1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2017 Intel Corporation
3 */
4
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <string.h>
10 #include <unistd.h>
11 #include <stdarg.h>
12 #include <inttypes.h>
13 #include <rte_byteorder.h>
14 #include <rte_common.h>
15
16 #include <rte_interrupts.h>
17 #include <rte_debug.h>
18 #include <rte_pci.h>
19 #include <rte_atomic.h>
20 #include <rte_eal.h>
21 #include <rte_ether.h>
22 #include <rte_ethdev_driver.h>
23 #include <rte_ethdev_pci.h>
24 #include <rte_malloc.h>
25 #include <rte_memzone.h>
26 #include <rte_dev.h>
27
28 #include "iavf.h"
29 #include "iavf_rxtx.h"
30 #include "iavf_generic_flow.h"
31 #include "rte_pmd_iavf.h"
32
33 /* devargs */
34 #define IAVF_PROTO_XTR_ARG "proto_xtr"
35
36 static const char * const iavf_valid_args[] = {
37 IAVF_PROTO_XTR_ARG,
38 NULL
39 };
40
41 static const struct rte_mbuf_dynfield iavf_proto_xtr_metadata_param = {
42 .name = "intel_pmd_dynfield_proto_xtr_metadata",
43 .size = sizeof(uint32_t),
44 .align = __alignof__(uint32_t),
45 .flags = 0,
46 };
47
48 struct iavf_proto_xtr_ol {
49 const struct rte_mbuf_dynflag param;
50 uint64_t *ol_flag;
51 bool required;
52 };
53
54 static struct iavf_proto_xtr_ol iavf_proto_xtr_params[] = {
55 [IAVF_PROTO_XTR_VLAN] = {
56 .param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
57 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_vlan_mask },
58 [IAVF_PROTO_XTR_IPV4] = {
59 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
60 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv4_mask },
61 [IAVF_PROTO_XTR_IPV6] = {
62 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
63 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_mask },
64 [IAVF_PROTO_XTR_IPV6_FLOW] = {
65 .param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
66 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ipv6_flow_mask },
67 [IAVF_PROTO_XTR_TCP] = {
68 .param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
69 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_tcp_mask },
70 [IAVF_PROTO_XTR_IP_OFFSET] = {
71 .param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
72 .ol_flag = &rte_pmd_ifd_dynflag_proto_xtr_ip_offset_mask },
73 };
74
75 static int iavf_dev_configure(struct rte_eth_dev *dev);
76 static int iavf_dev_start(struct rte_eth_dev *dev);
77 static int iavf_dev_stop(struct rte_eth_dev *dev);
78 static int iavf_dev_close(struct rte_eth_dev *dev);
79 static int iavf_dev_reset(struct rte_eth_dev *dev);
80 static int iavf_dev_info_get(struct rte_eth_dev *dev,
81 struct rte_eth_dev_info *dev_info);
82 static const uint32_t *iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev);
83 static int iavf_dev_stats_get(struct rte_eth_dev *dev,
84 struct rte_eth_stats *stats);
85 static int iavf_dev_stats_reset(struct rte_eth_dev *dev);
86 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
87 struct rte_eth_xstat *xstats, unsigned int n);
88 static int iavf_dev_xstats_get_names(struct rte_eth_dev *dev,
89 struct rte_eth_xstat_name *xstats_names,
90 unsigned int limit);
91 static int iavf_dev_promiscuous_enable(struct rte_eth_dev *dev);
92 static int iavf_dev_promiscuous_disable(struct rte_eth_dev *dev);
93 static int iavf_dev_allmulticast_enable(struct rte_eth_dev *dev);
94 static int iavf_dev_allmulticast_disable(struct rte_eth_dev *dev);
95 static int iavf_dev_add_mac_addr(struct rte_eth_dev *dev,
96 struct rte_ether_addr *addr,
97 uint32_t index,
98 uint32_t pool);
99 static void iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index);
100 static int iavf_dev_vlan_filter_set(struct rte_eth_dev *dev,
101 uint16_t vlan_id, int on);
102 static int iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask);
103 static int iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
104 struct rte_eth_rss_reta_entry64 *reta_conf,
105 uint16_t reta_size);
106 static int iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
107 struct rte_eth_rss_reta_entry64 *reta_conf,
108 uint16_t reta_size);
109 static int iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
110 struct rte_eth_rss_conf *rss_conf);
111 static int iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
112 struct rte_eth_rss_conf *rss_conf);
113 static int iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
114 static int iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
115 struct rte_ether_addr *mac_addr);
116 static int iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev,
117 uint16_t queue_id);
118 static int iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev,
119 uint16_t queue_id);
120 static int iavf_dev_filter_ctrl(struct rte_eth_dev *dev,
121 enum rte_filter_type filter_type,
122 enum rte_filter_op filter_op,
123 void *arg);
124 static int iavf_set_mc_addr_list(struct rte_eth_dev *dev,
125 struct rte_ether_addr *mc_addrs,
126 uint32_t mc_addrs_num);
127
128 static const struct rte_pci_id pci_id_iavf_map[] = {
129 { RTE_PCI_DEVICE(IAVF_INTEL_VENDOR_ID, IAVF_DEV_ID_ADAPTIVE_VF) },
130 { .vendor_id = 0, /* sentinel */ },
131 };
132
133 struct rte_iavf_xstats_name_off {
134 char name[RTE_ETH_XSTATS_NAME_SIZE];
135 unsigned int offset;
136 };
137
138 static const struct rte_iavf_xstats_name_off rte_iavf_stats_strings[] = {
139 {"rx_bytes", offsetof(struct iavf_eth_stats, rx_bytes)},
140 {"rx_unicast_packets", offsetof(struct iavf_eth_stats, rx_unicast)},
141 {"rx_multicast_packets", offsetof(struct iavf_eth_stats, rx_multicast)},
142 {"rx_broadcast_packets", offsetof(struct iavf_eth_stats, rx_broadcast)},
143 {"rx_dropped_packets", offsetof(struct iavf_eth_stats, rx_discards)},
144 {"rx_unknown_protocol_packets", offsetof(struct iavf_eth_stats,
145 rx_unknown_protocol)},
146 {"tx_bytes", offsetof(struct iavf_eth_stats, tx_bytes)},
147 {"tx_unicast_packets", offsetof(struct iavf_eth_stats, tx_unicast)},
148 {"tx_multicast_packets", offsetof(struct iavf_eth_stats, tx_multicast)},
149 {"tx_broadcast_packets", offsetof(struct iavf_eth_stats, tx_broadcast)},
150 {"tx_dropped_packets", offsetof(struct iavf_eth_stats, tx_discards)},
151 {"tx_error_packets", offsetof(struct iavf_eth_stats, tx_errors)},
152 };
153
154 #define IAVF_NB_XSTATS (sizeof(rte_iavf_stats_strings) / \
155 sizeof(rte_iavf_stats_strings[0]))
156
157 static const struct eth_dev_ops iavf_eth_dev_ops = {
158 .dev_configure = iavf_dev_configure,
159 .dev_start = iavf_dev_start,
160 .dev_stop = iavf_dev_stop,
161 .dev_close = iavf_dev_close,
162 .dev_reset = iavf_dev_reset,
163 .dev_infos_get = iavf_dev_info_get,
164 .dev_supported_ptypes_get = iavf_dev_supported_ptypes_get,
165 .link_update = iavf_dev_link_update,
166 .stats_get = iavf_dev_stats_get,
167 .stats_reset = iavf_dev_stats_reset,
168 .xstats_get = iavf_dev_xstats_get,
169 .xstats_get_names = iavf_dev_xstats_get_names,
170 .xstats_reset = iavf_dev_stats_reset,
171 .promiscuous_enable = iavf_dev_promiscuous_enable,
172 .promiscuous_disable = iavf_dev_promiscuous_disable,
173 .allmulticast_enable = iavf_dev_allmulticast_enable,
174 .allmulticast_disable = iavf_dev_allmulticast_disable,
175 .mac_addr_add = iavf_dev_add_mac_addr,
176 .mac_addr_remove = iavf_dev_del_mac_addr,
177 .set_mc_addr_list = iavf_set_mc_addr_list,
178 .vlan_filter_set = iavf_dev_vlan_filter_set,
179 .vlan_offload_set = iavf_dev_vlan_offload_set,
180 .rx_queue_start = iavf_dev_rx_queue_start,
181 .rx_queue_stop = iavf_dev_rx_queue_stop,
182 .tx_queue_start = iavf_dev_tx_queue_start,
183 .tx_queue_stop = iavf_dev_tx_queue_stop,
184 .rx_queue_setup = iavf_dev_rx_queue_setup,
185 .rx_queue_release = iavf_dev_rx_queue_release,
186 .tx_queue_setup = iavf_dev_tx_queue_setup,
187 .tx_queue_release = iavf_dev_tx_queue_release,
188 .mac_addr_set = iavf_dev_set_default_mac_addr,
189 .reta_update = iavf_dev_rss_reta_update,
190 .reta_query = iavf_dev_rss_reta_query,
191 .rss_hash_update = iavf_dev_rss_hash_update,
192 .rss_hash_conf_get = iavf_dev_rss_hash_conf_get,
193 .rxq_info_get = iavf_dev_rxq_info_get,
194 .txq_info_get = iavf_dev_txq_info_get,
195 .mtu_set = iavf_dev_mtu_set,
196 .rx_queue_intr_enable = iavf_dev_rx_queue_intr_enable,
197 .rx_queue_intr_disable = iavf_dev_rx_queue_intr_disable,
198 .filter_ctrl = iavf_dev_filter_ctrl,
199 .tx_done_cleanup = iavf_dev_tx_done_cleanup,
200 };
201
202 static int
iavf_set_mc_addr_list(struct rte_eth_dev * dev,struct rte_ether_addr * mc_addrs,uint32_t mc_addrs_num)203 iavf_set_mc_addr_list(struct rte_eth_dev *dev,
204 struct rte_ether_addr *mc_addrs,
205 uint32_t mc_addrs_num)
206 {
207 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
208 struct iavf_adapter *adapter =
209 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
210 int err, ret;
211
212 if (mc_addrs_num > IAVF_NUM_MACADDR_MAX) {
213 PMD_DRV_LOG(ERR,
214 "can't add more than a limited number (%u) of addresses.",
215 (uint32_t)IAVF_NUM_MACADDR_MAX);
216 return -EINVAL;
217 }
218
219 /* flush previous addresses */
220 err = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
221 false);
222 if (err)
223 return err;
224
225 /* add new ones */
226 err = iavf_add_del_mc_addr_list(adapter, mc_addrs, mc_addrs_num, true);
227
228 if (err) {
229 /* if adding mac address list fails, should add the previous
230 * addresses back.
231 */
232 ret = iavf_add_del_mc_addr_list(adapter, vf->mc_addrs,
233 vf->mc_addrs_num, true);
234 if (ret)
235 return ret;
236 } else {
237 vf->mc_addrs_num = mc_addrs_num;
238 memcpy(vf->mc_addrs,
239 mc_addrs, mc_addrs_num * sizeof(*mc_addrs));
240 }
241
242 return err;
243 }
244
245 static int
iavf_init_rss(struct iavf_adapter * adapter)246 iavf_init_rss(struct iavf_adapter *adapter)
247 {
248 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
249 struct rte_eth_rss_conf *rss_conf;
250 uint16_t i, j, nb_q;
251 int ret;
252
253 rss_conf = &adapter->eth_dev->data->dev_conf.rx_adv_conf.rss_conf;
254 nb_q = RTE_MIN(adapter->eth_dev->data->nb_rx_queues,
255 vf->max_rss_qregion);
256
257 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF)) {
258 PMD_DRV_LOG(DEBUG, "RSS is not supported");
259 return -ENOTSUP;
260 }
261 if (adapter->eth_dev->data->dev_conf.rxmode.mq_mode != ETH_MQ_RX_RSS) {
262 PMD_DRV_LOG(WARNING, "RSS is enabled by PF by default");
263 /* set all lut items to default queue */
264 for (i = 0; i < vf->vf_res->rss_lut_size; i++)
265 vf->rss_lut[i] = 0;
266 ret = iavf_configure_rss_lut(adapter);
267 return ret;
268 }
269
270 /* In IAVF, RSS enablement is set by PF driver. It is not supported
271 * to set based on rss_conf->rss_hf.
272 */
273
274 /* configure RSS key */
275 if (!rss_conf->rss_key) {
276 /* Calculate the default hash key */
277 for (i = 0; i <= vf->vf_res->rss_key_size; i++)
278 vf->rss_key[i] = (uint8_t)rte_rand();
279 } else
280 rte_memcpy(vf->rss_key, rss_conf->rss_key,
281 RTE_MIN(rss_conf->rss_key_len,
282 vf->vf_res->rss_key_size));
283
284 /* init RSS LUT table */
285 for (i = 0, j = 0; i < vf->vf_res->rss_lut_size; i++, j++) {
286 if (j >= nb_q)
287 j = 0;
288 vf->rss_lut[i] = j;
289 }
290 /* send virtchnnl ops to configure rss*/
291 ret = iavf_configure_rss_lut(adapter);
292 if (ret)
293 return ret;
294 ret = iavf_configure_rss_key(adapter);
295 if (ret)
296 return ret;
297
298 return 0;
299 }
300
301 static int
iavf_queues_req_reset(struct rte_eth_dev * dev,uint16_t num)302 iavf_queues_req_reset(struct rte_eth_dev *dev, uint16_t num)
303 {
304 struct iavf_adapter *ad =
305 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
306 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
307 int ret;
308
309 ret = iavf_request_queues(ad, num);
310 if (ret) {
311 PMD_DRV_LOG(ERR, "request queues from PF failed");
312 return ret;
313 }
314 PMD_DRV_LOG(INFO, "change queue pairs from %u to %u",
315 vf->vsi_res->num_queue_pairs, num);
316
317 ret = iavf_dev_reset(dev);
318 if (ret) {
319 PMD_DRV_LOG(ERR, "vf reset failed");
320 return ret;
321 }
322
323 return 0;
324 }
325
326 static int
iavf_dev_configure(struct rte_eth_dev * dev)327 iavf_dev_configure(struct rte_eth_dev *dev)
328 {
329 struct iavf_adapter *ad =
330 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
331 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(ad);
332 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
333 uint16_t num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
334 dev->data->nb_tx_queues);
335 int ret;
336
337 ad->rx_bulk_alloc_allowed = true;
338 /* Initialize to TRUE. If any of Rx queues doesn't meet the
339 * vector Rx/Tx preconditions, it will be reset.
340 */
341 ad->rx_vec_allowed = true;
342 ad->tx_vec_allowed = true;
343
344 if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
345 dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
346
347 /* Large VF setting */
348 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_DFLT) {
349 if (!(vf->vf_res->vf_cap_flags &
350 VIRTCHNL_VF_LARGE_NUM_QPAIRS)) {
351 PMD_DRV_LOG(ERR, "large VF is not supported");
352 return -1;
353 }
354
355 if (num_queue_pairs > IAVF_MAX_NUM_QUEUES_LV) {
356 PMD_DRV_LOG(ERR, "queue pairs number cannot be larger than %u",
357 IAVF_MAX_NUM_QUEUES_LV);
358 return -1;
359 }
360
361 ret = iavf_queues_req_reset(dev, num_queue_pairs);
362 if (ret)
363 return ret;
364
365 ret = iavf_get_max_rss_queue_region(ad);
366 if (ret) {
367 PMD_INIT_LOG(ERR, "get max rss queue region failed");
368 return ret;
369 }
370
371 vf->lv_enabled = true;
372 } else {
373 /* Check if large VF is already enabled. If so, disable and
374 * release redundant queue resource.
375 */
376 if (vf->lv_enabled) {
377 ret = iavf_queues_req_reset(dev, num_queue_pairs);
378 if (ret)
379 return ret;
380
381 vf->lv_enabled = false;
382 }
383 /* if large VF is not required, use default rss queue region */
384 vf->max_rss_qregion = IAVF_MAX_NUM_QUEUES_DFLT;
385 }
386
387 /* Vlan stripping setting */
388 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN) {
389 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
390 iavf_enable_vlan_strip(ad);
391 else
392 iavf_disable_vlan_strip(ad);
393 }
394
395 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
396 if (iavf_init_rss(ad) != 0) {
397 PMD_DRV_LOG(ERR, "configure rss failed");
398 return -1;
399 }
400 }
401 return 0;
402 }
403
404 static int
iavf_init_rxq(struct rte_eth_dev * dev,struct iavf_rx_queue * rxq)405 iavf_init_rxq(struct rte_eth_dev *dev, struct iavf_rx_queue *rxq)
406 {
407 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
408 struct rte_eth_dev_data *dev_data = dev->data;
409 uint16_t buf_size, max_pkt_len, len;
410
411 buf_size = rte_pktmbuf_data_room_size(rxq->mp) - RTE_PKTMBUF_HEADROOM;
412
413 /* Calculate the maximum packet length allowed */
414 len = rxq->rx_buf_len * IAVF_MAX_CHAINED_RX_BUFFERS;
415 max_pkt_len = RTE_MIN(len, dev->data->dev_conf.rxmode.max_rx_pkt_len);
416
417 /* Check if the jumbo frame and maximum packet length are set
418 * correctly.
419 */
420 if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
421 if (max_pkt_len <= RTE_ETHER_MAX_LEN ||
422 max_pkt_len > IAVF_FRAME_SIZE_MAX) {
423 PMD_DRV_LOG(ERR, "maximum packet length must be "
424 "larger than %u and smaller than %u, "
425 "as jumbo frame is enabled",
426 (uint32_t)RTE_ETHER_MAX_LEN,
427 (uint32_t)IAVF_FRAME_SIZE_MAX);
428 return -EINVAL;
429 }
430 } else {
431 if (max_pkt_len < RTE_ETHER_MIN_LEN ||
432 max_pkt_len > RTE_ETHER_MAX_LEN) {
433 PMD_DRV_LOG(ERR, "maximum packet length must be "
434 "larger than %u and smaller than %u, "
435 "as jumbo frame is disabled",
436 (uint32_t)RTE_ETHER_MIN_LEN,
437 (uint32_t)RTE_ETHER_MAX_LEN);
438 return -EINVAL;
439 }
440 }
441
442 rxq->max_pkt_len = max_pkt_len;
443 if ((dev_data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_SCATTER) ||
444 rxq->max_pkt_len > buf_size) {
445 dev_data->scattered_rx = 1;
446 }
447 IAVF_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
448 IAVF_WRITE_FLUSH(hw);
449
450 return 0;
451 }
452
453 static int
iavf_init_queues(struct rte_eth_dev * dev)454 iavf_init_queues(struct rte_eth_dev *dev)
455 {
456 struct iavf_rx_queue **rxq =
457 (struct iavf_rx_queue **)dev->data->rx_queues;
458 int i, ret = IAVF_SUCCESS;
459
460 for (i = 0; i < dev->data->nb_rx_queues; i++) {
461 if (!rxq[i] || !rxq[i]->q_set)
462 continue;
463 ret = iavf_init_rxq(dev, rxq[i]);
464 if (ret != IAVF_SUCCESS)
465 break;
466 }
467 /* set rx/tx function to vector/scatter/single-segment
468 * according to parameters
469 */
470 iavf_set_rx_function(dev);
471 iavf_set_tx_function(dev);
472
473 return ret;
474 }
475
iavf_config_rx_queues_irqs(struct rte_eth_dev * dev,struct rte_intr_handle * intr_handle)476 static int iavf_config_rx_queues_irqs(struct rte_eth_dev *dev,
477 struct rte_intr_handle *intr_handle)
478 {
479 struct iavf_adapter *adapter =
480 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
481 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
482 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
483 struct iavf_qv_map *qv_map;
484 uint16_t interval, i;
485 int vec;
486
487 if (rte_intr_cap_multiple(intr_handle) &&
488 dev->data->dev_conf.intr_conf.rxq) {
489 if (rte_intr_efd_enable(intr_handle, dev->data->nb_rx_queues))
490 return -1;
491 }
492
493 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
494 intr_handle->intr_vec =
495 rte_zmalloc("intr_vec",
496 dev->data->nb_rx_queues * sizeof(int), 0);
497 if (!intr_handle->intr_vec) {
498 PMD_DRV_LOG(ERR, "Failed to allocate %d rx intr_vec",
499 dev->data->nb_rx_queues);
500 return -1;
501 }
502 }
503
504 qv_map = rte_zmalloc("qv_map",
505 dev->data->nb_rx_queues * sizeof(struct iavf_qv_map), 0);
506 if (!qv_map) {
507 PMD_DRV_LOG(ERR, "Failed to allocate %d queue-vector map",
508 dev->data->nb_rx_queues);
509 return -1;
510 }
511
512 if (!dev->data->dev_conf.intr_conf.rxq ||
513 !rte_intr_dp_is_en(intr_handle)) {
514 /* Rx interrupt disabled, Map interrupt only for writeback */
515 vf->nb_msix = 1;
516 if (vf->vf_res->vf_cap_flags &
517 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) {
518 /* If WB_ON_ITR supports, enable it */
519 vf->msix_base = IAVF_RX_VEC_START;
520 /* Set the ITR for index zero, to 2us to make sure that
521 * we leave time for aggregation to occur, but don't
522 * increase latency dramatically.
523 */
524 IAVF_WRITE_REG(hw,
525 IAVF_VFINT_DYN_CTLN1(vf->msix_base - 1),
526 (0 << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
527 IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
528 (2UL << IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT));
529 /* debug - check for success! the return value
530 * should be 2, offset is 0x2800
531 */
532 /* IAVF_READ_REG(hw, IAVF_VFINT_ITRN1(0, 0)); */
533 } else {
534 /* If no WB_ON_ITR offload flags, need to set
535 * interrupt for descriptor write back.
536 */
537 vf->msix_base = IAVF_MISC_VEC_ID;
538
539 /* set ITR to max */
540 interval = iavf_calc_itr_interval(
541 IAVF_QUEUE_ITR_INTERVAL_MAX);
542 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
543 IAVF_VFINT_DYN_CTL01_INTENA_MASK |
544 (IAVF_ITR_INDEX_DEFAULT <<
545 IAVF_VFINT_DYN_CTL01_ITR_INDX_SHIFT) |
546 (interval <<
547 IAVF_VFINT_DYN_CTL01_INTERVAL_SHIFT));
548 }
549 IAVF_WRITE_FLUSH(hw);
550 /* map all queues to the same interrupt */
551 for (i = 0; i < dev->data->nb_rx_queues; i++) {
552 qv_map[i].queue_id = i;
553 qv_map[i].vector_id = vf->msix_base;
554 }
555 vf->qv_map = qv_map;
556 } else {
557 if (!rte_intr_allow_others(intr_handle)) {
558 vf->nb_msix = 1;
559 vf->msix_base = IAVF_MISC_VEC_ID;
560 for (i = 0; i < dev->data->nb_rx_queues; i++) {
561 qv_map[i].queue_id = i;
562 qv_map[i].vector_id = vf->msix_base;
563 intr_handle->intr_vec[i] = IAVF_MISC_VEC_ID;
564 }
565 vf->qv_map = qv_map;
566 PMD_DRV_LOG(DEBUG,
567 "vector %u are mapping to all Rx queues",
568 vf->msix_base);
569 } else {
570 /* If Rx interrupt is reuquired, and we can use
571 * multi interrupts, then the vec is from 1
572 */
573 vf->nb_msix = RTE_MIN(vf->vf_res->max_vectors,
574 intr_handle->nb_efd);
575 vf->msix_base = IAVF_RX_VEC_START;
576 vec = IAVF_RX_VEC_START;
577 for (i = 0; i < dev->data->nb_rx_queues; i++) {
578 qv_map[i].queue_id = i;
579 qv_map[i].vector_id = vec;
580 intr_handle->intr_vec[i] = vec++;
581 if (vec >= vf->nb_msix)
582 vec = IAVF_RX_VEC_START;
583 }
584 vf->qv_map = qv_map;
585 PMD_DRV_LOG(DEBUG,
586 "%u vectors are mapping to %u Rx queues",
587 vf->nb_msix, dev->data->nb_rx_queues);
588 }
589 }
590
591 if (!vf->lv_enabled) {
592 if (iavf_config_irq_map(adapter)) {
593 PMD_DRV_LOG(ERR, "config interrupt mapping failed");
594 return -1;
595 }
596 } else {
597 uint16_t num_qv_maps = dev->data->nb_rx_queues;
598 uint16_t index = 0;
599
600 while (num_qv_maps > IAVF_IRQ_MAP_NUM_PER_BUF) {
601 if (iavf_config_irq_map_lv(adapter,
602 IAVF_IRQ_MAP_NUM_PER_BUF, index)) {
603 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
604 return -1;
605 }
606 num_qv_maps -= IAVF_IRQ_MAP_NUM_PER_BUF;
607 index += IAVF_IRQ_MAP_NUM_PER_BUF;
608 }
609
610 if (iavf_config_irq_map_lv(adapter, num_qv_maps, index)) {
611 PMD_DRV_LOG(ERR, "config interrupt mapping for large VF failed");
612 return -1;
613 }
614 }
615 return 0;
616 }
617
618 static int
iavf_start_queues(struct rte_eth_dev * dev)619 iavf_start_queues(struct rte_eth_dev *dev)
620 {
621 struct iavf_rx_queue *rxq;
622 struct iavf_tx_queue *txq;
623 int i;
624
625 for (i = 0; i < dev->data->nb_tx_queues; i++) {
626 txq = dev->data->tx_queues[i];
627 if (txq->tx_deferred_start)
628 continue;
629 if (iavf_dev_tx_queue_start(dev, i) != 0) {
630 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
631 return -1;
632 }
633 }
634
635 for (i = 0; i < dev->data->nb_rx_queues; i++) {
636 rxq = dev->data->rx_queues[i];
637 if (rxq->rx_deferred_start)
638 continue;
639 if (iavf_dev_rx_queue_start(dev, i) != 0) {
640 PMD_DRV_LOG(ERR, "Fail to start queue %u", i);
641 return -1;
642 }
643 }
644
645 return 0;
646 }
647
648 static int
iavf_dev_start(struct rte_eth_dev * dev)649 iavf_dev_start(struct rte_eth_dev *dev)
650 {
651 struct iavf_adapter *adapter =
652 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
653 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
654 struct rte_intr_handle *intr_handle = dev->intr_handle;
655 uint16_t num_queue_pairs;
656 uint16_t index = 0;
657
658 PMD_INIT_FUNC_TRACE();
659
660 adapter->stopped = 0;
661
662 vf->max_pkt_len = dev->data->dev_conf.rxmode.max_rx_pkt_len;
663 vf->num_queue_pairs = RTE_MAX(dev->data->nb_rx_queues,
664 dev->data->nb_tx_queues);
665 num_queue_pairs = vf->num_queue_pairs;
666
667 if (iavf_init_queues(dev) != 0) {
668 PMD_DRV_LOG(ERR, "failed to do Queue init");
669 return -1;
670 }
671
672 /* If needed, send configure queues msg multiple times to make the
673 * adminq buffer length smaller than the 4K limitation.
674 */
675 while (num_queue_pairs > IAVF_CFG_Q_NUM_PER_BUF) {
676 if (iavf_configure_queues(adapter,
677 IAVF_CFG_Q_NUM_PER_BUF, index) != 0) {
678 PMD_DRV_LOG(ERR, "configure queues failed");
679 goto err_queue;
680 }
681 num_queue_pairs -= IAVF_CFG_Q_NUM_PER_BUF;
682 index += IAVF_CFG_Q_NUM_PER_BUF;
683 }
684
685 if (iavf_configure_queues(adapter, num_queue_pairs, index) != 0) {
686 PMD_DRV_LOG(ERR, "configure queues failed");
687 goto err_queue;
688 }
689
690 if (iavf_config_rx_queues_irqs(dev, intr_handle) != 0) {
691 PMD_DRV_LOG(ERR, "configure irq failed");
692 goto err_queue;
693 }
694 /* re-enable intr again, because efd assign may change */
695 if (dev->data->dev_conf.intr_conf.rxq != 0) {
696 rte_intr_disable(intr_handle);
697 rte_intr_enable(intr_handle);
698 }
699
700 /* Set all mac addrs */
701 iavf_add_del_all_mac_addr(adapter, true);
702
703 /* Set all multicast addresses */
704 iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
705 true);
706
707 if (iavf_start_queues(dev) != 0) {
708 PMD_DRV_LOG(ERR, "enable queues failed");
709 goto err_mac;
710 }
711
712 return 0;
713
714 err_mac:
715 iavf_add_del_all_mac_addr(adapter, false);
716 err_queue:
717 return -1;
718 }
719
720 static int
iavf_dev_stop(struct rte_eth_dev * dev)721 iavf_dev_stop(struct rte_eth_dev *dev)
722 {
723 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
724 struct iavf_adapter *adapter =
725 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
726 struct rte_intr_handle *intr_handle = dev->intr_handle;
727
728 PMD_INIT_FUNC_TRACE();
729
730 if (adapter->stopped == 1)
731 return 0;
732
733 iavf_stop_queues(dev);
734
735 /* Disable the interrupt for Rx */
736 rte_intr_efd_disable(intr_handle);
737 /* Rx interrupt vector mapping free */
738 if (intr_handle->intr_vec) {
739 rte_free(intr_handle->intr_vec);
740 intr_handle->intr_vec = NULL;
741 }
742
743 /* remove all mac addrs */
744 iavf_add_del_all_mac_addr(adapter, false);
745
746 /* remove all multicast addresses */
747 iavf_add_del_mc_addr_list(adapter, vf->mc_addrs, vf->mc_addrs_num,
748 false);
749
750 adapter->stopped = 1;
751 dev->data->dev_started = 0;
752
753 return 0;
754 }
755
756 static int
iavf_dev_info_get(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)757 iavf_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
758 {
759 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
760
761 dev_info->max_rx_queues = IAVF_MAX_NUM_QUEUES_LV;
762 dev_info->max_tx_queues = IAVF_MAX_NUM_QUEUES_LV;
763 dev_info->min_rx_bufsize = IAVF_BUF_SIZE_MIN;
764 dev_info->max_rx_pktlen = IAVF_FRAME_SIZE_MAX;
765 dev_info->max_mtu = dev_info->max_rx_pktlen - IAVF_ETH_OVERHEAD;
766 dev_info->min_mtu = RTE_ETHER_MIN_MTU;
767 dev_info->hash_key_size = vf->vf_res->rss_key_size;
768 dev_info->reta_size = vf->vf_res->rss_lut_size;
769 dev_info->flow_type_rss_offloads = IAVF_RSS_OFFLOAD_ALL;
770 dev_info->max_mac_addrs = IAVF_NUM_MACADDR_MAX;
771 dev_info->rx_offload_capa =
772 DEV_RX_OFFLOAD_VLAN_STRIP |
773 DEV_RX_OFFLOAD_QINQ_STRIP |
774 DEV_RX_OFFLOAD_IPV4_CKSUM |
775 DEV_RX_OFFLOAD_UDP_CKSUM |
776 DEV_RX_OFFLOAD_TCP_CKSUM |
777 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
778 DEV_RX_OFFLOAD_SCATTER |
779 DEV_RX_OFFLOAD_JUMBO_FRAME |
780 DEV_RX_OFFLOAD_VLAN_FILTER |
781 DEV_RX_OFFLOAD_RSS_HASH;
782 dev_info->tx_offload_capa =
783 DEV_TX_OFFLOAD_VLAN_INSERT |
784 DEV_TX_OFFLOAD_QINQ_INSERT |
785 DEV_TX_OFFLOAD_IPV4_CKSUM |
786 DEV_TX_OFFLOAD_UDP_CKSUM |
787 DEV_TX_OFFLOAD_TCP_CKSUM |
788 DEV_TX_OFFLOAD_SCTP_CKSUM |
789 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
790 DEV_TX_OFFLOAD_TCP_TSO |
791 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
792 DEV_TX_OFFLOAD_GRE_TNL_TSO |
793 DEV_TX_OFFLOAD_IPIP_TNL_TSO |
794 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
795 DEV_TX_OFFLOAD_MULTI_SEGS |
796 DEV_TX_OFFLOAD_MBUF_FAST_FREE;
797
798 dev_info->default_rxconf = (struct rte_eth_rxconf) {
799 .rx_free_thresh = IAVF_DEFAULT_RX_FREE_THRESH,
800 .rx_drop_en = 0,
801 .offloads = 0,
802 };
803
804 dev_info->default_txconf = (struct rte_eth_txconf) {
805 .tx_free_thresh = IAVF_DEFAULT_TX_FREE_THRESH,
806 .tx_rs_thresh = IAVF_DEFAULT_TX_RS_THRESH,
807 .offloads = 0,
808 };
809
810 dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
811 .nb_max = IAVF_MAX_RING_DESC,
812 .nb_min = IAVF_MIN_RING_DESC,
813 .nb_align = IAVF_ALIGN_RING_DESC,
814 };
815
816 dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
817 .nb_max = IAVF_MAX_RING_DESC,
818 .nb_min = IAVF_MIN_RING_DESC,
819 .nb_align = IAVF_ALIGN_RING_DESC,
820 };
821
822 return 0;
823 }
824
825 static const uint32_t *
iavf_dev_supported_ptypes_get(struct rte_eth_dev * dev __rte_unused)826 iavf_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
827 {
828 static const uint32_t ptypes[] = {
829 RTE_PTYPE_L2_ETHER,
830 RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
831 RTE_PTYPE_L4_FRAG,
832 RTE_PTYPE_L4_ICMP,
833 RTE_PTYPE_L4_NONFRAG,
834 RTE_PTYPE_L4_SCTP,
835 RTE_PTYPE_L4_TCP,
836 RTE_PTYPE_L4_UDP,
837 RTE_PTYPE_UNKNOWN
838 };
839 return ptypes;
840 }
841
842 int
iavf_dev_link_update(struct rte_eth_dev * dev,__rte_unused int wait_to_complete)843 iavf_dev_link_update(struct rte_eth_dev *dev,
844 __rte_unused int wait_to_complete)
845 {
846 struct rte_eth_link new_link;
847 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
848
849 memset(&new_link, 0, sizeof(new_link));
850
851 /* Only read status info stored in VF, and the info is updated
852 * when receive LINK_CHANGE evnet from PF by Virtchnnl.
853 */
854 switch (vf->link_speed) {
855 case 10:
856 new_link.link_speed = ETH_SPEED_NUM_10M;
857 break;
858 case 100:
859 new_link.link_speed = ETH_SPEED_NUM_100M;
860 break;
861 case 1000:
862 new_link.link_speed = ETH_SPEED_NUM_1G;
863 break;
864 case 10000:
865 new_link.link_speed = ETH_SPEED_NUM_10G;
866 break;
867 case 20000:
868 new_link.link_speed = ETH_SPEED_NUM_20G;
869 break;
870 case 25000:
871 new_link.link_speed = ETH_SPEED_NUM_25G;
872 break;
873 case 40000:
874 new_link.link_speed = ETH_SPEED_NUM_40G;
875 break;
876 case 50000:
877 new_link.link_speed = ETH_SPEED_NUM_50G;
878 break;
879 case 100000:
880 new_link.link_speed = ETH_SPEED_NUM_100G;
881 break;
882 default:
883 new_link.link_speed = ETH_SPEED_NUM_NONE;
884 break;
885 }
886
887 new_link.link_duplex = ETH_LINK_FULL_DUPLEX;
888 new_link.link_status = vf->link_up ? ETH_LINK_UP :
889 ETH_LINK_DOWN;
890 new_link.link_autoneg = !(dev->data->dev_conf.link_speeds &
891 ETH_LINK_SPEED_FIXED);
892
893 return rte_eth_linkstatus_set(dev, &new_link);
894 }
895
896 static int
iavf_dev_promiscuous_enable(struct rte_eth_dev * dev)897 iavf_dev_promiscuous_enable(struct rte_eth_dev *dev)
898 {
899 struct iavf_adapter *adapter =
900 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
901 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
902
903 return iavf_config_promisc(adapter,
904 true, vf->promisc_multicast_enabled);
905 }
906
907 static int
iavf_dev_promiscuous_disable(struct rte_eth_dev * dev)908 iavf_dev_promiscuous_disable(struct rte_eth_dev *dev)
909 {
910 struct iavf_adapter *adapter =
911 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
912 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
913
914 return iavf_config_promisc(adapter,
915 false, vf->promisc_multicast_enabled);
916 }
917
918 static int
iavf_dev_allmulticast_enable(struct rte_eth_dev * dev)919 iavf_dev_allmulticast_enable(struct rte_eth_dev *dev)
920 {
921 struct iavf_adapter *adapter =
922 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
923 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
924
925 return iavf_config_promisc(adapter,
926 vf->promisc_unicast_enabled, true);
927 }
928
929 static int
iavf_dev_allmulticast_disable(struct rte_eth_dev * dev)930 iavf_dev_allmulticast_disable(struct rte_eth_dev *dev)
931 {
932 struct iavf_adapter *adapter =
933 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
934 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
935
936 return iavf_config_promisc(adapter,
937 vf->promisc_unicast_enabled, false);
938 }
939
940 static int
iavf_dev_add_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * addr,__rte_unused uint32_t index,__rte_unused uint32_t pool)941 iavf_dev_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *addr,
942 __rte_unused uint32_t index,
943 __rte_unused uint32_t pool)
944 {
945 struct iavf_adapter *adapter =
946 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
947 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
948 int err;
949
950 if (rte_is_zero_ether_addr(addr)) {
951 PMD_DRV_LOG(ERR, "Invalid Ethernet Address");
952 return -EINVAL;
953 }
954
955 err = iavf_add_del_eth_addr(adapter, addr, true);
956 if (err) {
957 PMD_DRV_LOG(ERR, "fail to add MAC address");
958 return -EIO;
959 }
960
961 vf->mac_num++;
962
963 return 0;
964 }
965
966 static void
iavf_dev_del_mac_addr(struct rte_eth_dev * dev,uint32_t index)967 iavf_dev_del_mac_addr(struct rte_eth_dev *dev, uint32_t index)
968 {
969 struct iavf_adapter *adapter =
970 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
971 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
972 struct rte_ether_addr *addr;
973 int err;
974
975 addr = &dev->data->mac_addrs[index];
976
977 err = iavf_add_del_eth_addr(adapter, addr, false);
978 if (err)
979 PMD_DRV_LOG(ERR, "fail to delete MAC address");
980
981 vf->mac_num--;
982 }
983
984 static int
iavf_dev_vlan_filter_set(struct rte_eth_dev * dev,uint16_t vlan_id,int on)985 iavf_dev_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
986 {
987 struct iavf_adapter *adapter =
988 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
989 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
990 int err;
991
992 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
993 return -ENOTSUP;
994
995 err = iavf_add_del_vlan(adapter, vlan_id, on);
996 if (err)
997 return -EIO;
998 return 0;
999 }
1000
1001 static int
iavf_dev_vlan_offload_set(struct rte_eth_dev * dev,int mask)1002 iavf_dev_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1003 {
1004 struct iavf_adapter *adapter =
1005 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1006 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1007 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1008 int err;
1009
1010 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
1011 return -ENOTSUP;
1012
1013 /* Vlan stripping setting */
1014 if (mask & ETH_VLAN_STRIP_MASK) {
1015 /* Enable or disable VLAN stripping */
1016 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1017 err = iavf_enable_vlan_strip(adapter);
1018 else
1019 err = iavf_disable_vlan_strip(adapter);
1020
1021 if (err)
1022 return -EIO;
1023 }
1024 return 0;
1025 }
1026
1027 static int
iavf_dev_rss_reta_update(struct rte_eth_dev * dev,struct rte_eth_rss_reta_entry64 * reta_conf,uint16_t reta_size)1028 iavf_dev_rss_reta_update(struct rte_eth_dev *dev,
1029 struct rte_eth_rss_reta_entry64 *reta_conf,
1030 uint16_t reta_size)
1031 {
1032 struct iavf_adapter *adapter =
1033 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1034 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1035 uint8_t *lut;
1036 uint16_t i, idx, shift;
1037 int ret;
1038
1039 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1040 return -ENOTSUP;
1041
1042 if (reta_size != vf->vf_res->rss_lut_size) {
1043 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1044 "(%d) doesn't match the number of hardware can "
1045 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1046 return -EINVAL;
1047 }
1048
1049 lut = rte_zmalloc("rss_lut", reta_size, 0);
1050 if (!lut) {
1051 PMD_DRV_LOG(ERR, "No memory can be allocated");
1052 return -ENOMEM;
1053 }
1054 /* store the old lut table temporarily */
1055 rte_memcpy(lut, vf->rss_lut, reta_size);
1056
1057 for (i = 0; i < reta_size; i++) {
1058 idx = i / RTE_RETA_GROUP_SIZE;
1059 shift = i % RTE_RETA_GROUP_SIZE;
1060 if (reta_conf[idx].mask & (1ULL << shift))
1061 lut[i] = reta_conf[idx].reta[shift];
1062 }
1063
1064 rte_memcpy(vf->rss_lut, lut, reta_size);
1065 /* send virtchnnl ops to configure rss*/
1066 ret = iavf_configure_rss_lut(adapter);
1067 if (ret) /* revert back */
1068 rte_memcpy(vf->rss_lut, lut, reta_size);
1069 rte_free(lut);
1070
1071 return ret;
1072 }
1073
1074 static int
iavf_dev_rss_reta_query(struct rte_eth_dev * dev,struct rte_eth_rss_reta_entry64 * reta_conf,uint16_t reta_size)1075 iavf_dev_rss_reta_query(struct rte_eth_dev *dev,
1076 struct rte_eth_rss_reta_entry64 *reta_conf,
1077 uint16_t reta_size)
1078 {
1079 struct iavf_adapter *adapter =
1080 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1081 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1082 uint16_t i, idx, shift;
1083
1084 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1085 return -ENOTSUP;
1086
1087 if (reta_size != vf->vf_res->rss_lut_size) {
1088 PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
1089 "(%d) doesn't match the number of hardware can "
1090 "support (%d)", reta_size, vf->vf_res->rss_lut_size);
1091 return -EINVAL;
1092 }
1093
1094 for (i = 0; i < reta_size; i++) {
1095 idx = i / RTE_RETA_GROUP_SIZE;
1096 shift = i % RTE_RETA_GROUP_SIZE;
1097 if (reta_conf[idx].mask & (1ULL << shift))
1098 reta_conf[idx].reta[shift] = vf->rss_lut[i];
1099 }
1100
1101 return 0;
1102 }
1103
1104 static int
iavf_dev_rss_hash_update(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1105 iavf_dev_rss_hash_update(struct rte_eth_dev *dev,
1106 struct rte_eth_rss_conf *rss_conf)
1107 {
1108 struct iavf_adapter *adapter =
1109 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1110 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1111
1112 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1113 return -ENOTSUP;
1114
1115 /* HENA setting, it is enabled by default, no change */
1116 if (!rss_conf->rss_key || rss_conf->rss_key_len == 0) {
1117 PMD_DRV_LOG(DEBUG, "No key to be configured");
1118 return 0;
1119 } else if (rss_conf->rss_key_len != vf->vf_res->rss_key_size) {
1120 PMD_DRV_LOG(ERR, "The size of hash key configured "
1121 "(%d) doesn't match the size of hardware can "
1122 "support (%d)", rss_conf->rss_key_len,
1123 vf->vf_res->rss_key_size);
1124 return -EINVAL;
1125 }
1126
1127 rte_memcpy(vf->rss_key, rss_conf->rss_key, rss_conf->rss_key_len);
1128
1129 return iavf_configure_rss_key(adapter);
1130 }
1131
1132 static int
iavf_dev_rss_hash_conf_get(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1133 iavf_dev_rss_hash_conf_get(struct rte_eth_dev *dev,
1134 struct rte_eth_rss_conf *rss_conf)
1135 {
1136 struct iavf_adapter *adapter =
1137 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1138 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(adapter);
1139
1140 if (!(vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF))
1141 return -ENOTSUP;
1142
1143 /* Just set it to default value now. */
1144 rss_conf->rss_hf = IAVF_RSS_OFFLOAD_ALL;
1145
1146 if (!rss_conf->rss_key)
1147 return 0;
1148
1149 rss_conf->rss_key_len = vf->vf_res->rss_key_size;
1150 rte_memcpy(rss_conf->rss_key, vf->rss_key, rss_conf->rss_key_len);
1151
1152 return 0;
1153 }
1154
1155 static int
iavf_dev_mtu_set(struct rte_eth_dev * dev,uint16_t mtu)1156 iavf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1157 {
1158 uint32_t frame_size = mtu + IAVF_ETH_OVERHEAD;
1159 int ret = 0;
1160
1161 if (mtu < RTE_ETHER_MIN_MTU || frame_size > IAVF_FRAME_SIZE_MAX)
1162 return -EINVAL;
1163
1164 /* mtu setting is forbidden if port is start */
1165 if (dev->data->dev_started) {
1166 PMD_DRV_LOG(ERR, "port must be stopped before configuration");
1167 return -EBUSY;
1168 }
1169
1170 if (frame_size > RTE_ETHER_MAX_LEN)
1171 dev->data->dev_conf.rxmode.offloads |=
1172 DEV_RX_OFFLOAD_JUMBO_FRAME;
1173 else
1174 dev->data->dev_conf.rxmode.offloads &=
1175 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
1176
1177 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
1178
1179 return ret;
1180 }
1181
1182 static int
iavf_dev_set_default_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr)1183 iavf_dev_set_default_mac_addr(struct rte_eth_dev *dev,
1184 struct rte_ether_addr *mac_addr)
1185 {
1186 struct iavf_adapter *adapter =
1187 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1188 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1189 struct rte_ether_addr *perm_addr, *old_addr;
1190 int ret;
1191
1192 old_addr = (struct rte_ether_addr *)hw->mac.addr;
1193 perm_addr = (struct rte_ether_addr *)hw->mac.perm_addr;
1194
1195 /* If the MAC address is configured by host, skip the setting */
1196 if (rte_is_valid_assigned_ether_addr(perm_addr))
1197 return -EPERM;
1198
1199 ret = iavf_add_del_eth_addr(adapter, old_addr, false);
1200 if (ret)
1201 PMD_DRV_LOG(ERR, "Fail to delete old MAC:"
1202 " %02X:%02X:%02X:%02X:%02X:%02X",
1203 old_addr->addr_bytes[0],
1204 old_addr->addr_bytes[1],
1205 old_addr->addr_bytes[2],
1206 old_addr->addr_bytes[3],
1207 old_addr->addr_bytes[4],
1208 old_addr->addr_bytes[5]);
1209
1210 ret = iavf_add_del_eth_addr(adapter, mac_addr, true);
1211 if (ret)
1212 PMD_DRV_LOG(ERR, "Fail to add new MAC:"
1213 " %02X:%02X:%02X:%02X:%02X:%02X",
1214 mac_addr->addr_bytes[0],
1215 mac_addr->addr_bytes[1],
1216 mac_addr->addr_bytes[2],
1217 mac_addr->addr_bytes[3],
1218 mac_addr->addr_bytes[4],
1219 mac_addr->addr_bytes[5]);
1220
1221 if (ret)
1222 return -EIO;
1223
1224 rte_ether_addr_copy(mac_addr, (struct rte_ether_addr *)hw->mac.addr);
1225 return 0;
1226 }
1227
1228 static void
iavf_stat_update_48(uint64_t * offset,uint64_t * stat)1229 iavf_stat_update_48(uint64_t *offset, uint64_t *stat)
1230 {
1231 if (*stat >= *offset)
1232 *stat = *stat - *offset;
1233 else
1234 *stat = (uint64_t)((*stat +
1235 ((uint64_t)1 << IAVF_48_BIT_WIDTH)) - *offset);
1236
1237 *stat &= IAVF_48_BIT_MASK;
1238 }
1239
1240 static void
iavf_stat_update_32(uint64_t * offset,uint64_t * stat)1241 iavf_stat_update_32(uint64_t *offset, uint64_t *stat)
1242 {
1243 if (*stat >= *offset)
1244 *stat = (uint64_t)(*stat - *offset);
1245 else
1246 *stat = (uint64_t)((*stat +
1247 ((uint64_t)1 << IAVF_32_BIT_WIDTH)) - *offset);
1248 }
1249
1250 static void
iavf_update_stats(struct iavf_vsi * vsi,struct virtchnl_eth_stats * nes)1251 iavf_update_stats(struct iavf_vsi *vsi, struct virtchnl_eth_stats *nes)
1252 {
1253 struct virtchnl_eth_stats *oes = &vsi->eth_stats_offset;
1254
1255 iavf_stat_update_48(&oes->rx_bytes, &nes->rx_bytes);
1256 iavf_stat_update_48(&oes->rx_unicast, &nes->rx_unicast);
1257 iavf_stat_update_48(&oes->rx_multicast, &nes->rx_multicast);
1258 iavf_stat_update_48(&oes->rx_broadcast, &nes->rx_broadcast);
1259 iavf_stat_update_32(&oes->rx_discards, &nes->rx_discards);
1260 iavf_stat_update_48(&oes->tx_bytes, &nes->tx_bytes);
1261 iavf_stat_update_48(&oes->tx_unicast, &nes->tx_unicast);
1262 iavf_stat_update_48(&oes->tx_multicast, &nes->tx_multicast);
1263 iavf_stat_update_48(&oes->tx_broadcast, &nes->tx_broadcast);
1264 iavf_stat_update_32(&oes->tx_errors, &nes->tx_errors);
1265 iavf_stat_update_32(&oes->tx_discards, &nes->tx_discards);
1266 }
1267
1268 static int
iavf_dev_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * stats)1269 iavf_dev_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
1270 {
1271 struct iavf_adapter *adapter =
1272 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1273 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1274 struct iavf_vsi *vsi = &vf->vsi;
1275 struct virtchnl_eth_stats *pstats = NULL;
1276 int ret;
1277
1278 ret = iavf_query_stats(adapter, &pstats);
1279 if (ret == 0) {
1280 iavf_update_stats(vsi, pstats);
1281 stats->ipackets = pstats->rx_unicast + pstats->rx_multicast +
1282 pstats->rx_broadcast - pstats->rx_discards;
1283 stats->opackets = pstats->tx_broadcast + pstats->tx_multicast +
1284 pstats->tx_unicast;
1285 stats->imissed = pstats->rx_discards;
1286 stats->oerrors = pstats->tx_errors + pstats->tx_discards;
1287 stats->ibytes = pstats->rx_bytes;
1288 stats->ibytes -= stats->ipackets * RTE_ETHER_CRC_LEN;
1289 stats->obytes = pstats->tx_bytes;
1290 } else {
1291 PMD_DRV_LOG(ERR, "Get statistics failed");
1292 }
1293 return ret;
1294 }
1295
1296 static int
iavf_dev_stats_reset(struct rte_eth_dev * dev)1297 iavf_dev_stats_reset(struct rte_eth_dev *dev)
1298 {
1299 int ret;
1300 struct iavf_adapter *adapter =
1301 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1302 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1303 struct iavf_vsi *vsi = &vf->vsi;
1304 struct virtchnl_eth_stats *pstats = NULL;
1305
1306 /* read stat values to clear hardware registers */
1307 ret = iavf_query_stats(adapter, &pstats);
1308 if (ret != 0)
1309 return ret;
1310
1311 /* set stats offset base on current values */
1312 vsi->eth_stats_offset = *pstats;
1313
1314 return 0;
1315 }
1316
iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev * dev,struct rte_eth_xstat_name * xstats_names,__rte_unused unsigned int limit)1317 static int iavf_dev_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1318 struct rte_eth_xstat_name *xstats_names,
1319 __rte_unused unsigned int limit)
1320 {
1321 unsigned int i;
1322
1323 if (xstats_names != NULL)
1324 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1325 snprintf(xstats_names[i].name,
1326 sizeof(xstats_names[i].name),
1327 "%s", rte_iavf_stats_strings[i].name);
1328 }
1329 return IAVF_NB_XSTATS;
1330 }
1331
iavf_dev_xstats_get(struct rte_eth_dev * dev,struct rte_eth_xstat * xstats,unsigned int n)1332 static int iavf_dev_xstats_get(struct rte_eth_dev *dev,
1333 struct rte_eth_xstat *xstats, unsigned int n)
1334 {
1335 int ret;
1336 unsigned int i;
1337 struct iavf_adapter *adapter =
1338 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1339 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1340 struct iavf_vsi *vsi = &vf->vsi;
1341 struct virtchnl_eth_stats *pstats = NULL;
1342
1343 if (n < IAVF_NB_XSTATS)
1344 return IAVF_NB_XSTATS;
1345
1346 ret = iavf_query_stats(adapter, &pstats);
1347 if (ret != 0)
1348 return 0;
1349
1350 if (!xstats)
1351 return 0;
1352
1353 iavf_update_stats(vsi, pstats);
1354
1355 /* loop over xstats array and values from pstats */
1356 for (i = 0; i < IAVF_NB_XSTATS; i++) {
1357 xstats[i].id = i;
1358 xstats[i].value = *(uint64_t *)(((char *)pstats) +
1359 rte_iavf_stats_strings[i].offset);
1360 }
1361
1362 return IAVF_NB_XSTATS;
1363 }
1364
1365
1366 static int
iavf_dev_rx_queue_intr_enable(struct rte_eth_dev * dev,uint16_t queue_id)1367 iavf_dev_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
1368 {
1369 struct iavf_adapter *adapter =
1370 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1371 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1372 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1373 uint16_t msix_intr;
1374
1375 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1376 if (msix_intr == IAVF_MISC_VEC_ID) {
1377 PMD_DRV_LOG(INFO, "MISC is also enabled for control");
1378 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1379 IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1380 IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1381 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1382 } else {
1383 IAVF_WRITE_REG(hw,
1384 IAVF_VFINT_DYN_CTLN1
1385 (msix_intr - IAVF_RX_VEC_START),
1386 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1387 IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1388 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
1389 }
1390
1391 IAVF_WRITE_FLUSH(hw);
1392
1393 rte_intr_ack(&pci_dev->intr_handle);
1394
1395 return 0;
1396 }
1397
1398 static int
iavf_dev_rx_queue_intr_disable(struct rte_eth_dev * dev,uint16_t queue_id)1399 iavf_dev_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
1400 {
1401 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1402 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1403 uint16_t msix_intr;
1404
1405 msix_intr = pci_dev->intr_handle.intr_vec[queue_id];
1406 if (msix_intr == IAVF_MISC_VEC_ID) {
1407 PMD_DRV_LOG(ERR, "MISC is used for control, cannot disable it");
1408 return -EIO;
1409 }
1410
1411 IAVF_WRITE_REG(hw,
1412 IAVF_VFINT_DYN_CTLN1(msix_intr - IAVF_RX_VEC_START),
1413 0);
1414
1415 IAVF_WRITE_FLUSH(hw);
1416 return 0;
1417 }
1418
1419 static int
iavf_check_vf_reset_done(struct iavf_hw * hw)1420 iavf_check_vf_reset_done(struct iavf_hw *hw)
1421 {
1422 int i, reset;
1423
1424 for (i = 0; i < IAVF_RESET_WAIT_CNT; i++) {
1425 reset = IAVF_READ_REG(hw, IAVF_VFGEN_RSTAT) &
1426 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1427 reset = reset >> IAVF_VFGEN_RSTAT_VFR_STATE_SHIFT;
1428 if (reset == VIRTCHNL_VFR_VFACTIVE ||
1429 reset == VIRTCHNL_VFR_COMPLETED)
1430 break;
1431 rte_delay_ms(20);
1432 }
1433
1434 if (i >= IAVF_RESET_WAIT_CNT)
1435 return -1;
1436
1437 return 0;
1438 }
1439
1440 static int
iavf_lookup_proto_xtr_type(const char * flex_name)1441 iavf_lookup_proto_xtr_type(const char *flex_name)
1442 {
1443 static struct {
1444 const char *name;
1445 enum iavf_proto_xtr_type type;
1446 } xtr_type_map[] = {
1447 { "vlan", IAVF_PROTO_XTR_VLAN },
1448 { "ipv4", IAVF_PROTO_XTR_IPV4 },
1449 { "ipv6", IAVF_PROTO_XTR_IPV6 },
1450 { "ipv6_flow", IAVF_PROTO_XTR_IPV6_FLOW },
1451 { "tcp", IAVF_PROTO_XTR_TCP },
1452 { "ip_offset", IAVF_PROTO_XTR_IP_OFFSET },
1453 };
1454 uint32_t i;
1455
1456 for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
1457 if (strcmp(flex_name, xtr_type_map[i].name) == 0)
1458 return xtr_type_map[i].type;
1459 }
1460
1461 PMD_DRV_LOG(ERR, "wrong proto_xtr type, "
1462 "it should be: vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset");
1463
1464 return -1;
1465 }
1466
1467 /**
1468 * Parse elem, the elem could be single number/range or '(' ')' group
1469 * 1) A single number elem, it's just a simple digit. e.g. 9
1470 * 2) A single range elem, two digits with a '-' between. e.g. 2-6
1471 * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
1472 * Within group elem, '-' used for a range separator;
1473 * ',' used for a single number.
1474 */
1475 static int
iavf_parse_queue_set(const char * input,int xtr_type,struct iavf_devargs * devargs)1476 iavf_parse_queue_set(const char *input, int xtr_type,
1477 struct iavf_devargs *devargs)
1478 {
1479 const char *str = input;
1480 char *end = NULL;
1481 uint32_t min, max;
1482 uint32_t idx;
1483
1484 while (isblank(*str))
1485 str++;
1486
1487 if (!isdigit(*str) && *str != '(')
1488 return -1;
1489
1490 /* process single number or single range of number */
1491 if (*str != '(') {
1492 errno = 0;
1493 idx = strtoul(str, &end, 10);
1494 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1495 return -1;
1496
1497 while (isblank(*end))
1498 end++;
1499
1500 min = idx;
1501 max = idx;
1502
1503 /* process single <number>-<number> */
1504 if (*end == '-') {
1505 end++;
1506 while (isblank(*end))
1507 end++;
1508 if (!isdigit(*end))
1509 return -1;
1510
1511 errno = 0;
1512 idx = strtoul(end, &end, 10);
1513 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1514 return -1;
1515
1516 max = idx;
1517 while (isblank(*end))
1518 end++;
1519 }
1520
1521 if (*end != ':')
1522 return -1;
1523
1524 for (idx = RTE_MIN(min, max);
1525 idx <= RTE_MAX(min, max); idx++)
1526 devargs->proto_xtr[idx] = xtr_type;
1527
1528 return 0;
1529 }
1530
1531 /* process set within bracket */
1532 str++;
1533 while (isblank(*str))
1534 str++;
1535 if (*str == '\0')
1536 return -1;
1537
1538 min = IAVF_MAX_QUEUE_NUM;
1539 do {
1540 /* go ahead to the first digit */
1541 while (isblank(*str))
1542 str++;
1543 if (!isdigit(*str))
1544 return -1;
1545
1546 /* get the digit value */
1547 errno = 0;
1548 idx = strtoul(str, &end, 10);
1549 if (errno || !end || idx >= IAVF_MAX_QUEUE_NUM)
1550 return -1;
1551
1552 /* go ahead to separator '-',',' and ')' */
1553 while (isblank(*end))
1554 end++;
1555 if (*end == '-') {
1556 if (min == IAVF_MAX_QUEUE_NUM)
1557 min = idx;
1558 else /* avoid continuous '-' */
1559 return -1;
1560 } else if (*end == ',' || *end == ')') {
1561 max = idx;
1562 if (min == IAVF_MAX_QUEUE_NUM)
1563 min = idx;
1564
1565 for (idx = RTE_MIN(min, max);
1566 idx <= RTE_MAX(min, max); idx++)
1567 devargs->proto_xtr[idx] = xtr_type;
1568
1569 min = IAVF_MAX_QUEUE_NUM;
1570 } else {
1571 return -1;
1572 }
1573
1574 str = end + 1;
1575 } while (*end != ')' && *end != '\0');
1576
1577 return 0;
1578 }
1579
1580 static int
iavf_parse_queue_proto_xtr(const char * queues,struct iavf_devargs * devargs)1581 iavf_parse_queue_proto_xtr(const char *queues, struct iavf_devargs *devargs)
1582 {
1583 const char *queue_start;
1584 uint32_t idx;
1585 int xtr_type;
1586 char flex_name[32];
1587
1588 while (isblank(*queues))
1589 queues++;
1590
1591 if (*queues != '[') {
1592 xtr_type = iavf_lookup_proto_xtr_type(queues);
1593 if (xtr_type < 0)
1594 return -1;
1595
1596 devargs->proto_xtr_dflt = xtr_type;
1597
1598 return 0;
1599 }
1600
1601 queues++;
1602 do {
1603 while (isblank(*queues))
1604 queues++;
1605 if (*queues == '\0')
1606 return -1;
1607
1608 queue_start = queues;
1609
1610 /* go across a complete bracket */
1611 if (*queue_start == '(') {
1612 queues += strcspn(queues, ")");
1613 if (*queues != ')')
1614 return -1;
1615 }
1616
1617 /* scan the separator ':' */
1618 queues += strcspn(queues, ":");
1619 if (*queues++ != ':')
1620 return -1;
1621 while (isblank(*queues))
1622 queues++;
1623
1624 for (idx = 0; ; idx++) {
1625 if (isblank(queues[idx]) ||
1626 queues[idx] == ',' ||
1627 queues[idx] == ']' ||
1628 queues[idx] == '\0')
1629 break;
1630
1631 if (idx > sizeof(flex_name) - 2)
1632 return -1;
1633
1634 flex_name[idx] = queues[idx];
1635 }
1636 flex_name[idx] = '\0';
1637 xtr_type = iavf_lookup_proto_xtr_type(flex_name);
1638 if (xtr_type < 0)
1639 return -1;
1640
1641 queues += idx;
1642
1643 while (isblank(*queues) || *queues == ',' || *queues == ']')
1644 queues++;
1645
1646 if (iavf_parse_queue_set(queue_start, xtr_type, devargs) < 0)
1647 return -1;
1648 } while (*queues != '\0');
1649
1650 return 0;
1651 }
1652
1653 static int
iavf_handle_proto_xtr_arg(__rte_unused const char * key,const char * value,void * extra_args)1654 iavf_handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
1655 void *extra_args)
1656 {
1657 struct iavf_devargs *devargs = extra_args;
1658
1659 if (!value || !extra_args)
1660 return -EINVAL;
1661
1662 if (iavf_parse_queue_proto_xtr(value, devargs) < 0) {
1663 PMD_DRV_LOG(ERR, "the proto_xtr's parameter is wrong : '%s'",
1664 value);
1665 return -1;
1666 }
1667
1668 return 0;
1669 }
1670
iavf_parse_devargs(struct rte_eth_dev * dev)1671 static int iavf_parse_devargs(struct rte_eth_dev *dev)
1672 {
1673 struct iavf_adapter *ad =
1674 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1675 struct rte_devargs *devargs = dev->device->devargs;
1676 struct rte_kvargs *kvlist;
1677 int ret;
1678
1679 if (!devargs)
1680 return 0;
1681
1682 kvlist = rte_kvargs_parse(devargs->args, iavf_valid_args);
1683 if (!kvlist) {
1684 PMD_INIT_LOG(ERR, "invalid kvargs key\n");
1685 return -EINVAL;
1686 }
1687
1688 ad->devargs.proto_xtr_dflt = IAVF_PROTO_XTR_NONE;
1689 memset(ad->devargs.proto_xtr, IAVF_PROTO_XTR_NONE,
1690 sizeof(ad->devargs.proto_xtr));
1691
1692 ret = rte_kvargs_process(kvlist, IAVF_PROTO_XTR_ARG,
1693 &iavf_handle_proto_xtr_arg, &ad->devargs);
1694 if (ret)
1695 goto bail;
1696
1697 bail:
1698 rte_kvargs_free(kvlist);
1699 return ret;
1700 }
1701
1702 static void
iavf_init_proto_xtr(struct rte_eth_dev * dev)1703 iavf_init_proto_xtr(struct rte_eth_dev *dev)
1704 {
1705 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1706 struct iavf_adapter *ad =
1707 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1708 const struct iavf_proto_xtr_ol *xtr_ol;
1709 bool proto_xtr_enable = false;
1710 int offset;
1711 uint16_t i;
1712
1713 vf->proto_xtr = rte_zmalloc("vf proto xtr",
1714 vf->vsi_res->num_queue_pairs, 0);
1715 if (unlikely(!(vf->proto_xtr))) {
1716 PMD_DRV_LOG(ERR, "no memory for setting up proto_xtr's table");
1717 return;
1718 }
1719
1720 for (i = 0; i < vf->vsi_res->num_queue_pairs; i++) {
1721 vf->proto_xtr[i] = ad->devargs.proto_xtr[i] !=
1722 IAVF_PROTO_XTR_NONE ?
1723 ad->devargs.proto_xtr[i] :
1724 ad->devargs.proto_xtr_dflt;
1725
1726 if (vf->proto_xtr[i] != IAVF_PROTO_XTR_NONE) {
1727 uint8_t type = vf->proto_xtr[i];
1728
1729 iavf_proto_xtr_params[type].required = true;
1730 proto_xtr_enable = true;
1731 }
1732 }
1733
1734 if (likely(!proto_xtr_enable))
1735 return;
1736
1737 offset = rte_mbuf_dynfield_register(&iavf_proto_xtr_metadata_param);
1738 if (unlikely(offset == -1)) {
1739 PMD_DRV_LOG(ERR,
1740 "failed to extract protocol metadata, error %d",
1741 -rte_errno);
1742 return;
1743 }
1744
1745 PMD_DRV_LOG(DEBUG,
1746 "proto_xtr metadata offset in mbuf is : %d",
1747 offset);
1748 rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = offset;
1749
1750 for (i = 0; i < RTE_DIM(iavf_proto_xtr_params); i++) {
1751 xtr_ol = &iavf_proto_xtr_params[i];
1752
1753 uint8_t rxdid = iavf_proto_xtr_type_to_rxdid((uint8_t)i);
1754
1755 if (!xtr_ol->required)
1756 continue;
1757
1758 if (!(vf->supported_rxdid & BIT(rxdid))) {
1759 PMD_DRV_LOG(ERR,
1760 "rxdid[%u] is not supported in hardware",
1761 rxdid);
1762 rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
1763 break;
1764 }
1765
1766 offset = rte_mbuf_dynflag_register(&xtr_ol->param);
1767 if (unlikely(offset == -1)) {
1768 PMD_DRV_LOG(ERR,
1769 "failed to register proto_xtr offload '%s', error %d",
1770 xtr_ol->param.name, -rte_errno);
1771
1772 rte_pmd_ifd_dynfield_proto_xtr_metadata_offs = -1;
1773 break;
1774 }
1775
1776 PMD_DRV_LOG(DEBUG,
1777 "proto_xtr offload '%s' offset in mbuf is : %d",
1778 xtr_ol->param.name, offset);
1779 *xtr_ol->ol_flag = 1ULL << offset;
1780 }
1781 }
1782
1783 static int
iavf_init_vf(struct rte_eth_dev * dev)1784 iavf_init_vf(struct rte_eth_dev *dev)
1785 {
1786 int err, bufsz;
1787 struct iavf_adapter *adapter =
1788 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1789 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1790 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
1791
1792 err = iavf_parse_devargs(dev);
1793 if (err) {
1794 PMD_INIT_LOG(ERR, "Failed to parse devargs");
1795 goto err;
1796 }
1797
1798 err = iavf_set_mac_type(hw);
1799 if (err) {
1800 PMD_INIT_LOG(ERR, "set_mac_type failed: %d", err);
1801 goto err;
1802 }
1803
1804 err = iavf_check_vf_reset_done(hw);
1805 if (err) {
1806 PMD_INIT_LOG(ERR, "VF is still resetting");
1807 goto err;
1808 }
1809
1810 iavf_init_adminq_parameter(hw);
1811 err = iavf_init_adminq(hw);
1812 if (err) {
1813 PMD_INIT_LOG(ERR, "init_adminq failed: %d", err);
1814 goto err;
1815 }
1816
1817 vf->aq_resp = rte_zmalloc("vf_aq_resp", IAVF_AQ_BUF_SZ, 0);
1818 if (!vf->aq_resp) {
1819 PMD_INIT_LOG(ERR, "unable to allocate vf_aq_resp memory");
1820 goto err_aq;
1821 }
1822 if (iavf_check_api_version(adapter) != 0) {
1823 PMD_INIT_LOG(ERR, "check_api version failed");
1824 goto err_api;
1825 }
1826
1827 bufsz = sizeof(struct virtchnl_vf_resource) +
1828 (IAVF_MAX_VF_VSI * sizeof(struct virtchnl_vsi_resource));
1829 vf->vf_res = rte_zmalloc("vf_res", bufsz, 0);
1830 if (!vf->vf_res) {
1831 PMD_INIT_LOG(ERR, "unable to allocate vf_res memory");
1832 goto err_api;
1833 }
1834 if (iavf_get_vf_resource(adapter) != 0) {
1835 PMD_INIT_LOG(ERR, "iavf_get_vf_config failed");
1836 goto err_alloc;
1837 }
1838 /* Allocate memort for RSS info */
1839 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
1840 vf->rss_key = rte_zmalloc("rss_key",
1841 vf->vf_res->rss_key_size, 0);
1842 if (!vf->rss_key) {
1843 PMD_INIT_LOG(ERR, "unable to allocate rss_key memory");
1844 goto err_rss;
1845 }
1846 vf->rss_lut = rte_zmalloc("rss_lut",
1847 vf->vf_res->rss_lut_size, 0);
1848 if (!vf->rss_lut) {
1849 PMD_INIT_LOG(ERR, "unable to allocate rss_lut memory");
1850 goto err_rss;
1851 }
1852 }
1853
1854 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
1855 if (iavf_get_supported_rxdid(adapter) != 0) {
1856 PMD_INIT_LOG(ERR, "failed to do get supported rxdid");
1857 goto err_rss;
1858 }
1859 }
1860
1861 iavf_init_proto_xtr(dev);
1862
1863 return 0;
1864 err_rss:
1865 rte_free(vf->rss_key);
1866 rte_free(vf->rss_lut);
1867 err_alloc:
1868 rte_free(vf->vf_res);
1869 vf->vsi_res = NULL;
1870 err_api:
1871 rte_free(vf->aq_resp);
1872 err_aq:
1873 iavf_shutdown_adminq(hw);
1874 err:
1875 return -1;
1876 }
1877
1878 /* Enable default admin queue interrupt setting */
1879 static inline void
iavf_enable_irq0(struct iavf_hw * hw)1880 iavf_enable_irq0(struct iavf_hw *hw)
1881 {
1882 /* Enable admin queue interrupt trigger */
1883 IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1,
1884 IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
1885
1886 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1887 IAVF_VFINT_DYN_CTL01_INTENA_MASK |
1888 IAVF_VFINT_DYN_CTL01_CLEARPBA_MASK |
1889 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1890
1891 IAVF_WRITE_FLUSH(hw);
1892 }
1893
1894 static inline void
iavf_disable_irq0(struct iavf_hw * hw)1895 iavf_disable_irq0(struct iavf_hw *hw)
1896 {
1897 /* Disable all interrupt types */
1898 IAVF_WRITE_REG(hw, IAVF_VFINT_ICR0_ENA1, 0);
1899 IAVF_WRITE_REG(hw, IAVF_VFINT_DYN_CTL01,
1900 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
1901 IAVF_WRITE_FLUSH(hw);
1902 }
1903
1904 static void
iavf_dev_interrupt_handler(void * param)1905 iavf_dev_interrupt_handler(void *param)
1906 {
1907 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1908 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1909
1910 iavf_disable_irq0(hw);
1911
1912 iavf_handle_virtchnl_msg(dev);
1913
1914 iavf_enable_irq0(hw);
1915 }
1916
1917 static int
iavf_dev_filter_ctrl(struct rte_eth_dev * dev,enum rte_filter_type filter_type,enum rte_filter_op filter_op,void * arg)1918 iavf_dev_filter_ctrl(struct rte_eth_dev *dev,
1919 enum rte_filter_type filter_type,
1920 enum rte_filter_op filter_op,
1921 void *arg)
1922 {
1923 int ret = 0;
1924
1925 if (!dev)
1926 return -EINVAL;
1927
1928 switch (filter_type) {
1929 case RTE_ETH_FILTER_GENERIC:
1930 if (filter_op != RTE_ETH_FILTER_GET)
1931 return -EINVAL;
1932 *(const void **)arg = &iavf_flow_ops;
1933 break;
1934 default:
1935 PMD_DRV_LOG(WARNING, "Filter type (%d) not supported",
1936 filter_type);
1937 ret = -EINVAL;
1938 break;
1939 }
1940
1941 return ret;
1942 }
1943
1944
1945 static int
iavf_dev_init(struct rte_eth_dev * eth_dev)1946 iavf_dev_init(struct rte_eth_dev *eth_dev)
1947 {
1948 struct iavf_adapter *adapter =
1949 IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1950 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(adapter);
1951 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1952 int ret = 0;
1953
1954 PMD_INIT_FUNC_TRACE();
1955
1956 /* assign ops func pointer */
1957 eth_dev->dev_ops = &iavf_eth_dev_ops;
1958 eth_dev->rx_queue_count = iavf_dev_rxq_count;
1959 eth_dev->rx_descriptor_status = iavf_dev_rx_desc_status;
1960 eth_dev->tx_descriptor_status = iavf_dev_tx_desc_status;
1961 eth_dev->rx_pkt_burst = &iavf_recv_pkts;
1962 eth_dev->tx_pkt_burst = &iavf_xmit_pkts;
1963 eth_dev->tx_pkt_prepare = &iavf_prep_pkts;
1964
1965 /* For secondary processes, we don't initialise any further as primary
1966 * has already done this work. Only check if we need a different RX
1967 * and TX function.
1968 */
1969 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1970 iavf_set_rx_function(eth_dev);
1971 iavf_set_tx_function(eth_dev);
1972 return 0;
1973 }
1974 rte_eth_copy_pci_info(eth_dev, pci_dev);
1975 eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1976
1977 hw->vendor_id = pci_dev->id.vendor_id;
1978 hw->device_id = pci_dev->id.device_id;
1979 hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
1980 hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
1981 hw->bus.bus_id = pci_dev->addr.bus;
1982 hw->bus.device = pci_dev->addr.devid;
1983 hw->bus.func = pci_dev->addr.function;
1984 hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
1985 hw->back = IAVF_DEV_PRIVATE_TO_ADAPTER(eth_dev->data->dev_private);
1986 adapter->eth_dev = eth_dev;
1987 adapter->stopped = 1;
1988
1989 if (iavf_init_vf(eth_dev) != 0) {
1990 PMD_INIT_LOG(ERR, "Init vf failed");
1991 return -1;
1992 }
1993
1994 /* set default ptype table */
1995 adapter->ptype_tbl = iavf_get_default_ptype_table();
1996
1997 /* copy mac addr */
1998 eth_dev->data->mac_addrs = rte_zmalloc(
1999 "iavf_mac", RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX, 0);
2000 if (!eth_dev->data->mac_addrs) {
2001 PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to"
2002 " store MAC addresses",
2003 RTE_ETHER_ADDR_LEN * IAVF_NUM_MACADDR_MAX);
2004 return -ENOMEM;
2005 }
2006 /* If the MAC address is not configured by host,
2007 * generate a random one.
2008 */
2009 if (!rte_is_valid_assigned_ether_addr(
2010 (struct rte_ether_addr *)hw->mac.addr))
2011 rte_eth_random_addr(hw->mac.addr);
2012 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
2013 ð_dev->data->mac_addrs[0]);
2014
2015 /* register callback func to eal lib */
2016 rte_intr_callback_register(&pci_dev->intr_handle,
2017 iavf_dev_interrupt_handler,
2018 (void *)eth_dev);
2019
2020 /* enable uio intr after callback register */
2021 rte_intr_enable(&pci_dev->intr_handle);
2022
2023 /* configure and enable device interrupt */
2024 iavf_enable_irq0(hw);
2025
2026 ret = iavf_flow_init(adapter);
2027 if (ret) {
2028 PMD_INIT_LOG(ERR, "Failed to initialize flow");
2029 return ret;
2030 }
2031
2032 return 0;
2033 }
2034
2035 static int
iavf_dev_close(struct rte_eth_dev * dev)2036 iavf_dev_close(struct rte_eth_dev *dev)
2037 {
2038 struct iavf_hw *hw = IAVF_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2039 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2040 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2041 struct iavf_adapter *adapter =
2042 IAVF_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2043 struct iavf_info *vf = IAVF_DEV_PRIVATE_TO_VF(dev->data->dev_private);
2044 int ret;
2045
2046 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2047 return 0;
2048
2049 ret = iavf_dev_stop(dev);
2050
2051 iavf_flow_flush(dev, NULL);
2052 iavf_flow_uninit(adapter);
2053
2054 /*
2055 * disable promiscuous mode before reset vf
2056 * it is a workaround solution when work with kernel driver
2057 * and it is not the normal way
2058 */
2059 if (vf->promisc_unicast_enabled || vf->promisc_multicast_enabled)
2060 iavf_config_promisc(adapter, false, false);
2061
2062 iavf_shutdown_adminq(hw);
2063 /* disable uio intr before callback unregister */
2064 rte_intr_disable(intr_handle);
2065
2066 /* unregister callback func from eal lib */
2067 rte_intr_callback_unregister(intr_handle,
2068 iavf_dev_interrupt_handler, dev);
2069 iavf_disable_irq0(hw);
2070
2071 if (vf->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
2072 if (vf->rss_lut) {
2073 rte_free(vf->rss_lut);
2074 vf->rss_lut = NULL;
2075 }
2076 if (vf->rss_key) {
2077 rte_free(vf->rss_key);
2078 vf->rss_key = NULL;
2079 }
2080 }
2081
2082 rte_free(vf->vf_res);
2083 vf->vsi_res = NULL;
2084 vf->vf_res = NULL;
2085
2086 rte_free(vf->aq_resp);
2087 vf->aq_resp = NULL;
2088
2089 vf->vf_reset = false;
2090
2091 return ret;
2092 }
2093
2094 static int
iavf_dev_uninit(struct rte_eth_dev * dev)2095 iavf_dev_uninit(struct rte_eth_dev *dev)
2096 {
2097 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2098 return -EPERM;
2099
2100 iavf_dev_close(dev);
2101
2102 return 0;
2103 }
2104
2105 /*
2106 * Reset VF device only to re-initialize resources in PMD layer
2107 */
2108 static int
iavf_dev_reset(struct rte_eth_dev * dev)2109 iavf_dev_reset(struct rte_eth_dev *dev)
2110 {
2111 int ret;
2112
2113 ret = iavf_dev_uninit(dev);
2114 if (ret)
2115 return ret;
2116
2117 return iavf_dev_init(dev);
2118 }
2119
2120 static int
iavf_dcf_cap_check_handler(__rte_unused const char * key,const char * value,__rte_unused void * opaque)2121 iavf_dcf_cap_check_handler(__rte_unused const char *key,
2122 const char *value, __rte_unused void *opaque)
2123 {
2124 if (strcmp(value, "dcf"))
2125 return -1;
2126
2127 return 0;
2128 }
2129
2130 static int
iavf_dcf_cap_selected(struct rte_devargs * devargs)2131 iavf_dcf_cap_selected(struct rte_devargs *devargs)
2132 {
2133 struct rte_kvargs *kvlist;
2134 const char *key = "cap";
2135 int ret = 0;
2136
2137 if (devargs == NULL)
2138 return 0;
2139
2140 kvlist = rte_kvargs_parse(devargs->args, NULL);
2141 if (kvlist == NULL)
2142 return 0;
2143
2144 if (!rte_kvargs_count(kvlist, key))
2145 goto exit;
2146
2147 /* dcf capability selected when there's a key-value pair: cap=dcf */
2148 if (rte_kvargs_process(kvlist, key,
2149 iavf_dcf_cap_check_handler, NULL) < 0)
2150 goto exit;
2151
2152 ret = 1;
2153
2154 exit:
2155 rte_kvargs_free(kvlist);
2156 return ret;
2157 }
2158
eth_iavf_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)2159 static int eth_iavf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2160 struct rte_pci_device *pci_dev)
2161 {
2162 if (iavf_dcf_cap_selected(pci_dev->device.devargs))
2163 return 1;
2164
2165 return rte_eth_dev_pci_generic_probe(pci_dev,
2166 sizeof(struct iavf_adapter), iavf_dev_init);
2167 }
2168
eth_iavf_pci_remove(struct rte_pci_device * pci_dev)2169 static int eth_iavf_pci_remove(struct rte_pci_device *pci_dev)
2170 {
2171 return rte_eth_dev_pci_generic_remove(pci_dev, iavf_dev_uninit);
2172 }
2173
2174 /* Adaptive virtual function driver struct */
2175 static struct rte_pci_driver rte_iavf_pmd = {
2176 .id_table = pci_id_iavf_map,
2177 .drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
2178 .probe = eth_iavf_pci_probe,
2179 .remove = eth_iavf_pci_remove,
2180 };
2181
2182 RTE_PMD_REGISTER_PCI(net_iavf, rte_iavf_pmd);
2183 RTE_PMD_REGISTER_PCI_TABLE(net_iavf, pci_id_iavf_map);
2184 RTE_PMD_REGISTER_KMOD_DEP(net_iavf, "* igb_uio | vfio-pci");
2185 RTE_PMD_REGISTER_PARAM_STRING(net_iavf, "cap=dcf");
2186 RTE_LOG_REGISTER(iavf_logtype_init, pmd.net.iavf.init, NOTICE);
2187 RTE_LOG_REGISTER(iavf_logtype_driver, pmd.net.iavf.driver, NOTICE);
2188 #ifdef RTE_LIBRTE_IAVF_DEBUG_RX
2189 RTE_LOG_REGISTER(iavf_logtype_rx, pmd.net.iavf.rx, DEBUG);
2190 #endif
2191 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX
2192 RTE_LOG_REGISTER(iavf_logtype_tx, pmd.net.iavf.tx, DEBUG);
2193 #endif
2194 #ifdef RTE_LIBRTE_IAVF_DEBUG_TX_FREE
2195 RTE_LOG_REGISTER(iavf_logtype_tx_free, pmd.net.iavf.tx_free, DEBUG);
2196 #endif
2197