - rxq->completed;
340 }
341
342 static sfc_dp_rx_qdesc_status_t sfc_efx_rx_qdesc_status;
343 static int
sfc_efx_rx_qdesc_status(struct sfc_dp_rxq * dp_rxq,uint16_t offset)344 sfc_efx_rx_qdesc_status(struct sfc_dp_rxq *dp_rxq, uint16_t offset)
345 {
346 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
347
348 if (unlikely(offset > rxq->ptr_mask))
349 return -EINVAL;
350
351 /*
352 * Poll EvQ to derive up-to-date 'rxq->pending' figure;
353 * it is required for the queue to be running, but the
354 * check is omitted because API design assumes that it
355 * is the duty of the caller to satisfy all conditions
356 */
357 SFC_ASSERT((rxq->flags & SFC_EFX_RXQ_FLAG_RUNNING) ==
358 SFC_EFX_RXQ_FLAG_RUNNING);
359 sfc_ev_qpoll(rxq->evq);
360
361 /*
362 * There is a handful of reserved entries in the ring,
363 * but an explicit check whether the offset points to
364 * a reserved entry is neglected since the two checks
365 * below rely on the figures which take the HW limits
366 * into account and thus if an entry is reserved, the
367 * checks will fail and UNAVAIL code will be returned
368 */
369
370 if (offset < (rxq->pending - rxq->completed))
371 return RTE_ETH_RX_DESC_DONE;
372
373 if (offset < (rxq->added - rxq->completed))
374 return RTE_ETH_RX_DESC_AVAIL;
375
376 return RTE_ETH_RX_DESC_UNAVAIL;
377 }
378
379 boolean_t
sfc_rx_check_scatter(size_t pdu,size_t rx_buf_size,uint32_t rx_prefix_size,boolean_t rx_scatter_enabled,uint32_t rx_scatter_max,const char ** error)380 sfc_rx_check_scatter(size_t pdu, size_t rx_buf_size, uint32_t rx_prefix_size,
381 boolean_t rx_scatter_enabled, uint32_t rx_scatter_max,
382 const char **error)
383 {
384 uint32_t effective_rx_scatter_max;
385 uint32_t rx_scatter_bufs;
386
387 effective_rx_scatter_max = rx_scatter_enabled ? rx_scatter_max : 1;
388 rx_scatter_bufs = EFX_DIV_ROUND_UP(pdu + rx_prefix_size, rx_buf_size);
389
390 if (rx_scatter_bufs > effective_rx_scatter_max) {
391 if (rx_scatter_enabled)
392 *error = "Possible number of Rx scatter buffers exceeds maximum number";
393 else
394 *error = "Rx scatter is disabled and RxQ mbuf pool object size is too small";
395 return B_FALSE;
396 }
397
398 return B_TRUE;
399 }
400
401 /** Get Rx datapath ops by the datapath RxQ handle */
402 const struct sfc_dp_rx *
sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)403 sfc_dp_rx_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
404 {
405 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
406 struct rte_eth_dev *eth_dev;
407 struct sfc_adapter_priv *sap;
408
409 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
410 eth_dev = &rte_eth_devices[dpq->port_id];
411
412 sap = sfc_adapter_priv_by_eth_dev(eth_dev);
413
414 return sap->dp_rx;
415 }
416
417 struct sfc_rxq_info *
sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)418 sfc_rxq_info_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
419 {
420 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
421 struct rte_eth_dev *eth_dev;
422 struct sfc_adapter_shared *sas;
423
424 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
425 eth_dev = &rte_eth_devices[dpq->port_id];
426
427 sas = sfc_adapter_shared_by_eth_dev(eth_dev);
428
429 SFC_ASSERT(dpq->queue_id < sas->rxq_count);
430 return &sas->rxq_info[dpq->queue_id];
431 }
432
433 struct sfc_rxq *
sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq * dp_rxq)434 sfc_rxq_by_dp_rxq(const struct sfc_dp_rxq *dp_rxq)
435 {
436 const struct sfc_dp_queue *dpq = &dp_rxq->dpq;
437 struct rte_eth_dev *eth_dev;
438 struct sfc_adapter *sa;
439
440 SFC_ASSERT(rte_eth_dev_is_valid_port(dpq->port_id));
441 eth_dev = &rte_eth_devices[dpq->port_id];
442
443 sa = sfc_adapter_by_eth_dev(eth_dev);
444
445 SFC_ASSERT(dpq->queue_id < sfc_sa2shared(sa)->rxq_count);
446 return &sa->rxq_ctrl[dpq->queue_id];
447 }
448
449 static sfc_dp_rx_qsize_up_rings_t sfc_efx_rx_qsize_up_rings;
450 static int
sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,__rte_unused struct sfc_dp_rx_hw_limits * limits,__rte_unused struct rte_mempool * mb_pool,unsigned int * rxq_entries,unsigned int * evq_entries,unsigned int * rxq_max_fill_level)451 sfc_efx_rx_qsize_up_rings(uint16_t nb_rx_desc,
452 __rte_unused struct sfc_dp_rx_hw_limits *limits,
453 __rte_unused struct rte_mempool *mb_pool,
454 unsigned int *rxq_entries,
455 unsigned int *evq_entries,
456 unsigned int *rxq_max_fill_level)
457 {
458 *rxq_entries = nb_rx_desc;
459 *evq_entries = nb_rx_desc;
460 *rxq_max_fill_level = EFX_RXQ_LIMIT(*rxq_entries);
461 return 0;
462 }
463
464 static sfc_dp_rx_qcreate_t sfc_efx_rx_qcreate;
465 static int
sfc_efx_rx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_rx_qcreate_info * info,struct sfc_dp_rxq ** dp_rxqp)466 sfc_efx_rx_qcreate(uint16_t port_id, uint16_t queue_id,
467 const struct rte_pci_addr *pci_addr, int socket_id,
468 const struct sfc_dp_rx_qcreate_info *info,
469 struct sfc_dp_rxq **dp_rxqp)
470 {
471 struct sfc_efx_rxq *rxq;
472 int rc;
473
474 rc = ENOMEM;
475 rxq = rte_zmalloc_socket("sfc-efx-rxq", sizeof(*rxq),
476 RTE_CACHE_LINE_SIZE, socket_id);
477 if (rxq == NULL)
478 goto fail_rxq_alloc;
479
480 sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
481
482 rc = ENOMEM;
483 rxq->sw_desc = rte_calloc_socket("sfc-efx-rxq-sw_desc",
484 info->rxq_entries,
485 sizeof(*rxq->sw_desc),
486 RTE_CACHE_LINE_SIZE, socket_id);
487 if (rxq->sw_desc == NULL)
488 goto fail_desc_alloc;
489
490 /* efx datapath is bound to efx control path */
491 rxq->evq = sfc_rxq_by_dp_rxq(&rxq->dp)->evq;
492 if (info->flags & SFC_RXQ_FLAG_RSS_HASH)
493 rxq->flags |= SFC_EFX_RXQ_FLAG_RSS_HASH;
494 rxq->ptr_mask = info->rxq_entries - 1;
495 rxq->batch_max = info->batch_max;
496 rxq->prefix_size = info->prefix_size;
497 rxq->max_fill_level = info->max_fill_level;
498 rxq->refill_threshold = info->refill_threshold;
499 rxq->buf_size = info->buf_size;
500 rxq->refill_mb_pool = info->refill_mb_pool;
501
502 *dp_rxqp = &rxq->dp;
503 return 0;
504
505 fail_desc_alloc:
506 rte_free(rxq);
507
508 fail_rxq_alloc:
509 return rc;
510 }
511
512 static sfc_dp_rx_qdestroy_t sfc_efx_rx_qdestroy;
513 static void
sfc_efx_rx_qdestroy(struct sfc_dp_rxq * dp_rxq)514 sfc_efx_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
515 {
516 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
517
518 rte_free(rxq->sw_desc);
519 rte_free(rxq);
520 }
521
522
523 /* Use qstop and qstart functions in the case of qstart failure */
524 static sfc_dp_rx_qstop_t sfc_efx_rx_qstop;
525 static sfc_dp_rx_qpurge_t sfc_efx_rx_qpurge;
526
527
528 static sfc_dp_rx_qstart_t sfc_efx_rx_qstart;
529 static int
sfc_efx_rx_qstart(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int evq_read_ptr,const efx_rx_prefix_layout_t * pinfo)530 sfc_efx_rx_qstart(struct sfc_dp_rxq *dp_rxq,
531 __rte_unused unsigned int evq_read_ptr,
532 const efx_rx_prefix_layout_t *pinfo)
533 {
534 /* libefx-based datapath is specific to libefx-based PMD */
535 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
536 struct sfc_rxq *crxq = sfc_rxq_by_dp_rxq(dp_rxq);
537 int rc;
538
539 /*
540 * libefx API is used to extract information from Rx prefix and
541 * it guarantees consistency. Just do length check to ensure
542 * that we reserved space in Rx buffers correctly.
543 */
544 if (rxq->prefix_size != pinfo->erpl_length)
545 return ENOTSUP;
546
547 rxq->common = crxq->common;
548
549 rxq->pending = rxq->completed = rxq->added = rxq->pushed = 0;
550
551 sfc_efx_rx_qrefill(rxq);
552
553 rxq->flags |= (SFC_EFX_RXQ_FLAG_STARTED | SFC_EFX_RXQ_FLAG_RUNNING);
554
555 if (rxq->flags & SFC_EFX_RXQ_FLAG_INTR_EN) {
556 rc = sfc_efx_rx_qprime(rxq);
557 if (rc != 0)
558 goto fail_rx_qprime;
559 }
560
561 return 0;
562
563 fail_rx_qprime:
564 sfc_efx_rx_qstop(dp_rxq, NULL);
565 sfc_efx_rx_qpurge(dp_rxq);
566 return rc;
567 }
568
569 static void
sfc_efx_rx_qstop(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int * evq_read_ptr)570 sfc_efx_rx_qstop(struct sfc_dp_rxq *dp_rxq,
571 __rte_unused unsigned int *evq_read_ptr)
572 {
573 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
574
575 rxq->flags &= ~SFC_EFX_RXQ_FLAG_RUNNING;
576
577 /* libefx-based datapath is bound to libefx-based PMD and uses
578 * event queue structure directly. So, there is no necessity to
579 * return EvQ read pointer.
580 */
581 }
582
583 static void
sfc_efx_rx_qpurge(struct sfc_dp_rxq * dp_rxq)584 sfc_efx_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
585 {
586 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
587 unsigned int i;
588 struct sfc_efx_rx_sw_desc *rxd;
589
590 for (i = rxq->completed; i != rxq->added; ++i) {
591 rxd = &rxq->sw_desc[i & rxq->ptr_mask];
592 rte_mbuf_raw_free(rxd->mbuf);
593 rxd->mbuf = NULL;
594 /* Packed stream relies on 0 in inactive SW desc.
595 * Rx queue stop is not performance critical, so
596 * there is no harm to do it always.
597 */
598 rxd->flags = 0;
599 rxd->size = 0;
600 }
601
602 rxq->flags &= ~SFC_EFX_RXQ_FLAG_STARTED;
603 }
604
605 static sfc_dp_rx_intr_enable_t sfc_efx_rx_intr_enable;
606 static int
sfc_efx_rx_intr_enable(struct sfc_dp_rxq * dp_rxq)607 sfc_efx_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
608 {
609 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
610 int rc = 0;
611
612 rxq->flags |= SFC_EFX_RXQ_FLAG_INTR_EN;
613 if (rxq->flags & SFC_EFX_RXQ_FLAG_STARTED) {
614 rc = sfc_efx_rx_qprime(rxq);
615 if (rc != 0)
616 rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
617 }
618 return rc;
619 }
620
621 static sfc_dp_rx_intr_disable_t sfc_efx_rx_intr_disable;
622 static int
sfc_efx_rx_intr_disable(struct sfc_dp_rxq * dp_rxq)623 sfc_efx_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
624 {
625 struct sfc_efx_rxq *rxq = sfc_efx_rxq_by_dp_rxq(dp_rxq);
626
627 /* Cannot disarm, just disable rearm */
628 rxq->flags &= ~SFC_EFX_RXQ_FLAG_INTR_EN;
629 return 0;
630 }
631
632 struct sfc_dp_rx sfc_efx_rx = {
633 .dp = {
634 .name = SFC_KVARG_DATAPATH_EFX,
635 .type = SFC_DP_RX,
636 .hw_fw_caps = SFC_DP_HW_FW_CAP_RX_EFX,
637 },
638 .features = SFC_DP_RX_FEAT_INTR,
639 .dev_offload_capa = DEV_RX_OFFLOAD_CHECKSUM |
640 DEV_RX_OFFLOAD_RSS_HASH,
641 .queue_offload_capa = DEV_RX_OFFLOAD_SCATTER,
642 .qsize_up_rings = sfc_efx_rx_qsize_up_rings,
643 .qcreate = sfc_efx_rx_qcreate,
644 .qdestroy = sfc_efx_rx_qdestroy,
645 .qstart = sfc_efx_rx_qstart,
646 .qstop = sfc_efx_rx_qstop,
647 .qpurge = sfc_efx_rx_qpurge,
648 .supported_ptypes_get = sfc_efx_supported_ptypes_get,
649 .qdesc_npending = sfc_efx_rx_qdesc_npending,
650 .qdesc_status = sfc_efx_rx_qdesc_status,
651 .intr_enable = sfc_efx_rx_intr_enable,
652 .intr_disable = sfc_efx_rx_intr_disable,
653 .pkt_burst = sfc_efx_recv_pkts,
654 };
655
656 static void
sfc_rx_qflush(struct sfc_adapter * sa,unsigned int sw_index)657 sfc_rx_qflush(struct sfc_adapter *sa, unsigned int sw_index)
658 {
659 struct sfc_rxq_info *rxq_info;
660 struct sfc_rxq *rxq;
661 unsigned int retry_count;
662 unsigned int wait_count;
663 int rc;
664
665 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
666 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
667
668 rxq = &sa->rxq_ctrl[sw_index];
669
670 /*
671 * Retry Rx queue flushing in the case of flush failed or
672 * timeout. In the worst case it can delay for 6 seconds.
673 */
674 for (retry_count = 0;
675 ((rxq_info->state & SFC_RXQ_FLUSHED) == 0) &&
676 (retry_count < SFC_RX_QFLUSH_ATTEMPTS);
677 ++retry_count) {
678 rc = efx_rx_qflush(rxq->common);
679 if (rc != 0) {
680 rxq_info->state |= (rc == EALREADY) ?
681 SFC_RXQ_FLUSHED : SFC_RXQ_FLUSH_FAILED;
682 break;
683 }
684 rxq_info->state &= ~SFC_RXQ_FLUSH_FAILED;
685 rxq_info->state |= SFC_RXQ_FLUSHING;
686
687 /*
688 * Wait for Rx queue flush done or failed event at least
689 * SFC_RX_QFLUSH_POLL_WAIT_MS milliseconds and not more
690 * than 2 seconds (SFC_RX_QFLUSH_POLL_WAIT_MS multiplied
691 * by SFC_RX_QFLUSH_POLL_ATTEMPTS).
692 */
693 wait_count = 0;
694 do {
695 rte_delay_ms(SFC_RX_QFLUSH_POLL_WAIT_MS);
696 sfc_ev_qpoll(rxq->evq);
697 } while ((rxq_info->state & SFC_RXQ_FLUSHING) &&
698 (wait_count++ < SFC_RX_QFLUSH_POLL_ATTEMPTS));
699
700 if (rxq_info->state & SFC_RXQ_FLUSHING)
701 sfc_err(sa, "RxQ %u flush timed out", sw_index);
702
703 if (rxq_info->state & SFC_RXQ_FLUSH_FAILED)
704 sfc_err(sa, "RxQ %u flush failed", sw_index);
705
706 if (rxq_info->state & SFC_RXQ_FLUSHED)
707 sfc_notice(sa, "RxQ %u flushed", sw_index);
708 }
709
710 sa->priv.dp_rx->qpurge(rxq_info->dp);
711 }
712
713 static int
sfc_rx_default_rxq_set_filter(struct sfc_adapter * sa,struct sfc_rxq * rxq)714 sfc_rx_default_rxq_set_filter(struct sfc_adapter *sa, struct sfc_rxq *rxq)
715 {
716 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
717 boolean_t need_rss = (rss->channels > 0) ? B_TRUE : B_FALSE;
718 struct sfc_port *port = &sa->port;
719 int rc;
720
721 /*
722 * If promiscuous or all-multicast mode has been requested, setting
723 * filter for the default Rx queue might fail, in particular, while
724 * running over PCI function which is not a member of corresponding
725 * privilege groups; if this occurs, few iterations will be made to
726 * repeat this step without promiscuous and all-multicast flags set
727 */
728 retry:
729 rc = efx_mac_filter_default_rxq_set(sa->nic, rxq->common, need_rss);
730 if (rc == 0)
731 return 0;
732 else if (rc != EOPNOTSUPP)
733 return rc;
734
735 if (port->promisc) {
736 sfc_warn(sa, "promiscuous mode has been requested, "
737 "but the HW rejects it");
738 sfc_warn(sa, "promiscuous mode will be disabled");
739
740 port->promisc = B_FALSE;
741 sa->eth_dev->data->promiscuous = 0;
742 rc = sfc_set_rx_mode_unchecked(sa);
743 if (rc != 0)
744 return rc;
745
746 goto retry;
747 }
748
749 if (port->allmulti) {
750 sfc_warn(sa, "all-multicast mode has been requested, "
751 "but the HW rejects it");
752 sfc_warn(sa, "all-multicast mode will be disabled");
753
754 port->allmulti = B_FALSE;
755 sa->eth_dev->data->all_multicast = 0;
756 rc = sfc_set_rx_mode_unchecked(sa);
757 if (rc != 0)
758 return rc;
759
760 goto retry;
761 }
762
763 return rc;
764 }
765
766 int
sfc_rx_qstart(struct sfc_adapter * sa,unsigned int sw_index)767 sfc_rx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
768 {
769 struct sfc_rxq_info *rxq_info;
770 struct sfc_rxq *rxq;
771 struct sfc_evq *evq;
772 efx_rx_prefix_layout_t pinfo;
773 int rc;
774
775 sfc_log_init(sa, "sw_index=%u", sw_index);
776
777 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
778
779 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
780 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
781
782 rxq = &sa->rxq_ctrl[sw_index];
783 evq = rxq->evq;
784
785 rc = sfc_ev_qstart(evq, sfc_evq_index_by_rxq_sw_index(sa, sw_index));
786 if (rc != 0)
787 goto fail_ev_qstart;
788
789 switch (rxq_info->type) {
790 case EFX_RXQ_TYPE_DEFAULT:
791 rc = efx_rx_qcreate(sa->nic, rxq->hw_index, 0, rxq_info->type,
792 rxq->buf_size,
793 &rxq->mem, rxq_info->entries, 0 /* not used on EF10 */,
794 rxq_info->type_flags, evq->common, &rxq->common);
795 break;
796 case EFX_RXQ_TYPE_ES_SUPER_BUFFER: {
797 struct rte_mempool *mp = rxq_info->refill_mb_pool;
798 struct rte_mempool_info mp_info;
799
800 rc = rte_mempool_ops_get_info(mp, &mp_info);
801 if (rc != 0) {
802 /* Positive errno is used in the driver */
803 rc = -rc;
804 goto fail_mp_get_info;
805 }
806 if (mp_info.contig_block_size <= 0) {
807 rc = EINVAL;
808 goto fail_bad_contig_block_size;
809 }
810 rc = efx_rx_qcreate_es_super_buffer(sa->nic, rxq->hw_index, 0,
811 mp_info.contig_block_size, rxq->buf_size,
812 mp->header_size + mp->elt_size + mp->trailer_size,
813 sa->rxd_wait_timeout_ns,
814 &rxq->mem, rxq_info->entries, rxq_info->type_flags,
815 evq->common, &rxq->common);
816 break;
817 }
818 default:
819 rc = ENOTSUP;
820 }
821 if (rc != 0)
822 goto fail_rx_qcreate;
823
824 rc = efx_rx_prefix_get_layout(rxq->common, &pinfo);
825 if (rc != 0)
826 goto fail_prefix_get_layout;
827
828 efx_rx_qenable(rxq->common);
829
830 rc = sa->priv.dp_rx->qstart(rxq_info->dp, evq->read_ptr, &pinfo);
831 if (rc != 0)
832 goto fail_dp_qstart;
833
834 rxq_info->state |= SFC_RXQ_STARTED;
835
836 if (sw_index == 0 && !sfc_sa2shared(sa)->isolated) {
837 rc = sfc_rx_default_rxq_set_filter(sa, rxq);
838 if (rc != 0)
839 goto fail_mac_filter_default_rxq_set;
840 }
841
842 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
843 sa->eth_dev->data->rx_queue_state[sw_index] =
844 RTE_ETH_QUEUE_STATE_STARTED;
845
846 return 0;
847
848 fail_mac_filter_default_rxq_set:
849 sfc_rx_qflush(sa, sw_index);
850 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
851 rxq_info->state = SFC_RXQ_INITIALIZED;
852
853 fail_dp_qstart:
854 efx_rx_qdestroy(rxq->common);
855
856 fail_prefix_get_layout:
857 fail_rx_qcreate:
858 fail_bad_contig_block_size:
859 fail_mp_get_info:
860 sfc_ev_qstop(evq);
861
862 fail_ev_qstart:
863 return rc;
864 }
865
866 void
sfc_rx_qstop(struct sfc_adapter * sa,unsigned int sw_index)867 sfc_rx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
868 {
869 struct sfc_rxq_info *rxq_info;
870 struct sfc_rxq *rxq;
871
872 sfc_log_init(sa, "sw_index=%u", sw_index);
873
874 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
875
876 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
877
878 if (rxq_info->state == SFC_RXQ_INITIALIZED)
879 return;
880 SFC_ASSERT(rxq_info->state & SFC_RXQ_STARTED);
881
882 /* It seems to be used by DPDK for debug purposes only ('rte_ether') */
883 sa->eth_dev->data->rx_queue_state[sw_index] =
884 RTE_ETH_QUEUE_STATE_STOPPED;
885
886 rxq = &sa->rxq_ctrl[sw_index];
887 sa->priv.dp_rx->qstop(rxq_info->dp, &rxq->evq->read_ptr);
888
889 if (sw_index == 0)
890 efx_mac_filter_default_rxq_clear(sa->nic);
891
892 sfc_rx_qflush(sa, sw_index);
893
894 rxq_info->state = SFC_RXQ_INITIALIZED;
895
896 efx_rx_qdestroy(rxq->common);
897
898 sfc_ev_qstop(rxq->evq);
899 }
900
901 static uint64_t
sfc_rx_get_offload_mask(struct sfc_adapter * sa)902 sfc_rx_get_offload_mask(struct sfc_adapter *sa)
903 {
904 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
905 uint64_t no_caps = 0;
906
907 if (encp->enc_tunnel_encapsulations_supported == 0)
908 no_caps |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
909
910 return ~no_caps;
911 }
912
913 uint64_t
sfc_rx_get_dev_offload_caps(struct sfc_adapter * sa)914 sfc_rx_get_dev_offload_caps(struct sfc_adapter *sa)
915 {
916 uint64_t caps = sa->priv.dp_rx->dev_offload_capa;
917
918 caps |= DEV_RX_OFFLOAD_JUMBO_FRAME;
919
920 return caps & sfc_rx_get_offload_mask(sa);
921 }
922
923 uint64_t
sfc_rx_get_queue_offload_caps(struct sfc_adapter * sa)924 sfc_rx_get_queue_offload_caps(struct sfc_adapter *sa)
925 {
926 return sa->priv.dp_rx->queue_offload_capa & sfc_rx_get_offload_mask(sa);
927 }
928
929 static int
sfc_rx_qcheck_conf(struct sfc_adapter * sa,unsigned int rxq_max_fill_level,const struct rte_eth_rxconf * rx_conf,__rte_unused uint64_t offloads)930 sfc_rx_qcheck_conf(struct sfc_adapter *sa, unsigned int rxq_max_fill_level,
931 const struct rte_eth_rxconf *rx_conf,
932 __rte_unused uint64_t offloads)
933 {
934 int rc = 0;
935
936 if (rx_conf->rx_thresh.pthresh != 0 ||
937 rx_conf->rx_thresh.hthresh != 0 ||
938 rx_conf->rx_thresh.wthresh != 0) {
939 sfc_warn(sa,
940 "RxQ prefetch/host/writeback thresholds are not supported");
941 }
942
943 if (rx_conf->rx_free_thresh > rxq_max_fill_level) {
944 sfc_err(sa,
945 "RxQ free threshold too large: %u vs maximum %u",
946 rx_conf->rx_free_thresh, rxq_max_fill_level);
947 rc = EINVAL;
948 }
949
950 if (rx_conf->rx_drop_en == 0) {
951 sfc_err(sa, "RxQ drop disable is not supported");
952 rc = EINVAL;
953 }
954
955 return rc;
956 }
957
958 static unsigned int
sfc_rx_mbuf_data_alignment(struct rte_mempool * mb_pool)959 sfc_rx_mbuf_data_alignment(struct rte_mempool *mb_pool)
960 {
961 uint32_t data_off;
962 uint32_t order;
963
964 /* The mbuf object itself is always cache line aligned */
965 order = rte_bsf32(RTE_CACHE_LINE_SIZE);
966
967 /* Data offset from mbuf object start */
968 data_off = sizeof(struct rte_mbuf) + rte_pktmbuf_priv_size(mb_pool) +
969 RTE_PKTMBUF_HEADROOM;
970
971 order = MIN(order, rte_bsf32(data_off));
972
973 return 1u << order;
974 }
975
976 static uint16_t
sfc_rx_mb_pool_buf_size(struct sfc_adapter * sa,struct rte_mempool * mb_pool)977 sfc_rx_mb_pool_buf_size(struct sfc_adapter *sa, struct rte_mempool *mb_pool)
978 {
979 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
980 const uint32_t nic_align_start = MAX(1, encp->enc_rx_buf_align_start);
981 const uint32_t nic_align_end = MAX(1, encp->enc_rx_buf_align_end);
982 uint16_t buf_size;
983 unsigned int buf_aligned;
984 unsigned int start_alignment;
985 unsigned int end_padding_alignment;
986
987 /* Below it is assumed that both alignments are power of 2 */
988 SFC_ASSERT(rte_is_power_of_2(nic_align_start));
989 SFC_ASSERT(rte_is_power_of_2(nic_align_end));
990
991 /*
992 * mbuf is always cache line aligned, double-check
993 * that it meets rx buffer start alignment requirements.
994 */
995
996 /* Start from mbuf pool data room size */
997 buf_size = rte_pktmbuf_data_room_size(mb_pool);
998
999 /* Remove headroom */
1000 if (buf_size <= RTE_PKTMBUF_HEADROOM) {
1001 sfc_err(sa,
1002 "RxQ mbuf pool %s object data room size %u is smaller than headroom %u",
1003 mb_pool->name, buf_size, RTE_PKTMBUF_HEADROOM);
1004 return 0;
1005 }
1006 buf_size -= RTE_PKTMBUF_HEADROOM;
1007
1008 /* Calculate guaranteed data start alignment */
1009 buf_aligned = sfc_rx_mbuf_data_alignment(mb_pool);
1010
1011 /* Reserve space for start alignment */
1012 if (buf_aligned < nic_align_start) {
1013 start_alignment = nic_align_start - buf_aligned;
1014 if (buf_size <= start_alignment) {
1015 sfc_err(sa,
1016 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u and buffer start alignment %u required by NIC",
1017 mb_pool->name,
1018 rte_pktmbuf_data_room_size(mb_pool),
1019 RTE_PKTMBUF_HEADROOM, start_alignment);
1020 return 0;
1021 }
1022 buf_aligned = nic_align_start;
1023 buf_size -= start_alignment;
1024 } else {
1025 start_alignment = 0;
1026 }
1027
1028 /* Make sure that end padding does not write beyond the buffer */
1029 if (buf_aligned < nic_align_end) {
1030 /*
1031 * Estimate space which can be lost. If guarnteed buffer
1032 * size is odd, lost space is (nic_align_end - 1). More
1033 * accurate formula is below.
1034 */
1035 end_padding_alignment = nic_align_end -
1036 MIN(buf_aligned, 1u << (rte_bsf32(buf_size) - 1));
1037 if (buf_size <= end_padding_alignment) {
1038 sfc_err(sa,
1039 "RxQ mbuf pool %s object data room size %u is insufficient for headroom %u, buffer start alignment %u and end padding alignment %u required by NIC",
1040 mb_pool->name,
1041 rte_pktmbuf_data_room_size(mb_pool),
1042 RTE_PKTMBUF_HEADROOM, start_alignment,
1043 end_padding_alignment);
1044 return 0;
1045 }
1046 buf_size -= end_padding_alignment;
1047 } else {
1048 /*
1049 * Start is aligned the same or better than end,
1050 * just align length.
1051 */
1052 buf_size = EFX_P2ALIGN(uint32_t, buf_size, nic_align_end);
1053 }
1054
1055 return buf_size;
1056 }
1057
1058 int
sfc_rx_qinit(struct sfc_adapter * sa,unsigned int sw_index,uint16_t nb_rx_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf,struct rte_mempool * mb_pool)1059 sfc_rx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
1060 uint16_t nb_rx_desc, unsigned int socket_id,
1061 const struct rte_eth_rxconf *rx_conf,
1062 struct rte_mempool *mb_pool)
1063 {
1064 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1065 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1066 int rc;
1067 unsigned int rxq_entries;
1068 unsigned int evq_entries;
1069 unsigned int rxq_max_fill_level;
1070 uint64_t offloads;
1071 uint16_t buf_size;
1072 struct sfc_rxq_info *rxq_info;
1073 struct sfc_evq *evq;
1074 struct sfc_rxq *rxq;
1075 struct sfc_dp_rx_qcreate_info info;
1076 struct sfc_dp_rx_hw_limits hw_limits;
1077 uint16_t rx_free_thresh;
1078 const char *error;
1079
1080 memset(&hw_limits, 0, sizeof(hw_limits));
1081 hw_limits.rxq_max_entries = sa->rxq_max_entries;
1082 hw_limits.rxq_min_entries = sa->rxq_min_entries;
1083 hw_limits.evq_max_entries = sa->evq_max_entries;
1084 hw_limits.evq_min_entries = sa->evq_min_entries;
1085
1086 rc = sa->priv.dp_rx->qsize_up_rings(nb_rx_desc, &hw_limits, mb_pool,
1087 &rxq_entries, &evq_entries,
1088 &rxq_max_fill_level);
1089 if (rc != 0)
1090 goto fail_size_up_rings;
1091 SFC_ASSERT(rxq_entries >= sa->rxq_min_entries);
1092 SFC_ASSERT(rxq_entries <= sa->rxq_max_entries);
1093 SFC_ASSERT(rxq_max_fill_level <= nb_rx_desc);
1094
1095 offloads = rx_conf->offloads |
1096 sa->eth_dev->data->dev_conf.rxmode.offloads;
1097 rc = sfc_rx_qcheck_conf(sa, rxq_max_fill_level, rx_conf, offloads);
1098 if (rc != 0)
1099 goto fail_bad_conf;
1100
1101 buf_size = sfc_rx_mb_pool_buf_size(sa, mb_pool);
1102 if (buf_size == 0) {
1103 sfc_err(sa, "RxQ %u mbuf pool object size is too small",
1104 sw_index);
1105 rc = EINVAL;
1106 goto fail_bad_conf;
1107 }
1108
1109 if (!sfc_rx_check_scatter(sa->port.pdu, buf_size,
1110 encp->enc_rx_prefix_size,
1111 (offloads & DEV_RX_OFFLOAD_SCATTER),
1112 encp->enc_rx_scatter_max,
1113 &error)) {
1114 sfc_err(sa, "RxQ %u MTU check failed: %s", sw_index, error);
1115 sfc_err(sa, "RxQ %u calculated Rx buffer size is %u vs "
1116 "PDU size %u plus Rx prefix %u bytes",
1117 sw_index, buf_size, (unsigned int)sa->port.pdu,
1118 encp->enc_rx_prefix_size);
1119 rc = EINVAL;
1120 goto fail_bad_conf;
1121 }
1122
1123 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1124 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1125
1126 SFC_ASSERT(rxq_entries <= rxq_info->max_entries);
1127 rxq_info->entries = rxq_entries;
1128
1129 if (sa->priv.dp_rx->dp.hw_fw_caps & SFC_DP_HW_FW_CAP_RX_ES_SUPER_BUFFER)
1130 rxq_info->type = EFX_RXQ_TYPE_ES_SUPER_BUFFER;
1131 else
1132 rxq_info->type = EFX_RXQ_TYPE_DEFAULT;
1133
1134 rxq_info->type_flags =
1135 (offloads & DEV_RX_OFFLOAD_SCATTER) ?
1136 EFX_RXQ_FLAG_SCATTER : EFX_RXQ_FLAG_NONE;
1137
1138 if ((encp->enc_tunnel_encapsulations_supported != 0) &&
1139 (sfc_dp_rx_offload_capa(sa->priv.dp_rx) &
1140 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) != 0)
1141 rxq_info->type_flags |= EFX_RXQ_FLAG_INNER_CLASSES;
1142
1143 if (offloads & DEV_RX_OFFLOAD_RSS_HASH)
1144 rxq_info->type_flags |= EFX_RXQ_FLAG_RSS_HASH;
1145
1146 rc = sfc_ev_qinit(sa, SFC_EVQ_TYPE_RX, sw_index,
1147 evq_entries, socket_id, &evq);
1148 if (rc != 0)
1149 goto fail_ev_qinit;
1150
1151 rxq = &sa->rxq_ctrl[sw_index];
1152 rxq->evq = evq;
1153 rxq->hw_index = sw_index;
1154 /*
1155 * If Rx refill threshold is specified (its value is non zero) in
1156 * Rx configuration, use specified value. Otherwise use 1/8 of
1157 * the Rx descriptors number as the default. It allows to keep
1158 * Rx ring full-enough and does not refill too aggressive if
1159 * packet rate is high.
1160 *
1161 * Since PMD refills in bulks waiting for full bulk may be
1162 * refilled (basically round down), it is better to round up
1163 * here to mitigate it a bit.
1164 */
1165 rx_free_thresh = (rx_conf->rx_free_thresh != 0) ?
1166 rx_conf->rx_free_thresh : EFX_DIV_ROUND_UP(nb_rx_desc, 8);
1167 /* Rx refill threshold cannot be smaller than refill bulk */
1168 rxq_info->refill_threshold =
1169 RTE_MAX(rx_free_thresh, SFC_RX_REFILL_BULK);
1170 rxq_info->refill_mb_pool = mb_pool;
1171
1172 if (rss->hash_support == EFX_RX_HASH_AVAILABLE && rss->channels > 0 &&
1173 (offloads & DEV_RX_OFFLOAD_RSS_HASH))
1174 rxq_info->rxq_flags = SFC_RXQ_FLAG_RSS_HASH;
1175 else
1176 rxq_info->rxq_flags = 0;
1177
1178 rxq->buf_size = buf_size;
1179
1180 rc = sfc_dma_alloc(sa, "rxq", sw_index,
1181 efx_rxq_size(sa->nic, rxq_info->entries),
1182 socket_id, &rxq->mem);
1183 if (rc != 0)
1184 goto fail_dma_alloc;
1185
1186 memset(&info, 0, sizeof(info));
1187 info.refill_mb_pool = rxq_info->refill_mb_pool;
1188 info.max_fill_level = rxq_max_fill_level;
1189 info.refill_threshold = rxq_info->refill_threshold;
1190 info.buf_size = buf_size;
1191 info.batch_max = encp->enc_rx_batch_max;
1192 info.prefix_size = encp->enc_rx_prefix_size;
1193 info.flags = rxq_info->rxq_flags;
1194 info.rxq_entries = rxq_info->entries;
1195 info.rxq_hw_ring = rxq->mem.esm_base;
1196 info.evq_hw_index = sfc_evq_index_by_rxq_sw_index(sa, sw_index);
1197 info.evq_entries = evq_entries;
1198 info.evq_hw_ring = evq->mem.esm_base;
1199 info.hw_index = rxq->hw_index;
1200 info.mem_bar = sa->mem_bar.esb_base;
1201 info.vi_window_shift = encp->enc_vi_window_shift;
1202 info.fcw_offset = sa->fcw_offset;
1203
1204 rc = sa->priv.dp_rx->qcreate(sa->eth_dev->data->port_id, sw_index,
1205 &RTE_ETH_DEV_TO_PCI(sa->eth_dev)->addr,
1206 socket_id, &info, &rxq_info->dp);
1207 if (rc != 0)
1208 goto fail_dp_rx_qcreate;
1209
1210 evq->dp_rxq = rxq_info->dp;
1211
1212 rxq_info->state = SFC_RXQ_INITIALIZED;
1213
1214 rxq_info->deferred_start = (rx_conf->rx_deferred_start != 0);
1215
1216 return 0;
1217
1218 fail_dp_rx_qcreate:
1219 sfc_dma_free(sa, &rxq->mem);
1220
1221 fail_dma_alloc:
1222 sfc_ev_qfini(evq);
1223
1224 fail_ev_qinit:
1225 rxq_info->entries = 0;
1226
1227 fail_bad_conf:
1228 fail_size_up_rings:
1229 sfc_log_init(sa, "failed %d", rc);
1230 return rc;
1231 }
1232
1233 void
sfc_rx_qfini(struct sfc_adapter * sa,unsigned int sw_index)1234 sfc_rx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
1235 {
1236 struct sfc_rxq_info *rxq_info;
1237 struct sfc_rxq *rxq;
1238
1239 SFC_ASSERT(sw_index < sfc_sa2shared(sa)->rxq_count);
1240 sa->eth_dev->data->rx_queues[sw_index] = NULL;
1241
1242 rxq_info = &sfc_sa2shared(sa)->rxq_info[sw_index];
1243
1244 SFC_ASSERT(rxq_info->state == SFC_RXQ_INITIALIZED);
1245
1246 sa->priv.dp_rx->qdestroy(rxq_info->dp);
1247 rxq_info->dp = NULL;
1248
1249 rxq_info->state &= ~SFC_RXQ_INITIALIZED;
1250 rxq_info->entries = 0;
1251
1252 rxq = &sa->rxq_ctrl[sw_index];
1253
1254 sfc_dma_free(sa, &rxq->mem);
1255
1256 sfc_ev_qfini(rxq->evq);
1257 rxq->evq = NULL;
1258 }
1259
1260 /*
1261 * Mapping between RTE RSS hash functions and their EFX counterparts.
1262 */
1263 static const struct sfc_rss_hf_rte_to_efx sfc_rss_hf_map[] = {
1264 { ETH_RSS_NONFRAG_IPV4_TCP,
1265 EFX_RX_HASH(IPV4_TCP, 4TUPLE) },
1266 { ETH_RSS_NONFRAG_IPV4_UDP,
1267 EFX_RX_HASH(IPV4_UDP, 4TUPLE) },
1268 { ETH_RSS_NONFRAG_IPV6_TCP | ETH_RSS_IPV6_TCP_EX,
1269 EFX_RX_HASH(IPV6_TCP, 4TUPLE) },
1270 { ETH_RSS_NONFRAG_IPV6_UDP | ETH_RSS_IPV6_UDP_EX,
1271 EFX_RX_HASH(IPV6_UDP, 4TUPLE) },
1272 { ETH_RSS_IPV4 | ETH_RSS_FRAG_IPV4 | ETH_RSS_NONFRAG_IPV4_OTHER,
1273 EFX_RX_HASH(IPV4_TCP, 2TUPLE) | EFX_RX_HASH(IPV4_UDP, 2TUPLE) |
1274 EFX_RX_HASH(IPV4, 2TUPLE) },
1275 { ETH_RSS_IPV6 | ETH_RSS_FRAG_IPV6 | ETH_RSS_NONFRAG_IPV6_OTHER |
1276 ETH_RSS_IPV6_EX,
1277 EFX_RX_HASH(IPV6_TCP, 2TUPLE) | EFX_RX_HASH(IPV6_UDP, 2TUPLE) |
1278 EFX_RX_HASH(IPV6, 2TUPLE) }
1279 };
1280
1281 static efx_rx_hash_type_t
sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,unsigned int * hash_type_flags_supported,unsigned int nb_hash_type_flags_supported)1282 sfc_rx_hash_types_mask_supp(efx_rx_hash_type_t hash_type,
1283 unsigned int *hash_type_flags_supported,
1284 unsigned int nb_hash_type_flags_supported)
1285 {
1286 efx_rx_hash_type_t hash_type_masked = 0;
1287 unsigned int i, j;
1288
1289 for (i = 0; i < nb_hash_type_flags_supported; ++i) {
1290 unsigned int class_tuple_lbn[] = {
1291 EFX_RX_CLASS_IPV4_TCP_LBN,
1292 EFX_RX_CLASS_IPV4_UDP_LBN,
1293 EFX_RX_CLASS_IPV4_LBN,
1294 EFX_RX_CLASS_IPV6_TCP_LBN,
1295 EFX_RX_CLASS_IPV6_UDP_LBN,
1296 EFX_RX_CLASS_IPV6_LBN
1297 };
1298
1299 for (j = 0; j < RTE_DIM(class_tuple_lbn); ++j) {
1300 unsigned int tuple_mask = EFX_RX_CLASS_HASH_4TUPLE;
1301 unsigned int flag;
1302
1303 tuple_mask <<= class_tuple_lbn[j];
1304 flag = hash_type & tuple_mask;
1305
1306 if (flag == hash_type_flags_supported[i])
1307 hash_type_masked |= flag;
1308 }
1309 }
1310
1311 return hash_type_masked;
1312 }
1313
1314 int
sfc_rx_hash_init(struct sfc_adapter * sa)1315 sfc_rx_hash_init(struct sfc_adapter *sa)
1316 {
1317 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1318 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1319 uint32_t alg_mask = encp->enc_rx_scale_hash_alg_mask;
1320 efx_rx_hash_alg_t alg;
1321 unsigned int flags_supp[EFX_RX_HASH_NFLAGS];
1322 unsigned int nb_flags_supp;
1323 struct sfc_rss_hf_rte_to_efx *hf_map;
1324 struct sfc_rss_hf_rte_to_efx *entry;
1325 efx_rx_hash_type_t efx_hash_types;
1326 unsigned int i;
1327 int rc;
1328
1329 if (alg_mask & (1U << EFX_RX_HASHALG_TOEPLITZ))
1330 alg = EFX_RX_HASHALG_TOEPLITZ;
1331 else if (alg_mask & (1U << EFX_RX_HASHALG_PACKED_STREAM))
1332 alg = EFX_RX_HASHALG_PACKED_STREAM;
1333 else
1334 return EINVAL;
1335
1336 rc = efx_rx_scale_hash_flags_get(sa->nic, alg, flags_supp,
1337 RTE_DIM(flags_supp), &nb_flags_supp);
1338 if (rc != 0)
1339 return rc;
1340
1341 hf_map = rte_calloc_socket("sfc-rss-hf-map",
1342 RTE_DIM(sfc_rss_hf_map),
1343 sizeof(*hf_map), 0, sa->socket_id);
1344 if (hf_map == NULL)
1345 return ENOMEM;
1346
1347 entry = hf_map;
1348 efx_hash_types = 0;
1349 for (i = 0; i < RTE_DIM(sfc_rss_hf_map); ++i) {
1350 efx_rx_hash_type_t ht;
1351
1352 ht = sfc_rx_hash_types_mask_supp(sfc_rss_hf_map[i].efx,
1353 flags_supp, nb_flags_supp);
1354 if (ht != 0) {
1355 entry->rte = sfc_rss_hf_map[i].rte;
1356 entry->efx = ht;
1357 efx_hash_types |= ht;
1358 ++entry;
1359 }
1360 }
1361
1362 rss->hash_alg = alg;
1363 rss->hf_map_nb_entries = (unsigned int)(entry - hf_map);
1364 rss->hf_map = hf_map;
1365 rss->hash_types = efx_hash_types;
1366
1367 return 0;
1368 }
1369
1370 void
sfc_rx_hash_fini(struct sfc_adapter * sa)1371 sfc_rx_hash_fini(struct sfc_adapter *sa)
1372 {
1373 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1374
1375 rte_free(rss->hf_map);
1376 }
1377
1378 int
sfc_rx_hf_rte_to_efx(struct sfc_adapter * sa,uint64_t rte,efx_rx_hash_type_t * efx)1379 sfc_rx_hf_rte_to_efx(struct sfc_adapter *sa, uint64_t rte,
1380 efx_rx_hash_type_t *efx)
1381 {
1382 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1383 efx_rx_hash_type_t hash_types = 0;
1384 unsigned int i;
1385
1386 for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1387 uint64_t rte_mask = rss->hf_map[i].rte;
1388
1389 if ((rte & rte_mask) != 0) {
1390 rte &= ~rte_mask;
1391 hash_types |= rss->hf_map[i].efx;
1392 }
1393 }
1394
1395 if (rte != 0) {
1396 sfc_err(sa, "unsupported hash functions requested");
1397 return EINVAL;
1398 }
1399
1400 *efx = hash_types;
1401
1402 return 0;
1403 }
1404
1405 uint64_t
sfc_rx_hf_efx_to_rte(struct sfc_rss * rss,efx_rx_hash_type_t efx)1406 sfc_rx_hf_efx_to_rte(struct sfc_rss *rss, efx_rx_hash_type_t efx)
1407 {
1408 uint64_t rte = 0;
1409 unsigned int i;
1410
1411 for (i = 0; i < rss->hf_map_nb_entries; ++i) {
1412 efx_rx_hash_type_t hash_type = rss->hf_map[i].efx;
1413
1414 if ((efx & hash_type) == hash_type)
1415 rte |= rss->hf_map[i].rte;
1416 }
1417
1418 return rte;
1419 }
1420
1421 static int
sfc_rx_process_adv_conf_rss(struct sfc_adapter * sa,struct rte_eth_rss_conf * conf)1422 sfc_rx_process_adv_conf_rss(struct sfc_adapter *sa,
1423 struct rte_eth_rss_conf *conf)
1424 {
1425 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1426 efx_rx_hash_type_t efx_hash_types = rss->hash_types;
1427 uint64_t rss_hf = sfc_rx_hf_efx_to_rte(rss, efx_hash_types);
1428 int rc;
1429
1430 if (rss->context_type != EFX_RX_SCALE_EXCLUSIVE) {
1431 if ((conf->rss_hf != 0 && conf->rss_hf != rss_hf) ||
1432 conf->rss_key != NULL)
1433 return EINVAL;
1434 }
1435
1436 if (conf->rss_hf != 0) {
1437 rc = sfc_rx_hf_rte_to_efx(sa, conf->rss_hf, &efx_hash_types);
1438 if (rc != 0)
1439 return rc;
1440 }
1441
1442 if (conf->rss_key != NULL) {
1443 if (conf->rss_key_len != sizeof(rss->key)) {
1444 sfc_err(sa, "RSS key size is wrong (should be %zu)",
1445 sizeof(rss->key));
1446 return EINVAL;
1447 }
1448 rte_memcpy(rss->key, conf->rss_key, sizeof(rss->key));
1449 }
1450
1451 rss->hash_types = efx_hash_types;
1452
1453 return 0;
1454 }
1455
1456 static int
sfc_rx_rss_config(struct sfc_adapter * sa)1457 sfc_rx_rss_config(struct sfc_adapter *sa)
1458 {
1459 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1460 int rc = 0;
1461
1462 if (rss->channels > 0) {
1463 rc = efx_rx_scale_mode_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1464 rss->hash_alg, rss->hash_types,
1465 B_TRUE);
1466 if (rc != 0)
1467 goto finish;
1468
1469 rc = efx_rx_scale_key_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1470 rss->key, sizeof(rss->key));
1471 if (rc != 0)
1472 goto finish;
1473
1474 rc = efx_rx_scale_tbl_set(sa->nic, EFX_RSS_CONTEXT_DEFAULT,
1475 rss->tbl, RTE_DIM(rss->tbl));
1476 }
1477
1478 finish:
1479 return rc;
1480 }
1481
1482 int
sfc_rx_start(struct sfc_adapter * sa)1483 sfc_rx_start(struct sfc_adapter *sa)
1484 {
1485 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1486 unsigned int sw_index;
1487 int rc;
1488
1489 sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1490
1491 rc = efx_rx_init(sa->nic);
1492 if (rc != 0)
1493 goto fail_rx_init;
1494
1495 rc = sfc_rx_rss_config(sa);
1496 if (rc != 0)
1497 goto fail_rss_config;
1498
1499 for (sw_index = 0; sw_index < sas->rxq_count; ++sw_index) {
1500 if (sas->rxq_info[sw_index].state == SFC_RXQ_INITIALIZED &&
1501 (!sas->rxq_info[sw_index].deferred_start ||
1502 sas->rxq_info[sw_index].deferred_started)) {
1503 rc = sfc_rx_qstart(sa, sw_index);
1504 if (rc != 0)
1505 goto fail_rx_qstart;
1506 }
1507 }
1508
1509 return 0;
1510
1511 fail_rx_qstart:
1512 while (sw_index-- > 0)
1513 sfc_rx_qstop(sa, sw_index);
1514
1515 fail_rss_config:
1516 efx_rx_fini(sa->nic);
1517
1518 fail_rx_init:
1519 sfc_log_init(sa, "failed %d", rc);
1520 return rc;
1521 }
1522
1523 void
sfc_rx_stop(struct sfc_adapter * sa)1524 sfc_rx_stop(struct sfc_adapter *sa)
1525 {
1526 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1527 unsigned int sw_index;
1528
1529 sfc_log_init(sa, "rxq_count=%u", sas->rxq_count);
1530
1531 sw_index = sas->rxq_count;
1532 while (sw_index-- > 0) {
1533 if (sas->rxq_info[sw_index].state & SFC_RXQ_STARTED)
1534 sfc_rx_qstop(sa, sw_index);
1535 }
1536
1537 efx_rx_fini(sa->nic);
1538 }
1539
1540 static int
sfc_rx_qinit_info(struct sfc_adapter * sa,unsigned int sw_index)1541 sfc_rx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
1542 {
1543 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1544 struct sfc_rxq_info *rxq_info = &sas->rxq_info[sw_index];
1545 const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
1546 unsigned int max_entries;
1547
1548 max_entries = encp->enc_rxq_max_ndescs;
1549 SFC_ASSERT(rte_is_power_of_2(max_entries));
1550
1551 rxq_info->max_entries = max_entries;
1552
1553 return 0;
1554 }
1555
1556 static int
sfc_rx_check_mode(struct sfc_adapter * sa,struct rte_eth_rxmode * rxmode)1557 sfc_rx_check_mode(struct sfc_adapter *sa, struct rte_eth_rxmode *rxmode)
1558 {
1559 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1560 uint64_t offloads_supported = sfc_rx_get_dev_offload_caps(sa) |
1561 sfc_rx_get_queue_offload_caps(sa);
1562 struct sfc_rss *rss = &sas->rss;
1563 int rc = 0;
1564
1565 switch (rxmode->mq_mode) {
1566 case ETH_MQ_RX_NONE:
1567 /* No special checks are required */
1568 break;
1569 case ETH_MQ_RX_RSS:
1570 if (rss->context_type == EFX_RX_SCALE_UNAVAILABLE) {
1571 sfc_err(sa, "RSS is not available");
1572 rc = EINVAL;
1573 }
1574 break;
1575 default:
1576 sfc_err(sa, "Rx multi-queue mode %u not supported",
1577 rxmode->mq_mode);
1578 rc = EINVAL;
1579 }
1580
1581 /*
1582 * Requested offloads are validated against supported by ethdev,
1583 * so unsupported offloads cannot be added as the result of
1584 * below check.
1585 */
1586 if ((rxmode->offloads & DEV_RX_OFFLOAD_CHECKSUM) !=
1587 (offloads_supported & DEV_RX_OFFLOAD_CHECKSUM)) {
1588 sfc_warn(sa, "Rx checksum offloads cannot be disabled - always on (IPv4/TCP/UDP)");
1589 rxmode->offloads |= DEV_RX_OFFLOAD_CHECKSUM;
1590 }
1591
1592 if ((offloads_supported & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM) &&
1593 (~rxmode->offloads & DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM)) {
1594 sfc_warn(sa, "Rx outer IPv4 checksum offload cannot be disabled - always on");
1595 rxmode->offloads |= DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM;
1596 }
1597
1598 return rc;
1599 }
1600
1601 /**
1602 * Destroy excess queues that are no longer needed after reconfiguration
1603 * or complete close.
1604 */
1605 static void
sfc_rx_fini_queues(struct sfc_adapter * sa,unsigned int nb_rx_queues)1606 sfc_rx_fini_queues(struct sfc_adapter *sa, unsigned int nb_rx_queues)
1607 {
1608 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1609 int sw_index;
1610
1611 SFC_ASSERT(nb_rx_queues <= sas->rxq_count);
1612
1613 sw_index = sas->rxq_count;
1614 while (--sw_index >= (int)nb_rx_queues) {
1615 if (sas->rxq_info[sw_index].state & SFC_RXQ_INITIALIZED)
1616 sfc_rx_qfini(sa, sw_index);
1617 }
1618
1619 sas->rxq_count = nb_rx_queues;
1620 }
1621
1622 /**
1623 * Initialize Rx subsystem.
1624 *
1625 * Called at device (re)configuration stage when number of receive queues is
1626 * specified together with other device level receive configuration.
1627 *
1628 * It should be used to allocate NUMA-unaware resources.
1629 */
1630 int
sfc_rx_configure(struct sfc_adapter * sa)1631 sfc_rx_configure(struct sfc_adapter *sa)
1632 {
1633 struct sfc_adapter_shared * const sas = sfc_sa2shared(sa);
1634 struct sfc_rss *rss = &sas->rss;
1635 struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
1636 const unsigned int nb_rx_queues = sa->eth_dev->data->nb_rx_queues;
1637 int rc;
1638
1639 sfc_log_init(sa, "nb_rx_queues=%u (old %u)",
1640 nb_rx_queues, sas->rxq_count);
1641
1642 rc = sfc_rx_check_mode(sa, &dev_conf->rxmode);
1643 if (rc != 0)
1644 goto fail_check_mode;
1645
1646 if (nb_rx_queues == sas->rxq_count)
1647 goto configure_rss;
1648
1649 if (sas->rxq_info == NULL) {
1650 rc = ENOMEM;
1651 sas->rxq_info = rte_calloc_socket("sfc-rxqs", nb_rx_queues,
1652 sizeof(sas->rxq_info[0]), 0,
1653 sa->socket_id);
1654 if (sas->rxq_info == NULL)
1655 goto fail_rxqs_alloc;
1656
1657 /*
1658 * Allocate primary process only RxQ control from heap
1659 * since it should not be shared.
1660 */
1661 rc = ENOMEM;
1662 sa->rxq_ctrl = calloc(nb_rx_queues, sizeof(sa->rxq_ctrl[0]));
1663 if (sa->rxq_ctrl == NULL)
1664 goto fail_rxqs_ctrl_alloc;
1665 } else {
1666 struct sfc_rxq_info *new_rxq_info;
1667 struct sfc_rxq *new_rxq_ctrl;
1668
1669 if (nb_rx_queues < sas->rxq_count)
1670 sfc_rx_fini_queues(sa, nb_rx_queues);
1671
1672 rc = ENOMEM;
1673 new_rxq_info =
1674 rte_realloc(sas->rxq_info,
1675 nb_rx_queues * sizeof(sas->rxq_info[0]), 0);
1676 if (new_rxq_info == NULL && nb_rx_queues > 0)
1677 goto fail_rxqs_realloc;
1678
1679 rc = ENOMEM;
1680 new_rxq_ctrl = realloc(sa->rxq_ctrl,
1681 nb_rx_queues * sizeof(sa->rxq_ctrl[0]));
1682 if (new_rxq_ctrl == NULL && nb_rx_queues > 0)
1683 goto fail_rxqs_ctrl_realloc;
1684
1685 sas->rxq_info = new_rxq_info;
1686 sa->rxq_ctrl = new_rxq_ctrl;
1687 if (nb_rx_queues > sas->rxq_count) {
1688 memset(&sas->rxq_info[sas->rxq_count], 0,
1689 (nb_rx_queues - sas->rxq_count) *
1690 sizeof(sas->rxq_info[0]));
1691 memset(&sa->rxq_ctrl[sas->rxq_count], 0,
1692 (nb_rx_queues - sas->rxq_count) *
1693 sizeof(sa->rxq_ctrl[0]));
1694 }
1695 }
1696
1697 while (sas->rxq_count < nb_rx_queues) {
1698 rc = sfc_rx_qinit_info(sa, sas->rxq_count);
1699 if (rc != 0)
1700 goto fail_rx_qinit_info;
1701
1702 sas->rxq_count++;
1703 }
1704
1705 configure_rss:
1706 rss->channels = (dev_conf->rxmode.mq_mode == ETH_MQ_RX_RSS) ?
1707 MIN(sas->rxq_count, EFX_MAXRSS) : 0;
1708
1709 if (rss->channels > 0) {
1710 struct rte_eth_rss_conf *adv_conf_rss;
1711 unsigned int sw_index;
1712
1713 for (sw_index = 0; sw_index < EFX_RSS_TBL_SIZE; ++sw_index)
1714 rss->tbl[sw_index] = sw_index % rss->channels;
1715
1716 adv_conf_rss = &dev_conf->rx_adv_conf.rss_conf;
1717 rc = sfc_rx_process_adv_conf_rss(sa, adv_conf_rss);
1718 if (rc != 0)
1719 goto fail_rx_process_adv_conf_rss;
1720 }
1721
1722 return 0;
1723
1724 fail_rx_process_adv_conf_rss:
1725 fail_rx_qinit_info:
1726 fail_rxqs_ctrl_realloc:
1727 fail_rxqs_realloc:
1728 fail_rxqs_ctrl_alloc:
1729 fail_rxqs_alloc:
1730 sfc_rx_close(sa);
1731
1732 fail_check_mode:
1733 sfc_log_init(sa, "failed %d", rc);
1734 return rc;
1735 }
1736
1737 /**
1738 * Shutdown Rx subsystem.
1739 *
1740 * Called at device close stage, for example, before device shutdown.
1741 */
1742 void
sfc_rx_close(struct sfc_adapter * sa)1743 sfc_rx_close(struct sfc_adapter *sa)
1744 {
1745 struct sfc_rss *rss = &sfc_sa2shared(sa)->rss;
1746
1747 sfc_rx_fini_queues(sa, 0);
1748
1749 rss->channels = 0;
1750
1751 free(sa->rxq_ctrl);
1752 sa->rxq_ctrl = NULL;
1753
1754 rte_free(sfc_sa2shared(sa)->rxq_info);
1755 sfc_sa2shared(sa)->rxq_info = NULL;
1756 }
1757