1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018-2019 Hisilicon Limited.
3 */
4
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <rte_ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19
20 #define HNS3VF_KEEP_ALIVE_INTERVAL 2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL 1000000 /* us */
22
23 #define HNS3VF_RESET_WAIT_MS 20
24 #define HNS3VF_RESET_WAIT_CNT 2000
25
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT 0
28 #define HNS3_CORE_RESET_BIT 1
29 #define HNS3_IMP_RESET_BIT 2
30 #define HNS3_FUN_RST_ING_B 0
31
32 enum hns3vf_evt_cause {
33 HNS3VF_VECTOR0_EVENT_RST,
34 HNS3VF_VECTOR0_EVENT_MBX,
35 HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39 uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44 struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46 struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
hns3vf_set_bus_master(const struct rte_pci_device * device,bool op)49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51 uint16_t reg;
52 int ret;
53
54 ret = rte_pci_read_config(device, ®, sizeof(reg), PCI_COMMAND);
55 if (ret < 0) {
56 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57 PCI_COMMAND);
58 return ret;
59 }
60
61 if (op)
62 /* set the master bit */
63 reg |= PCI_COMMAND_MASTER;
64 else
65 reg &= ~(PCI_COMMAND_MASTER);
66
67 return rte_pci_write_config(device, ®, sizeof(reg), PCI_COMMAND);
68 }
69
70 /**
71 * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72 * @cap: the capability
73 *
74 * Return the address of the given capability within the PCI capability list.
75 */
76 static int
hns3vf_find_pci_capability(const struct rte_pci_device * device,int cap)77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80 uint16_t status;
81 uint8_t pos;
82 uint8_t id;
83 int ttl;
84 int ret;
85
86 ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87 if (ret < 0) {
88 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89 return 0;
90 }
91
92 if (!(status & PCI_STATUS_CAP_LIST))
93 return 0;
94
95 ttl = MAX_PCIE_CAPABILITY;
96 ret = rte_pci_read_config(device, &pos, sizeof(pos),
97 PCI_CAPABILITY_LIST);
98 if (ret < 0) {
99 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100 PCI_CAPABILITY_LIST);
101 return 0;
102 }
103
104 while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 ret = rte_pci_read_config(device, &id, sizeof(id),
106 (pos + PCI_CAP_LIST_ID));
107 if (ret < 0) {
108 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109 (pos + PCI_CAP_LIST_ID));
110 break;
111 }
112
113 if (id == 0xFF)
114 break;
115
116 if (id == cap)
117 return (int)pos;
118
119 ret = rte_pci_read_config(device, &pos, sizeof(pos),
120 (pos + PCI_CAP_LIST_NEXT));
121 if (ret < 0) {
122 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123 (pos + PCI_CAP_LIST_NEXT));
124 break;
125 }
126 }
127 return 0;
128 }
129
130 static int
hns3vf_enable_msix(const struct rte_pci_device * device,bool op)131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133 uint16_t control;
134 int pos;
135 int ret;
136
137 pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138 if (pos) {
139 ret = rte_pci_read_config(device, &control, sizeof(control),
140 (pos + PCI_MSIX_FLAGS));
141 if (ret < 0) {
142 PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143 (pos + PCI_MSIX_FLAGS));
144 return -ENXIO;
145 }
146
147 if (op)
148 control |= PCI_MSIX_FLAGS_ENABLE;
149 else
150 control &= ~PCI_MSIX_FLAGS_ENABLE;
151 ret = rte_pci_write_config(device, &control, sizeof(control),
152 (pos + PCI_MSIX_FLAGS));
153 if (ret < 0) {
154 PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155 (pos + PCI_MSIX_FLAGS));
156 }
157 return 0;
158 }
159 return -ENXIO;
160 }
161
162 static int
hns3vf_add_uc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165 /* mac address was checked by upper level interface */
166 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 int ret;
168
169 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170 HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171 RTE_ETHER_ADDR_LEN, false, NULL, 0);
172 if (ret) {
173 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 mac_addr);
175 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176 mac_str, ret);
177 }
178 return ret;
179 }
180
181 static int
hns3vf_remove_uc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184 /* mac address was checked by upper level interface */
185 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186 int ret;
187
188 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189 HNS3_MBX_MAC_VLAN_UC_REMOVE,
190 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191 false, NULL, 0);
192 if (ret) {
193 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 mac_addr);
195 hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196 mac_str, ret);
197 }
198 return ret;
199 }
200
201 static int
hns3vf_add_mc_addr_common(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205 struct rte_ether_addr *addr;
206 int ret;
207 int i;
208
209 for (i = 0; i < hw->mc_addrs_num; i++) {
210 addr = &hw->mc_addrs[i];
211 /* Check if there are duplicate addresses */
212 if (rte_is_same_ether_addr(addr, mac_addr)) {
213 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214 addr);
215 hns3_err(hw, "failed to add mc mac addr, same addrs"
216 "(%s) is added by the set_mc_mac_addr_list "
217 "API", mac_str);
218 return -EINVAL;
219 }
220 }
221
222 ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223 if (ret) {
224 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225 mac_addr);
226 hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227 mac_str, ret);
228 }
229 return ret;
230 }
231
232 static int
hns3vf_add_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr,__rte_unused uint32_t idx,__rte_unused uint32_t pool)233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234 __rte_unused uint32_t idx,
235 __rte_unused uint32_t pool)
236 {
237 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239 int ret;
240
241 rte_spinlock_lock(&hw->lock);
242
243 /*
244 * In hns3 network engine adding UC and MC mac address with different
245 * commands with firmware. We need to determine whether the input
246 * address is a UC or a MC address to call different commands.
247 * By the way, it is recommended calling the API function named
248 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250 * may affect the specifications of UC mac addresses.
251 */
252 if (rte_is_multicast_ether_addr(mac_addr))
253 ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254 else
255 ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256
257 rte_spinlock_unlock(&hw->lock);
258 if (ret) {
259 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260 mac_addr);
261 hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262 ret);
263 }
264
265 return ret;
266 }
267
268 static void
hns3vf_remove_mac_addr(struct rte_eth_dev * dev,uint32_t idx)269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272 /* index will be checked by upper level rte interface */
273 struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275 int ret;
276
277 rte_spinlock_lock(&hw->lock);
278
279 if (rte_is_multicast_ether_addr(mac_addr))
280 ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281 else
282 ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283
284 rte_spinlock_unlock(&hw->lock);
285 if (ret) {
286 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287 mac_addr);
288 hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289 mac_str, ret);
290 }
291 }
292
293 static int
hns3vf_set_default_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr)294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295 struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299 struct rte_ether_addr *old_addr;
300 uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302 int ret;
303
304 /*
305 * It has been guaranteed that input parameter named mac_addr is valid
306 * address in the rte layer of DPDK framework.
307 */
308 old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309 rte_spinlock_lock(&hw->lock);
310 memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311 memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312 RTE_ETHER_ADDR_LEN);
313
314 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315 HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316 HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317 if (ret) {
318 /*
319 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320 * driver. When user has configured a MAC address for VF device
321 * by "ip link set ..." command based on the PF device, the hns3
322 * PF kernel ethdev driver does not allow VF driver to request
323 * reconfiguring a different default MAC address, and return
324 * -EPREM to VF driver through mailbox.
325 */
326 if (ret == -EPERM) {
327 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328 old_addr);
329 hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330 mac_str);
331 } else {
332 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333 mac_addr);
334 hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335 mac_str, ret);
336 }
337 }
338
339 rte_ether_addr_copy(mac_addr,
340 (struct rte_ether_addr *)hw->mac.mac_addr);
341 rte_spinlock_unlock(&hw->lock);
342
343 return ret;
344 }
345
346 static int
hns3vf_configure_mac_addr(struct hns3_adapter * hns,bool del)347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349 struct hns3_hw *hw = &hns->hw;
350 struct rte_ether_addr *addr;
351 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352 int err = 0;
353 int ret;
354 int i;
355
356 for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357 addr = &hw->data->mac_addrs[i];
358 if (rte_is_zero_ether_addr(addr))
359 continue;
360 if (rte_is_multicast_ether_addr(addr))
361 ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362 hns3vf_add_mc_mac_addr(hw, addr);
363 else
364 ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365 hns3vf_add_uc_mac_addr(hw, addr);
366
367 if (ret) {
368 err = ret;
369 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370 addr);
371 hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372 "ret = %d.", del ? "remove" : "restore",
373 mac_str, i, ret);
374 }
375 }
376 return err;
377 }
378
379 static int
hns3vf_add_mc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381 struct rte_ether_addr *mac_addr)
382 {
383 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384 int ret;
385
386 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 HNS3_MBX_MAC_VLAN_MC_ADD,
388 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389 NULL, 0);
390 if (ret) {
391 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392 mac_addr);
393 hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394 mac_str, ret);
395 }
396
397 return ret;
398 }
399
400 static int
hns3vf_remove_mc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402 struct rte_ether_addr *mac_addr)
403 {
404 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405 int ret;
406
407 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408 HNS3_MBX_MAC_VLAN_MC_REMOVE,
409 mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410 NULL, 0);
411 if (ret) {
412 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413 mac_addr);
414 hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415 mac_str, ret);
416 }
417
418 return ret;
419 }
420
421 static int
hns3vf_set_mc_addr_chk_param(struct hns3_hw * hw,struct rte_ether_addr * mc_addr_set,uint32_t nb_mc_addr)422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423 struct rte_ether_addr *mc_addr_set,
424 uint32_t nb_mc_addr)
425 {
426 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427 struct rte_ether_addr *addr;
428 uint32_t i;
429 uint32_t j;
430
431 if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432 hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433 "invalid. valid range: 0~%d",
434 nb_mc_addr, HNS3_MC_MACADDR_NUM);
435 return -EINVAL;
436 }
437
438 /* Check if input mac addresses are valid */
439 for (i = 0; i < nb_mc_addr; i++) {
440 addr = &mc_addr_set[i];
441 if (!rte_is_multicast_ether_addr(addr)) {
442 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443 addr);
444 hns3_err(hw,
445 "failed to set mc mac addr, addr(%s) invalid.",
446 mac_str);
447 return -EINVAL;
448 }
449
450 /* Check if there are duplicate addresses */
451 for (j = i + 1; j < nb_mc_addr; j++) {
452 if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453 rte_ether_format_addr(mac_str,
454 RTE_ETHER_ADDR_FMT_SIZE,
455 addr);
456 hns3_err(hw, "failed to set mc mac addr, "
457 "addrs invalid. two same addrs(%s).",
458 mac_str);
459 return -EINVAL;
460 }
461 }
462
463 /*
464 * Check if there are duplicate addresses between mac_addrs
465 * and mc_addr_set
466 */
467 for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468 if (rte_is_same_ether_addr(addr,
469 &hw->data->mac_addrs[j])) {
470 rte_ether_format_addr(mac_str,
471 RTE_ETHER_ADDR_FMT_SIZE,
472 addr);
473 hns3_err(hw, "failed to set mc mac addr, "
474 "addrs invalid. addrs(%s) has already "
475 "configured in mac_addr add API",
476 mac_str);
477 return -EINVAL;
478 }
479 }
480 }
481
482 return 0;
483 }
484
485 static int
hns3vf_set_mc_mac_addr_list(struct rte_eth_dev * dev,struct rte_ether_addr * mc_addr_set,uint32_t nb_mc_addr)486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487 struct rte_ether_addr *mc_addr_set,
488 uint32_t nb_mc_addr)
489 {
490 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491 struct rte_ether_addr *addr;
492 int cur_addr_num;
493 int set_addr_num;
494 int num;
495 int ret;
496 int i;
497
498 ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499 if (ret)
500 return ret;
501
502 rte_spinlock_lock(&hw->lock);
503 cur_addr_num = hw->mc_addrs_num;
504 for (i = 0; i < cur_addr_num; i++) {
505 num = cur_addr_num - i - 1;
506 addr = &hw->mc_addrs[num];
507 ret = hns3vf_remove_mc_mac_addr(hw, addr);
508 if (ret) {
509 rte_spinlock_unlock(&hw->lock);
510 return ret;
511 }
512
513 hw->mc_addrs_num--;
514 }
515
516 set_addr_num = (int)nb_mc_addr;
517 for (i = 0; i < set_addr_num; i++) {
518 addr = &mc_addr_set[i];
519 ret = hns3vf_add_mc_mac_addr(hw, addr);
520 if (ret) {
521 rte_spinlock_unlock(&hw->lock);
522 return ret;
523 }
524
525 rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526 hw->mc_addrs_num++;
527 }
528 rte_spinlock_unlock(&hw->lock);
529
530 return 0;
531 }
532
533 static int
hns3vf_configure_all_mc_mac_addr(struct hns3_adapter * hns,bool del)534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537 struct hns3_hw *hw = &hns->hw;
538 struct rte_ether_addr *addr;
539 int err = 0;
540 int ret;
541 int i;
542
543 for (i = 0; i < hw->mc_addrs_num; i++) {
544 addr = &hw->mc_addrs[i];
545 if (!rte_is_multicast_ether_addr(addr))
546 continue;
547 if (del)
548 ret = hns3vf_remove_mc_mac_addr(hw, addr);
549 else
550 ret = hns3vf_add_mc_mac_addr(hw, addr);
551 if (ret) {
552 err = ret;
553 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554 addr);
555 hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556 del ? "Remove" : "Restore", mac_str, ret);
557 }
558 }
559 return err;
560 }
561
562 static int
hns3vf_set_promisc_mode(struct hns3_hw * hw,bool en_bc_pmc,bool en_uc_pmc,bool en_mc_pmc)563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564 bool en_uc_pmc, bool en_mc_pmc)
565 {
566 struct hns3_mbx_vf_to_pf_cmd *req;
567 struct hns3_cmd_desc desc;
568 int ret;
569
570 req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571
572 /*
573 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574 * so there are some features for promiscuous/allmulticast mode in hns3
575 * VF PMD driver as below:
576 * 1. The promiscuous/allmulticast mode can be configured successfully
577 * only based on the trusted VF device. If based on the non trusted
578 * VF device, configuring promiscuous/allmulticast mode will fail.
579 * The hns3 VF device can be confiruged as trusted device by hns3 PF
580 * kernel ethdev driver on the host by the following command:
581 * "ip link set <eth num> vf <vf id> turst on"
582 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583 * driver can receive the ingress and outgoing traffic. In the words,
584 * all the ingress packets, all the packets sent from the PF and
585 * other VFs on the same physical port.
586 * 3. Note: Because of the hardware constraints, By default vlan filter
587 * is enabled and couldn't be turned off based on VF device, so vlan
588 * filter is still effective even in promiscuous mode. If upper
589 * applications don't call rte_eth_dev_vlan_filter API function to
590 * set vlan based on VF device, hns3 VF PMD driver will can't receive
591 * the packets with vlan tag in promiscuoue mode.
592 */
593 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594 req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595 req->msg[1] = en_bc_pmc ? 1 : 0;
596 req->msg[2] = en_uc_pmc ? 1 : 0;
597 req->msg[3] = en_mc_pmc ? 1 : 0;
598 req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599
600 ret = hns3_cmd_send(hw, &desc, 1);
601 if (ret)
602 hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603
604 return ret;
605 }
606
607 static int
hns3vf_dev_promiscuous_enable(struct rte_eth_dev * dev)608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610 struct hns3_adapter *hns = dev->data->dev_private;
611 struct hns3_hw *hw = &hns->hw;
612 int ret;
613
614 ret = hns3vf_set_promisc_mode(hw, true, true, true);
615 if (ret)
616 hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617 ret);
618 return ret;
619 }
620
621 static int
hns3vf_dev_promiscuous_disable(struct rte_eth_dev * dev)622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624 bool allmulti = dev->data->all_multicast ? true : false;
625 struct hns3_adapter *hns = dev->data->dev_private;
626 struct hns3_hw *hw = &hns->hw;
627 int ret;
628
629 ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630 if (ret)
631 hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632 ret);
633 return ret;
634 }
635
636 static int
hns3vf_dev_allmulticast_enable(struct rte_eth_dev * dev)637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639 struct hns3_adapter *hns = dev->data->dev_private;
640 struct hns3_hw *hw = &hns->hw;
641 int ret;
642
643 if (dev->data->promiscuous)
644 return 0;
645
646 ret = hns3vf_set_promisc_mode(hw, true, false, true);
647 if (ret)
648 hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649 ret);
650 return ret;
651 }
652
653 static int
hns3vf_dev_allmulticast_disable(struct rte_eth_dev * dev)654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656 struct hns3_adapter *hns = dev->data->dev_private;
657 struct hns3_hw *hw = &hns->hw;
658 int ret;
659
660 if (dev->data->promiscuous)
661 return 0;
662
663 ret = hns3vf_set_promisc_mode(hw, true, false, false);
664 if (ret)
665 hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666 ret);
667 return ret;
668 }
669
670 static int
hns3vf_restore_promisc(struct hns3_adapter * hns)671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673 struct hns3_hw *hw = &hns->hw;
674 bool allmulti = hw->data->all_multicast ? true : false;
675
676 if (hw->data->promiscuous)
677 return hns3vf_set_promisc_mode(hw, true, true, true);
678
679 return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681
682 static int
hns3vf_bind_ring_with_vector(struct hns3_hw * hw,uint8_t vector_id,bool mmap,enum hns3_ring_type queue_type,uint16_t queue_id)683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684 bool mmap, enum hns3_ring_type queue_type,
685 uint16_t queue_id)
686 {
687 struct hns3_vf_bind_vector_msg bind_msg;
688 const char *op_str;
689 uint16_t code;
690 int ret;
691
692 memset(&bind_msg, 0, sizeof(bind_msg));
693 code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694 HNS3_MBX_UNMAP_RING_TO_VECTOR;
695 bind_msg.vector_id = vector_id;
696
697 if (queue_type == HNS3_RING_TYPE_RX)
698 bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699 else
700 bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701
702 bind_msg.param[0].ring_type = queue_type;
703 bind_msg.ring_num = 1;
704 bind_msg.param[0].tqp_index = queue_id;
705 op_str = mmap ? "Map" : "Unmap";
706 ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707 sizeof(bind_msg), false, NULL, 0);
708 if (ret)
709 hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710 op_str, queue_id, bind_msg.vector_id, ret);
711
712 return ret;
713 }
714
715 static int
hns3vf_init_ring_with_vector(struct hns3_hw * hw)716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718 uint16_t vec;
719 int ret;
720 int i;
721
722 /*
723 * In hns3 network engine, vector 0 is always the misc interrupt of this
724 * function, vector 1~N can be used respectively for the queues of the
725 * function. Tx and Rx queues with the same number share the interrupt
726 * vector. In the initialization clearing the all hardware mapping
727 * relationship configurations between queues and interrupt vectors is
728 * needed, so some error caused by the residual configurations, such as
729 * the unexpected Tx interrupt, can be avoid.
730 */
731 vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732 if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733 vec = vec - 1; /* the last interrupt is reserved */
734 hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735 for (i = 0; i < hw->intr_tqps_num; i++) {
736 /*
737 * Set gap limiter/rate limiter/quanity limiter algorithm
738 * configuration for interrupt coalesce of queue's interrupt.
739 */
740 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741 HNS3_TQP_INTR_GL_DEFAULT);
742 hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743 HNS3_TQP_INTR_GL_DEFAULT);
744 hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745 /*
746 * QL(quantity limiter) is not used currently, just set 0 to
747 * close it.
748 */
749 hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750
751 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752 HNS3_RING_TYPE_TX, i);
753 if (ret) {
754 PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755 "vector: %u, ret=%d", i, vec, ret);
756 return ret;
757 }
758
759 ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760 HNS3_RING_TYPE_RX, i);
761 if (ret) {
762 PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763 "vector: %u, ret=%d", i, vec, ret);
764 return ret;
765 }
766 }
767
768 return 0;
769 }
770
771 static int
hns3vf_dev_configure(struct rte_eth_dev * dev)772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774 struct hns3_adapter *hns = dev->data->dev_private;
775 struct hns3_hw *hw = &hns->hw;
776 struct hns3_rss_conf *rss_cfg = &hw->rss_info;
777 struct rte_eth_conf *conf = &dev->data->dev_conf;
778 enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
779 uint16_t nb_rx_q = dev->data->nb_rx_queues;
780 uint16_t nb_tx_q = dev->data->nb_tx_queues;
781 struct rte_eth_rss_conf rss_conf;
782 uint16_t mtu;
783 bool gro_en;
784 int ret;
785
786 hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
787
788 /*
789 * Some versions of hardware network engine does not support
790 * individually enable/disable/reset the Tx or Rx queue. These devices
791 * must enable/disable/reset Tx and Rx queues at the same time. When the
792 * numbers of Tx queues allocated by upper applications are not equal to
793 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795 * work as usual. But these fake queues are imperceptible, and can not
796 * be used by upper applications.
797 */
798 if (!hns3_dev_indep_txrx_supported(hw)) {
799 ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
800 if (ret) {
801 hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
802 ret);
803 return ret;
804 }
805 }
806
807 hw->adapter_state = HNS3_NIC_CONFIGURING;
808 if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809 hns3_err(hw, "setting link speed/duplex not supported");
810 ret = -EINVAL;
811 goto cfg_err;
812 }
813
814 /* When RSS is not configured, redirect the packet queue 0 */
815 if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816 conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817 hw->rss_dis_flag = false;
818 rss_conf = conf->rx_adv_conf.rss_conf;
819 if (rss_conf.rss_key == NULL) {
820 rss_conf.rss_key = rss_cfg->key;
821 rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
822 }
823
824 ret = hns3_dev_rss_hash_update(dev, &rss_conf);
825 if (ret)
826 goto cfg_err;
827 }
828
829 /*
830 * If jumbo frames are enabled, MTU needs to be refreshed
831 * according to the maximum RX packet length.
832 */
833 if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
834 /*
835 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
836 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
837 * can safely assign to "uint16_t" type variable.
838 */
839 mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
840 ret = hns3vf_dev_mtu_set(dev, mtu);
841 if (ret)
842 goto cfg_err;
843 dev->data->mtu = mtu;
844 }
845
846 ret = hns3vf_dev_configure_vlan(dev);
847 if (ret)
848 goto cfg_err;
849
850 /* config hardware GRO */
851 gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
852 ret = hns3_config_gro(hw, gro_en);
853 if (ret)
854 goto cfg_err;
855
856 hns->rx_simple_allowed = true;
857 hns->rx_vec_allowed = true;
858 hns->tx_simple_allowed = true;
859 hns->tx_vec_allowed = true;
860
861 hns3_init_rx_ptype_tble(dev);
862
863 hw->adapter_state = HNS3_NIC_CONFIGURED;
864 return 0;
865
866 cfg_err:
867 (void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
868 hw->adapter_state = HNS3_NIC_INITIALIZED;
869
870 return ret;
871 }
872
873 static int
hns3vf_config_mtu(struct hns3_hw * hw,uint16_t mtu)874 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
875 {
876 int ret;
877
878 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
879 sizeof(mtu), true, NULL, 0);
880 if (ret)
881 hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
882
883 return ret;
884 }
885
886 static int
hns3vf_dev_mtu_set(struct rte_eth_dev * dev,uint16_t mtu)887 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
888 {
889 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
890 uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
891 int ret;
892
893 /*
894 * The hns3 PF/VF devices on the same port share the hardware MTU
895 * configuration. Currently, we send mailbox to inform hns3 PF kernel
896 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
897 * driver, there is no need to stop the port for hns3 VF device, and the
898 * MTU value issued by hns3 VF PMD driver must be less than or equal to
899 * PF's MTU.
900 */
901 if (rte_atomic16_read(&hw->reset.resetting)) {
902 hns3_err(hw, "Failed to set mtu during resetting");
903 return -EIO;
904 }
905
906 /*
907 * when Rx of scattered packets is off, we have some possibility of
908 * using vector Rx process function or simple Rx functions in hns3 PMD
909 * driver. If the input MTU is increased and the maximum length of
910 * received packets is greater than the length of a buffer for Rx
911 * packet, the hardware network engine needs to use multiple BDs and
912 * buffers to store these packets. This will cause problems when still
913 * using vector Rx process function or simple Rx function to receiving
914 * packets. So, when Rx of scattered packets is off and device is
915 * started, it is not permitted to increase MTU so that the maximum
916 * length of Rx packets is greater than Rx buffer length.
917 */
918 if (dev->data->dev_started && !dev->data->scattered_rx &&
919 frame_size > hw->rx_buf_len) {
920 hns3_err(hw, "failed to set mtu because current is "
921 "not scattered rx mode");
922 return -EOPNOTSUPP;
923 }
924
925 rte_spinlock_lock(&hw->lock);
926 ret = hns3vf_config_mtu(hw, mtu);
927 if (ret) {
928 rte_spinlock_unlock(&hw->lock);
929 return ret;
930 }
931 if (frame_size > RTE_ETHER_MAX_LEN)
932 dev->data->dev_conf.rxmode.offloads |=
933 DEV_RX_OFFLOAD_JUMBO_FRAME;
934 else
935 dev->data->dev_conf.rxmode.offloads &=
936 ~DEV_RX_OFFLOAD_JUMBO_FRAME;
937 dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
938 rte_spinlock_unlock(&hw->lock);
939
940 return 0;
941 }
942
943 static int
hns3vf_dev_infos_get(struct rte_eth_dev * eth_dev,struct rte_eth_dev_info * info)944 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
945 {
946 struct hns3_adapter *hns = eth_dev->data->dev_private;
947 struct hns3_hw *hw = &hns->hw;
948 uint16_t q_num = hw->tqps_num;
949
950 /*
951 * In interrupt mode, 'max_rx_queues' is set based on the number of
952 * MSI-X interrupt resources of the hardware.
953 */
954 if (hw->data->dev_conf.intr_conf.rxq == 1)
955 q_num = hw->intr_tqps_num;
956
957 info->max_rx_queues = q_num;
958 info->max_tx_queues = hw->tqps_num;
959 info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
960 info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
961 info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
962 info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
963 info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
964
965 info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
966 DEV_RX_OFFLOAD_UDP_CKSUM |
967 DEV_RX_OFFLOAD_TCP_CKSUM |
968 DEV_RX_OFFLOAD_SCTP_CKSUM |
969 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
970 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
971 DEV_RX_OFFLOAD_SCATTER |
972 DEV_RX_OFFLOAD_VLAN_STRIP |
973 DEV_RX_OFFLOAD_VLAN_FILTER |
974 DEV_RX_OFFLOAD_JUMBO_FRAME |
975 DEV_RX_OFFLOAD_RSS_HASH |
976 DEV_RX_OFFLOAD_TCP_LRO);
977 info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
978 DEV_TX_OFFLOAD_IPV4_CKSUM |
979 DEV_TX_OFFLOAD_TCP_CKSUM |
980 DEV_TX_OFFLOAD_UDP_CKSUM |
981 DEV_TX_OFFLOAD_SCTP_CKSUM |
982 DEV_TX_OFFLOAD_MULTI_SEGS |
983 DEV_TX_OFFLOAD_TCP_TSO |
984 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
985 DEV_TX_OFFLOAD_GRE_TNL_TSO |
986 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
987 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
988 hns3_txvlan_cap_get(hw));
989
990 if (hns3_dev_indep_txrx_supported(hw))
991 info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
992 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
993
994 info->rx_desc_lim = (struct rte_eth_desc_lim) {
995 .nb_max = HNS3_MAX_RING_DESC,
996 .nb_min = HNS3_MIN_RING_DESC,
997 .nb_align = HNS3_ALIGN_RING_DESC,
998 };
999
1000 info->tx_desc_lim = (struct rte_eth_desc_lim) {
1001 .nb_max = HNS3_MAX_RING_DESC,
1002 .nb_min = HNS3_MIN_RING_DESC,
1003 .nb_align = HNS3_ALIGN_RING_DESC,
1004 .nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1005 .nb_mtu_seg_max = hw->max_non_tso_bd_num,
1006 };
1007
1008 info->default_rxconf = (struct rte_eth_rxconf) {
1009 .rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1010 /*
1011 * If there are no available Rx buffer descriptors, incoming
1012 * packets are always dropped by hardware based on hns3 network
1013 * engine.
1014 */
1015 .rx_drop_en = 1,
1016 .offloads = 0,
1017 };
1018 info->default_txconf = (struct rte_eth_txconf) {
1019 .tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1020 .offloads = 0,
1021 };
1022
1023 info->vmdq_queue_num = 0;
1024
1025 info->reta_size = HNS3_RSS_IND_TBL_SIZE;
1026 info->hash_key_size = HNS3_RSS_KEY_SIZE;
1027 info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1028 info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1029 info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1030
1031 return 0;
1032 }
1033
1034 static void
hns3vf_clear_event_cause(struct hns3_hw * hw,uint32_t regclr)1035 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1036 {
1037 hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1038 }
1039
1040 static void
hns3vf_disable_irq0(struct hns3_hw * hw)1041 hns3vf_disable_irq0(struct hns3_hw *hw)
1042 {
1043 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1044 }
1045
1046 static void
hns3vf_enable_irq0(struct hns3_hw * hw)1047 hns3vf_enable_irq0(struct hns3_hw *hw)
1048 {
1049 hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1050 }
1051
1052 static enum hns3vf_evt_cause
hns3vf_check_event_cause(struct hns3_adapter * hns,uint32_t * clearval)1053 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1054 {
1055 struct hns3_hw *hw = &hns->hw;
1056 enum hns3vf_evt_cause ret;
1057 uint32_t cmdq_stat_reg;
1058 uint32_t rst_ing_reg;
1059 uint32_t val;
1060
1061 /* Fetch the events from their corresponding regs */
1062 cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1063
1064 if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1065 rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1066 hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1067 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1068 rte_atomic16_set(&hw->reset.disable_cmd, 1);
1069 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1070 hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1071 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1072 if (clearval) {
1073 hw->reset.stats.global_cnt++;
1074 hns3_warn(hw, "Global reset detected, clear reset status");
1075 } else {
1076 hns3_schedule_delayed_reset(hns);
1077 hns3_warn(hw, "Global reset detected, don't clear reset status");
1078 }
1079
1080 ret = HNS3VF_VECTOR0_EVENT_RST;
1081 goto out;
1082 }
1083
1084 /* Check for vector0 mailbox(=CMDQ RX) event source */
1085 if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1086 val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1087 ret = HNS3VF_VECTOR0_EVENT_MBX;
1088 goto out;
1089 }
1090
1091 val = 0;
1092 ret = HNS3VF_VECTOR0_EVENT_OTHER;
1093 out:
1094 if (clearval)
1095 *clearval = val;
1096 return ret;
1097 }
1098
1099 static void
hns3vf_interrupt_handler(void * param)1100 hns3vf_interrupt_handler(void *param)
1101 {
1102 struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1103 struct hns3_adapter *hns = dev->data->dev_private;
1104 struct hns3_hw *hw = &hns->hw;
1105 enum hns3vf_evt_cause event_cause;
1106 uint32_t clearval;
1107
1108 if (hw->irq_thread_id == 0)
1109 hw->irq_thread_id = pthread_self();
1110
1111 /* Disable interrupt */
1112 hns3vf_disable_irq0(hw);
1113
1114 /* Read out interrupt causes */
1115 event_cause = hns3vf_check_event_cause(hns, &clearval);
1116
1117 switch (event_cause) {
1118 case HNS3VF_VECTOR0_EVENT_RST:
1119 hns3_schedule_reset(hns);
1120 break;
1121 case HNS3VF_VECTOR0_EVENT_MBX:
1122 hns3_dev_handle_mbx_msg(hw);
1123 break;
1124 default:
1125 break;
1126 }
1127
1128 /* Clear interrupt causes */
1129 hns3vf_clear_event_cause(hw, clearval);
1130
1131 /* Enable interrupt */
1132 hns3vf_enable_irq0(hw);
1133 }
1134
1135 static void
hns3vf_set_default_dev_specifications(struct hns3_hw * hw)1136 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1137 {
1138 hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1139 hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1140 hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1141 hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1142 }
1143
1144 static void
hns3vf_parse_dev_specifications(struct hns3_hw * hw,struct hns3_cmd_desc * desc)1145 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1146 {
1147 struct hns3_dev_specs_0_cmd *req0;
1148
1149 req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1150
1151 hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1152 hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1153 hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1154 hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1155 }
1156
1157 static int
hns3vf_query_dev_specifications(struct hns3_hw * hw)1158 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1159 {
1160 struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1161 int ret;
1162 int i;
1163
1164 for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1165 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1166 true);
1167 desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1168 }
1169 hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1170
1171 ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1172 if (ret)
1173 return ret;
1174
1175 hns3vf_parse_dev_specifications(hw, desc);
1176
1177 return 0;
1178 }
1179
1180 static int
hns3vf_get_capability(struct hns3_hw * hw)1181 hns3vf_get_capability(struct hns3_hw *hw)
1182 {
1183 struct rte_pci_device *pci_dev;
1184 struct rte_eth_dev *eth_dev;
1185 uint8_t revision;
1186 int ret;
1187
1188 eth_dev = &rte_eth_devices[hw->data->port_id];
1189 pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1190
1191 /* Get PCI revision id */
1192 ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1193 HNS3_PCI_REVISION_ID);
1194 if (ret != HNS3_PCI_REVISION_ID_LEN) {
1195 PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1196 ret);
1197 return -EIO;
1198 }
1199 hw->revision = revision;
1200
1201 if (revision < PCI_REVISION_ID_HIP09_A) {
1202 hns3vf_set_default_dev_specifications(hw);
1203 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1204 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1205 hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1206 hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1207 hw->rss_info.ipv6_sctp_offload_supported = false;
1208 hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1209 return 0;
1210 }
1211
1212 ret = hns3vf_query_dev_specifications(hw);
1213 if (ret) {
1214 PMD_INIT_LOG(ERR,
1215 "failed to query dev specifications, ret = %d",
1216 ret);
1217 return ret;
1218 }
1219
1220 hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1221 hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1222 hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1223 hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1224 hw->rss_info.ipv6_sctp_offload_supported = true;
1225 hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1226
1227 return 0;
1228 }
1229
1230 static int
hns3vf_check_tqp_info(struct hns3_hw * hw)1231 hns3vf_check_tqp_info(struct hns3_hw *hw)
1232 {
1233 if (hw->tqps_num == 0) {
1234 PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1235 return -EINVAL;
1236 }
1237
1238 if (hw->rss_size_max == 0) {
1239 PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1240 return -EINVAL;
1241 }
1242
1243 hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1244
1245 return 0;
1246 }
1247
1248 static int
hns3vf_get_port_base_vlan_filter_state(struct hns3_hw * hw)1249 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1250 {
1251 uint8_t resp_msg;
1252 int ret;
1253
1254 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1255 HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1256 true, &resp_msg, sizeof(resp_msg));
1257 if (ret) {
1258 if (ret == -ETIME) {
1259 /*
1260 * Getting current port based VLAN state from PF driver
1261 * will not affect VF driver's basic function. Because
1262 * the VF driver relies on hns3 PF kernel ether driver,
1263 * to avoid introducing compatibility issues with older
1264 * version of PF driver, no failure will be returned
1265 * when the return value is ETIME. This return value has
1266 * the following scenarios:
1267 * 1) Firmware didn't return the results in time
1268 * 2) the result return by firmware is timeout
1269 * 3) the older version of kernel side PF driver does
1270 * not support this mailbox message.
1271 * For scenarios 1 and 2, it is most likely that a
1272 * hardware error has occurred, or a hardware reset has
1273 * occurred. In this case, these errors will be caught
1274 * by other functions.
1275 */
1276 PMD_INIT_LOG(WARNING,
1277 "failed to get PVID state for timeout, maybe "
1278 "kernel side PF driver doesn't support this "
1279 "mailbox message, or firmware didn't respond.");
1280 resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1281 } else {
1282 PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1283 " ret = %d", ret);
1284 return ret;
1285 }
1286 }
1287 hw->port_base_vlan_cfg.state = resp_msg ?
1288 HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1289 return 0;
1290 }
1291
1292 static int
hns3vf_get_queue_info(struct hns3_hw * hw)1293 hns3vf_get_queue_info(struct hns3_hw *hw)
1294 {
1295 #define HNS3VF_TQPS_RSS_INFO_LEN 6
1296 uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1297 int ret;
1298
1299 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1300 resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1301 if (ret) {
1302 PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1303 return ret;
1304 }
1305
1306 memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1307 memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1308
1309 return hns3vf_check_tqp_info(hw);
1310 }
1311
1312 static int
hns3vf_get_queue_depth(struct hns3_hw * hw)1313 hns3vf_get_queue_depth(struct hns3_hw *hw)
1314 {
1315 #define HNS3VF_TQPS_DEPTH_INFO_LEN 4
1316 uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1317 int ret;
1318
1319 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1320 resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1321 if (ret) {
1322 PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1323 ret);
1324 return ret;
1325 }
1326
1327 memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1328 memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1329
1330 return 0;
1331 }
1332
1333 static int
hns3vf_get_tc_info(struct hns3_hw * hw)1334 hns3vf_get_tc_info(struct hns3_hw *hw)
1335 {
1336 uint8_t resp_msg;
1337 int ret;
1338 uint32_t i;
1339
1340 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1341 true, &resp_msg, sizeof(resp_msg));
1342 if (ret) {
1343 hns3_err(hw, "VF request to get TC info from PF failed %d",
1344 ret);
1345 return ret;
1346 }
1347
1348 hw->hw_tc_map = resp_msg;
1349
1350 for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1351 if (hw->hw_tc_map & BIT(i))
1352 hw->num_tc++;
1353 }
1354
1355 return 0;
1356 }
1357
1358 static int
hns3vf_get_host_mac_addr(struct hns3_hw * hw)1359 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1360 {
1361 uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1362 int ret;
1363
1364 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1365 true, host_mac, RTE_ETHER_ADDR_LEN);
1366 if (ret) {
1367 hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1368 return ret;
1369 }
1370
1371 memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1372
1373 return 0;
1374 }
1375
1376 static int
hns3vf_get_configuration(struct hns3_hw * hw)1377 hns3vf_get_configuration(struct hns3_hw *hw)
1378 {
1379 int ret;
1380
1381 hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1382 hw->rss_dis_flag = false;
1383
1384 /* Get device capability */
1385 ret = hns3vf_get_capability(hw);
1386 if (ret) {
1387 PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1388 return ret;
1389 }
1390
1391 /* Get queue configuration from PF */
1392 ret = hns3vf_get_queue_info(hw);
1393 if (ret)
1394 return ret;
1395
1396 /* Get queue depth info from PF */
1397 ret = hns3vf_get_queue_depth(hw);
1398 if (ret)
1399 return ret;
1400
1401 /* Get user defined VF MAC addr from PF */
1402 ret = hns3vf_get_host_mac_addr(hw);
1403 if (ret)
1404 return ret;
1405
1406 ret = hns3vf_get_port_base_vlan_filter_state(hw);
1407 if (ret)
1408 return ret;
1409
1410 /* Get tc configuration from PF */
1411 return hns3vf_get_tc_info(hw);
1412 }
1413
1414 static int
hns3vf_set_tc_queue_mapping(struct hns3_adapter * hns,uint16_t nb_rx_q,uint16_t nb_tx_q)1415 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1416 uint16_t nb_tx_q)
1417 {
1418 struct hns3_hw *hw = &hns->hw;
1419
1420 if (nb_rx_q < hw->num_tc) {
1421 hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1422 nb_rx_q, hw->num_tc);
1423 return -EINVAL;
1424 }
1425
1426 if (nb_tx_q < hw->num_tc) {
1427 hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1428 nb_tx_q, hw->num_tc);
1429 return -EINVAL;
1430 }
1431
1432 return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1433 }
1434
1435 static void
hns3vf_request_link_info(struct hns3_hw * hw)1436 hns3vf_request_link_info(struct hns3_hw *hw)
1437 {
1438 uint8_t resp_msg;
1439 int ret;
1440
1441 if (rte_atomic16_read(&hw->reset.resetting))
1442 return;
1443 ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1444 &resp_msg, sizeof(resp_msg));
1445 if (ret)
1446 hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1447 }
1448
1449 static int
hns3vf_vlan_filter_configure(struct hns3_adapter * hns,uint16_t vlan_id,int on)1450 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1451 {
1452 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1453 struct hns3_hw *hw = &hns->hw;
1454 uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1455 uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1456 uint8_t is_kill = on ? 0 : 1;
1457
1458 msg_data[0] = is_kill;
1459 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1460 memcpy(&msg_data[3], &proto, sizeof(proto));
1461
1462 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1463 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1464 0);
1465 }
1466
1467 static int
hns3vf_vlan_filter_set(struct rte_eth_dev * dev,uint16_t vlan_id,int on)1468 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1469 {
1470 struct hns3_adapter *hns = dev->data->dev_private;
1471 struct hns3_hw *hw = &hns->hw;
1472 int ret;
1473
1474 if (rte_atomic16_read(&hw->reset.resetting)) {
1475 hns3_err(hw,
1476 "vf set vlan id failed during resetting, vlan_id =%u",
1477 vlan_id);
1478 return -EIO;
1479 }
1480 rte_spinlock_lock(&hw->lock);
1481 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1482 rte_spinlock_unlock(&hw->lock);
1483 if (ret)
1484 hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1485 vlan_id, ret);
1486
1487 return ret;
1488 }
1489
1490 static int
hns3vf_en_hw_strip_rxvtag(struct hns3_hw * hw,bool enable)1491 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1492 {
1493 uint8_t msg_data;
1494 int ret;
1495
1496 msg_data = enable ? 1 : 0;
1497 ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1498 &msg_data, sizeof(msg_data), false, NULL, 0);
1499 if (ret)
1500 hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1501
1502 return ret;
1503 }
1504
1505 static int
hns3vf_vlan_offload_set(struct rte_eth_dev * dev,int mask)1506 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1507 {
1508 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1509 struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1510 unsigned int tmp_mask;
1511 int ret = 0;
1512
1513 if (rte_atomic16_read(&hw->reset.resetting)) {
1514 hns3_err(hw, "vf set vlan offload failed during resetting, "
1515 "mask = 0x%x", mask);
1516 return -EIO;
1517 }
1518
1519 tmp_mask = (unsigned int)mask;
1520 /* Vlan stripping setting */
1521 if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1522 rte_spinlock_lock(&hw->lock);
1523 /* Enable or disable VLAN stripping */
1524 if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1525 ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1526 else
1527 ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1528 rte_spinlock_unlock(&hw->lock);
1529 }
1530
1531 return ret;
1532 }
1533
1534 static int
hns3vf_handle_all_vlan_table(struct hns3_adapter * hns,int on)1535 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1536 {
1537 struct rte_vlan_filter_conf *vfc;
1538 struct hns3_hw *hw = &hns->hw;
1539 uint16_t vlan_id;
1540 uint64_t vbit;
1541 uint64_t ids;
1542 int ret = 0;
1543 uint32_t i;
1544
1545 vfc = &hw->data->vlan_filter_conf;
1546 for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1547 if (vfc->ids[i] == 0)
1548 continue;
1549 ids = vfc->ids[i];
1550 while (ids) {
1551 /*
1552 * 64 means the num bits of ids, one bit corresponds to
1553 * one vlan id
1554 */
1555 vlan_id = 64 * i;
1556 /* count trailing zeroes */
1557 vbit = ~ids & (ids - 1);
1558 /* clear least significant bit set */
1559 ids ^= (ids ^ (ids - 1)) ^ vbit;
1560 for (; vbit;) {
1561 vbit >>= 1;
1562 vlan_id++;
1563 }
1564 ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1565 if (ret) {
1566 hns3_err(hw,
1567 "VF handle vlan table failed, ret =%d, on = %d",
1568 ret, on);
1569 return ret;
1570 }
1571 }
1572 }
1573
1574 return ret;
1575 }
1576
1577 static int
hns3vf_remove_all_vlan_table(struct hns3_adapter * hns)1578 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1579 {
1580 return hns3vf_handle_all_vlan_table(hns, 0);
1581 }
1582
1583 static int
hns3vf_restore_vlan_conf(struct hns3_adapter * hns)1584 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1585 {
1586 struct hns3_hw *hw = &hns->hw;
1587 struct rte_eth_conf *dev_conf;
1588 bool en;
1589 int ret;
1590
1591 dev_conf = &hw->data->dev_conf;
1592 en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1593 : false;
1594 ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1595 if (ret)
1596 hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1597 ret);
1598 return ret;
1599 }
1600
1601 static int
hns3vf_dev_configure_vlan(struct rte_eth_dev * dev)1602 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1603 {
1604 struct hns3_adapter *hns = dev->data->dev_private;
1605 struct rte_eth_dev_data *data = dev->data;
1606 struct hns3_hw *hw = &hns->hw;
1607 int ret;
1608
1609 if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1610 data->dev_conf.txmode.hw_vlan_reject_untagged ||
1611 data->dev_conf.txmode.hw_vlan_insert_pvid) {
1612 hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1613 "or hw_vlan_insert_pvid is not support!");
1614 }
1615
1616 /* Apply vlan offload setting */
1617 ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1618 if (ret)
1619 hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1620
1621 return ret;
1622 }
1623
1624 static int
hns3vf_set_alive(struct hns3_hw * hw,bool alive)1625 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1626 {
1627 uint8_t msg_data;
1628
1629 msg_data = alive ? 1 : 0;
1630 return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1631 sizeof(msg_data), false, NULL, 0);
1632 }
1633
1634 static void
hns3vf_keep_alive_handler(void * param)1635 hns3vf_keep_alive_handler(void *param)
1636 {
1637 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1638 struct hns3_adapter *hns = eth_dev->data->dev_private;
1639 struct hns3_hw *hw = &hns->hw;
1640 uint8_t respmsg;
1641 int ret;
1642
1643 ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1644 false, &respmsg, sizeof(uint8_t));
1645 if (ret)
1646 hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1647 ret);
1648
1649 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1650 eth_dev);
1651 }
1652
1653 static void
hns3vf_service_handler(void * param)1654 hns3vf_service_handler(void *param)
1655 {
1656 struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1657 struct hns3_adapter *hns = eth_dev->data->dev_private;
1658 struct hns3_hw *hw = &hns->hw;
1659
1660 /*
1661 * The query link status and reset processing are executed in the
1662 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1663 * and the query operation will time out after 30ms. In the case of
1664 * multiple PF/VFs, each query failure timeout causes the IMP reset
1665 * interrupt to fail to respond within 100ms.
1666 * Before querying the link status, check whether there is a reset
1667 * pending, and if so, abandon the query.
1668 */
1669 if (!hns3vf_is_reset_pending(hns))
1670 hns3vf_request_link_info(hw);
1671 else
1672 hns3_warn(hw, "Cancel the query when reset is pending");
1673
1674 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1675 eth_dev);
1676 }
1677
1678 static int
hns3_query_vf_resource(struct hns3_hw * hw)1679 hns3_query_vf_resource(struct hns3_hw *hw)
1680 {
1681 struct hns3_vf_res_cmd *req;
1682 struct hns3_cmd_desc desc;
1683 uint16_t num_msi;
1684 int ret;
1685
1686 hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1687 ret = hns3_cmd_send(hw, &desc, 1);
1688 if (ret) {
1689 hns3_err(hw, "query vf resource failed, ret = %d", ret);
1690 return ret;
1691 }
1692
1693 req = (struct hns3_vf_res_cmd *)desc.data;
1694 num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1695 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1696 if (num_msi < HNS3_MIN_VECTOR_NUM) {
1697 hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1698 num_msi, HNS3_MIN_VECTOR_NUM);
1699 return -EINVAL;
1700 }
1701
1702 hw->num_msi = num_msi;
1703
1704 return 0;
1705 }
1706
1707 static int
hns3vf_init_hardware(struct hns3_adapter * hns)1708 hns3vf_init_hardware(struct hns3_adapter *hns)
1709 {
1710 struct hns3_hw *hw = &hns->hw;
1711 uint16_t mtu = hw->data->mtu;
1712 int ret;
1713
1714 ret = hns3vf_set_promisc_mode(hw, true, false, false);
1715 if (ret)
1716 return ret;
1717
1718 ret = hns3vf_config_mtu(hw, mtu);
1719 if (ret)
1720 goto err_init_hardware;
1721
1722 ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1723 if (ret) {
1724 PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1725 goto err_init_hardware;
1726 }
1727
1728 ret = hns3_config_gro(hw, false);
1729 if (ret) {
1730 PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1731 goto err_init_hardware;
1732 }
1733
1734 /*
1735 * In the initialization clearing the all hardware mapping relationship
1736 * configurations between queues and interrupt vectors is needed, so
1737 * some error caused by the residual configurations, such as the
1738 * unexpected interrupt, can be avoid.
1739 */
1740 ret = hns3vf_init_ring_with_vector(hw);
1741 if (ret) {
1742 PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1743 goto err_init_hardware;
1744 }
1745
1746 ret = hns3vf_set_alive(hw, true);
1747 if (ret) {
1748 PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1749 goto err_init_hardware;
1750 }
1751
1752 hns3vf_request_link_info(hw);
1753 return 0;
1754
1755 err_init_hardware:
1756 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1757 return ret;
1758 }
1759
1760 static int
hns3vf_clear_vport_list(struct hns3_hw * hw)1761 hns3vf_clear_vport_list(struct hns3_hw *hw)
1762 {
1763 return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1764 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1765 NULL, 0);
1766 }
1767
1768 static int
hns3vf_init_vf(struct rte_eth_dev * eth_dev)1769 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1770 {
1771 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1772 struct hns3_adapter *hns = eth_dev->data->dev_private;
1773 struct hns3_hw *hw = &hns->hw;
1774 int ret;
1775
1776 PMD_INIT_FUNC_TRACE();
1777
1778 /* Get hardware io base address from pcie BAR2 IO space */
1779 hw->io_base = pci_dev->mem_resource[2].addr;
1780
1781 /* Firmware command queue initialize */
1782 ret = hns3_cmd_init_queue(hw);
1783 if (ret) {
1784 PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1785 goto err_cmd_init_queue;
1786 }
1787
1788 /* Firmware command initialize */
1789 ret = hns3_cmd_init(hw);
1790 if (ret) {
1791 PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1792 goto err_cmd_init;
1793 }
1794
1795 /* Get VF resource */
1796 ret = hns3_query_vf_resource(hw);
1797 if (ret)
1798 goto err_cmd_init;
1799
1800 rte_spinlock_init(&hw->mbx_resp.lock);
1801
1802 hns3vf_clear_event_cause(hw, 0);
1803
1804 ret = rte_intr_callback_register(&pci_dev->intr_handle,
1805 hns3vf_interrupt_handler, eth_dev);
1806 if (ret) {
1807 PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1808 goto err_intr_callback_register;
1809 }
1810
1811 /* Enable interrupt */
1812 rte_intr_enable(&pci_dev->intr_handle);
1813 hns3vf_enable_irq0(hw);
1814
1815 /* Get configuration from PF */
1816 ret = hns3vf_get_configuration(hw);
1817 if (ret) {
1818 PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1819 goto err_get_config;
1820 }
1821
1822 ret = hns3_tqp_stats_init(hw);
1823 if (ret)
1824 goto err_get_config;
1825
1826 ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1827 if (ret) {
1828 PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1829 goto err_set_tc_queue;
1830 }
1831
1832 ret = hns3vf_clear_vport_list(hw);
1833 if (ret) {
1834 PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1835 goto err_set_tc_queue;
1836 }
1837
1838 ret = hns3vf_init_hardware(hns);
1839 if (ret)
1840 goto err_set_tc_queue;
1841
1842 hns3_set_default_rss_args(hw);
1843
1844 return 0;
1845
1846 err_set_tc_queue:
1847 hns3_tqp_stats_uninit(hw);
1848
1849 err_get_config:
1850 hns3vf_disable_irq0(hw);
1851 rte_intr_disable(&pci_dev->intr_handle);
1852 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1853 eth_dev);
1854 err_intr_callback_register:
1855 err_cmd_init:
1856 hns3_cmd_uninit(hw);
1857 hns3_cmd_destroy_queue(hw);
1858 err_cmd_init_queue:
1859 hw->io_base = NULL;
1860
1861 return ret;
1862 }
1863
1864 static void
hns3vf_uninit_vf(struct rte_eth_dev * eth_dev)1865 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1866 {
1867 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1868 struct hns3_adapter *hns = eth_dev->data->dev_private;
1869 struct hns3_hw *hw = &hns->hw;
1870
1871 PMD_INIT_FUNC_TRACE();
1872
1873 hns3_rss_uninit(hns);
1874 (void)hns3_config_gro(hw, false);
1875 (void)hns3vf_set_alive(hw, false);
1876 (void)hns3vf_set_promisc_mode(hw, false, false, false);
1877 hns3_tqp_stats_uninit(hw);
1878 hns3vf_disable_irq0(hw);
1879 rte_intr_disable(&pci_dev->intr_handle);
1880 hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1881 eth_dev);
1882 hns3_cmd_uninit(hw);
1883 hns3_cmd_destroy_queue(hw);
1884 hw->io_base = NULL;
1885 }
1886
1887 static int
hns3vf_do_stop(struct hns3_adapter * hns)1888 hns3vf_do_stop(struct hns3_adapter *hns)
1889 {
1890 struct hns3_hw *hw = &hns->hw;
1891 int ret;
1892
1893 hw->mac.link_status = ETH_LINK_DOWN;
1894
1895 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1896 hns3vf_configure_mac_addr(hns, true);
1897 ret = hns3_reset_all_tqps(hns);
1898 if (ret) {
1899 hns3_err(hw, "failed to reset all queues ret = %d",
1900 ret);
1901 return ret;
1902 }
1903 }
1904 return 0;
1905 }
1906
1907 static void
hns3vf_unmap_rx_interrupt(struct rte_eth_dev * dev)1908 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1909 {
1910 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1911 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1912 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1913 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1914 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1915 uint16_t q_id;
1916
1917 if (dev->data->dev_conf.intr_conf.rxq == 0)
1918 return;
1919
1920 /* unmap the ring with vector */
1921 if (rte_intr_allow_others(intr_handle)) {
1922 vec = RTE_INTR_VEC_RXTX_OFFSET;
1923 base = RTE_INTR_VEC_RXTX_OFFSET;
1924 }
1925 if (rte_intr_dp_is_en(intr_handle)) {
1926 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1927 (void)hns3vf_bind_ring_with_vector(hw, vec, false,
1928 HNS3_RING_TYPE_RX,
1929 q_id);
1930 if (vec < base + intr_handle->nb_efd - 1)
1931 vec++;
1932 }
1933 }
1934 /* Clean datapath event and queue/vec mapping */
1935 rte_intr_efd_disable(intr_handle);
1936 if (intr_handle->intr_vec) {
1937 rte_free(intr_handle->intr_vec);
1938 intr_handle->intr_vec = NULL;
1939 }
1940 }
1941
1942 static int
hns3vf_dev_stop(struct rte_eth_dev * dev)1943 hns3vf_dev_stop(struct rte_eth_dev *dev)
1944 {
1945 struct hns3_adapter *hns = dev->data->dev_private;
1946 struct hns3_hw *hw = &hns->hw;
1947
1948 PMD_INIT_FUNC_TRACE();
1949 dev->data->dev_started = 0;
1950
1951 hw->adapter_state = HNS3_NIC_STOPPING;
1952 hns3_set_rxtx_function(dev);
1953 rte_wmb();
1954 /* Disable datapath on secondary process. */
1955 hns3_mp_req_stop_rxtx(dev);
1956 /* Prevent crashes when queues are still in use. */
1957 rte_delay_ms(hw->tqps_num);
1958
1959 rte_spinlock_lock(&hw->lock);
1960 if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1961 hns3_stop_tqps(hw);
1962 hns3vf_do_stop(hns);
1963 hns3vf_unmap_rx_interrupt(dev);
1964 hns3_dev_release_mbufs(hns);
1965 hw->adapter_state = HNS3_NIC_CONFIGURED;
1966 }
1967 hns3_rx_scattered_reset(dev);
1968 rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1969 rte_spinlock_unlock(&hw->lock);
1970
1971 return 0;
1972 }
1973
1974 static int
hns3vf_dev_close(struct rte_eth_dev * eth_dev)1975 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1976 {
1977 struct hns3_adapter *hns = eth_dev->data->dev_private;
1978 struct hns3_hw *hw = &hns->hw;
1979 int ret = 0;
1980
1981 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1982 return 0;
1983
1984 if (hw->adapter_state == HNS3_NIC_STARTED)
1985 ret = hns3vf_dev_stop(eth_dev);
1986
1987 hw->adapter_state = HNS3_NIC_CLOSING;
1988 hns3_reset_abort(hns);
1989 hw->adapter_state = HNS3_NIC_CLOSED;
1990 rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1991 hns3vf_configure_all_mc_mac_addr(hns, true);
1992 hns3vf_remove_all_vlan_table(hns);
1993 hns3vf_uninit_vf(eth_dev);
1994 hns3_free_all_queues(eth_dev);
1995 rte_free(hw->reset.wait_data);
1996 rte_free(eth_dev->process_private);
1997 eth_dev->process_private = NULL;
1998 hns3_mp_uninit_primary();
1999 hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2000
2001 return ret;
2002 }
2003
2004 static int
hns3vf_fw_version_get(struct rte_eth_dev * eth_dev,char * fw_version,size_t fw_size)2005 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2006 size_t fw_size)
2007 {
2008 struct hns3_adapter *hns = eth_dev->data->dev_private;
2009 struct hns3_hw *hw = &hns->hw;
2010 uint32_t version = hw->fw_version;
2011 int ret;
2012
2013 ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2014 hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2015 HNS3_FW_VERSION_BYTE3_S),
2016 hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2017 HNS3_FW_VERSION_BYTE2_S),
2018 hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2019 HNS3_FW_VERSION_BYTE1_S),
2020 hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2021 HNS3_FW_VERSION_BYTE0_S));
2022 ret += 1; /* add the size of '\0' */
2023 if (fw_size < (uint32_t)ret)
2024 return ret;
2025 else
2026 return 0;
2027 }
2028
2029 static int
hns3vf_dev_link_update(struct rte_eth_dev * eth_dev,__rte_unused int wait_to_complete)2030 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2031 __rte_unused int wait_to_complete)
2032 {
2033 struct hns3_adapter *hns = eth_dev->data->dev_private;
2034 struct hns3_hw *hw = &hns->hw;
2035 struct hns3_mac *mac = &hw->mac;
2036 struct rte_eth_link new_link;
2037
2038 memset(&new_link, 0, sizeof(new_link));
2039 switch (mac->link_speed) {
2040 case ETH_SPEED_NUM_10M:
2041 case ETH_SPEED_NUM_100M:
2042 case ETH_SPEED_NUM_1G:
2043 case ETH_SPEED_NUM_10G:
2044 case ETH_SPEED_NUM_25G:
2045 case ETH_SPEED_NUM_40G:
2046 case ETH_SPEED_NUM_50G:
2047 case ETH_SPEED_NUM_100G:
2048 case ETH_SPEED_NUM_200G:
2049 new_link.link_speed = mac->link_speed;
2050 break;
2051 default:
2052 new_link.link_speed = ETH_SPEED_NUM_100M;
2053 break;
2054 }
2055
2056 new_link.link_duplex = mac->link_duplex;
2057 new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2058 new_link.link_autoneg =
2059 !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2060
2061 return rte_eth_linkstatus_set(eth_dev, &new_link);
2062 }
2063
2064 static int
hns3vf_do_start(struct hns3_adapter * hns,bool reset_queue)2065 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2066 {
2067 struct hns3_hw *hw = &hns->hw;
2068 uint16_t nb_rx_q = hw->data->nb_rx_queues;
2069 uint16_t nb_tx_q = hw->data->nb_tx_queues;
2070 int ret;
2071
2072 ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2073 if (ret)
2074 return ret;
2075
2076 ret = hns3_init_queues(hns, reset_queue);
2077 if (ret)
2078 hns3_err(hw, "failed to init queues, ret = %d.", ret);
2079
2080 return ret;
2081 }
2082
2083 static int
hns3vf_map_rx_interrupt(struct rte_eth_dev * dev)2084 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2085 {
2086 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2087 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2088 struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2089 uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2090 uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2091 uint32_t intr_vector;
2092 uint16_t q_id;
2093 int ret;
2094
2095 if (dev->data->dev_conf.intr_conf.rxq == 0)
2096 return 0;
2097
2098 /* disable uio/vfio intr/eventfd mapping */
2099 rte_intr_disable(intr_handle);
2100
2101 /* check and configure queue intr-vector mapping */
2102 if (rte_intr_cap_multiple(intr_handle) ||
2103 !RTE_ETH_DEV_SRIOV(dev).active) {
2104 intr_vector = hw->used_rx_queues;
2105 /* It creates event fd for each intr vector when MSIX is used */
2106 if (rte_intr_efd_enable(intr_handle, intr_vector))
2107 return -EINVAL;
2108 }
2109 if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2110 intr_handle->intr_vec =
2111 rte_zmalloc("intr_vec",
2112 hw->used_rx_queues * sizeof(int), 0);
2113 if (intr_handle->intr_vec == NULL) {
2114 hns3_err(hw, "Failed to allocate %u rx_queues"
2115 " intr_vec", hw->used_rx_queues);
2116 ret = -ENOMEM;
2117 goto vf_alloc_intr_vec_error;
2118 }
2119 }
2120
2121 if (rte_intr_allow_others(intr_handle)) {
2122 vec = RTE_INTR_VEC_RXTX_OFFSET;
2123 base = RTE_INTR_VEC_RXTX_OFFSET;
2124 }
2125 if (rte_intr_dp_is_en(intr_handle)) {
2126 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2127 ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2128 HNS3_RING_TYPE_RX,
2129 q_id);
2130 if (ret)
2131 goto vf_bind_vector_error;
2132 intr_handle->intr_vec[q_id] = vec;
2133 if (vec < base + intr_handle->nb_efd - 1)
2134 vec++;
2135 }
2136 }
2137 rte_intr_enable(intr_handle);
2138 return 0;
2139
2140 vf_bind_vector_error:
2141 rte_intr_efd_disable(intr_handle);
2142 if (intr_handle->intr_vec) {
2143 free(intr_handle->intr_vec);
2144 intr_handle->intr_vec = NULL;
2145 }
2146 return ret;
2147 vf_alloc_intr_vec_error:
2148 rte_intr_efd_disable(intr_handle);
2149 return ret;
2150 }
2151
2152 static int
hns3vf_restore_rx_interrupt(struct hns3_hw * hw)2153 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2154 {
2155 struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2156 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2157 struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2158 uint16_t q_id;
2159 int ret;
2160
2161 if (dev->data->dev_conf.intr_conf.rxq == 0)
2162 return 0;
2163
2164 if (rte_intr_dp_is_en(intr_handle)) {
2165 for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2166 ret = hns3vf_bind_ring_with_vector(hw,
2167 intr_handle->intr_vec[q_id], true,
2168 HNS3_RING_TYPE_RX, q_id);
2169 if (ret)
2170 return ret;
2171 }
2172 }
2173
2174 return 0;
2175 }
2176
2177 static void
hns3vf_restore_filter(struct rte_eth_dev * dev)2178 hns3vf_restore_filter(struct rte_eth_dev *dev)
2179 {
2180 hns3_restore_rss_filter(dev);
2181 }
2182
2183 static int
hns3vf_dev_start(struct rte_eth_dev * dev)2184 hns3vf_dev_start(struct rte_eth_dev *dev)
2185 {
2186 struct hns3_adapter *hns = dev->data->dev_private;
2187 struct hns3_hw *hw = &hns->hw;
2188 int ret;
2189
2190 PMD_INIT_FUNC_TRACE();
2191 if (rte_atomic16_read(&hw->reset.resetting))
2192 return -EBUSY;
2193
2194 rte_spinlock_lock(&hw->lock);
2195 hw->adapter_state = HNS3_NIC_STARTING;
2196 ret = hns3vf_do_start(hns, true);
2197 if (ret) {
2198 hw->adapter_state = HNS3_NIC_CONFIGURED;
2199 rte_spinlock_unlock(&hw->lock);
2200 return ret;
2201 }
2202 ret = hns3vf_map_rx_interrupt(dev);
2203 if (ret) {
2204 hw->adapter_state = HNS3_NIC_CONFIGURED;
2205 rte_spinlock_unlock(&hw->lock);
2206 return ret;
2207 }
2208
2209 /*
2210 * There are three register used to control the status of a TQP
2211 * (contains a pair of Tx queue and Rx queue) in the new version network
2212 * engine. One is used to control the enabling of Tx queue, the other is
2213 * used to control the enabling of Rx queue, and the last is the master
2214 * switch used to control the enabling of the tqp. The Tx register and
2215 * TQP register must be enabled at the same time to enable a Tx queue.
2216 * The same applies to the Rx queue. For the older network enginem, this
2217 * function only refresh the enabled flag, and it is used to update the
2218 * status of queue in the dpdk framework.
2219 */
2220 ret = hns3_start_all_txqs(dev);
2221 if (ret) {
2222 hw->adapter_state = HNS3_NIC_CONFIGURED;
2223 rte_spinlock_unlock(&hw->lock);
2224 return ret;
2225 }
2226
2227 ret = hns3_start_all_rxqs(dev);
2228 if (ret) {
2229 hns3_stop_all_txqs(dev);
2230 hw->adapter_state = HNS3_NIC_CONFIGURED;
2231 rte_spinlock_unlock(&hw->lock);
2232 return ret;
2233 }
2234
2235 hw->adapter_state = HNS3_NIC_STARTED;
2236 rte_spinlock_unlock(&hw->lock);
2237
2238 hns3_rx_scattered_calc(dev);
2239 hns3_set_rxtx_function(dev);
2240 hns3_mp_req_start_rxtx(dev);
2241 rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2242
2243 hns3vf_restore_filter(dev);
2244
2245 /* Enable interrupt of all rx queues before enabling queues */
2246 hns3_dev_all_rx_queue_intr_enable(hw, true);
2247
2248 /*
2249 * After finished the initialization, start all tqps to receive/transmit
2250 * packets and refresh all queue status.
2251 */
2252 hns3_start_tqps(hw);
2253
2254 return ret;
2255 }
2256
2257 static bool
is_vf_reset_done(struct hns3_hw * hw)2258 is_vf_reset_done(struct hns3_hw *hw)
2259 {
2260 #define HNS3_FUN_RST_ING_BITS \
2261 (BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2262 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2263 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2264 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2265
2266 uint32_t val;
2267
2268 if (hw->reset.level == HNS3_VF_RESET) {
2269 val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2270 if (val & HNS3_VF_RST_ING_BIT)
2271 return false;
2272 } else {
2273 val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2274 if (val & HNS3_FUN_RST_ING_BITS)
2275 return false;
2276 }
2277 return true;
2278 }
2279
2280 bool
hns3vf_is_reset_pending(struct hns3_adapter * hns)2281 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2282 {
2283 struct hns3_hw *hw = &hns->hw;
2284 enum hns3_reset_level reset;
2285
2286 /*
2287 * According to the protocol of PCIe, FLR to a PF device resets the PF
2288 * state as well as the SR-IOV extended capability including VF Enable
2289 * which means that VFs no longer exist.
2290 *
2291 * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2292 * is in FLR stage, the register state of VF device is not reliable,
2293 * so register states detection can not be carried out. In this case,
2294 * we just ignore the register states and return false to indicate that
2295 * there are no other reset states that need to be processed by driver.
2296 */
2297 if (hw->reset.level == HNS3_VF_FULL_RESET)
2298 return false;
2299
2300 /* Check the registers to confirm whether there is reset pending */
2301 hns3vf_check_event_cause(hns, NULL);
2302 reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2303 if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2304 hns3_warn(hw, "High level reset %d is pending", reset);
2305 return true;
2306 }
2307 return false;
2308 }
2309
2310 static int
hns3vf_wait_hardware_ready(struct hns3_adapter * hns)2311 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2312 {
2313 struct hns3_hw *hw = &hns->hw;
2314 struct hns3_wait_data *wait_data = hw->reset.wait_data;
2315 struct timeval tv;
2316
2317 if (wait_data->result == HNS3_WAIT_SUCCESS) {
2318 /*
2319 * After vf reset is ready, the PF may not have completed
2320 * the reset processing. The vf sending mbox to PF may fail
2321 * during the pf reset, so it is better to add extra delay.
2322 */
2323 if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2324 hw->reset.level == HNS3_FLR_RESET)
2325 return 0;
2326 /* Reset retry process, no need to add extra delay. */
2327 if (hw->reset.attempts)
2328 return 0;
2329 if (wait_data->check_completion == NULL)
2330 return 0;
2331
2332 wait_data->check_completion = NULL;
2333 wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2334 wait_data->count = 1;
2335 wait_data->result = HNS3_WAIT_REQUEST;
2336 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2337 wait_data);
2338 hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2339 return -EAGAIN;
2340 } else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2341 gettimeofday(&tv, NULL);
2342 hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2343 tv.tv_sec, tv.tv_usec);
2344 return -ETIME;
2345 } else if (wait_data->result == HNS3_WAIT_REQUEST)
2346 return -EAGAIN;
2347
2348 wait_data->hns = hns;
2349 wait_data->check_completion = is_vf_reset_done;
2350 wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2351 HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2352 wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2353 wait_data->count = HNS3VF_RESET_WAIT_CNT;
2354 wait_data->result = HNS3_WAIT_REQUEST;
2355 rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2356 return -EAGAIN;
2357 }
2358
2359 static int
hns3vf_prepare_reset(struct hns3_adapter * hns)2360 hns3vf_prepare_reset(struct hns3_adapter *hns)
2361 {
2362 struct hns3_hw *hw = &hns->hw;
2363 int ret = 0;
2364
2365 if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2366 ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2367 0, true, NULL, 0);
2368 }
2369 rte_atomic16_set(&hw->reset.disable_cmd, 1);
2370
2371 return ret;
2372 }
2373
2374 static int
hns3vf_stop_service(struct hns3_adapter * hns)2375 hns3vf_stop_service(struct hns3_adapter *hns)
2376 {
2377 struct hns3_hw *hw = &hns->hw;
2378 struct rte_eth_dev *eth_dev;
2379
2380 eth_dev = &rte_eth_devices[hw->data->port_id];
2381 if (hw->adapter_state == HNS3_NIC_STARTED)
2382 rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2383 hw->mac.link_status = ETH_LINK_DOWN;
2384
2385 hns3_set_rxtx_function(eth_dev);
2386 rte_wmb();
2387 /* Disable datapath on secondary process. */
2388 hns3_mp_req_stop_rxtx(eth_dev);
2389 rte_delay_ms(hw->tqps_num);
2390
2391 rte_spinlock_lock(&hw->lock);
2392 if (hw->adapter_state == HNS3_NIC_STARTED ||
2393 hw->adapter_state == HNS3_NIC_STOPPING) {
2394 hns3_enable_all_queues(hw, false);
2395 hns3vf_do_stop(hns);
2396 hw->reset.mbuf_deferred_free = true;
2397 } else
2398 hw->reset.mbuf_deferred_free = false;
2399
2400 /*
2401 * It is cumbersome for hardware to pick-and-choose entries for deletion
2402 * from table space. Hence, for function reset software intervention is
2403 * required to delete the entries.
2404 */
2405 if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2406 hns3vf_configure_all_mc_mac_addr(hns, true);
2407 rte_spinlock_unlock(&hw->lock);
2408
2409 return 0;
2410 }
2411
2412 static int
hns3vf_start_service(struct hns3_adapter * hns)2413 hns3vf_start_service(struct hns3_adapter *hns)
2414 {
2415 struct hns3_hw *hw = &hns->hw;
2416 struct rte_eth_dev *eth_dev;
2417
2418 eth_dev = &rte_eth_devices[hw->data->port_id];
2419 hns3_set_rxtx_function(eth_dev);
2420 hns3_mp_req_start_rxtx(eth_dev);
2421 if (hw->adapter_state == HNS3_NIC_STARTED) {
2422 hns3vf_service_handler(eth_dev);
2423
2424 /* Enable interrupt of all rx queues before enabling queues */
2425 hns3_dev_all_rx_queue_intr_enable(hw, true);
2426 /*
2427 * Enable state of each rxq and txq will be recovered after
2428 * reset, so we need to restore them before enable all tqps;
2429 */
2430 hns3_restore_tqp_enable_state(hw);
2431 /*
2432 * When finished the initialization, enable queues to receive
2433 * and transmit packets.
2434 */
2435 hns3_enable_all_queues(hw, true);
2436 }
2437
2438 return 0;
2439 }
2440
2441 static int
hns3vf_check_default_mac_change(struct hns3_hw * hw)2442 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2443 {
2444 char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2445 struct rte_ether_addr *hw_mac;
2446 int ret;
2447
2448 /*
2449 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2450 * on the host by "ip link set ..." command. If the hns3 PF kernel
2451 * ethdev driver sets the MAC address for VF device after the
2452 * initialization of the related VF device, the PF driver will notify
2453 * VF driver to reset VF device to make the new MAC address effective
2454 * immediately. The hns3 VF PMD driver should check whether the MAC
2455 * address has been changed by the PF kernel ethdev driver, if changed
2456 * VF driver should configure hardware using the new MAC address in the
2457 * recovering hardware configuration stage of the reset process.
2458 */
2459 ret = hns3vf_get_host_mac_addr(hw);
2460 if (ret)
2461 return ret;
2462
2463 hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2464 ret = rte_is_zero_ether_addr(hw_mac);
2465 if (ret) {
2466 rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2467 } else {
2468 ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2469 if (!ret) {
2470 rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2471 rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2472 &hw->data->mac_addrs[0]);
2473 hns3_warn(hw, "Default MAC address has been changed to:"
2474 " %s by the host PF kernel ethdev driver",
2475 mac_str);
2476 }
2477 }
2478
2479 return 0;
2480 }
2481
2482 static int
hns3vf_restore_conf(struct hns3_adapter * hns)2483 hns3vf_restore_conf(struct hns3_adapter *hns)
2484 {
2485 struct hns3_hw *hw = &hns->hw;
2486 int ret;
2487
2488 ret = hns3vf_check_default_mac_change(hw);
2489 if (ret)
2490 return ret;
2491
2492 ret = hns3vf_configure_mac_addr(hns, false);
2493 if (ret)
2494 return ret;
2495
2496 ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2497 if (ret)
2498 goto err_mc_mac;
2499
2500 ret = hns3vf_restore_promisc(hns);
2501 if (ret)
2502 goto err_vlan_table;
2503
2504 ret = hns3vf_restore_vlan_conf(hns);
2505 if (ret)
2506 goto err_vlan_table;
2507
2508 ret = hns3vf_get_port_base_vlan_filter_state(hw);
2509 if (ret)
2510 goto err_vlan_table;
2511
2512 ret = hns3vf_restore_rx_interrupt(hw);
2513 if (ret)
2514 goto err_vlan_table;
2515
2516 ret = hns3_restore_gro_conf(hw);
2517 if (ret)
2518 goto err_vlan_table;
2519
2520 if (hw->adapter_state == HNS3_NIC_STARTED) {
2521 ret = hns3vf_do_start(hns, false);
2522 if (ret)
2523 goto err_vlan_table;
2524 hns3_info(hw, "hns3vf dev restart successful!");
2525 } else if (hw->adapter_state == HNS3_NIC_STOPPING)
2526 hw->adapter_state = HNS3_NIC_CONFIGURED;
2527 return 0;
2528
2529 err_vlan_table:
2530 hns3vf_configure_all_mc_mac_addr(hns, true);
2531 err_mc_mac:
2532 hns3vf_configure_mac_addr(hns, true);
2533 return ret;
2534 }
2535
2536 static enum hns3_reset_level
hns3vf_get_reset_level(struct hns3_hw * hw,uint64_t * levels)2537 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2538 {
2539 enum hns3_reset_level reset_level;
2540
2541 /* return the highest priority reset level amongst all */
2542 if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2543 reset_level = HNS3_VF_RESET;
2544 else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2545 reset_level = HNS3_VF_FULL_RESET;
2546 else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2547 reset_level = HNS3_VF_PF_FUNC_RESET;
2548 else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2549 reset_level = HNS3_VF_FUNC_RESET;
2550 else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2551 reset_level = HNS3_FLR_RESET;
2552 else
2553 reset_level = HNS3_NONE_RESET;
2554
2555 if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2556 return HNS3_NONE_RESET;
2557
2558 return reset_level;
2559 }
2560
2561 static void
hns3vf_reset_service(void * param)2562 hns3vf_reset_service(void *param)
2563 {
2564 struct hns3_adapter *hns = (struct hns3_adapter *)param;
2565 struct hns3_hw *hw = &hns->hw;
2566 enum hns3_reset_level reset_level;
2567 struct timeval tv_delta;
2568 struct timeval tv_start;
2569 struct timeval tv;
2570 uint64_t msec;
2571
2572 /*
2573 * The interrupt is not triggered within the delay time.
2574 * The interrupt may have been lost. It is necessary to handle
2575 * the interrupt to recover from the error.
2576 */
2577 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2578 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2579 hns3_err(hw, "Handling interrupts in delayed tasks");
2580 hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2581 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2582 if (reset_level == HNS3_NONE_RESET) {
2583 hns3_err(hw, "No reset level is set, try global reset");
2584 hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2585 }
2586 }
2587 rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2588
2589 /*
2590 * Hardware reset has been notified, we now have to poll & check if
2591 * hardware has actually completed the reset sequence.
2592 */
2593 reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2594 if (reset_level != HNS3_NONE_RESET) {
2595 gettimeofday(&tv_start, NULL);
2596 hns3_reset_process(hns, reset_level);
2597 gettimeofday(&tv, NULL);
2598 timersub(&tv, &tv_start, &tv_delta);
2599 msec = tv_delta.tv_sec * MSEC_PER_SEC +
2600 tv_delta.tv_usec / USEC_PER_MSEC;
2601 if (msec > HNS3_RESET_PROCESS_MS)
2602 hns3_err(hw, "%d handle long time delta %" PRIx64
2603 " ms time=%ld.%.6ld",
2604 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2605 }
2606 }
2607
2608 static int
hns3vf_reinit_dev(struct hns3_adapter * hns)2609 hns3vf_reinit_dev(struct hns3_adapter *hns)
2610 {
2611 struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2612 struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2613 struct hns3_hw *hw = &hns->hw;
2614 int ret;
2615
2616 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2617 rte_intr_disable(&pci_dev->intr_handle);
2618 ret = hns3vf_set_bus_master(pci_dev, true);
2619 if (ret < 0) {
2620 hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2621 return ret;
2622 }
2623 }
2624
2625 /* Firmware command initialize */
2626 ret = hns3_cmd_init(hw);
2627 if (ret) {
2628 hns3_err(hw, "Failed to init cmd: %d", ret);
2629 return ret;
2630 }
2631
2632 if (hw->reset.level == HNS3_VF_FULL_RESET) {
2633 /*
2634 * UIO enables msix by writing the pcie configuration space
2635 * vfio_pci enables msix in rte_intr_enable.
2636 */
2637 if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2638 pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2639 if (hns3vf_enable_msix(pci_dev, true))
2640 hns3_err(hw, "Failed to enable msix");
2641 }
2642
2643 rte_intr_enable(&pci_dev->intr_handle);
2644 }
2645
2646 ret = hns3_reset_all_tqps(hns);
2647 if (ret) {
2648 hns3_err(hw, "Failed to reset all queues: %d", ret);
2649 return ret;
2650 }
2651
2652 ret = hns3vf_init_hardware(hns);
2653 if (ret) {
2654 hns3_err(hw, "Failed to init hardware: %d", ret);
2655 return ret;
2656 }
2657
2658 return 0;
2659 }
2660
2661 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2662 .dev_configure = hns3vf_dev_configure,
2663 .dev_start = hns3vf_dev_start,
2664 .dev_stop = hns3vf_dev_stop,
2665 .dev_close = hns3vf_dev_close,
2666 .mtu_set = hns3vf_dev_mtu_set,
2667 .promiscuous_enable = hns3vf_dev_promiscuous_enable,
2668 .promiscuous_disable = hns3vf_dev_promiscuous_disable,
2669 .allmulticast_enable = hns3vf_dev_allmulticast_enable,
2670 .allmulticast_disable = hns3vf_dev_allmulticast_disable,
2671 .stats_get = hns3_stats_get,
2672 .stats_reset = hns3_stats_reset,
2673 .xstats_get = hns3_dev_xstats_get,
2674 .xstats_get_names = hns3_dev_xstats_get_names,
2675 .xstats_reset = hns3_dev_xstats_reset,
2676 .xstats_get_by_id = hns3_dev_xstats_get_by_id,
2677 .xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2678 .dev_infos_get = hns3vf_dev_infos_get,
2679 .fw_version_get = hns3vf_fw_version_get,
2680 .rx_queue_setup = hns3_rx_queue_setup,
2681 .tx_queue_setup = hns3_tx_queue_setup,
2682 .rx_queue_release = hns3_dev_rx_queue_release,
2683 .tx_queue_release = hns3_dev_tx_queue_release,
2684 .rx_queue_start = hns3_dev_rx_queue_start,
2685 .rx_queue_stop = hns3_dev_rx_queue_stop,
2686 .tx_queue_start = hns3_dev_tx_queue_start,
2687 .tx_queue_stop = hns3_dev_tx_queue_stop,
2688 .rx_queue_intr_enable = hns3_dev_rx_queue_intr_enable,
2689 .rx_queue_intr_disable = hns3_dev_rx_queue_intr_disable,
2690 .rxq_info_get = hns3_rxq_info_get,
2691 .txq_info_get = hns3_txq_info_get,
2692 .rx_burst_mode_get = hns3_rx_burst_mode_get,
2693 .tx_burst_mode_get = hns3_tx_burst_mode_get,
2694 .mac_addr_add = hns3vf_add_mac_addr,
2695 .mac_addr_remove = hns3vf_remove_mac_addr,
2696 .mac_addr_set = hns3vf_set_default_mac_addr,
2697 .set_mc_addr_list = hns3vf_set_mc_mac_addr_list,
2698 .link_update = hns3vf_dev_link_update,
2699 .rss_hash_update = hns3_dev_rss_hash_update,
2700 .rss_hash_conf_get = hns3_dev_rss_hash_conf_get,
2701 .reta_update = hns3_dev_rss_reta_update,
2702 .reta_query = hns3_dev_rss_reta_query,
2703 .filter_ctrl = hns3_dev_filter_ctrl,
2704 .vlan_filter_set = hns3vf_vlan_filter_set,
2705 .vlan_offload_set = hns3vf_vlan_offload_set,
2706 .get_reg = hns3_get_regs,
2707 .dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2708 };
2709
2710 static const struct hns3_reset_ops hns3vf_reset_ops = {
2711 .reset_service = hns3vf_reset_service,
2712 .stop_service = hns3vf_stop_service,
2713 .prepare_reset = hns3vf_prepare_reset,
2714 .wait_hardware_ready = hns3vf_wait_hardware_ready,
2715 .reinit_dev = hns3vf_reinit_dev,
2716 .restore_conf = hns3vf_restore_conf,
2717 .start_service = hns3vf_start_service,
2718 };
2719
2720 static int
hns3vf_dev_init(struct rte_eth_dev * eth_dev)2721 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2722 {
2723 struct hns3_adapter *hns = eth_dev->data->dev_private;
2724 struct hns3_hw *hw = &hns->hw;
2725 int ret;
2726
2727 PMD_INIT_FUNC_TRACE();
2728
2729 eth_dev->process_private = (struct hns3_process_private *)
2730 rte_zmalloc_socket("hns3_filter_list",
2731 sizeof(struct hns3_process_private),
2732 RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2733 if (eth_dev->process_private == NULL) {
2734 PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2735 return -ENOMEM;
2736 }
2737
2738 /* initialize flow filter lists */
2739 hns3_filterlist_init(eth_dev);
2740
2741 hns3_set_rxtx_function(eth_dev);
2742 eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2743 eth_dev->rx_queue_count = hns3_rx_queue_count;
2744 if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2745 ret = hns3_mp_init_secondary();
2746 if (ret) {
2747 PMD_INIT_LOG(ERR, "Failed to init for secondary "
2748 "process, ret = %d", ret);
2749 goto err_mp_init_secondary;
2750 }
2751
2752 hw->secondary_cnt++;
2753 return 0;
2754 }
2755
2756 eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2757
2758 ret = hns3_mp_init_primary();
2759 if (ret) {
2760 PMD_INIT_LOG(ERR,
2761 "Failed to init for primary process, ret = %d",
2762 ret);
2763 goto err_mp_init_primary;
2764 }
2765
2766 hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2767 hns->is_vf = true;
2768 hw->data = eth_dev->data;
2769
2770 ret = hns3_reset_init(hw);
2771 if (ret)
2772 goto err_init_reset;
2773 hw->reset.ops = &hns3vf_reset_ops;
2774
2775 ret = hns3vf_init_vf(eth_dev);
2776 if (ret) {
2777 PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2778 goto err_init_vf;
2779 }
2780
2781 /* Allocate memory for storing MAC addresses */
2782 eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2783 sizeof(struct rte_ether_addr) *
2784 HNS3_VF_UC_MACADDR_NUM, 0);
2785 if (eth_dev->data->mac_addrs == NULL) {
2786 PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2787 "to store MAC addresses",
2788 sizeof(struct rte_ether_addr) *
2789 HNS3_VF_UC_MACADDR_NUM);
2790 ret = -ENOMEM;
2791 goto err_rte_zmalloc;
2792 }
2793
2794 /*
2795 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2796 * on the host by "ip link set ..." command. To avoid some incorrect
2797 * scenes, for example, hns3 VF PMD driver fails to receive and send
2798 * packets after user configure the MAC address by using the
2799 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2800 * address strategy as the hns3 kernel ethdev driver in the
2801 * initialization. If user configure a MAC address by the ip command
2802 * for VF device, then hns3 VF PMD driver will start with it, otherwise
2803 * start with a random MAC address in the initialization.
2804 */
2805 if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2806 rte_eth_random_addr(hw->mac.mac_addr);
2807 rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2808 ð_dev->data->mac_addrs[0]);
2809
2810 hw->adapter_state = HNS3_NIC_INITIALIZED;
2811
2812 if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2813 hns3_err(hw, "Reschedule reset service after dev_init");
2814 hns3_schedule_reset(hns);
2815 } else {
2816 /* IMP will wait ready flag before reset */
2817 hns3_notify_reset_ready(hw, false);
2818 }
2819 rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2820 eth_dev);
2821 return 0;
2822
2823 err_rte_zmalloc:
2824 hns3vf_uninit_vf(eth_dev);
2825
2826 err_init_vf:
2827 rte_free(hw->reset.wait_data);
2828
2829 err_init_reset:
2830 hns3_mp_uninit_primary();
2831
2832 err_mp_init_primary:
2833 err_mp_init_secondary:
2834 eth_dev->dev_ops = NULL;
2835 eth_dev->rx_pkt_burst = NULL;
2836 eth_dev->tx_pkt_burst = NULL;
2837 eth_dev->tx_pkt_prepare = NULL;
2838 rte_free(eth_dev->process_private);
2839 eth_dev->process_private = NULL;
2840
2841 return ret;
2842 }
2843
2844 static int
hns3vf_dev_uninit(struct rte_eth_dev * eth_dev)2845 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2846 {
2847 struct hns3_adapter *hns = eth_dev->data->dev_private;
2848 struct hns3_hw *hw = &hns->hw;
2849
2850 PMD_INIT_FUNC_TRACE();
2851
2852 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2853 return -EPERM;
2854
2855 if (hw->adapter_state < HNS3_NIC_CLOSING)
2856 hns3vf_dev_close(eth_dev);
2857
2858 hw->adapter_state = HNS3_NIC_REMOVED;
2859 return 0;
2860 }
2861
2862 static int
eth_hns3vf_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)2863 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2864 struct rte_pci_device *pci_dev)
2865 {
2866 return rte_eth_dev_pci_generic_probe(pci_dev,
2867 sizeof(struct hns3_adapter),
2868 hns3vf_dev_init);
2869 }
2870
2871 static int
eth_hns3vf_pci_remove(struct rte_pci_device * pci_dev)2872 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2873 {
2874 return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2875 }
2876
2877 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2878 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2879 { RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2880 { .vendor_id = 0, }, /* sentinel */
2881 };
2882
2883 static struct rte_pci_driver rte_hns3vf_pmd = {
2884 .id_table = pci_id_hns3vf_map,
2885 .drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2886 .probe = eth_hns3vf_pci_probe,
2887 .remove = eth_hns3vf_pci_remove,
2888 };
2889
2890 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2891 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2892 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2893