xref: /f-stack/dpdk/drivers/net/iavf/iavf_ethdev.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15 
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27 
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
32 
33 /* devargs */
34 #define IAVF_PROTO_XTR_ARG         "proto_xtr"
35 
36 static const char * const iavf_valid_args[] = {
37 	IAVF_PROTO_XTR_ARG,
38 	NULL
39 };
40 
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42 	.name = "intel_pmd_dynfield_proto_xtr_metadata",
43 	.size = sizeof(uint32_t),
44 	.align = __alignof__(uint32_t),
45 	.flags = 0,
46 };
47 
48 struct iavf_proto_xtr_ol {
49 	const struct rte_mbuf_dynflag param;
50 	uint64_t *ol_flag;
51 	bool required;
52 };
53 
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55 	[IAVF_PROTO_XTR_VLAN] = {
56 		.param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58 	[IAVF_PROTO_XTR_IPV4] = {
59 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61 	[IAVF_PROTO_XTR_IPV6] = {
62 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64 	[IAVF_PROTO_XTR_IPV6_FLOW] = {
65 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67 	[IAVF_PROTO_XTR_TCP] = {
68 		.param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70 	[IAVF_PROTO_XTR_IP_OFFSET] = {
71 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72 		.ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
73 };
74 
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81 			     struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84 			     struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87 				 struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89 				       struct rte_eth_xstat_name *xstats_names,
90 				       unsigned int limit);
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96 				struct rte_ether_addr *addr,
97 				uint32_t index,
98 				uint32_t pool);
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101 				   uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104 				   struct rte_eth_rss_reta_entry64 *reta_conf,
105 				   uint16_t reta_size);
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107 				  struct rte_eth_rss_reta_entry64 *reta_conf,
108 				  uint16_t reta_size);
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110 				   struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112 				     struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115 					 struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
117 					uint16_t queue_id);
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
119 					 uint16_t queue_id);
120 static int iavf_dev_filter_ctrl(struct rte_eth_dev *dev,
121 		     enum rte_filter_type filter_type,
122 		     enum rte_filter_op filter_op,
123 		     void *arg);
124 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
125 			struct rte_ether_addr *mc_addrs,
126 			uint32_t mc_addrs_num);
127 
128 static const struct rte_pci_id pci_id_iavf_map[] = {
129 	{ RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
130 	{ .vendor_id = 0, /* sentinel */ },
131 };
132 
133 struct rte_iavf_xstats_name_off {
134 	char name[RTE_ETH_XSTATS_NAME_SIZE];
135 	unsigned int offset;
136 };
137 
138 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
139 	{"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
140 	{"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
141 	{"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
142 	{"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
143 	{"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
144 	{"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
145 		rx_unknown_protocol)},
146 	{"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
147 	{"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
148 	{"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
149 	{"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
150 	{"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
151 	{"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
152 };
153 
154 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
155 		sizeof(rte_iavf_stats_strings[0]))
156 
157 static const struct eth_dev_ops iavf_eth_dev_ops = {
158 	.dev_configure              = iavf_dev_configure,
159 	.dev_start                  = iavf_dev_start,
160 	.dev_stop                   = iavf_dev_stop,
161 	.dev_close                  = iavf_dev_close,
162 	.dev_reset                  = iavf_dev_reset,
163 	.dev_infos_get              = iavf_dev_info_get,
164 	.dev_supported_ptypes_get   = iavf_dev_supported_ptypes_get,
165 	.link_update                = iavf_dev_link_update,
166 	.stats_get                  = iavf_dev_stats_get,
167 	.stats_reset                = iavf_dev_stats_reset,
168 	.xstats_get                 = iavf_dev_xstats_get,
169 	.xstats_get_names           = iavf_dev_xstats_get_names,
170 	.xstats_reset               = iavf_dev_stats_reset,
171 	.promiscuous_enable         = iavf_dev_promiscuous_enable,
172 	.promiscuous_disable        = iavf_dev_promiscuous_disable,
173 	.allmulticast_enable        = iavf_dev_allmulticast_enable,
174 	.allmulticast_disable       = iavf_dev_allmulticast_disable,
175 	.mac_addr_add               = iavf_dev_add_mac_addr,
176 	.mac_addr_remove            = iavf_dev_del_mac_addr,
177 	.set_mc_addr_list			= iavf_set_mc_addr_list,
178 	.vlan_filter_set            = iavf_dev_vlan_filter_set,
179 	.vlan_offload_set           = iavf_dev_vlan_offload_set,
180 	.rx_queue_start             = iavf_dev_rx_queue_start,
181 	.rx_queue_stop              = iavf_dev_rx_queue_stop,
182 	.tx_queue_start             = iavf_dev_tx_queue_start,
183 	.tx_queue_stop              = iavf_dev_tx_queue_stop,
184 	.rx_queue_setup             = iavf_dev_rx_queue_setup,
185 	.rx_queue_release           = iavf_dev_rx_queue_release,
186 	.tx_queue_setup             = iavf_dev_tx_queue_setup,
187 	.tx_queue_release           = iavf_dev_tx_queue_release,
188 	.mac_addr_set               = iavf_dev_set_default_mac_addr,
189 	.reta_update                = iavf_dev_rss_reta_update,
190 	.reta_query                 = iavf_dev_rss_reta_query,
191 	.rss_hash_update            = iavf_dev_rss_hash_update,
192 	.rss_hash_conf_get          = iavf_dev_rss_hash_conf_get,
193 	.rxq_info_get               = iavf_dev_rxq_info_get,
194 	.txq_info_get               = iavf_dev_txq_info_get,
195 	.mtu_set                    = iavf_dev_mtu_set,
196 	.rx_queue_intr_enable       = iavf_dev_rx_queue_intr_enable,
197 	.rx_queue_intr_disable      = iavf_dev_rx_queue_intr_disable,
198 	.filter_ctrl                = iavf_dev_filter_ctrl,
199 	.tx_done_cleanup	    = iavf_dev_tx_done_cleanup,
200 };
201 
202 static int
iavf_set_mc_addr_list(struct rte_eth_dev * dev,struct rte_ether_addr * mc_addrs,uint32_t mc_addrs_num)203 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
204 			struct rte_ether_addr *mc_addrs,
205 			uint32_t mc_addrs_num)
206 {
207 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
208 	struct iavf_adapter *adapter =
209 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
210 	int err, ret;
211 
212 	if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
213 		PMD_DRV_LOG(ERR,
214 			    "can't add more than a limited number (%u) of addresses.",
215 			    (uint32_t)IAVF_NUM_MACADDR_MAX);
216 		return -EINVAL;
217 	}
218 
219 	/* flush previous addresses */
220 	err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
221 					false);
222 	if (err)
223 		return err;
224 
225 	/* add new ones */
226 	err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
227 
228 	if (err) {
229 		/* if adding mac address list fails, should add the previous
230 		 * addresses back.
231 		 */
232 		ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
233 						vf->mc_addrs_num, true);
234 		if (ret)
235 			return ret;
236 	} else {
237 		vf->mc_addrs_num = mc_addrs_num;
238 		memcpy(vf->mc_addrs,
239 		       mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
240 	}
241 
242 	return err;
243 }
244 
245 static int
iavf_init_rss(struct iavf_adapter * adapter)246 iavf_init_rss(struct iavf_adapter *adapter)
247 {
248 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(adapter);
249 	struct rte_eth_rss_conf *rss_conf;
250 	uint16_t i, j, nb_q;
251 	int ret;
252 
253 	rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
254 	nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
255 		       vf->max_rss_qregion);
256 
257 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
258 		PMD_DRV_LOG(DEBUG, "RSS is not supported");
259 		return -ENOTSUP;
260 	}
261 	if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
262 		PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
263 		/* set all lut items to default queue */
264 		for (i = 0; i < vf->vf_res->rss_lut_size; i++)
265 			vf->rss_lut[i] = 0;
266 		ret = iavf_configure_rss_lut(adapter);
267 		return ret;
268 	}
269 
270 	/* In IAVF, RSS enablement is set by PF driver. It is not supported
271 	 * to set based on rss_conf->rss_hf.
272 	 */
273 
274 	/* configure RSS key */
275 	if (!rss_conf->rss_key) {
276 		/* Calculate the default hash key */
277 		for (i = 0; i <= vf->vf_res->rss_key_size; i++)
278 			vf->rss_key[i] = (uint8_t)rte_rand();
279 	} else
280 		rte_memcpy(vf->rss_key, rss_conf->rss_key,
281 			   RTE_MIN(rss_conf->rss_key_len,
282 				   vf->vf_res->rss_key_size));
283 
284 	/* init RSS LUT table */
285 	for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
286 		if (j >= nb_q)
287 			j = 0;
288 		vf->rss_lut[i] = j;
289 	}
290 	/* send virtchnnl ops to configure rss*/
291 	ret = iavf_configure_rss_lut(adapter);
292 	if (ret)
293 		return ret;
294 	ret = iavf_configure_rss_key(adapter);
295 	if (ret)
296 		return ret;
297 
298 	return 0;
299 }
300 
301 static int
iavf_queues_req_reset(struct rte_eth_dev * dev,uint16_t num)302 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
303 {
304 	struct iavf_adapter *ad =
305 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
306 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
307 	int ret;
308 
309 	ret = iavf_request_queues(ad, num);
310 	if (ret) {
311 		PMD_DRV_LOG(ERR, "request queues from PF failed");
312 		return ret;
313 	}
314 	PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
315 			vf->vsi_res->num_queue_pairs, num);
316 
317 	ret = iavf_dev_reset(dev);
318 	if (ret) {
319 		PMD_DRV_LOG(ERR, "vf reset failed");
320 		return ret;
321 	}
322 
323 	return 0;
324 }
325 
326 static int
iavf_dev_configure(struct rte_eth_dev * dev)327 iavf_dev_configure(struct rte_eth_dev *dev)
328 {
329 	struct iavf_adapter *ad =
330 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
331 	struct iavf_info *vf =  IAVF_DEV_PRIVATE_TO_VF(ad);
332 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
333 	uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
334 		dev->data->nb_tx_queues);
335 	int ret;
336 
337 	ad->rx_bulk_alloc_allowed = true;
338 	/* Initialize to TRUE. If any of Rx queues doesn't meet the
339 	 * vector Rx/Tx preconditions, it will be reset.
340 	 */
341 	ad->rx_vec_allowed = true;
342 	ad->tx_vec_allowed = true;
343 
344 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
345 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
346 
347 	/* Large VF setting */
348 	if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
349 		if (!(vf->vf_res->vf_cap_flags &
350 				VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
351 			PMD_DRV_LOG(ERR, "large VF is not supported");
352 			return -1;
353 		}
354 
355 		if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
356 			PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
357 				IAVF_MAX_NUM_QUEUES_LV);
358 			return -1;
359 		}
360 
361 		ret = iavf_queues_req_reset(dev, num_queue_pairs);
362 		if (ret)
363 			return ret;
364 
365 		ret = iavf_get_max_rss_queue_region(ad);
366 		if (ret) {
367 			PMD_INIT_LOG(ERR, "get max rss queue region failed");
368 			return ret;
369 		}
370 
371 		vf->lv_enabled = true;
372 	} else {
373 		/* Check if large VF is already enabled. If so, disable and
374 		 * release redundant queue resource.
375 		 */
376 		if (vf->lv_enabled) {
377 			ret = iavf_queues_req_reset(dev, num_queue_pairs);
378 			if (ret)
379 				return ret;
380 
381 			vf->lv_enabled = false;
382 		}
383 		/* if large VF is not required, use default rss queue region */
384 		vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
385 	}
386 
387 	/* Vlan stripping setting */
388 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
389 		if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
390 			iavf_enable_vlan_strip(ad);
391 		else
392 			iavf_disable_vlan_strip(ad);
393 	}
394 
395 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
396 		if (iavf_init_rss(ad) != 0) {
397 			PMD_DRV_LOG(ERR, "configure rss failed");
398 			return -1;
399 		}
400 	}
401 	return 0;
402 }
403 
404 static int
iavf_init_rxq(struct rte_eth_dev * dev,struct iavf_rx_queue * rxq)405 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
406 {
407 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
408 	struct rte_eth_dev_data *dev_data = dev->data;
409 	uint16_t buf_size, max_pkt_len, len;
410 
411 	buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
412 
413 	/* Calculate the maximum packet length allowed */
414 	len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
415 	max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
416 
417 	/* Check if the jumbo frame and maximum packet length are set
418 	 * correctly.
419 	 */
420 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
421 		if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
422 		    max_pkt_len > IAVF_FRAME_SIZE_MAX) {
423 			PMD_DRV_LOG(ERR, "maximum packet length must be "
424 				    "larger than %u and smaller than %u, "
425 				    "as jumbo frame is enabled",
426 				    (uint32_t)RTE_ETHER_MAX_LEN,
427 				    (uint32_t)IAVF_FRAME_SIZE_MAX);
428 			return -EINVAL;
429 		}
430 	} else {
431 		if (max_pkt_len < RTE_ETHER_MIN_LEN ||
432 		    max_pkt_len > RTE_ETHER_MAX_LEN) {
433 			PMD_DRV_LOG(ERR, "maximum packet length must be "
434 				    "larger than %u and smaller than %u, "
435 				    "as jumbo frame is disabled",
436 				    (uint32_t)RTE_ETHER_MIN_LEN,
437 				    (uint32_t)RTE_ETHER_MAX_LEN);
438 			return -EINVAL;
439 		}
440 	}
441 
442 	rxq->max_pkt_len = max_pkt_len;
443 	if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
444 	    rxq->max_pkt_len > buf_size) {
445 		dev_data->scattered_rx = 1;
446 	}
447 	IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
448 	IAVF_WRITE_FLUSH(hw);
449 
450 	return 0;
451 }
452 
453 static int
iavf_init_queues(struct rte_eth_dev * dev)454 iavf_init_queues(struct rte_eth_dev *dev)
455 {
456 	struct iavf_rx_queue **rxq =
457 		(struct iavf_rx_queue **)dev->data->rx_queues;
458 	int i, ret = IAVF_SUCCESS;
459 
460 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
461 		if (!rxq[i] || !rxq[i]->q_set)
462 			continue;
463 		ret = iavf_init_rxq(dev, rxq[i]);
464 		if (ret != IAVF_SUCCESS)
465 			break;
466 	}
467 	/* set rx/tx function to vector/scatter/single-segment
468 	 * according to parameters
469 	 */
470 	iavf_set_rx_function(dev);
471 	iavf_set_tx_function(dev);
472 
473 	return ret;
474 }
475 
iavf_config_rx_queues_irqs(struct rte_eth_dev * dev,struct rte_intr_handle * intr_handle)476 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
477 				     struct rte_intr_handle *intr_handle)
478 {
479 	struct iavf_adapter *adapter =
480 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
481 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
482 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
483 	struct iavf_qv_map *qv_map;
484 	uint16_t interval, i;
485 	int vec;
486 
487 	if (rte_intr_cap_multiple(intr_handle) &&
488 	    dev->data->dev_conf.intr_conf.rxq) {
489 		if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
490 			return -1;
491 	}
492 
493 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
494 		intr_handle->intr_vec =
495 			rte_zmalloc("intr_vec",
496 				    dev->data->nb_rx_queues * sizeof(int), 0);
497 		if (!intr_handle->intr_vec) {
498 			PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
499 				    dev->data->nb_rx_queues);
500 			return -1;
501 		}
502 	}
503 
504 	qv_map = rte_zmalloc("qv_map",
505 		dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
506 	if (!qv_map) {
507 		PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
508 				dev->data->nb_rx_queues);
509 		return -1;
510 	}
511 
512 	if (!dev->data->dev_conf.intr_conf.rxq ||
513 	    !rte_intr_dp_is_en(intr_handle)) {
514 		/* Rx interrupt disabled, Map interrupt only for writeback */
515 		vf->nb_msix = 1;
516 		if (vf->vf_res->vf_cap_flags &
517 		    VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
518 			/* If WB_ON_ITR supports, enable it */
519 			vf->msix_base = IAVF_RX_VEC_START;
520 			/* Set the ITR for index zero, to 2us to make sure that
521 			 * we leave time for aggregation to occur, but don't
522 			 * increase latency dramatically.
523 			 */
524 			IAVF_WRITE_REG(hw,
525 				       IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
526 				       (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
527 				       IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
528 				       (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
529 			/* debug - check for success! the return value
530 			 * should be 2, offset is 0x2800
531 			 */
532 			/* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
533 		} else {
534 			/* If no WB_ON_ITR offload flags, need to set
535 			 * interrupt for descriptor write back.
536 			 */
537 			vf->msix_base = IAVF_MISC_VEC_ID;
538 
539 			/* set ITR to max */
540 			interval = iavf_calc_itr_interval(
541 					IAVF_QUEUE_ITR_INTERVAL_MAX);
542 			IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
543 				       IAVF_VFINT_DYN_CTL01_INTENA_MASK |
544 				       (IAVF_ITR_INDEX_DEFAULT <<
545 					IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
546 				       (interval <<
547 					IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
548 		}
549 		IAVF_WRITE_FLUSH(hw);
550 		/* map all queues to the same interrupt */
551 		for (i = 0; i < dev->data->nb_rx_queues; i++) {
552 			qv_map[i].queue_id = i;
553 			qv_map[i].vector_id = vf->msix_base;
554 		}
555 		vf->qv_map = qv_map;
556 	} else {
557 		if (!rte_intr_allow_others(intr_handle)) {
558 			vf->nb_msix = 1;
559 			vf->msix_base = IAVF_MISC_VEC_ID;
560 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
561 				qv_map[i].queue_id = i;
562 				qv_map[i].vector_id = vf->msix_base;
563 				intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
564 			}
565 			vf->qv_map = qv_map;
566 			PMD_DRV_LOG(DEBUG,
567 				    "vector %u are mapping to all Rx queues",
568 				    vf->msix_base);
569 		} else {
570 			/* If Rx interrupt is reuquired, and we can use
571 			 * multi interrupts, then the vec is from 1
572 			 */
573 			vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
574 					      intr_handle->nb_efd);
575 			vf->msix_base = IAVF_RX_VEC_START;
576 			vec = IAVF_RX_VEC_START;
577 			for (i = 0; i < dev->data->nb_rx_queues; i++) {
578 				qv_map[i].queue_id = i;
579 				qv_map[i].vector_id = vec;
580 				intr_handle->intr_vec[i] = vec++;
581 				if (vec >= vf->nb_msix)
582 					vec = IAVF_RX_VEC_START;
583 			}
584 			vf->qv_map = qv_map;
585 			PMD_DRV_LOG(DEBUG,
586 				    "%u vectors are mapping to %u Rx queues",
587 				    vf->nb_msix, dev->data->nb_rx_queues);
588 		}
589 	}
590 
591 	if (!vf->lv_enabled) {
592 		if (iavf_config_irq_map(adapter)) {
593 			PMD_DRV_LOG(ERR, "config interrupt mapping failed");
594 			return -1;
595 		}
596 	} else {
597 		uint16_t num_qv_maps = dev->data->nb_rx_queues;
598 		uint16_t index = 0;
599 
600 		while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
601 			if (iavf_config_irq_map_lv(adapter,
602 					IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
603 				PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
604 				return -1;
605 			}
606 			num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
607 			index += IAVF_IRQ_MAP_NUM_PER_BUF;
608 		}
609 
610 		if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
611 			PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
612 			return -1;
613 		}
614 	}
615 	return 0;
616 }
617 
618 static int
iavf_start_queues(struct rte_eth_dev * dev)619 iavf_start_queues(struct rte_eth_dev *dev)
620 {
621 	struct iavf_rx_queue *rxq;
622 	struct iavf_tx_queue *txq;
623 	int i;
624 
625 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
626 		txq = dev->data->tx_queues[i];
627 		if (txq->tx_deferred_start)
628 			continue;
629 		if (iavf_dev_tx_queue_start(dev, i) != 0) {
630 			PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
631 			return -1;
632 		}
633 	}
634 
635 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
636 		rxq = dev->data->rx_queues[i];
637 		if (rxq->rx_deferred_start)
638 			continue;
639 		if (iavf_dev_rx_queue_start(dev, i) != 0) {
640 			PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
641 			return -1;
642 		}
643 	}
644 
645 	return 0;
646 }
647 
648 static int
iavf_dev_start(struct rte_eth_dev * dev)649 iavf_dev_start(struct rte_eth_dev *dev)
650 {
651 	struct iavf_adapter *adapter =
652 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
653 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
654 	struct rte_intr_handle *intr_handle = dev->intr_handle;
655 	uint16_t num_queue_pairs;
656 	uint16_t index = 0;
657 
658 	PMD_INIT_FUNC_TRACE();
659 
660 	adapter->stopped = 0;
661 
662 	vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
663 	vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
664 				      dev->data->nb_tx_queues);
665 	num_queue_pairs = vf->num_queue_pairs;
666 
667 	if (iavf_init_queues(dev) != 0) {
668 		PMD_DRV_LOG(ERR, "failed to do Queue init");
669 		return -1;
670 	}
671 
672 	/* If needed, send configure queues msg multiple times to make the
673 	 * adminq buffer length smaller than the 4K limitation.
674 	 */
675 	while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
676 		if (iavf_configure_queues(adapter,
677 				IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
678 			PMD_DRV_LOG(ERR, "configure queues failed");
679 			goto err_queue;
680 		}
681 		num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
682 		index += IAVF_CFG_Q_NUM_PER_BUF;
683 	}
684 
685 	if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
686 		PMD_DRV_LOG(ERR, "configure queues failed");
687 		goto err_queue;
688 	}
689 
690 	if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
691 		PMD_DRV_LOG(ERR, "configure irq failed");
692 		goto err_queue;
693 	}
694 	/* re-enable intr again, because efd assign may change */
695 	if (dev->data->dev_conf.intr_conf.rxq != 0) {
696 		rte_intr_disable(intr_handle);
697 		rte_intr_enable(intr_handle);
698 	}
699 
700 	/* Set all mac addrs */
701 	iavf_add_del_all_mac_addr(adapter, true);
702 
703 	/* Set all multicast addresses */
704 	iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
705 				  true);
706 
707 	if (iavf_start_queues(dev) != 0) {
708 		PMD_DRV_LOG(ERR, "enable queues failed");
709 		goto err_mac;
710 	}
711 
712 	return 0;
713 
714 err_mac:
715 	iavf_add_del_all_mac_addr(adapter, false);
716 err_queue:
717 	return -1;
718 }
719 
720 static int
iavf_dev_stop(struct rte_eth_dev * dev)721 iavf_dev_stop(struct rte_eth_dev *dev)
722 {
723 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
724 	struct iavf_adapter *adapter =
725 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
726 	struct rte_intr_handle *intr_handle = dev->intr_handle;
727 
728 	PMD_INIT_FUNC_TRACE();
729 
730 	if (adapter->stopped == 1)
731 		return 0;
732 
733 	iavf_stop_queues(dev);
734 
735 	/* Disable the interrupt for Rx */
736 	rte_intr_efd_disable(intr_handle);
737 	/* Rx interrupt vector mapping free */
738 	if (intr_handle->intr_vec) {
739 		rte_free(intr_handle->intr_vec);
740 		intr_handle->intr_vec = NULL;
741 	}
742 
743 	/* remove all mac addrs */
744 	iavf_add_del_all_mac_addr(adapter, false);
745 
746 	/* remove all multicast addresses */
747 	iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
748 				  false);
749 
750 	adapter->stopped = 1;
751 	dev->data->dev_started = 0;
752 
753 	return 0;
754 }
755 
756 static int
iavf_dev_info_get(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)757 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
758 {
759 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
760 
761 	dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
762 	dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
763 	dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
764 	dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
765 	dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
766 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
767 	dev_info->hash_key_size = vf->vf_res->rss_key_size;
768 	dev_info->reta_size = vf->vf_res->rss_lut_size;
769 	dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
770 	dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
771 	dev_info->rx_offload_capa =
772 		DEV_RX_OFFLOAD_VLAN_STRIP |
773 		DEV_RX_OFFLOAD_QINQ_STRIP |
774 		DEV_RX_OFFLOAD_IPV4_CKSUM |
775 		DEV_RX_OFFLOAD_UDP_CKSUM |
776 		DEV_RX_OFFLOAD_TCP_CKSUM |
777 		DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
778 		DEV_RX_OFFLOAD_SCATTER |
779 		DEV_RX_OFFLOAD_JUMBO_FRAME |
780 		DEV_RX_OFFLOAD_VLAN_FILTER |
781 		DEV_RX_OFFLOAD_RSS_HASH;
782 	dev_info->tx_offload_capa =
783 		DEV_TX_OFFLOAD_VLAN_INSERT |
784 		DEV_TX_OFFLOAD_QINQ_INSERT |
785 		DEV_TX_OFFLOAD_IPV4_CKSUM |
786 		DEV_TX_OFFLOAD_UDP_CKSUM |
787 		DEV_TX_OFFLOAD_TCP_CKSUM |
788 		DEV_TX_OFFLOAD_SCTP_CKSUM |
789 		DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
790 		DEV_TX_OFFLOAD_TCP_TSO |
791 		DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
792 		DEV_TX_OFFLOAD_GRE_TNL_TSO |
793 		DEV_TX_OFFLOAD_IPIP_TNL_TSO |
794 		DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
795 		DEV_TX_OFFLOAD_MULTI_SEGS |
796 		DEV_TX_OFFLOAD_MBUF_FAST_FREE;
797 
798 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
799 		.rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
800 		.rx_drop_en = 0,
801 		.offloads = 0,
802 	};
803 
804 	dev_info->default_txconf = (struct rte_eth_txconf) {
805 		.tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
806 		.tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
807 		.offloads = 0,
808 	};
809 
810 	dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
811 		.nb_max = IAVF_MAX_RING_DESC,
812 		.nb_min = IAVF_MIN_RING_DESC,
813 		.nb_align = IAVF_ALIGN_RING_DESC,
814 	};
815 
816 	dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
817 		.nb_max = IAVF_MAX_RING_DESC,
818 		.nb_min = IAVF_MIN_RING_DESC,
819 		.nb_align = IAVF_ALIGN_RING_DESC,
820 	};
821 
822 	return 0;
823 }
824 
825 static const uint32_t *
iavf_dev_supported_ptypes_get(struct rte_eth_dev * dev __rte_unused)826 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
827 {
828 	static const uint32_t ptypes[] = {
829 		RTE_PTYPE_L2_ETHER,
830 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
831 		RTE_PTYPE_L4_FRAG,
832 		RTE_PTYPE_L4_ICMP,
833 		RTE_PTYPE_L4_NONFRAG,
834 		RTE_PTYPE_L4_SCTP,
835 		RTE_PTYPE_L4_TCP,
836 		RTE_PTYPE_L4_UDP,
837 		RTE_PTYPE_UNKNOWN
838 	};
839 	return ptypes;
840 }
841 
842 int
iavf_dev_link_update(struct rte_eth_dev * dev,__rte_unused int wait_to_complete)843 iavf_dev_link_update(struct rte_eth_dev *dev,
844 		    __rte_unused int wait_to_complete)
845 {
846 	struct rte_eth_link new_link;
847 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
848 
849 	memset(&new_link, 0, sizeof(new_link));
850 
851 	/* Only read status info stored in VF, and the info is updated
852 	 *  when receive LINK_CHANGE evnet from PF by Virtchnnl.
853 	 */
854 	switch (vf->link_speed) {
855 	case 10:
856 		new_link.link_speed = ETH_SPEED_NUM_10M;
857 		break;
858 	case 100:
859 		new_link.link_speed = ETH_SPEED_NUM_100M;
860 		break;
861 	case 1000:
862 		new_link.link_speed = ETH_SPEED_NUM_1G;
863 		break;
864 	case 10000:
865 		new_link.link_speed = ETH_SPEED_NUM_10G;
866 		break;
867 	case 20000:
868 		new_link.link_speed = ETH_SPEED_NUM_20G;
869 		break;
870 	case 25000:
871 		new_link.link_speed = ETH_SPEED_NUM_25G;
872 		break;
873 	case 40000:
874 		new_link.link_speed = ETH_SPEED_NUM_40G;
875 		break;
876 	case 50000:
877 		new_link.link_speed = ETH_SPEED_NUM_50G;
878 		break;
879 	case 100000:
880 		new_link.link_speed = ETH_SPEED_NUM_100G;
881 		break;
882 	default:
883 		new_link.link_speed = ETH_SPEED_NUM_NONE;
884 		break;
885 	}
886 
887 	new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
888 	new_link.link_status = vf->link_up ? ETH_LINK_UP :
889 					     ETH_LINK_DOWN;
890 	new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
891 				ETH_LINK_SPEED_FIXED);
892 
893 	return rte_eth_linkstatus_set(dev, &new_link);
894 }
895 
896 static int
iavf_dev_promiscuous_enable(struct rte_eth_dev * dev)897 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
898 {
899 	struct iavf_adapter *adapter =
900 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
901 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
902 
903 	return iavf_config_promisc(adapter,
904 				  true, vf->promisc_multicast_enabled);
905 }
906 
907 static int
iavf_dev_promiscuous_disable(struct rte_eth_dev * dev)908 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
909 {
910 	struct iavf_adapter *adapter =
911 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
912 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
913 
914 	return iavf_config_promisc(adapter,
915 				  false, vf->promisc_multicast_enabled);
916 }
917 
918 static int
iavf_dev_allmulticast_enable(struct rte_eth_dev * dev)919 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
920 {
921 	struct iavf_adapter *adapter =
922 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
923 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
924 
925 	return iavf_config_promisc(adapter,
926 				  vf->promisc_unicast_enabled, true);
927 }
928 
929 static int
iavf_dev_allmulticast_disable(struct rte_eth_dev * dev)930 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
931 {
932 	struct iavf_adapter *adapter =
933 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
934 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
935 
936 	return iavf_config_promisc(adapter,
937 				  vf->promisc_unicast_enabled, false);
938 }
939 
940 static int
iavf_dev_add_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * addr,__rte_unused uint32_t index,__rte_unused uint32_t pool)941 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
942 		     __rte_unused uint32_t index,
943 		     __rte_unused uint32_t pool)
944 {
945 	struct iavf_adapter *adapter =
946 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
947 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
948 	int err;
949 
950 	if (rte_is_zero_ether_addr(addr)) {
951 		PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
952 		return -EINVAL;
953 	}
954 
955 	err = iavf_add_del_eth_addr(adapter, addr, true);
956 	if (err) {
957 		PMD_DRV_LOG(ERR, "fail to add MAC address");
958 		return -EIO;
959 	}
960 
961 	vf->mac_num++;
962 
963 	return 0;
964 }
965 
966 static void
iavf_dev_del_mac_addr(struct rte_eth_dev * dev,uint32_t index)967 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
968 {
969 	struct iavf_adapter *adapter =
970 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
971 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
972 	struct rte_ether_addr *addr;
973 	int err;
974 
975 	addr = &dev->data->mac_addrs[index];
976 
977 	err = iavf_add_del_eth_addr(adapter, addr, false);
978 	if (err)
979 		PMD_DRV_LOG(ERR, "fail to delete MAC address");
980 
981 	vf->mac_num--;
982 }
983 
984 static int
iavf_dev_vlan_filter_set(struct rte_eth_dev * dev,uint16_t vlan_id,int on)985 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
986 {
987 	struct iavf_adapter *adapter =
988 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
989 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
990 	int err;
991 
992 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
993 		return -ENOTSUP;
994 
995 	err = iavf_add_del_vlan(adapter, vlan_id, on);
996 	if (err)
997 		return -EIO;
998 	return 0;
999 }
1000 
1001 static int
iavf_dev_vlan_offload_set(struct rte_eth_dev * dev,int mask)1002 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1003 {
1004 	struct iavf_adapter *adapter =
1005 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1006 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1007 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1008 	int err;
1009 
1010 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1011 		return -ENOTSUP;
1012 
1013 	/* Vlan stripping setting */
1014 	if (mask & ETH_VLAN_STRIP_MASK) {
1015 		/* Enable or disable VLAN stripping */
1016 		if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1017 			err = iavf_enable_vlan_strip(adapter);
1018 		else
1019 			err = iavf_disable_vlan_strip(adapter);
1020 
1021 		if (err)
1022 			return -EIO;
1023 	}
1024 	return 0;
1025 }
1026 
1027 static int
iavf_dev_rss_reta_update(struct rte_eth_dev * dev,struct rte_eth_rss_reta_entry64 * reta_conf,uint16_t reta_size)1028 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1029 			struct rte_eth_rss_reta_entry64 *reta_conf,
1030 			uint16_t reta_size)
1031 {
1032 	struct iavf_adapter *adapter =
1033 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1034 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1035 	uint8_t *lut;
1036 	uint16_t i, idx, shift;
1037 	int ret;
1038 
1039 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1040 		return -ENOTSUP;
1041 
1042 	if (reta_size != vf->vf_res->rss_lut_size) {
1043 		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1044 			"(%d) doesn't match the number of hardware can "
1045 			"support (%d)", reta_size, vf->vf_res->rss_lut_size);
1046 		return -EINVAL;
1047 	}
1048 
1049 	lut = rte_zmalloc("rss_lut", reta_size, 0);
1050 	if (!lut) {
1051 		PMD_DRV_LOG(ERR, "No memory can be allocated");
1052 		return -ENOMEM;
1053 	}
1054 	/* store the old lut table temporarily */
1055 	rte_memcpy(lut, vf->rss_lut, reta_size);
1056 
1057 	for (i = 0; i < reta_size; i++) {
1058 		idx = i / RTE_RETA_GROUP_SIZE;
1059 		shift = i % RTE_RETA_GROUP_SIZE;
1060 		if (reta_conf[idx].mask & (1ULL << shift))
1061 			lut[i] = reta_conf[idx].reta[shift];
1062 	}
1063 
1064 	rte_memcpy(vf->rss_lut, lut, reta_size);
1065 	/* send virtchnnl ops to configure rss*/
1066 	ret = iavf_configure_rss_lut(adapter);
1067 	if (ret) /* revert back */
1068 		rte_memcpy(vf->rss_lut, lut, reta_size);
1069 	rte_free(lut);
1070 
1071 	return ret;
1072 }
1073 
1074 static int
iavf_dev_rss_reta_query(struct rte_eth_dev * dev,struct rte_eth_rss_reta_entry64 * reta_conf,uint16_t reta_size)1075 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1076 		       struct rte_eth_rss_reta_entry64 *reta_conf,
1077 		       uint16_t reta_size)
1078 {
1079 	struct iavf_adapter *adapter =
1080 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1081 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1082 	uint16_t i, idx, shift;
1083 
1084 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1085 		return -ENOTSUP;
1086 
1087 	if (reta_size != vf->vf_res->rss_lut_size) {
1088 		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1089 			"(%d) doesn't match the number of hardware can "
1090 			"support (%d)", reta_size, vf->vf_res->rss_lut_size);
1091 		return -EINVAL;
1092 	}
1093 
1094 	for (i = 0; i < reta_size; i++) {
1095 		idx = i / RTE_RETA_GROUP_SIZE;
1096 		shift = i % RTE_RETA_GROUP_SIZE;
1097 		if (reta_conf[idx].mask & (1ULL << shift))
1098 			reta_conf[idx].reta[shift] = vf->rss_lut[i];
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static int
iavf_dev_rss_hash_update(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1105 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1106 			struct rte_eth_rss_conf *rss_conf)
1107 {
1108 	struct iavf_adapter *adapter =
1109 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1110 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1111 
1112 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1113 		return -ENOTSUP;
1114 
1115 	/* HENA setting, it is enabled by default, no change */
1116 	if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
1117 		PMD_DRV_LOG(DEBUG, "No key to be configured");
1118 		return 0;
1119 	} else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
1120 		PMD_DRV_LOG(ERR, "The size of hash key configured "
1121 			"(%d) doesn't match the size of hardware can "
1122 			"support (%d)", rss_conf->rss_key_len,
1123 			vf->vf_res->rss_key_size);
1124 		return -EINVAL;
1125 	}
1126 
1127 	rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
1128 
1129 	return iavf_configure_rss_key(adapter);
1130 }
1131 
1132 static int
iavf_dev_rss_hash_conf_get(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1133 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1134 			  struct rte_eth_rss_conf *rss_conf)
1135 {
1136 	struct iavf_adapter *adapter =
1137 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1138 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1139 
1140 	if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1141 		return -ENOTSUP;
1142 
1143 	 /* Just set it to default value now. */
1144 	rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL;
1145 
1146 	if (!rss_conf->rss_key)
1147 		return 0;
1148 
1149 	rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1150 	rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1151 
1152 	return 0;
1153 }
1154 
1155 static int
iavf_dev_mtu_set(struct rte_eth_dev * dev,uint16_t mtu)1156 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1157 {
1158 	uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1159 	int ret = 0;
1160 
1161 	if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1162 		return -EINVAL;
1163 
1164 	/* mtu setting is forbidden if port is start */
1165 	if (dev->data->dev_started) {
1166 		PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1167 		return -EBUSY;
1168 	}
1169 
1170 	if (frame_size > RTE_ETHER_MAX_LEN)
1171 		dev->data->dev_conf.rxmode.offloads |=
1172 				DEV_RX_OFFLOAD_JUMBO_FRAME;
1173 	else
1174 		dev->data->dev_conf.rxmode.offloads &=
1175 				~DEV_RX_OFFLOAD_JUMBO_FRAME;
1176 
1177 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1178 
1179 	return ret;
1180 }
1181 
1182 static int
iavf_dev_set_default_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr)1183 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1184 			     struct rte_ether_addr *mac_addr)
1185 {
1186 	struct iavf_adapter *adapter =
1187 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1188 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1189 	struct rte_ether_addr *perm_addr, *old_addr;
1190 	int ret;
1191 
1192 	old_addr = (struct rte_ether_addr *)hw->mac.addr;
1193 	perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
1194 
1195 	/* If the MAC address is configured by host, skip the setting */
1196 	if (rte_is_valid_assigned_ether_addr(perm_addr))
1197 		return -EPERM;
1198 
1199 	ret = iavf_add_del_eth_addr(adapter, old_addr, false);
1200 	if (ret)
1201 		PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1202 			    " %02X:%02X:%02X:%02X:%02X:%02X",
1203 			    old_addr->addr_bytes[0],
1204 			    old_addr->addr_bytes[1],
1205 			    old_addr->addr_bytes[2],
1206 			    old_addr->addr_bytes[3],
1207 			    old_addr->addr_bytes[4],
1208 			    old_addr->addr_bytes[5]);
1209 
1210 	ret = iavf_add_del_eth_addr(adapter, mac_addr, true);
1211 	if (ret)
1212 		PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1213 			    " %02X:%02X:%02X:%02X:%02X:%02X",
1214 			    mac_addr->addr_bytes[0],
1215 			    mac_addr->addr_bytes[1],
1216 			    mac_addr->addr_bytes[2],
1217 			    mac_addr->addr_bytes[3],
1218 			    mac_addr->addr_bytes[4],
1219 			    mac_addr->addr_bytes[5]);
1220 
1221 	if (ret)
1222 		return -EIO;
1223 
1224 	rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1225 	return 0;
1226 }
1227 
1228 static void
iavf_stat_update_48(uint64_t * offset,uint64_t * stat)1229 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1230 {
1231 	if (*stat >= *offset)
1232 		*stat = *stat - *offset;
1233 	else
1234 		*stat = (uint64_t)((*stat +
1235 			((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1236 
1237 	*stat &= IAVF_48_BIT_MASK;
1238 }
1239 
1240 static void
iavf_stat_update_32(uint64_t * offset,uint64_t * stat)1241 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1242 {
1243 	if (*stat >= *offset)
1244 		*stat = (uint64_t)(*stat - *offset);
1245 	else
1246 		*stat = (uint64_t)((*stat +
1247 			((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1248 }
1249 
1250 static void
iavf_update_stats(struct iavf_vsi * vsi,struct virtchnl_eth_stats * nes)1251 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1252 {
1253 	struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1254 
1255 	iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1256 	iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1257 	iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1258 	iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1259 	iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1260 	iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1261 	iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1262 	iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1263 	iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1264 	iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1265 	iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1266 }
1267 
1268 static int
iavf_dev_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * stats)1269 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1270 {
1271 	struct iavf_adapter *adapter =
1272 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1273 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1274 	struct iavf_vsi *vsi = &vf->vsi;
1275 	struct virtchnl_eth_stats *pstats = NULL;
1276 	int ret;
1277 
1278 	ret = iavf_query_stats(adapter, &pstats);
1279 	if (ret == 0) {
1280 		iavf_update_stats(vsi, pstats);
1281 		stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1282 				pstats->rx_broadcast - pstats->rx_discards;
1283 		stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1284 						pstats->tx_unicast;
1285 		stats->imissed = pstats->rx_discards;
1286 		stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1287 		stats->ibytes = pstats->rx_bytes;
1288 		stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
1289 		stats->obytes = pstats->tx_bytes;
1290 	} else {
1291 		PMD_DRV_LOG(ERR, "Get statistics failed");
1292 	}
1293 	return ret;
1294 }
1295 
1296 static int
iavf_dev_stats_reset(struct rte_eth_dev * dev)1297 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1298 {
1299 	int ret;
1300 	struct iavf_adapter *adapter =
1301 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1302 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1303 	struct iavf_vsi *vsi = &vf->vsi;
1304 	struct virtchnl_eth_stats *pstats = NULL;
1305 
1306 	/* read stat values to clear hardware registers */
1307 	ret = iavf_query_stats(adapter, &pstats);
1308 	if (ret != 0)
1309 		return ret;
1310 
1311 	/* set stats offset base on current values */
1312 	vsi->eth_stats_offset = *pstats;
1313 
1314 	return 0;
1315 }
1316 
iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev * dev,struct rte_eth_xstat_name * xstats_names,__rte_unused unsigned int limit)1317 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1318 				      struct rte_eth_xstat_name *xstats_names,
1319 				      __rte_unused unsigned int limit)
1320 {
1321 	unsigned int i;
1322 
1323 	if (xstats_names != NULL)
1324 		for (i = 0; i < IAVF_NB_XSTATS; i++) {
1325 			snprintf(xstats_names[i].name,
1326 				sizeof(xstats_names[i].name),
1327 				"%s", rte_iavf_stats_strings[i].name);
1328 		}
1329 	return IAVF_NB_XSTATS;
1330 }
1331 
iavf_dev_xstats_get(struct rte_eth_dev * dev,struct rte_eth_xstat * xstats,unsigned int n)1332 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1333 				 struct rte_eth_xstat *xstats, unsigned int n)
1334 {
1335 	int ret;
1336 	unsigned int i;
1337 	struct iavf_adapter *adapter =
1338 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1339 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1340 	struct iavf_vsi *vsi = &vf->vsi;
1341 	struct virtchnl_eth_stats *pstats = NULL;
1342 
1343 	if (n < IAVF_NB_XSTATS)
1344 		return IAVF_NB_XSTATS;
1345 
1346 	ret = iavf_query_stats(adapter, &pstats);
1347 	if (ret != 0)
1348 		return 0;
1349 
1350 	if (!xstats)
1351 		return 0;
1352 
1353 	iavf_update_stats(vsi, pstats);
1354 
1355 	/* loop over xstats array and values from pstats */
1356 	for (i = 0; i < IAVF_NB_XSTATS; i++) {
1357 		xstats[i].id = i;
1358 		xstats[i].value = *(uint64_t *)(((char *)pstats) +
1359 			rte_iavf_stats_strings[i].offset);
1360 	}
1361 
1362 	return IAVF_NB_XSTATS;
1363 }
1364 
1365 
1366 static int
iavf_dev_rx_queue_intr_enable(struct rte_eth_dev * dev,uint16_t queue_id)1367 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1368 {
1369 	struct iavf_adapter *adapter =
1370 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1371 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1372 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1373 	uint16_t msix_intr;
1374 
1375 	msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1376 	if (msix_intr == IAVF_MISC_VEC_ID) {
1377 		PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1378 		IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1379 			       IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1380 			       IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1381 			       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1382 	} else {
1383 		IAVF_WRITE_REG(hw,
1384 			       IAVF_VFINT_DYN_CTLN1
1385 				(msix_intr - IAVF_RX_VEC_START),
1386 			       IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1387 			       IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1388 			       IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1389 	}
1390 
1391 	IAVF_WRITE_FLUSH(hw);
1392 
1393 	rte_intr_ack(&pci_dev->intr_handle);
1394 
1395 	return 0;
1396 }
1397 
1398 static int
iavf_dev_rx_queue_intr_disable(struct rte_eth_dev * dev,uint16_t queue_id)1399 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1400 {
1401 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1402 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1403 	uint16_t msix_intr;
1404 
1405 	msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1406 	if (msix_intr == IAVF_MISC_VEC_ID) {
1407 		PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1408 		return -EIO;
1409 	}
1410 
1411 	IAVF_WRITE_REG(hw,
1412 		      IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1413 		      0);
1414 
1415 	IAVF_WRITE_FLUSH(hw);
1416 	return 0;
1417 }
1418 
1419 static int
iavf_check_vf_reset_done(struct iavf_hw * hw)1420 iavf_check_vf_reset_done(struct iavf_hw *hw)
1421 {
1422 	int i, reset;
1423 
1424 	for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1425 		reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1426 			IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1427 		reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1428 		if (reset == VIRTCHNL_VFR_VFACTIVE ||
1429 		    reset == VIRTCHNL_VFR_COMPLETED)
1430 			break;
1431 		rte_delay_ms(20);
1432 	}
1433 
1434 	if (i >= IAVF_RESET_WAIT_CNT)
1435 		return -1;
1436 
1437 	return 0;
1438 }
1439 
1440 static int
iavf_lookup_proto_xtr_type(const char * flex_name)1441 iavf_lookup_proto_xtr_type(const char *flex_name)
1442 {
1443 	static struct {
1444 		const char *name;
1445 		enum iavf_proto_xtr_type type;
1446 	} xtr_type_map[] = {
1447 		{ "vlan",      IAVF_PROTO_XTR_VLAN      },
1448 		{ "ipv4",      IAVF_PROTO_XTR_IPV4      },
1449 		{ "ipv6",      IAVF_PROTO_XTR_IPV6      },
1450 		{ "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1451 		{ "tcp",       IAVF_PROTO_XTR_TCP       },
1452 		{ "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1453 	};
1454 	uint32_t i;
1455 
1456 	for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1457 		if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1458 			return xtr_type_map[i].type;
1459 	}
1460 
1461 	PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1462 		    "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1463 
1464 	return -1;
1465 }
1466 
1467 /**
1468  * Parse elem, the elem could be single number/range or '(' ')' group
1469  * 1) A single number elem, it's just a simple digit. e.g. 9
1470  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1471  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1472  *    Within group elem, '-' used for a range separator;
1473  *                       ',' used for a single number.
1474  */
1475 static int
iavf_parse_queue_set(const char * input,int xtr_type,struct iavf_devargs * devargs)1476 iavf_parse_queue_set(const char *input, int xtr_type,
1477 		     struct iavf_devargs *devargs)
1478 {
1479 	const char *str = input;
1480 	char *end = NULL;
1481 	uint32_t min, max;
1482 	uint32_t idx;
1483 
1484 	while (isblank(*str))
1485 		str++;
1486 
1487 	if (!isdigit(*str) && *str != '(')
1488 		return -1;
1489 
1490 	/* process single number or single range of number */
1491 	if (*str != '(') {
1492 		errno = 0;
1493 		idx = strtoul(str, &end, 10);
1494 		if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1495 			return -1;
1496 
1497 		while (isblank(*end))
1498 			end++;
1499 
1500 		min = idx;
1501 		max = idx;
1502 
1503 		/* process single <number>-<number> */
1504 		if (*end == '-') {
1505 			end++;
1506 			while (isblank(*end))
1507 				end++;
1508 			if (!isdigit(*end))
1509 				return -1;
1510 
1511 			errno = 0;
1512 			idx = strtoul(end, &end, 10);
1513 			if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1514 				return -1;
1515 
1516 			max = idx;
1517 			while (isblank(*end))
1518 				end++;
1519 		}
1520 
1521 		if (*end != ':')
1522 			return -1;
1523 
1524 		for (idx = RTE_MIN(min, max);
1525 		     idx <= RTE_MAX(min, max); idx++)
1526 			devargs->proto_xtr[idx] = xtr_type;
1527 
1528 		return 0;
1529 	}
1530 
1531 	/* process set within bracket */
1532 	str++;
1533 	while (isblank(*str))
1534 		str++;
1535 	if (*str == '\0')
1536 		return -1;
1537 
1538 	min = IAVF_MAX_QUEUE_NUM;
1539 	do {
1540 		/* go ahead to the first digit */
1541 		while (isblank(*str))
1542 			str++;
1543 		if (!isdigit(*str))
1544 			return -1;
1545 
1546 		/* get the digit value */
1547 		errno = 0;
1548 		idx = strtoul(str, &end, 10);
1549 		if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1550 			return -1;
1551 
1552 		/* go ahead to separator '-',',' and ')' */
1553 		while (isblank(*end))
1554 			end++;
1555 		if (*end == '-') {
1556 			if (min == IAVF_MAX_QUEUE_NUM)
1557 				min = idx;
1558 			else /* avoid continuous '-' */
1559 				return -1;
1560 		} else if (*end == ',' || *end == ')') {
1561 			max = idx;
1562 			if (min == IAVF_MAX_QUEUE_NUM)
1563 				min = idx;
1564 
1565 			for (idx = RTE_MIN(min, max);
1566 			     idx <= RTE_MAX(min, max); idx++)
1567 				devargs->proto_xtr[idx] = xtr_type;
1568 
1569 			min = IAVF_MAX_QUEUE_NUM;
1570 		} else {
1571 			return -1;
1572 		}
1573 
1574 		str = end + 1;
1575 	} while (*end != ')' && *end != '\0');
1576 
1577 	return 0;
1578 }
1579 
1580 static int
iavf_parse_queue_proto_xtr(const char * queues,struct iavf_devargs * devargs)1581 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1582 {
1583 	const char *queue_start;
1584 	uint32_t idx;
1585 	int xtr_type;
1586 	char flex_name[32];
1587 
1588 	while (isblank(*queues))
1589 		queues++;
1590 
1591 	if (*queues != '[') {
1592 		xtr_type = iavf_lookup_proto_xtr_type(queues);
1593 		if (xtr_type < 0)
1594 			return -1;
1595 
1596 		devargs->proto_xtr_dflt = xtr_type;
1597 
1598 		return 0;
1599 	}
1600 
1601 	queues++;
1602 	do {
1603 		while (isblank(*queues))
1604 			queues++;
1605 		if (*queues == '\0')
1606 			return -1;
1607 
1608 		queue_start = queues;
1609 
1610 		/* go across a complete bracket */
1611 		if (*queue_start == '(') {
1612 			queues += strcspn(queues, ")");
1613 			if (*queues != ')')
1614 				return -1;
1615 		}
1616 
1617 		/* scan the separator ':' */
1618 		queues += strcspn(queues, ":");
1619 		if (*queues++ != ':')
1620 			return -1;
1621 		while (isblank(*queues))
1622 			queues++;
1623 
1624 		for (idx = 0; ; idx++) {
1625 			if (isblank(queues[idx]) ||
1626 			    queues[idx] == ',' ||
1627 			    queues[idx] == ']' ||
1628 			    queues[idx] == '\0')
1629 				break;
1630 
1631 			if (idx > sizeof(flex_name) - 2)
1632 				return -1;
1633 
1634 			flex_name[idx] = queues[idx];
1635 		}
1636 		flex_name[idx] = '\0';
1637 		xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1638 		if (xtr_type < 0)
1639 			return -1;
1640 
1641 		queues += idx;
1642 
1643 		while (isblank(*queues) || *queues == ',' || *queues == ']')
1644 			queues++;
1645 
1646 		if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1647 			return -1;
1648 	} while (*queues != '\0');
1649 
1650 	return 0;
1651 }
1652 
1653 static int
iavf_handle_proto_xtr_arg(__rte_unused const char * key,const char * value,void * extra_args)1654 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1655 			  void *extra_args)
1656 {
1657 	struct iavf_devargs *devargs = extra_args;
1658 
1659 	if (!value || !extra_args)
1660 		return -EINVAL;
1661 
1662 	if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1663 		PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1664 			    value);
1665 		return -1;
1666 	}
1667 
1668 	return 0;
1669 }
1670 
iavf_parse_devargs(struct rte_eth_dev * dev)1671 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1672 {
1673 	struct iavf_adapter *ad =
1674 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1675 	struct rte_devargs *devargs = dev->device->devargs;
1676 	struct rte_kvargs *kvlist;
1677 	int ret;
1678 
1679 	if (!devargs)
1680 		return 0;
1681 
1682 	kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1683 	if (!kvlist) {
1684 		PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1685 		return -EINVAL;
1686 	}
1687 
1688 	ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1689 	memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1690 	       sizeof(ad->devargs.proto_xtr));
1691 
1692 	ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1693 				 &iavf_handle_proto_xtr_arg, &ad->devargs);
1694 	if (ret)
1695 		goto bail;
1696 
1697 bail:
1698 	rte_kvargs_free(kvlist);
1699 	return ret;
1700 }
1701 
1702 static void
iavf_init_proto_xtr(struct rte_eth_dev * dev)1703 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1704 {
1705 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1706 	struct iavf_adapter *ad =
1707 			IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1708 	const struct iavf_proto_xtr_ol *xtr_ol;
1709 	bool proto_xtr_enable = false;
1710 	int offset;
1711 	uint16_t i;
1712 
1713 	vf->proto_xtr = rte_zmalloc("vf proto xtr",
1714 				    vf->vsi_res->num_queue_pairs, 0);
1715 	if (unlikely(!(vf->proto_xtr))) {
1716 		PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
1717 		return;
1718 	}
1719 
1720 	for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
1721 		vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
1722 					IAVF_PROTO_XTR_NONE ?
1723 					ad->devargs.proto_xtr[i] :
1724 					ad->devargs.proto_xtr_dflt;
1725 
1726 		if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
1727 			uint8_t type = vf->proto_xtr[i];
1728 
1729 			iavf_proto_xtr_params[type].required = true;
1730 			proto_xtr_enable = true;
1731 		}
1732 	}
1733 
1734 	if (likely(!proto_xtr_enable))
1735 		return;
1736 
1737 	offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
1738 	if (unlikely(offset == -1)) {
1739 		PMD_DRV_LOG(ERR,
1740 			    "failed to extract protocol metadata, error %d",
1741 			    -rte_errno);
1742 		return;
1743 	}
1744 
1745 	PMD_DRV_LOG(DEBUG,
1746 		    "proto_xtr metadata offset in mbuf is : %d",
1747 		    offset);
1748 	rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
1749 
1750 	for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
1751 		xtr_ol = &iavf_proto_xtr_params[i];
1752 
1753 		uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
1754 
1755 		if (!xtr_ol->required)
1756 			continue;
1757 
1758 		if (!(vf->supported_rxdid & BIT(rxdid))) {
1759 			PMD_DRV_LOG(ERR,
1760 				    "rxdid[%u] is not supported in hardware",
1761 				    rxdid);
1762 			rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
1763 			break;
1764 		}
1765 
1766 		offset = rte_mbuf_dynflag_register(&xtr_ol->param);
1767 		if (unlikely(offset == -1)) {
1768 			PMD_DRV_LOG(ERR,
1769 				    "failed to register proto_xtr offload '%s', error %d",
1770 				    xtr_ol->param.name, -rte_errno);
1771 
1772 			rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
1773 			break;
1774 		}
1775 
1776 		PMD_DRV_LOG(DEBUG,
1777 			    "proto_xtr offload '%s' offset in mbuf is : %d",
1778 			    xtr_ol->param.name, offset);
1779 		*xtr_ol->ol_flag = 1ULL << offset;
1780 	}
1781 }
1782 
1783 static int
iavf_init_vf(struct rte_eth_dev * dev)1784 iavf_init_vf(struct rte_eth_dev *dev)
1785 {
1786 	int err, bufsz;
1787 	struct iavf_adapter *adapter =
1788 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1789 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1790 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1791 
1792 	err = iavf_parse_devargs(dev);
1793 	if (err) {
1794 		PMD_INIT_LOG(ERR, "Failed to parse devargs");
1795 		goto err;
1796 	}
1797 
1798 	err = iavf_set_mac_type(hw);
1799 	if (err) {
1800 		PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1801 		goto err;
1802 	}
1803 
1804 	err = iavf_check_vf_reset_done(hw);
1805 	if (err) {
1806 		PMD_INIT_LOG(ERR, "VF is still resetting");
1807 		goto err;
1808 	}
1809 
1810 	iavf_init_adminq_parameter(hw);
1811 	err = iavf_init_adminq(hw);
1812 	if (err) {
1813 		PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1814 		goto err;
1815 	}
1816 
1817 	vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1818 	if (!vf->aq_resp) {
1819 		PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1820 		goto err_aq;
1821 	}
1822 	if (iavf_check_api_version(adapter) != 0) {
1823 		PMD_INIT_LOG(ERR, "check_api version failed");
1824 		goto err_api;
1825 	}
1826 
1827 	bufsz = sizeof(struct virtchnl_vf_resource) +
1828 		(IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1829 	vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1830 	if (!vf->vf_res) {
1831 		PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1832 		goto err_api;
1833 	}
1834 	if (iavf_get_vf_resource(adapter) != 0) {
1835 		PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1836 		goto err_alloc;
1837 	}
1838 	/* Allocate memort for RSS info */
1839 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1840 		vf->rss_key = rte_zmalloc("rss_key",
1841 					  vf->vf_res->rss_key_size, 0);
1842 		if (!vf->rss_key) {
1843 			PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1844 			goto err_rss;
1845 		}
1846 		vf->rss_lut = rte_zmalloc("rss_lut",
1847 					  vf->vf_res->rss_lut_size, 0);
1848 		if (!vf->rss_lut) {
1849 			PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1850 			goto err_rss;
1851 		}
1852 	}
1853 
1854 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1855 		if (iavf_get_supported_rxdid(adapter) != 0) {
1856 			PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
1857 			goto err_rss;
1858 		}
1859 	}
1860 
1861 	iavf_init_proto_xtr(dev);
1862 
1863 	return 0;
1864 err_rss:
1865 	rte_free(vf->rss_key);
1866 	rte_free(vf->rss_lut);
1867 err_alloc:
1868 	rte_free(vf->vf_res);
1869 	vf->vsi_res = NULL;
1870 err_api:
1871 	rte_free(vf->aq_resp);
1872 err_aq:
1873 	iavf_shutdown_adminq(hw);
1874 err:
1875 	return -1;
1876 }
1877 
1878 /* Enable default admin queue interrupt setting */
1879 static inline void
iavf_enable_irq0(struct iavf_hw * hw)1880 iavf_enable_irq0(struct iavf_hw *hw)
1881 {
1882 	/* Enable admin queue interrupt trigger */
1883 	IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
1884 		       IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
1885 
1886 	IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1887 		       IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1888 		       IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1889 		       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1890 
1891 	IAVF_WRITE_FLUSH(hw);
1892 }
1893 
1894 static inline void
iavf_disable_irq0(struct iavf_hw * hw)1895 iavf_disable_irq0(struct iavf_hw *hw)
1896 {
1897 	/* Disable all interrupt types */
1898 	IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
1899 	IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1900 		       IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1901 	IAVF_WRITE_FLUSH(hw);
1902 }
1903 
1904 static void
iavf_dev_interrupt_handler(void * param)1905 iavf_dev_interrupt_handler(void *param)
1906 {
1907 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1908 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1909 
1910 	iavf_disable_irq0(hw);
1911 
1912 	iavf_handle_virtchnl_msg(dev);
1913 
1914 	iavf_enable_irq0(hw);
1915 }
1916 
1917 static int
iavf_dev_filter_ctrl(struct rte_eth_dev * dev,enum rte_filter_type filter_type,enum rte_filter_op filter_op,void * arg)1918 iavf_dev_filter_ctrl(struct rte_eth_dev *dev,
1919 		     enum rte_filter_type filter_type,
1920 		     enum rte_filter_op filter_op,
1921 		     void *arg)
1922 {
1923 	int ret = 0;
1924 
1925 	if (!dev)
1926 		return -EINVAL;
1927 
1928 	switch (filter_type) {
1929 	case RTE_ETH_FILTER_GENERIC:
1930 		if (filter_op != RTE_ETH_FILTER_GET)
1931 			return -EINVAL;
1932 		*(const void **)arg = &iavf_flow_ops;
1933 		break;
1934 	default:
1935 		PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
1936 			    filter_type);
1937 		ret = -EINVAL;
1938 		break;
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 
1945 static int
iavf_dev_init(struct rte_eth_dev * eth_dev)1946 iavf_dev_init(struct rte_eth_dev *eth_dev)
1947 {
1948 	struct iavf_adapter *adapter =
1949 		IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1950 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1951 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1952 	int ret = 0;
1953 
1954 	PMD_INIT_FUNC_TRACE();
1955 
1956 	/* assign ops func pointer */
1957 	eth_dev->dev_ops = &iavf_eth_dev_ops;
1958 	eth_dev->rx_queue_count = iavf_dev_rxq_count;
1959 	eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
1960 	eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
1961 	eth_dev->rx_pkt_burst = &iavf_recv_pkts;
1962 	eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
1963 	eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
1964 
1965 	/* For secondary processes, we don't initialise any further as primary
1966 	 * has already done this work. Only check if we need a different RX
1967 	 * and TX function.
1968 	 */
1969 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1970 		iavf_set_rx_function(eth_dev);
1971 		iavf_set_tx_function(eth_dev);
1972 		return 0;
1973 	}
1974 	rte_eth_copy_pci_info(eth_dev, pci_dev);
1975 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1976 
1977 	hw->vendor_id = pci_dev->id.vendor_id;
1978 	hw->device_id = pci_dev->id.device_id;
1979 	hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1980 	hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1981 	hw->bus.bus_id = pci_dev->addr.bus;
1982 	hw->bus.device = pci_dev->addr.devid;
1983 	hw->bus.func = pci_dev->addr.function;
1984 	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1985 	hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1986 	adapter->eth_dev = eth_dev;
1987 	adapter->stopped = 1;
1988 
1989 	if (iavf_init_vf(eth_dev) != 0) {
1990 		PMD_INIT_LOG(ERR, "Init vf failed");
1991 		return -1;
1992 	}
1993 
1994 	/* set default ptype table */
1995 	adapter->ptype_tbl = iavf_get_default_ptype_table();
1996 
1997 	/* copy mac addr */
1998 	eth_dev->data->mac_addrs = rte_zmalloc(
1999 		"iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2000 	if (!eth_dev->data->mac_addrs) {
2001 		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2002 			     " store MAC addresses",
2003 			     RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2004 		return -ENOMEM;
2005 	}
2006 	/* If the MAC address is not configured by host,
2007 	 * generate a random one.
2008 	 */
2009 	if (!rte_is_valid_assigned_ether_addr(
2010 			(struct rte_ether_addr *)hw->mac.addr))
2011 		rte_eth_random_addr(hw->mac.addr);
2012 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2013 			&eth_dev->data->mac_addrs[0]);
2014 
2015 	/* register callback func to eal lib */
2016 	rte_intr_callback_register(&pci_dev->intr_handle,
2017 				   iavf_dev_interrupt_handler,
2018 				   (void *)eth_dev);
2019 
2020 	/* enable uio intr after callback register */
2021 	rte_intr_enable(&pci_dev->intr_handle);
2022 
2023 	/* configure and enable device interrupt */
2024 	iavf_enable_irq0(hw);
2025 
2026 	ret = iavf_flow_init(adapter);
2027 	if (ret) {
2028 		PMD_INIT_LOG(ERR, "Failed to initialize flow");
2029 		return ret;
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 static int
iavf_dev_close(struct rte_eth_dev * dev)2036 iavf_dev_close(struct rte_eth_dev *dev)
2037 {
2038 	struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2039 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2040 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2041 	struct iavf_adapter *adapter =
2042 		IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2043 	struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2044 	int ret;
2045 
2046 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2047 		return 0;
2048 
2049 	ret = iavf_dev_stop(dev);
2050 
2051 	iavf_flow_flush(dev, NULL);
2052 	iavf_flow_uninit(adapter);
2053 
2054 	/*
2055 	 * disable promiscuous mode before reset vf
2056 	 * it is a workaround solution when work with kernel driver
2057 	 * and it is not the normal way
2058 	 */
2059 	if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2060 		iavf_config_promisc(adapter, false, false);
2061 
2062 	iavf_shutdown_adminq(hw);
2063 	/* disable uio intr before callback unregister */
2064 	rte_intr_disable(intr_handle);
2065 
2066 	/* unregister callback func from eal lib */
2067 	rte_intr_callback_unregister(intr_handle,
2068 				     iavf_dev_interrupt_handler, dev);
2069 	iavf_disable_irq0(hw);
2070 
2071 	if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2072 		if (vf->rss_lut) {
2073 			rte_free(vf->rss_lut);
2074 			vf->rss_lut = NULL;
2075 		}
2076 		if (vf->rss_key) {
2077 			rte_free(vf->rss_key);
2078 			vf->rss_key = NULL;
2079 		}
2080 	}
2081 
2082 	rte_free(vf->vf_res);
2083 	vf->vsi_res = NULL;
2084 	vf->vf_res = NULL;
2085 
2086 	rte_free(vf->aq_resp);
2087 	vf->aq_resp = NULL;
2088 
2089 	vf->vf_reset = false;
2090 
2091 	return ret;
2092 }
2093 
2094 static int
iavf_dev_uninit(struct rte_eth_dev * dev)2095 iavf_dev_uninit(struct rte_eth_dev *dev)
2096 {
2097 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2098 		return -EPERM;
2099 
2100 	iavf_dev_close(dev);
2101 
2102 	return 0;
2103 }
2104 
2105 /*
2106  * Reset VF device only to re-initialize resources in PMD layer
2107  */
2108 static int
iavf_dev_reset(struct rte_eth_dev * dev)2109 iavf_dev_reset(struct rte_eth_dev *dev)
2110 {
2111 	int ret;
2112 
2113 	ret = iavf_dev_uninit(dev);
2114 	if (ret)
2115 		return ret;
2116 
2117 	return iavf_dev_init(dev);
2118 }
2119 
2120 static int
iavf_dcf_cap_check_handler(__rte_unused const char * key,const char * value,__rte_unused void * opaque)2121 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2122 			   const char *value, __rte_unused void *opaque)
2123 {
2124 	if (strcmp(value, "dcf"))
2125 		return -1;
2126 
2127 	return 0;
2128 }
2129 
2130 static int
iavf_dcf_cap_selected(struct rte_devargs * devargs)2131 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2132 {
2133 	struct rte_kvargs *kvlist;
2134 	const char *key = "cap";
2135 	int ret = 0;
2136 
2137 	if (devargs == NULL)
2138 		return 0;
2139 
2140 	kvlist = rte_kvargs_parse(devargs->args, NULL);
2141 	if (kvlist == NULL)
2142 		return 0;
2143 
2144 	if (!rte_kvargs_count(kvlist, key))
2145 		goto exit;
2146 
2147 	/* dcf capability selected when there's a key-value pair: cap=dcf */
2148 	if (rte_kvargs_process(kvlist, key,
2149 			       iavf_dcf_cap_check_handler, NULL) < 0)
2150 		goto exit;
2151 
2152 	ret = 1;
2153 
2154 exit:
2155 	rte_kvargs_free(kvlist);
2156 	return ret;
2157 }
2158 
eth_iavf_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)2159 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2160 			     struct rte_pci_device *pci_dev)
2161 {
2162 	if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2163 		return 1;
2164 
2165 	return rte_eth_dev_pci_generic_probe(pci_dev,
2166 		sizeof(struct iavf_adapter), iavf_dev_init);
2167 }
2168 
eth_iavf_pci_remove(struct rte_pci_device * pci_dev)2169 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2170 {
2171 	return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2172 }
2173 
2174 /* Adaptive virtual function driver struct */
2175 static struct rte_pci_driver rte_iavf_pmd = {
2176 	.id_table = pci_id_iavf_map,
2177 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2178 	.probe = eth_iavf_pci_probe,
2179 	.remove = eth_iavf_pci_remove,
2180 };
2181 
2182 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2183 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2184 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2185 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2186 RTE_LOG_REGISTER(iavf_logtype_init, pmd.net.iavf.init, NOTICE);
2187 RTE_LOG_REGISTER(iavf_logtype_driver, pmd.net.iavf.driver, NOTICE);
2188 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
2189 RTE_LOG_REGISTER(iavf_logtype_rx, pmd.net.iavf.rx, DEBUG);
2190 #endif
2191 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
2192 RTE_LOG_REGISTER(iavf_logtype_tx, pmd.net.iavf.tx, DEBUG);
2193 #endif
2194 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
2195 RTE_LOG_REGISTER(iavf_logtype_tx_free, pmd.net.iavf.tx_free, DEBUG);
2196 #endif
2197