xref: /f-stack/dpdk/drivers/net/hns3/hns3_ethdev_vf.c (revision 2d9fd380)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018-2019 Hisilicon Limited.
3  */
4 
5 #include <linux/pci_regs.h>
6 #include <rte_alarm.h>
7 #include <rte_ethdev_pci.h>
8 #include <rte_io.h>
9 #include <rte_pci.h>
10 #include <rte_vfio.h>
11 
12 #include "hns3_ethdev.h"
13 #include "hns3_logs.h"
14 #include "hns3_rxtx.h"
15 #include "hns3_regs.h"
16 #include "hns3_intr.h"
17 #include "hns3_dcb.h"
18 #include "hns3_mp.h"
19 
20 #define HNS3VF_KEEP_ALIVE_INTERVAL	2000000 /* us */
21 #define HNS3VF_SERVICE_INTERVAL		1000000 /* us */
22 
23 #define HNS3VF_RESET_WAIT_MS	20
24 #define HNS3VF_RESET_WAIT_CNT	2000
25 
26 /* Reset related Registers */
27 #define HNS3_GLOBAL_RESET_BIT		0
28 #define HNS3_CORE_RESET_BIT		1
29 #define HNS3_IMP_RESET_BIT		2
30 #define HNS3_FUN_RST_ING_B		0
31 
32 enum hns3vf_evt_cause {
33 	HNS3VF_VECTOR0_EVENT_RST,
34 	HNS3VF_VECTOR0_EVENT_MBX,
35 	HNS3VF_VECTOR0_EVENT_OTHER,
36 };
37 
38 static enum hns3_reset_level hns3vf_get_reset_level(struct hns3_hw *hw,
39 						    uint64_t *levels);
40 static int hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
41 static int hns3vf_dev_configure_vlan(struct rte_eth_dev *dev);
42 
43 static int hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
44 				  struct rte_ether_addr *mac_addr);
45 static int hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
46 				     struct rte_ether_addr *mac_addr);
47 /* set PCI bus mastering */
48 static int
hns3vf_set_bus_master(const struct rte_pci_device * device,bool op)49 hns3vf_set_bus_master(const struct rte_pci_device *device, bool op)
50 {
51 	uint16_t reg;
52 	int ret;
53 
54 	ret = rte_pci_read_config(device, &reg, sizeof(reg), PCI_COMMAND);
55 	if (ret < 0) {
56 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
57 			     PCI_COMMAND);
58 		return ret;
59 	}
60 
61 	if (op)
62 		/* set the master bit */
63 		reg |= PCI_COMMAND_MASTER;
64 	else
65 		reg &= ~(PCI_COMMAND_MASTER);
66 
67 	return rte_pci_write_config(device, &reg, sizeof(reg), PCI_COMMAND);
68 }
69 
70 /**
71  * hns3vf_find_pci_capability - lookup a capability in the PCI capability list
72  * @cap: the capability
73  *
74  * Return the address of the given capability within the PCI capability list.
75  */
76 static int
hns3vf_find_pci_capability(const struct rte_pci_device * device,int cap)77 hns3vf_find_pci_capability(const struct rte_pci_device *device, int cap)
78 {
79 #define MAX_PCIE_CAPABILITY 48
80 	uint16_t status;
81 	uint8_t pos;
82 	uint8_t id;
83 	int ttl;
84 	int ret;
85 
86 	ret = rte_pci_read_config(device, &status, sizeof(status), PCI_STATUS);
87 	if (ret < 0) {
88 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x", PCI_STATUS);
89 		return 0;
90 	}
91 
92 	if (!(status & PCI_STATUS_CAP_LIST))
93 		return 0;
94 
95 	ttl = MAX_PCIE_CAPABILITY;
96 	ret = rte_pci_read_config(device, &pos, sizeof(pos),
97 				  PCI_CAPABILITY_LIST);
98 	if (ret < 0) {
99 		PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
100 			     PCI_CAPABILITY_LIST);
101 		return 0;
102 	}
103 
104 	while (ttl-- && pos >= PCI_STD_HEADER_SIZEOF) {
105 		ret = rte_pci_read_config(device, &id, sizeof(id),
106 					  (pos + PCI_CAP_LIST_ID));
107 		if (ret < 0) {
108 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
109 				     (pos + PCI_CAP_LIST_ID));
110 			break;
111 		}
112 
113 		if (id == 0xFF)
114 			break;
115 
116 		if (id == cap)
117 			return (int)pos;
118 
119 		ret = rte_pci_read_config(device, &pos, sizeof(pos),
120 					  (pos + PCI_CAP_LIST_NEXT));
121 		if (ret < 0) {
122 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
123 				     (pos + PCI_CAP_LIST_NEXT));
124 			break;
125 		}
126 	}
127 	return 0;
128 }
129 
130 static int
hns3vf_enable_msix(const struct rte_pci_device * device,bool op)131 hns3vf_enable_msix(const struct rte_pci_device *device, bool op)
132 {
133 	uint16_t control;
134 	int pos;
135 	int ret;
136 
137 	pos = hns3vf_find_pci_capability(device, PCI_CAP_ID_MSIX);
138 	if (pos) {
139 		ret = rte_pci_read_config(device, &control, sizeof(control),
140 				    (pos + PCI_MSIX_FLAGS));
141 		if (ret < 0) {
142 			PMD_INIT_LOG(ERR, "Failed to read PCI offset 0x%x",
143 				     (pos + PCI_MSIX_FLAGS));
144 			return -ENXIO;
145 		}
146 
147 		if (op)
148 			control |= PCI_MSIX_FLAGS_ENABLE;
149 		else
150 			control &= ~PCI_MSIX_FLAGS_ENABLE;
151 		ret = rte_pci_write_config(device, &control, sizeof(control),
152 					  (pos + PCI_MSIX_FLAGS));
153 		if (ret < 0) {
154 			PMD_INIT_LOG(ERR, "failed to write PCI offset 0x%x",
155 				    (pos + PCI_MSIX_FLAGS));
156 		}
157 		return 0;
158 	}
159 	return -ENXIO;
160 }
161 
162 static int
hns3vf_add_uc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)163 hns3vf_add_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
164 {
165 	/* mac address was checked by upper level interface */
166 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
167 	int ret;
168 
169 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
170 				HNS3_MBX_MAC_VLAN_UC_ADD, mac_addr->addr_bytes,
171 				RTE_ETHER_ADDR_LEN, false, NULL, 0);
172 	if (ret) {
173 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
174 				      mac_addr);
175 		hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
176 			 mac_str, ret);
177 	}
178 	return ret;
179 }
180 
181 static int
hns3vf_remove_uc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)182 hns3vf_remove_uc_mac_addr(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
183 {
184 	/* mac address was checked by upper level interface */
185 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
186 	int ret;
187 
188 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
189 				HNS3_MBX_MAC_VLAN_UC_REMOVE,
190 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN,
191 				false, NULL, 0);
192 	if (ret) {
193 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
194 				      mac_addr);
195 		hns3_err(hw, "failed to add uc mac addr(%s), ret = %d",
196 			 mac_str, ret);
197 	}
198 	return ret;
199 }
200 
201 static int
hns3vf_add_mc_addr_common(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)202 hns3vf_add_mc_addr_common(struct hns3_hw *hw, struct rte_ether_addr *mac_addr)
203 {
204 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
205 	struct rte_ether_addr *addr;
206 	int ret;
207 	int i;
208 
209 	for (i = 0; i < hw->mc_addrs_num; i++) {
210 		addr = &hw->mc_addrs[i];
211 		/* Check if there are duplicate addresses */
212 		if (rte_is_same_ether_addr(addr, mac_addr)) {
213 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
214 					      addr);
215 			hns3_err(hw, "failed to add mc mac addr, same addrs"
216 				 "(%s) is added by the set_mc_mac_addr_list "
217 				 "API", mac_str);
218 			return -EINVAL;
219 		}
220 	}
221 
222 	ret = hns3vf_add_mc_mac_addr(hw, mac_addr);
223 	if (ret) {
224 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
225 				      mac_addr);
226 		hns3_err(hw, "failed to add mc mac addr(%s), ret = %d",
227 			 mac_str, ret);
228 	}
229 	return ret;
230 }
231 
232 static int
hns3vf_add_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr,__rte_unused uint32_t idx,__rte_unused uint32_t pool)233 hns3vf_add_mac_addr(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
234 		    __rte_unused uint32_t idx,
235 		    __rte_unused uint32_t pool)
236 {
237 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
238 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
239 	int ret;
240 
241 	rte_spinlock_lock(&hw->lock);
242 
243 	/*
244 	 * In hns3 network engine adding UC and MC mac address with different
245 	 * commands with firmware. We need to determine whether the input
246 	 * address is a UC or a MC address to call different commands.
247 	 * By the way, it is recommended calling the API function named
248 	 * rte_eth_dev_set_mc_addr_list to set the MC mac address, because
249 	 * using the rte_eth_dev_mac_addr_add API function to set MC mac address
250 	 * may affect the specifications of UC mac addresses.
251 	 */
252 	if (rte_is_multicast_ether_addr(mac_addr))
253 		ret = hns3vf_add_mc_addr_common(hw, mac_addr);
254 	else
255 		ret = hns3vf_add_uc_mac_addr(hw, mac_addr);
256 
257 	rte_spinlock_unlock(&hw->lock);
258 	if (ret) {
259 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
260 				      mac_addr);
261 		hns3_err(hw, "failed to add mac addr(%s), ret = %d", mac_str,
262 			 ret);
263 	}
264 
265 	return ret;
266 }
267 
268 static void
hns3vf_remove_mac_addr(struct rte_eth_dev * dev,uint32_t idx)269 hns3vf_remove_mac_addr(struct rte_eth_dev *dev, uint32_t idx)
270 {
271 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
272 	/* index will be checked by upper level rte interface */
273 	struct rte_ether_addr *mac_addr = &dev->data->mac_addrs[idx];
274 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
275 	int ret;
276 
277 	rte_spinlock_lock(&hw->lock);
278 
279 	if (rte_is_multicast_ether_addr(mac_addr))
280 		ret = hns3vf_remove_mc_mac_addr(hw, mac_addr);
281 	else
282 		ret = hns3vf_remove_uc_mac_addr(hw, mac_addr);
283 
284 	rte_spinlock_unlock(&hw->lock);
285 	if (ret) {
286 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
287 				      mac_addr);
288 		hns3_err(hw, "failed to remove mac addr(%s), ret = %d",
289 			 mac_str, ret);
290 	}
291 }
292 
293 static int
hns3vf_set_default_mac_addr(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr)294 hns3vf_set_default_mac_addr(struct rte_eth_dev *dev,
295 			    struct rte_ether_addr *mac_addr)
296 {
297 #define HNS3_TWO_ETHER_ADDR_LEN (RTE_ETHER_ADDR_LEN * 2)
298 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
299 	struct rte_ether_addr *old_addr;
300 	uint8_t addr_bytes[HNS3_TWO_ETHER_ADDR_LEN]; /* for 2 MAC addresses */
301 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
302 	int ret;
303 
304 	/*
305 	 * It has been guaranteed that input parameter named mac_addr is valid
306 	 * address in the rte layer of DPDK framework.
307 	 */
308 	old_addr = (struct rte_ether_addr *)hw->mac.mac_addr;
309 	rte_spinlock_lock(&hw->lock);
310 	memcpy(addr_bytes, mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN);
311 	memcpy(&addr_bytes[RTE_ETHER_ADDR_LEN], old_addr->addr_bytes,
312 	       RTE_ETHER_ADDR_LEN);
313 
314 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_UNICAST,
315 				HNS3_MBX_MAC_VLAN_UC_MODIFY, addr_bytes,
316 				HNS3_TWO_ETHER_ADDR_LEN, true, NULL, 0);
317 	if (ret) {
318 		/*
319 		 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev
320 		 * driver. When user has configured a MAC address for VF device
321 		 * by "ip link set ..." command based on the PF device, the hns3
322 		 * PF kernel ethdev driver does not allow VF driver to request
323 		 * reconfiguring a different default MAC address, and return
324 		 * -EPREM to VF driver through mailbox.
325 		 */
326 		if (ret == -EPERM) {
327 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
328 					      old_addr);
329 			hns3_warn(hw, "Has permanet mac addr(%s) for vf",
330 				  mac_str);
331 		} else {
332 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
333 					      mac_addr);
334 			hns3_err(hw, "Failed to set mac addr(%s) for vf: %d",
335 				 mac_str, ret);
336 		}
337 	}
338 
339 	rte_ether_addr_copy(mac_addr,
340 			    (struct rte_ether_addr *)hw->mac.mac_addr);
341 	rte_spinlock_unlock(&hw->lock);
342 
343 	return ret;
344 }
345 
346 static int
hns3vf_configure_mac_addr(struct hns3_adapter * hns,bool del)347 hns3vf_configure_mac_addr(struct hns3_adapter *hns, bool del)
348 {
349 	struct hns3_hw *hw = &hns->hw;
350 	struct rte_ether_addr *addr;
351 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
352 	int err = 0;
353 	int ret;
354 	int i;
355 
356 	for (i = 0; i < HNS3_VF_UC_MACADDR_NUM; i++) {
357 		addr = &hw->data->mac_addrs[i];
358 		if (rte_is_zero_ether_addr(addr))
359 			continue;
360 		if (rte_is_multicast_ether_addr(addr))
361 			ret = del ? hns3vf_remove_mc_mac_addr(hw, addr) :
362 			      hns3vf_add_mc_mac_addr(hw, addr);
363 		else
364 			ret = del ? hns3vf_remove_uc_mac_addr(hw, addr) :
365 			      hns3vf_add_uc_mac_addr(hw, addr);
366 
367 		if (ret) {
368 			err = ret;
369 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
370 					      addr);
371 			hns3_err(hw, "failed to %s mac addr(%s) index:%d "
372 				 "ret = %d.", del ? "remove" : "restore",
373 				 mac_str, i, ret);
374 		}
375 	}
376 	return err;
377 }
378 
379 static int
hns3vf_add_mc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)380 hns3vf_add_mc_mac_addr(struct hns3_hw *hw,
381 		       struct rte_ether_addr *mac_addr)
382 {
383 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
384 	int ret;
385 
386 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
387 				HNS3_MBX_MAC_VLAN_MC_ADD,
388 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
389 				NULL, 0);
390 	if (ret) {
391 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
392 				      mac_addr);
393 		hns3_err(hw, "Failed to add mc mac addr(%s) for vf: %d",
394 			 mac_str, ret);
395 	}
396 
397 	return ret;
398 }
399 
400 static int
hns3vf_remove_mc_mac_addr(struct hns3_hw * hw,struct rte_ether_addr * mac_addr)401 hns3vf_remove_mc_mac_addr(struct hns3_hw *hw,
402 			  struct rte_ether_addr *mac_addr)
403 {
404 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
405 	int ret;
406 
407 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MULTICAST,
408 				HNS3_MBX_MAC_VLAN_MC_REMOVE,
409 				mac_addr->addr_bytes, RTE_ETHER_ADDR_LEN, false,
410 				NULL, 0);
411 	if (ret) {
412 		rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
413 				      mac_addr);
414 		hns3_err(hw, "Failed to remove mc mac addr(%s) for vf: %d",
415 			 mac_str, ret);
416 	}
417 
418 	return ret;
419 }
420 
421 static int
hns3vf_set_mc_addr_chk_param(struct hns3_hw * hw,struct rte_ether_addr * mc_addr_set,uint32_t nb_mc_addr)422 hns3vf_set_mc_addr_chk_param(struct hns3_hw *hw,
423 			     struct rte_ether_addr *mc_addr_set,
424 			     uint32_t nb_mc_addr)
425 {
426 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
427 	struct rte_ether_addr *addr;
428 	uint32_t i;
429 	uint32_t j;
430 
431 	if (nb_mc_addr > HNS3_MC_MACADDR_NUM) {
432 		hns3_err(hw, "failed to set mc mac addr, nb_mc_addr(%u) "
433 			 "invalid. valid range: 0~%d",
434 			 nb_mc_addr, HNS3_MC_MACADDR_NUM);
435 		return -EINVAL;
436 	}
437 
438 	/* Check if input mac addresses are valid */
439 	for (i = 0; i < nb_mc_addr; i++) {
440 		addr = &mc_addr_set[i];
441 		if (!rte_is_multicast_ether_addr(addr)) {
442 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
443 					      addr);
444 			hns3_err(hw,
445 				 "failed to set mc mac addr, addr(%s) invalid.",
446 				 mac_str);
447 			return -EINVAL;
448 		}
449 
450 		/* Check if there are duplicate addresses */
451 		for (j = i + 1; j < nb_mc_addr; j++) {
452 			if (rte_is_same_ether_addr(addr, &mc_addr_set[j])) {
453 				rte_ether_format_addr(mac_str,
454 						      RTE_ETHER_ADDR_FMT_SIZE,
455 						      addr);
456 				hns3_err(hw, "failed to set mc mac addr, "
457 					 "addrs invalid. two same addrs(%s).",
458 					 mac_str);
459 				return -EINVAL;
460 			}
461 		}
462 
463 		/*
464 		 * Check if there are duplicate addresses between mac_addrs
465 		 * and mc_addr_set
466 		 */
467 		for (j = 0; j < HNS3_VF_UC_MACADDR_NUM; j++) {
468 			if (rte_is_same_ether_addr(addr,
469 						   &hw->data->mac_addrs[j])) {
470 				rte_ether_format_addr(mac_str,
471 						      RTE_ETHER_ADDR_FMT_SIZE,
472 						      addr);
473 				hns3_err(hw, "failed to set mc mac addr, "
474 					 "addrs invalid. addrs(%s) has already "
475 					 "configured in mac_addr add API",
476 					 mac_str);
477 				return -EINVAL;
478 			}
479 		}
480 	}
481 
482 	return 0;
483 }
484 
485 static int
hns3vf_set_mc_mac_addr_list(struct rte_eth_dev * dev,struct rte_ether_addr * mc_addr_set,uint32_t nb_mc_addr)486 hns3vf_set_mc_mac_addr_list(struct rte_eth_dev *dev,
487 			    struct rte_ether_addr *mc_addr_set,
488 			    uint32_t nb_mc_addr)
489 {
490 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
491 	struct rte_ether_addr *addr;
492 	int cur_addr_num;
493 	int set_addr_num;
494 	int num;
495 	int ret;
496 	int i;
497 
498 	ret = hns3vf_set_mc_addr_chk_param(hw, mc_addr_set, nb_mc_addr);
499 	if (ret)
500 		return ret;
501 
502 	rte_spinlock_lock(&hw->lock);
503 	cur_addr_num = hw->mc_addrs_num;
504 	for (i = 0; i < cur_addr_num; i++) {
505 		num = cur_addr_num - i - 1;
506 		addr = &hw->mc_addrs[num];
507 		ret = hns3vf_remove_mc_mac_addr(hw, addr);
508 		if (ret) {
509 			rte_spinlock_unlock(&hw->lock);
510 			return ret;
511 		}
512 
513 		hw->mc_addrs_num--;
514 	}
515 
516 	set_addr_num = (int)nb_mc_addr;
517 	for (i = 0; i < set_addr_num; i++) {
518 		addr = &mc_addr_set[i];
519 		ret = hns3vf_add_mc_mac_addr(hw, addr);
520 		if (ret) {
521 			rte_spinlock_unlock(&hw->lock);
522 			return ret;
523 		}
524 
525 		rte_ether_addr_copy(addr, &hw->mc_addrs[hw->mc_addrs_num]);
526 		hw->mc_addrs_num++;
527 	}
528 	rte_spinlock_unlock(&hw->lock);
529 
530 	return 0;
531 }
532 
533 static int
hns3vf_configure_all_mc_mac_addr(struct hns3_adapter * hns,bool del)534 hns3vf_configure_all_mc_mac_addr(struct hns3_adapter *hns, bool del)
535 {
536 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
537 	struct hns3_hw *hw = &hns->hw;
538 	struct rte_ether_addr *addr;
539 	int err = 0;
540 	int ret;
541 	int i;
542 
543 	for (i = 0; i < hw->mc_addrs_num; i++) {
544 		addr = &hw->mc_addrs[i];
545 		if (!rte_is_multicast_ether_addr(addr))
546 			continue;
547 		if (del)
548 			ret = hns3vf_remove_mc_mac_addr(hw, addr);
549 		else
550 			ret = hns3vf_add_mc_mac_addr(hw, addr);
551 		if (ret) {
552 			err = ret;
553 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
554 					      addr);
555 			hns3_err(hw, "Failed to %s mc mac addr: %s for vf: %d",
556 				 del ? "Remove" : "Restore", mac_str, ret);
557 		}
558 	}
559 	return err;
560 }
561 
562 static int
hns3vf_set_promisc_mode(struct hns3_hw * hw,bool en_bc_pmc,bool en_uc_pmc,bool en_mc_pmc)563 hns3vf_set_promisc_mode(struct hns3_hw *hw, bool en_bc_pmc,
564 			bool en_uc_pmc, bool en_mc_pmc)
565 {
566 	struct hns3_mbx_vf_to_pf_cmd *req;
567 	struct hns3_cmd_desc desc;
568 	int ret;
569 
570 	req = (struct hns3_mbx_vf_to_pf_cmd *)desc.data;
571 
572 	/*
573 	 * The hns3 VF PMD driver depends on the hns3 PF kernel ethdev driver,
574 	 * so there are some features for promiscuous/allmulticast mode in hns3
575 	 * VF PMD driver as below:
576 	 * 1. The promiscuous/allmulticast mode can be configured successfully
577 	 *    only based on the trusted VF device. If based on the non trusted
578 	 *    VF device, configuring promiscuous/allmulticast mode will fail.
579 	 *    The hns3 VF device can be confiruged as trusted device by hns3 PF
580 	 *    kernel ethdev driver on the host by the following command:
581 	 *      "ip link set <eth num> vf <vf id> turst on"
582 	 * 2. After the promiscuous mode is configured successfully, hns3 VF PMD
583 	 *    driver can receive the ingress and outgoing traffic. In the words,
584 	 *    all the ingress packets, all the packets sent from the PF and
585 	 *    other VFs on the same physical port.
586 	 * 3. Note: Because of the hardware constraints, By default vlan filter
587 	 *    is enabled and couldn't be turned off based on VF device, so vlan
588 	 *    filter is still effective even in promiscuous mode. If upper
589 	 *    applications don't call rte_eth_dev_vlan_filter API function to
590 	 *    set vlan based on VF device, hns3 VF PMD driver will can't receive
591 	 *    the packets with vlan tag in promiscuoue mode.
592 	 */
593 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_MBX_VF_TO_PF, false);
594 	req->msg[0] = HNS3_MBX_SET_PROMISC_MODE;
595 	req->msg[1] = en_bc_pmc ? 1 : 0;
596 	req->msg[2] = en_uc_pmc ? 1 : 0;
597 	req->msg[3] = en_mc_pmc ? 1 : 0;
598 	req->msg[4] = hw->promisc_mode == HNS3_LIMIT_PROMISC_MODE ? 1 : 0;
599 
600 	ret = hns3_cmd_send(hw, &desc, 1);
601 	if (ret)
602 		hns3_err(hw, "Set promisc mode fail, ret = %d", ret);
603 
604 	return ret;
605 }
606 
607 static int
hns3vf_dev_promiscuous_enable(struct rte_eth_dev * dev)608 hns3vf_dev_promiscuous_enable(struct rte_eth_dev *dev)
609 {
610 	struct hns3_adapter *hns = dev->data->dev_private;
611 	struct hns3_hw *hw = &hns->hw;
612 	int ret;
613 
614 	ret = hns3vf_set_promisc_mode(hw, true, true, true);
615 	if (ret)
616 		hns3_err(hw, "Failed to enable promiscuous mode, ret = %d",
617 			ret);
618 	return ret;
619 }
620 
621 static int
hns3vf_dev_promiscuous_disable(struct rte_eth_dev * dev)622 hns3vf_dev_promiscuous_disable(struct rte_eth_dev *dev)
623 {
624 	bool allmulti = dev->data->all_multicast ? true : false;
625 	struct hns3_adapter *hns = dev->data->dev_private;
626 	struct hns3_hw *hw = &hns->hw;
627 	int ret;
628 
629 	ret = hns3vf_set_promisc_mode(hw, true, false, allmulti);
630 	if (ret)
631 		hns3_err(hw, "Failed to disable promiscuous mode, ret = %d",
632 			ret);
633 	return ret;
634 }
635 
636 static int
hns3vf_dev_allmulticast_enable(struct rte_eth_dev * dev)637 hns3vf_dev_allmulticast_enable(struct rte_eth_dev *dev)
638 {
639 	struct hns3_adapter *hns = dev->data->dev_private;
640 	struct hns3_hw *hw = &hns->hw;
641 	int ret;
642 
643 	if (dev->data->promiscuous)
644 		return 0;
645 
646 	ret = hns3vf_set_promisc_mode(hw, true, false, true);
647 	if (ret)
648 		hns3_err(hw, "Failed to enable allmulticast mode, ret = %d",
649 			ret);
650 	return ret;
651 }
652 
653 static int
hns3vf_dev_allmulticast_disable(struct rte_eth_dev * dev)654 hns3vf_dev_allmulticast_disable(struct rte_eth_dev *dev)
655 {
656 	struct hns3_adapter *hns = dev->data->dev_private;
657 	struct hns3_hw *hw = &hns->hw;
658 	int ret;
659 
660 	if (dev->data->promiscuous)
661 		return 0;
662 
663 	ret = hns3vf_set_promisc_mode(hw, true, false, false);
664 	if (ret)
665 		hns3_err(hw, "Failed to disable allmulticast mode, ret = %d",
666 			ret);
667 	return ret;
668 }
669 
670 static int
hns3vf_restore_promisc(struct hns3_adapter * hns)671 hns3vf_restore_promisc(struct hns3_adapter *hns)
672 {
673 	struct hns3_hw *hw = &hns->hw;
674 	bool allmulti = hw->data->all_multicast ? true : false;
675 
676 	if (hw->data->promiscuous)
677 		return hns3vf_set_promisc_mode(hw, true, true, true);
678 
679 	return hns3vf_set_promisc_mode(hw, true, false, allmulti);
680 }
681 
682 static int
hns3vf_bind_ring_with_vector(struct hns3_hw * hw,uint8_t vector_id,bool mmap,enum hns3_ring_type queue_type,uint16_t queue_id)683 hns3vf_bind_ring_with_vector(struct hns3_hw *hw, uint8_t vector_id,
684 			     bool mmap, enum hns3_ring_type queue_type,
685 			     uint16_t queue_id)
686 {
687 	struct hns3_vf_bind_vector_msg bind_msg;
688 	const char *op_str;
689 	uint16_t code;
690 	int ret;
691 
692 	memset(&bind_msg, 0, sizeof(bind_msg));
693 	code = mmap ? HNS3_MBX_MAP_RING_TO_VECTOR :
694 		HNS3_MBX_UNMAP_RING_TO_VECTOR;
695 	bind_msg.vector_id = vector_id;
696 
697 	if (queue_type == HNS3_RING_TYPE_RX)
698 		bind_msg.param[0].int_gl_index = HNS3_RING_GL_RX;
699 	else
700 		bind_msg.param[0].int_gl_index = HNS3_RING_GL_TX;
701 
702 	bind_msg.param[0].ring_type = queue_type;
703 	bind_msg.ring_num = 1;
704 	bind_msg.param[0].tqp_index = queue_id;
705 	op_str = mmap ? "Map" : "Unmap";
706 	ret = hns3_send_mbx_msg(hw, code, 0, (uint8_t *)&bind_msg,
707 				sizeof(bind_msg), false, NULL, 0);
708 	if (ret)
709 		hns3_err(hw, "%s TQP %u fail, vector_id is %u, ret is %d.",
710 			 op_str, queue_id, bind_msg.vector_id, ret);
711 
712 	return ret;
713 }
714 
715 static int
hns3vf_init_ring_with_vector(struct hns3_hw * hw)716 hns3vf_init_ring_with_vector(struct hns3_hw *hw)
717 {
718 	uint16_t vec;
719 	int ret;
720 	int i;
721 
722 	/*
723 	 * In hns3 network engine, vector 0 is always the misc interrupt of this
724 	 * function, vector 1~N can be used respectively for the queues of the
725 	 * function. Tx and Rx queues with the same number share the interrupt
726 	 * vector. In the initialization clearing the all hardware mapping
727 	 * relationship configurations between queues and interrupt vectors is
728 	 * needed, so some error caused by the residual configurations, such as
729 	 * the unexpected Tx interrupt, can be avoid.
730 	 */
731 	vec = hw->num_msi - 1; /* vector 0 for misc interrupt, not for queue */
732 	if (hw->intr.mapping_mode == HNS3_INTR_MAPPING_VEC_RSV_ONE)
733 		vec = vec - 1; /* the last interrupt is reserved */
734 	hw->intr_tqps_num = RTE_MIN(vec, hw->tqps_num);
735 	for (i = 0; i < hw->intr_tqps_num; i++) {
736 		/*
737 		 * Set gap limiter/rate limiter/quanity limiter algorithm
738 		 * configuration for interrupt coalesce of queue's interrupt.
739 		 */
740 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_RX,
741 				       HNS3_TQP_INTR_GL_DEFAULT);
742 		hns3_set_queue_intr_gl(hw, i, HNS3_RING_GL_TX,
743 				       HNS3_TQP_INTR_GL_DEFAULT);
744 		hns3_set_queue_intr_rl(hw, i, HNS3_TQP_INTR_RL_DEFAULT);
745 		/*
746 		 * QL(quantity limiter) is not used currently, just set 0 to
747 		 * close it.
748 		 */
749 		hns3_set_queue_intr_ql(hw, i, HNS3_TQP_INTR_QL_DEFAULT);
750 
751 		ret = hns3vf_bind_ring_with_vector(hw, vec, false,
752 						   HNS3_RING_TYPE_TX, i);
753 		if (ret) {
754 			PMD_INIT_LOG(ERR, "VF fail to unbind TX ring(%d) with "
755 					  "vector: %u, ret=%d", i, vec, ret);
756 			return ret;
757 		}
758 
759 		ret = hns3vf_bind_ring_with_vector(hw, vec, false,
760 						   HNS3_RING_TYPE_RX, i);
761 		if (ret) {
762 			PMD_INIT_LOG(ERR, "VF fail to unbind RX ring(%d) with "
763 					  "vector: %u, ret=%d", i, vec, ret);
764 			return ret;
765 		}
766 	}
767 
768 	return 0;
769 }
770 
771 static int
hns3vf_dev_configure(struct rte_eth_dev * dev)772 hns3vf_dev_configure(struct rte_eth_dev *dev)
773 {
774 	struct hns3_adapter *hns = dev->data->dev_private;
775 	struct hns3_hw *hw = &hns->hw;
776 	struct hns3_rss_conf *rss_cfg = &hw->rss_info;
777 	struct rte_eth_conf *conf = &dev->data->dev_conf;
778 	enum rte_eth_rx_mq_mode mq_mode = conf->rxmode.mq_mode;
779 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
780 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
781 	struct rte_eth_rss_conf rss_conf;
782 	uint16_t mtu;
783 	bool gro_en;
784 	int ret;
785 
786 	hw->cfg_max_queues = RTE_MAX(nb_rx_q, nb_tx_q);
787 
788 	/*
789 	 * Some versions of hardware network engine does not support
790 	 * individually enable/disable/reset the Tx or Rx queue. These devices
791 	 * must enable/disable/reset Tx and Rx queues at the same time. When the
792 	 * numbers of Tx queues allocated by upper applications are not equal to
793 	 * the numbers of Rx queues, driver needs to setup fake Tx or Rx queues
794 	 * to adjust numbers of Tx/Rx queues. otherwise, network engine can not
795 	 * work as usual. But these fake queues are imperceptible, and can not
796 	 * be used by upper applications.
797 	 */
798 	if (!hns3_dev_indep_txrx_supported(hw)) {
799 		ret = hns3_set_fake_rx_or_tx_queues(dev, nb_rx_q, nb_tx_q);
800 		if (ret) {
801 			hns3_err(hw, "fail to set Rx/Tx fake queues, ret = %d.",
802 				 ret);
803 			return ret;
804 		}
805 	}
806 
807 	hw->adapter_state = HNS3_NIC_CONFIGURING;
808 	if (conf->link_speeds & ETH_LINK_SPEED_FIXED) {
809 		hns3_err(hw, "setting link speed/duplex not supported");
810 		ret = -EINVAL;
811 		goto cfg_err;
812 	}
813 
814 	/* When RSS is not configured, redirect the packet queue 0 */
815 	if ((uint32_t)mq_mode & ETH_MQ_RX_RSS_FLAG) {
816 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
817 		hw->rss_dis_flag = false;
818 		rss_conf = conf->rx_adv_conf.rss_conf;
819 		if (rss_conf.rss_key == NULL) {
820 			rss_conf.rss_key = rss_cfg->key;
821 			rss_conf.rss_key_len = HNS3_RSS_KEY_SIZE;
822 		}
823 
824 		ret = hns3_dev_rss_hash_update(dev, &rss_conf);
825 		if (ret)
826 			goto cfg_err;
827 	}
828 
829 	/*
830 	 * If jumbo frames are enabled, MTU needs to be refreshed
831 	 * according to the maximum RX packet length.
832 	 */
833 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
834 		/*
835 		 * Security of max_rx_pkt_len is guaranteed in dpdk frame.
836 		 * Maximum value of max_rx_pkt_len is HNS3_MAX_FRAME_LEN, so it
837 		 * can safely assign to "uint16_t" type variable.
838 		 */
839 		mtu = (uint16_t)HNS3_PKTLEN_TO_MTU(conf->rxmode.max_rx_pkt_len);
840 		ret = hns3vf_dev_mtu_set(dev, mtu);
841 		if (ret)
842 			goto cfg_err;
843 		dev->data->mtu = mtu;
844 	}
845 
846 	ret = hns3vf_dev_configure_vlan(dev);
847 	if (ret)
848 		goto cfg_err;
849 
850 	/* config hardware GRO */
851 	gro_en = conf->rxmode.offloads & DEV_RX_OFFLOAD_TCP_LRO ? true : false;
852 	ret = hns3_config_gro(hw, gro_en);
853 	if (ret)
854 		goto cfg_err;
855 
856 	hns->rx_simple_allowed = true;
857 	hns->rx_vec_allowed = true;
858 	hns->tx_simple_allowed = true;
859 	hns->tx_vec_allowed = true;
860 
861 	hns3_init_rx_ptype_tble(dev);
862 
863 	hw->adapter_state = HNS3_NIC_CONFIGURED;
864 	return 0;
865 
866 cfg_err:
867 	(void)hns3_set_fake_rx_or_tx_queues(dev, 0, 0);
868 	hw->adapter_state = HNS3_NIC_INITIALIZED;
869 
870 	return ret;
871 }
872 
873 static int
hns3vf_config_mtu(struct hns3_hw * hw,uint16_t mtu)874 hns3vf_config_mtu(struct hns3_hw *hw, uint16_t mtu)
875 {
876 	int ret;
877 
878 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_MTU, 0, (const uint8_t *)&mtu,
879 				sizeof(mtu), true, NULL, 0);
880 	if (ret)
881 		hns3_err(hw, "Failed to set mtu (%u) for vf: %d", mtu, ret);
882 
883 	return ret;
884 }
885 
886 static int
hns3vf_dev_mtu_set(struct rte_eth_dev * dev,uint16_t mtu)887 hns3vf_dev_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
888 {
889 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
890 	uint32_t frame_size = mtu + HNS3_ETH_OVERHEAD;
891 	int ret;
892 
893 	/*
894 	 * The hns3 PF/VF devices on the same port share the hardware MTU
895 	 * configuration. Currently, we send mailbox to inform hns3 PF kernel
896 	 * ethdev driver to finish hardware MTU configuration in hns3 VF PMD
897 	 * driver, there is no need to stop the port for hns3 VF device, and the
898 	 * MTU value issued by hns3 VF PMD driver must be less than or equal to
899 	 * PF's MTU.
900 	 */
901 	if (rte_atomic16_read(&hw->reset.resetting)) {
902 		hns3_err(hw, "Failed to set mtu during resetting");
903 		return -EIO;
904 	}
905 
906 	/*
907 	 * when Rx of scattered packets is off, we have some possibility of
908 	 * using vector Rx process function or simple Rx functions in hns3 PMD
909 	 * driver. If the input MTU is increased and the maximum length of
910 	 * received packets is greater than the length of a buffer for Rx
911 	 * packet, the hardware network engine needs to use multiple BDs and
912 	 * buffers to store these packets. This will cause problems when still
913 	 * using vector Rx process function or simple Rx function to receiving
914 	 * packets. So, when Rx of scattered packets is off and device is
915 	 * started, it is not permitted to increase MTU so that the maximum
916 	 * length of Rx packets is greater than Rx buffer length.
917 	 */
918 	if (dev->data->dev_started && !dev->data->scattered_rx &&
919 	    frame_size > hw->rx_buf_len) {
920 		hns3_err(hw, "failed to set mtu because current is "
921 			"not scattered rx mode");
922 		return -EOPNOTSUPP;
923 	}
924 
925 	rte_spinlock_lock(&hw->lock);
926 	ret = hns3vf_config_mtu(hw, mtu);
927 	if (ret) {
928 		rte_spinlock_unlock(&hw->lock);
929 		return ret;
930 	}
931 	if (frame_size > RTE_ETHER_MAX_LEN)
932 		dev->data->dev_conf.rxmode.offloads |=
933 						DEV_RX_OFFLOAD_JUMBO_FRAME;
934 	else
935 		dev->data->dev_conf.rxmode.offloads &=
936 						~DEV_RX_OFFLOAD_JUMBO_FRAME;
937 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
938 	rte_spinlock_unlock(&hw->lock);
939 
940 	return 0;
941 }
942 
943 static int
hns3vf_dev_infos_get(struct rte_eth_dev * eth_dev,struct rte_eth_dev_info * info)944 hns3vf_dev_infos_get(struct rte_eth_dev *eth_dev, struct rte_eth_dev_info *info)
945 {
946 	struct hns3_adapter *hns = eth_dev->data->dev_private;
947 	struct hns3_hw *hw = &hns->hw;
948 	uint16_t q_num = hw->tqps_num;
949 
950 	/*
951 	 * In interrupt mode, 'max_rx_queues' is set based on the number of
952 	 * MSI-X interrupt resources of the hardware.
953 	 */
954 	if (hw->data->dev_conf.intr_conf.rxq == 1)
955 		q_num = hw->intr_tqps_num;
956 
957 	info->max_rx_queues = q_num;
958 	info->max_tx_queues = hw->tqps_num;
959 	info->max_rx_pktlen = HNS3_MAX_FRAME_LEN; /* CRC included */
960 	info->min_rx_bufsize = HNS3_MIN_BD_BUF_SIZE;
961 	info->max_mac_addrs = HNS3_VF_UC_MACADDR_NUM;
962 	info->max_mtu = info->max_rx_pktlen - HNS3_ETH_OVERHEAD;
963 	info->max_lro_pkt_size = HNS3_MAX_LRO_SIZE;
964 
965 	info->rx_offload_capa = (DEV_RX_OFFLOAD_IPV4_CKSUM |
966 				 DEV_RX_OFFLOAD_UDP_CKSUM |
967 				 DEV_RX_OFFLOAD_TCP_CKSUM |
968 				 DEV_RX_OFFLOAD_SCTP_CKSUM |
969 				 DEV_RX_OFFLOAD_OUTER_IPV4_CKSUM |
970 				 DEV_RX_OFFLOAD_OUTER_UDP_CKSUM |
971 				 DEV_RX_OFFLOAD_SCATTER |
972 				 DEV_RX_OFFLOAD_VLAN_STRIP |
973 				 DEV_RX_OFFLOAD_VLAN_FILTER |
974 				 DEV_RX_OFFLOAD_JUMBO_FRAME |
975 				 DEV_RX_OFFLOAD_RSS_HASH |
976 				 DEV_RX_OFFLOAD_TCP_LRO);
977 	info->tx_offload_capa = (DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
978 				 DEV_TX_OFFLOAD_IPV4_CKSUM |
979 				 DEV_TX_OFFLOAD_TCP_CKSUM |
980 				 DEV_TX_OFFLOAD_UDP_CKSUM |
981 				 DEV_TX_OFFLOAD_SCTP_CKSUM |
982 				 DEV_TX_OFFLOAD_MULTI_SEGS |
983 				 DEV_TX_OFFLOAD_TCP_TSO |
984 				 DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
985 				 DEV_TX_OFFLOAD_GRE_TNL_TSO |
986 				 DEV_TX_OFFLOAD_GENEVE_TNL_TSO |
987 				 DEV_TX_OFFLOAD_MBUF_FAST_FREE |
988 				 hns3_txvlan_cap_get(hw));
989 
990 	if (hns3_dev_indep_txrx_supported(hw))
991 		info->dev_capa = RTE_ETH_DEV_CAPA_RUNTIME_RX_QUEUE_SETUP |
992 				 RTE_ETH_DEV_CAPA_RUNTIME_TX_QUEUE_SETUP;
993 
994 	info->rx_desc_lim = (struct rte_eth_desc_lim) {
995 		.nb_max = HNS3_MAX_RING_DESC,
996 		.nb_min = HNS3_MIN_RING_DESC,
997 		.nb_align = HNS3_ALIGN_RING_DESC,
998 	};
999 
1000 	info->tx_desc_lim = (struct rte_eth_desc_lim) {
1001 		.nb_max = HNS3_MAX_RING_DESC,
1002 		.nb_min = HNS3_MIN_RING_DESC,
1003 		.nb_align = HNS3_ALIGN_RING_DESC,
1004 		.nb_seg_max = HNS3_MAX_TSO_BD_PER_PKT,
1005 		.nb_mtu_seg_max = hw->max_non_tso_bd_num,
1006 	};
1007 
1008 	info->default_rxconf = (struct rte_eth_rxconf) {
1009 		.rx_free_thresh = HNS3_DEFAULT_RX_FREE_THRESH,
1010 		/*
1011 		 * If there are no available Rx buffer descriptors, incoming
1012 		 * packets are always dropped by hardware based on hns3 network
1013 		 * engine.
1014 		 */
1015 		.rx_drop_en = 1,
1016 		.offloads = 0,
1017 	};
1018 	info->default_txconf = (struct rte_eth_txconf) {
1019 		.tx_rs_thresh = HNS3_DEFAULT_TX_RS_THRESH,
1020 		.offloads = 0,
1021 	};
1022 
1023 	info->vmdq_queue_num = 0;
1024 
1025 	info->reta_size = HNS3_RSS_IND_TBL_SIZE;
1026 	info->hash_key_size = HNS3_RSS_KEY_SIZE;
1027 	info->flow_type_rss_offloads = HNS3_ETH_RSS_SUPPORT;
1028 	info->default_rxportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1029 	info->default_txportconf.ring_size = HNS3_DEFAULT_RING_DESC;
1030 
1031 	return 0;
1032 }
1033 
1034 static void
hns3vf_clear_event_cause(struct hns3_hw * hw,uint32_t regclr)1035 hns3vf_clear_event_cause(struct hns3_hw *hw, uint32_t regclr)
1036 {
1037 	hns3_write_dev(hw, HNS3_VECTOR0_CMDQ_SRC_REG, regclr);
1038 }
1039 
1040 static void
hns3vf_disable_irq0(struct hns3_hw * hw)1041 hns3vf_disable_irq0(struct hns3_hw *hw)
1042 {
1043 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 0);
1044 }
1045 
1046 static void
hns3vf_enable_irq0(struct hns3_hw * hw)1047 hns3vf_enable_irq0(struct hns3_hw *hw)
1048 {
1049 	hns3_write_dev(hw, HNS3_MISC_VECTOR_REG_BASE, 1);
1050 }
1051 
1052 static enum hns3vf_evt_cause
hns3vf_check_event_cause(struct hns3_adapter * hns,uint32_t * clearval)1053 hns3vf_check_event_cause(struct hns3_adapter *hns, uint32_t *clearval)
1054 {
1055 	struct hns3_hw *hw = &hns->hw;
1056 	enum hns3vf_evt_cause ret;
1057 	uint32_t cmdq_stat_reg;
1058 	uint32_t rst_ing_reg;
1059 	uint32_t val;
1060 
1061 	/* Fetch the events from their corresponding regs */
1062 	cmdq_stat_reg = hns3_read_dev(hw, HNS3_VECTOR0_CMDQ_STAT_REG);
1063 
1064 	if (BIT(HNS3_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
1065 		rst_ing_reg = hns3_read_dev(hw, HNS3_FUN_RST_ING);
1066 		hns3_warn(hw, "resetting reg: 0x%x", rst_ing_reg);
1067 		hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
1068 		rte_atomic16_set(&hw->reset.disable_cmd, 1);
1069 		val = hns3_read_dev(hw, HNS3_VF_RST_ING);
1070 		hns3_write_dev(hw, HNS3_VF_RST_ING, val | HNS3_VF_RST_ING_BIT);
1071 		val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RST_INT_B);
1072 		if (clearval) {
1073 			hw->reset.stats.global_cnt++;
1074 			hns3_warn(hw, "Global reset detected, clear reset status");
1075 		} else {
1076 			hns3_schedule_delayed_reset(hns);
1077 			hns3_warn(hw, "Global reset detected, don't clear reset status");
1078 		}
1079 
1080 		ret = HNS3VF_VECTOR0_EVENT_RST;
1081 		goto out;
1082 	}
1083 
1084 	/* Check for vector0 mailbox(=CMDQ RX) event source */
1085 	if (BIT(HNS3_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
1086 		val = cmdq_stat_reg & ~BIT(HNS3_VECTOR0_RX_CMDQ_INT_B);
1087 		ret = HNS3VF_VECTOR0_EVENT_MBX;
1088 		goto out;
1089 	}
1090 
1091 	val = 0;
1092 	ret = HNS3VF_VECTOR0_EVENT_OTHER;
1093 out:
1094 	if (clearval)
1095 		*clearval = val;
1096 	return ret;
1097 }
1098 
1099 static void
hns3vf_interrupt_handler(void * param)1100 hns3vf_interrupt_handler(void *param)
1101 {
1102 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1103 	struct hns3_adapter *hns = dev->data->dev_private;
1104 	struct hns3_hw *hw = &hns->hw;
1105 	enum hns3vf_evt_cause event_cause;
1106 	uint32_t clearval;
1107 
1108 	if (hw->irq_thread_id == 0)
1109 		hw->irq_thread_id = pthread_self();
1110 
1111 	/* Disable interrupt */
1112 	hns3vf_disable_irq0(hw);
1113 
1114 	/* Read out interrupt causes */
1115 	event_cause = hns3vf_check_event_cause(hns, &clearval);
1116 
1117 	switch (event_cause) {
1118 	case HNS3VF_VECTOR0_EVENT_RST:
1119 		hns3_schedule_reset(hns);
1120 		break;
1121 	case HNS3VF_VECTOR0_EVENT_MBX:
1122 		hns3_dev_handle_mbx_msg(hw);
1123 		break;
1124 	default:
1125 		break;
1126 	}
1127 
1128 	/* Clear interrupt causes */
1129 	hns3vf_clear_event_cause(hw, clearval);
1130 
1131 	/* Enable interrupt */
1132 	hns3vf_enable_irq0(hw);
1133 }
1134 
1135 static void
hns3vf_set_default_dev_specifications(struct hns3_hw * hw)1136 hns3vf_set_default_dev_specifications(struct hns3_hw *hw)
1137 {
1138 	hw->max_non_tso_bd_num = HNS3_MAX_NON_TSO_BD_PER_PKT;
1139 	hw->rss_ind_tbl_size = HNS3_RSS_IND_TBL_SIZE;
1140 	hw->rss_key_size = HNS3_RSS_KEY_SIZE;
1141 	hw->intr.int_ql_max = HNS3_INTR_QL_NONE;
1142 }
1143 
1144 static void
hns3vf_parse_dev_specifications(struct hns3_hw * hw,struct hns3_cmd_desc * desc)1145 hns3vf_parse_dev_specifications(struct hns3_hw *hw, struct hns3_cmd_desc *desc)
1146 {
1147 	struct hns3_dev_specs_0_cmd *req0;
1148 
1149 	req0 = (struct hns3_dev_specs_0_cmd *)desc[0].data;
1150 
1151 	hw->max_non_tso_bd_num = req0->max_non_tso_bd_num;
1152 	hw->rss_ind_tbl_size = rte_le_to_cpu_16(req0->rss_ind_tbl_size);
1153 	hw->rss_key_size = rte_le_to_cpu_16(req0->rss_key_size);
1154 	hw->intr.int_ql_max = rte_le_to_cpu_16(req0->intr_ql_max);
1155 }
1156 
1157 static int
hns3vf_query_dev_specifications(struct hns3_hw * hw)1158 hns3vf_query_dev_specifications(struct hns3_hw *hw)
1159 {
1160 	struct hns3_cmd_desc desc[HNS3_QUERY_DEV_SPECS_BD_NUM];
1161 	int ret;
1162 	int i;
1163 
1164 	for (i = 0; i < HNS3_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
1165 		hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS,
1166 					  true);
1167 		desc[i].flag |= rte_cpu_to_le_16(HNS3_CMD_FLAG_NEXT);
1168 	}
1169 	hns3_cmd_setup_basic_desc(&desc[i], HNS3_OPC_QUERY_DEV_SPECS, true);
1170 
1171 	ret = hns3_cmd_send(hw, desc, HNS3_QUERY_DEV_SPECS_BD_NUM);
1172 	if (ret)
1173 		return ret;
1174 
1175 	hns3vf_parse_dev_specifications(hw, desc);
1176 
1177 	return 0;
1178 }
1179 
1180 static int
hns3vf_get_capability(struct hns3_hw * hw)1181 hns3vf_get_capability(struct hns3_hw *hw)
1182 {
1183 	struct rte_pci_device *pci_dev;
1184 	struct rte_eth_dev *eth_dev;
1185 	uint8_t revision;
1186 	int ret;
1187 
1188 	eth_dev = &rte_eth_devices[hw->data->port_id];
1189 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1190 
1191 	/* Get PCI revision id */
1192 	ret = rte_pci_read_config(pci_dev, &revision, HNS3_PCI_REVISION_ID_LEN,
1193 				  HNS3_PCI_REVISION_ID);
1194 	if (ret != HNS3_PCI_REVISION_ID_LEN) {
1195 		PMD_INIT_LOG(ERR, "failed to read pci revision id, ret = %d",
1196 			     ret);
1197 		return -EIO;
1198 	}
1199 	hw->revision = revision;
1200 
1201 	if (revision < PCI_REVISION_ID_HIP09_A) {
1202 		hns3vf_set_default_dev_specifications(hw);
1203 		hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_RSV_ONE;
1204 		hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_2US;
1205 		hw->tso_mode = HNS3_TSO_SW_CAL_PSEUDO_H_CSUM;
1206 		hw->min_tx_pkt_len = HNS3_HIP08_MIN_TX_PKT_LEN;
1207 		hw->rss_info.ipv6_sctp_offload_supported = false;
1208 		hw->promisc_mode = HNS3_UNLIMIT_PROMISC_MODE;
1209 		return 0;
1210 	}
1211 
1212 	ret = hns3vf_query_dev_specifications(hw);
1213 	if (ret) {
1214 		PMD_INIT_LOG(ERR,
1215 			     "failed to query dev specifications, ret = %d",
1216 			     ret);
1217 		return ret;
1218 	}
1219 
1220 	hw->intr.mapping_mode = HNS3_INTR_MAPPING_VEC_ALL;
1221 	hw->intr.gl_unit = HNS3_INTR_COALESCE_GL_UINT_1US;
1222 	hw->tso_mode = HNS3_TSO_HW_CAL_PSEUDO_H_CSUM;
1223 	hw->min_tx_pkt_len = HNS3_HIP09_MIN_TX_PKT_LEN;
1224 	hw->rss_info.ipv6_sctp_offload_supported = true;
1225 	hw->promisc_mode = HNS3_LIMIT_PROMISC_MODE;
1226 
1227 	return 0;
1228 }
1229 
1230 static int
hns3vf_check_tqp_info(struct hns3_hw * hw)1231 hns3vf_check_tqp_info(struct hns3_hw *hw)
1232 {
1233 	if (hw->tqps_num == 0) {
1234 		PMD_INIT_LOG(ERR, "Get invalid tqps_num(0) from PF.");
1235 		return -EINVAL;
1236 	}
1237 
1238 	if (hw->rss_size_max == 0) {
1239 		PMD_INIT_LOG(ERR, "Get invalid rss_size_max(0) from PF.");
1240 		return -EINVAL;
1241 	}
1242 
1243 	hw->tqps_num = RTE_MIN(hw->rss_size_max, hw->tqps_num);
1244 
1245 	return 0;
1246 }
1247 
1248 static int
hns3vf_get_port_base_vlan_filter_state(struct hns3_hw * hw)1249 hns3vf_get_port_base_vlan_filter_state(struct hns3_hw *hw)
1250 {
1251 	uint8_t resp_msg;
1252 	int ret;
1253 
1254 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN,
1255 				HNS3_MBX_GET_PORT_BASE_VLAN_STATE, NULL, 0,
1256 				true, &resp_msg, sizeof(resp_msg));
1257 	if (ret) {
1258 		if (ret == -ETIME) {
1259 			/*
1260 			 * Getting current port based VLAN state from PF driver
1261 			 * will not affect VF driver's basic function. Because
1262 			 * the VF driver relies on hns3 PF kernel ether driver,
1263 			 * to avoid introducing compatibility issues with older
1264 			 * version of PF driver, no failure will be returned
1265 			 * when the return value is ETIME. This return value has
1266 			 * the following scenarios:
1267 			 * 1) Firmware didn't return the results in time
1268 			 * 2) the result return by firmware is timeout
1269 			 * 3) the older version of kernel side PF driver does
1270 			 *    not support this mailbox message.
1271 			 * For scenarios 1 and 2, it is most likely that a
1272 			 * hardware error has occurred, or a hardware reset has
1273 			 * occurred. In this case, these errors will be caught
1274 			 * by other functions.
1275 			 */
1276 			PMD_INIT_LOG(WARNING,
1277 				"failed to get PVID state for timeout, maybe "
1278 				"kernel side PF driver doesn't support this "
1279 				"mailbox message, or firmware didn't respond.");
1280 			resp_msg = HNS3_PORT_BASE_VLAN_DISABLE;
1281 		} else {
1282 			PMD_INIT_LOG(ERR, "failed to get port based VLAN state,"
1283 				" ret = %d", ret);
1284 			return ret;
1285 		}
1286 	}
1287 	hw->port_base_vlan_cfg.state = resp_msg ?
1288 		HNS3_PORT_BASE_VLAN_ENABLE : HNS3_PORT_BASE_VLAN_DISABLE;
1289 	return 0;
1290 }
1291 
1292 static int
hns3vf_get_queue_info(struct hns3_hw * hw)1293 hns3vf_get_queue_info(struct hns3_hw *hw)
1294 {
1295 #define HNS3VF_TQPS_RSS_INFO_LEN	6
1296 	uint8_t resp_msg[HNS3VF_TQPS_RSS_INFO_LEN];
1297 	int ret;
1298 
1299 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QINFO, 0, NULL, 0, true,
1300 				resp_msg, HNS3VF_TQPS_RSS_INFO_LEN);
1301 	if (ret) {
1302 		PMD_INIT_LOG(ERR, "Failed to get tqp info from PF: %d", ret);
1303 		return ret;
1304 	}
1305 
1306 	memcpy(&hw->tqps_num, &resp_msg[0], sizeof(uint16_t));
1307 	memcpy(&hw->rss_size_max, &resp_msg[2], sizeof(uint16_t));
1308 
1309 	return hns3vf_check_tqp_info(hw);
1310 }
1311 
1312 static int
hns3vf_get_queue_depth(struct hns3_hw * hw)1313 hns3vf_get_queue_depth(struct hns3_hw *hw)
1314 {
1315 #define HNS3VF_TQPS_DEPTH_INFO_LEN	4
1316 	uint8_t resp_msg[HNS3VF_TQPS_DEPTH_INFO_LEN];
1317 	int ret;
1318 
1319 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_QDEPTH, 0, NULL, 0, true,
1320 				resp_msg, HNS3VF_TQPS_DEPTH_INFO_LEN);
1321 	if (ret) {
1322 		PMD_INIT_LOG(ERR, "Failed to get tqp depth info from PF: %d",
1323 			     ret);
1324 		return ret;
1325 	}
1326 
1327 	memcpy(&hw->num_tx_desc, &resp_msg[0], sizeof(uint16_t));
1328 	memcpy(&hw->num_rx_desc, &resp_msg[2], sizeof(uint16_t));
1329 
1330 	return 0;
1331 }
1332 
1333 static int
hns3vf_get_tc_info(struct hns3_hw * hw)1334 hns3vf_get_tc_info(struct hns3_hw *hw)
1335 {
1336 	uint8_t resp_msg;
1337 	int ret;
1338 	uint32_t i;
1339 
1340 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_TCINFO, 0, NULL, 0,
1341 				true, &resp_msg, sizeof(resp_msg));
1342 	if (ret) {
1343 		hns3_err(hw, "VF request to get TC info from PF failed %d",
1344 			 ret);
1345 		return ret;
1346 	}
1347 
1348 	hw->hw_tc_map = resp_msg;
1349 
1350 	for (i = 0; i < HNS3_MAX_TC_NUM; i++) {
1351 		if (hw->hw_tc_map & BIT(i))
1352 			hw->num_tc++;
1353 	}
1354 
1355 	return 0;
1356 }
1357 
1358 static int
hns3vf_get_host_mac_addr(struct hns3_hw * hw)1359 hns3vf_get_host_mac_addr(struct hns3_hw *hw)
1360 {
1361 	uint8_t host_mac[RTE_ETHER_ADDR_LEN];
1362 	int ret;
1363 
1364 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_MAC_ADDR, 0, NULL, 0,
1365 				true, host_mac, RTE_ETHER_ADDR_LEN);
1366 	if (ret) {
1367 		hns3_err(hw, "Failed to get mac addr from PF: %d", ret);
1368 		return ret;
1369 	}
1370 
1371 	memcpy(hw->mac.mac_addr, host_mac, RTE_ETHER_ADDR_LEN);
1372 
1373 	return 0;
1374 }
1375 
1376 static int
hns3vf_get_configuration(struct hns3_hw * hw)1377 hns3vf_get_configuration(struct hns3_hw *hw)
1378 {
1379 	int ret;
1380 
1381 	hw->mac.media_type = HNS3_MEDIA_TYPE_NONE;
1382 	hw->rss_dis_flag = false;
1383 
1384 	/* Get device capability */
1385 	ret = hns3vf_get_capability(hw);
1386 	if (ret) {
1387 		PMD_INIT_LOG(ERR, "failed to get device capability: %d.", ret);
1388 		return ret;
1389 	}
1390 
1391 	/* Get queue configuration from PF */
1392 	ret = hns3vf_get_queue_info(hw);
1393 	if (ret)
1394 		return ret;
1395 
1396 	/* Get queue depth info from PF */
1397 	ret = hns3vf_get_queue_depth(hw);
1398 	if (ret)
1399 		return ret;
1400 
1401 	/* Get user defined VF MAC addr from PF */
1402 	ret = hns3vf_get_host_mac_addr(hw);
1403 	if (ret)
1404 		return ret;
1405 
1406 	ret = hns3vf_get_port_base_vlan_filter_state(hw);
1407 	if (ret)
1408 		return ret;
1409 
1410 	/* Get tc configuration from PF */
1411 	return hns3vf_get_tc_info(hw);
1412 }
1413 
1414 static int
hns3vf_set_tc_queue_mapping(struct hns3_adapter * hns,uint16_t nb_rx_q,uint16_t nb_tx_q)1415 hns3vf_set_tc_queue_mapping(struct hns3_adapter *hns, uint16_t nb_rx_q,
1416 			    uint16_t nb_tx_q)
1417 {
1418 	struct hns3_hw *hw = &hns->hw;
1419 
1420 	if (nb_rx_q < hw->num_tc) {
1421 		hns3_err(hw, "number of Rx queues(%u) is less than tcs(%u).",
1422 			 nb_rx_q, hw->num_tc);
1423 		return -EINVAL;
1424 	}
1425 
1426 	if (nb_tx_q < hw->num_tc) {
1427 		hns3_err(hw, "number of Tx queues(%u) is less than tcs(%u).",
1428 			 nb_tx_q, hw->num_tc);
1429 		return -EINVAL;
1430 	}
1431 
1432 	return hns3_queue_to_tc_mapping(hw, nb_rx_q, nb_tx_q);
1433 }
1434 
1435 static void
hns3vf_request_link_info(struct hns3_hw * hw)1436 hns3vf_request_link_info(struct hns3_hw *hw)
1437 {
1438 	uint8_t resp_msg;
1439 	int ret;
1440 
1441 	if (rte_atomic16_read(&hw->reset.resetting))
1442 		return;
1443 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_GET_LINK_STATUS, 0, NULL, 0, false,
1444 				&resp_msg, sizeof(resp_msg));
1445 	if (ret)
1446 		hns3_err(hw, "Failed to fetch link status from PF: %d", ret);
1447 }
1448 
1449 static int
hns3vf_vlan_filter_configure(struct hns3_adapter * hns,uint16_t vlan_id,int on)1450 hns3vf_vlan_filter_configure(struct hns3_adapter *hns, uint16_t vlan_id, int on)
1451 {
1452 #define HNS3VF_VLAN_MBX_MSG_LEN 5
1453 	struct hns3_hw *hw = &hns->hw;
1454 	uint8_t msg_data[HNS3VF_VLAN_MBX_MSG_LEN];
1455 	uint16_t proto = htons(RTE_ETHER_TYPE_VLAN);
1456 	uint8_t is_kill = on ? 0 : 1;
1457 
1458 	msg_data[0] = is_kill;
1459 	memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1460 	memcpy(&msg_data[3], &proto, sizeof(proto));
1461 
1462 	return hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_FILTER,
1463 				 msg_data, HNS3VF_VLAN_MBX_MSG_LEN, true, NULL,
1464 				 0);
1465 }
1466 
1467 static int
hns3vf_vlan_filter_set(struct rte_eth_dev * dev,uint16_t vlan_id,int on)1468 hns3vf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
1469 {
1470 	struct hns3_adapter *hns = dev->data->dev_private;
1471 	struct hns3_hw *hw = &hns->hw;
1472 	int ret;
1473 
1474 	if (rte_atomic16_read(&hw->reset.resetting)) {
1475 		hns3_err(hw,
1476 			 "vf set vlan id failed during resetting, vlan_id =%u",
1477 			 vlan_id);
1478 		return -EIO;
1479 	}
1480 	rte_spinlock_lock(&hw->lock);
1481 	ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1482 	rte_spinlock_unlock(&hw->lock);
1483 	if (ret)
1484 		hns3_err(hw, "vf set vlan id failed, vlan_id =%u, ret =%d",
1485 			 vlan_id, ret);
1486 
1487 	return ret;
1488 }
1489 
1490 static int
hns3vf_en_hw_strip_rxvtag(struct hns3_hw * hw,bool enable)1491 hns3vf_en_hw_strip_rxvtag(struct hns3_hw *hw, bool enable)
1492 {
1493 	uint8_t msg_data;
1494 	int ret;
1495 
1496 	msg_data = enable ? 1 : 0;
1497 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_SET_VLAN, HNS3_MBX_VLAN_RX_OFF_CFG,
1498 				&msg_data, sizeof(msg_data), false, NULL, 0);
1499 	if (ret)
1500 		hns3_err(hw, "vf enable strip failed, ret =%d", ret);
1501 
1502 	return ret;
1503 }
1504 
1505 static int
hns3vf_vlan_offload_set(struct rte_eth_dev * dev,int mask)1506 hns3vf_vlan_offload_set(struct rte_eth_dev *dev, int mask)
1507 {
1508 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1509 	struct rte_eth_conf *dev_conf = &dev->data->dev_conf;
1510 	unsigned int tmp_mask;
1511 	int ret = 0;
1512 
1513 	if (rte_atomic16_read(&hw->reset.resetting)) {
1514 		hns3_err(hw, "vf set vlan offload failed during resetting, "
1515 			     "mask = 0x%x", mask);
1516 		return -EIO;
1517 	}
1518 
1519 	tmp_mask = (unsigned int)mask;
1520 	/* Vlan stripping setting */
1521 	if (tmp_mask & ETH_VLAN_STRIP_MASK) {
1522 		rte_spinlock_lock(&hw->lock);
1523 		/* Enable or disable VLAN stripping */
1524 		if (dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
1525 			ret = hns3vf_en_hw_strip_rxvtag(hw, true);
1526 		else
1527 			ret = hns3vf_en_hw_strip_rxvtag(hw, false);
1528 		rte_spinlock_unlock(&hw->lock);
1529 	}
1530 
1531 	return ret;
1532 }
1533 
1534 static int
hns3vf_handle_all_vlan_table(struct hns3_adapter * hns,int on)1535 hns3vf_handle_all_vlan_table(struct hns3_adapter *hns, int on)
1536 {
1537 	struct rte_vlan_filter_conf *vfc;
1538 	struct hns3_hw *hw = &hns->hw;
1539 	uint16_t vlan_id;
1540 	uint64_t vbit;
1541 	uint64_t ids;
1542 	int ret = 0;
1543 	uint32_t i;
1544 
1545 	vfc = &hw->data->vlan_filter_conf;
1546 	for (i = 0; i < RTE_DIM(vfc->ids); i++) {
1547 		if (vfc->ids[i] == 0)
1548 			continue;
1549 		ids = vfc->ids[i];
1550 		while (ids) {
1551 			/*
1552 			 * 64 means the num bits of ids, one bit corresponds to
1553 			 * one vlan id
1554 			 */
1555 			vlan_id = 64 * i;
1556 			/* count trailing zeroes */
1557 			vbit = ~ids & (ids - 1);
1558 			/* clear least significant bit set */
1559 			ids ^= (ids ^ (ids - 1)) ^ vbit;
1560 			for (; vbit;) {
1561 				vbit >>= 1;
1562 				vlan_id++;
1563 			}
1564 			ret = hns3vf_vlan_filter_configure(hns, vlan_id, on);
1565 			if (ret) {
1566 				hns3_err(hw,
1567 					 "VF handle vlan table failed, ret =%d, on = %d",
1568 					 ret, on);
1569 				return ret;
1570 			}
1571 		}
1572 	}
1573 
1574 	return ret;
1575 }
1576 
1577 static int
hns3vf_remove_all_vlan_table(struct hns3_adapter * hns)1578 hns3vf_remove_all_vlan_table(struct hns3_adapter *hns)
1579 {
1580 	return hns3vf_handle_all_vlan_table(hns, 0);
1581 }
1582 
1583 static int
hns3vf_restore_vlan_conf(struct hns3_adapter * hns)1584 hns3vf_restore_vlan_conf(struct hns3_adapter *hns)
1585 {
1586 	struct hns3_hw *hw = &hns->hw;
1587 	struct rte_eth_conf *dev_conf;
1588 	bool en;
1589 	int ret;
1590 
1591 	dev_conf = &hw->data->dev_conf;
1592 	en = dev_conf->rxmode.offloads & DEV_RX_OFFLOAD_VLAN_STRIP ? true
1593 								   : false;
1594 	ret = hns3vf_en_hw_strip_rxvtag(hw, en);
1595 	if (ret)
1596 		hns3_err(hw, "VF restore vlan conf fail, en =%d, ret =%d", en,
1597 			 ret);
1598 	return ret;
1599 }
1600 
1601 static int
hns3vf_dev_configure_vlan(struct rte_eth_dev * dev)1602 hns3vf_dev_configure_vlan(struct rte_eth_dev *dev)
1603 {
1604 	struct hns3_adapter *hns = dev->data->dev_private;
1605 	struct rte_eth_dev_data *data = dev->data;
1606 	struct hns3_hw *hw = &hns->hw;
1607 	int ret;
1608 
1609 	if (data->dev_conf.txmode.hw_vlan_reject_tagged ||
1610 	    data->dev_conf.txmode.hw_vlan_reject_untagged ||
1611 	    data->dev_conf.txmode.hw_vlan_insert_pvid) {
1612 		hns3_warn(hw, "hw_vlan_reject_tagged, hw_vlan_reject_untagged "
1613 			      "or hw_vlan_insert_pvid is not support!");
1614 	}
1615 
1616 	/* Apply vlan offload setting */
1617 	ret = hns3vf_vlan_offload_set(dev, ETH_VLAN_STRIP_MASK);
1618 	if (ret)
1619 		hns3_err(hw, "dev config vlan offload failed, ret =%d", ret);
1620 
1621 	return ret;
1622 }
1623 
1624 static int
hns3vf_set_alive(struct hns3_hw * hw,bool alive)1625 hns3vf_set_alive(struct hns3_hw *hw, bool alive)
1626 {
1627 	uint8_t msg_data;
1628 
1629 	msg_data = alive ? 1 : 0;
1630 	return hns3_send_mbx_msg(hw, HNS3_MBX_SET_ALIVE, 0, &msg_data,
1631 				 sizeof(msg_data), false, NULL, 0);
1632 }
1633 
1634 static void
hns3vf_keep_alive_handler(void * param)1635 hns3vf_keep_alive_handler(void *param)
1636 {
1637 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1638 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1639 	struct hns3_hw *hw = &hns->hw;
1640 	uint8_t respmsg;
1641 	int ret;
1642 
1643 	ret = hns3_send_mbx_msg(hw, HNS3_MBX_KEEP_ALIVE, 0, NULL, 0,
1644 				false, &respmsg, sizeof(uint8_t));
1645 	if (ret)
1646 		hns3_err(hw, "VF sends keeping alive cmd failed(=%d)",
1647 			 ret);
1648 
1649 	rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
1650 			  eth_dev);
1651 }
1652 
1653 static void
hns3vf_service_handler(void * param)1654 hns3vf_service_handler(void *param)
1655 {
1656 	struct rte_eth_dev *eth_dev = (struct rte_eth_dev *)param;
1657 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1658 	struct hns3_hw *hw = &hns->hw;
1659 
1660 	/*
1661 	 * The query link status and reset processing are executed in the
1662 	 * interrupt thread.When the IMP reset occurs, IMP will not respond,
1663 	 * and the query operation will time out after 30ms. In the case of
1664 	 * multiple PF/VFs, each query failure timeout causes the IMP reset
1665 	 * interrupt to fail to respond within 100ms.
1666 	 * Before querying the link status, check whether there is a reset
1667 	 * pending, and if so, abandon the query.
1668 	 */
1669 	if (!hns3vf_is_reset_pending(hns))
1670 		hns3vf_request_link_info(hw);
1671 	else
1672 		hns3_warn(hw, "Cancel the query when reset is pending");
1673 
1674 	rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler,
1675 			  eth_dev);
1676 }
1677 
1678 static int
hns3_query_vf_resource(struct hns3_hw * hw)1679 hns3_query_vf_resource(struct hns3_hw *hw)
1680 {
1681 	struct hns3_vf_res_cmd *req;
1682 	struct hns3_cmd_desc desc;
1683 	uint16_t num_msi;
1684 	int ret;
1685 
1686 	hns3_cmd_setup_basic_desc(&desc, HNS3_OPC_QUERY_VF_RSRC, true);
1687 	ret = hns3_cmd_send(hw, &desc, 1);
1688 	if (ret) {
1689 		hns3_err(hw, "query vf resource failed, ret = %d", ret);
1690 		return ret;
1691 	}
1692 
1693 	req = (struct hns3_vf_res_cmd *)desc.data;
1694 	num_msi = hns3_get_field(rte_le_to_cpu_16(req->vf_intr_vector_number),
1695 				 HNS3_VF_VEC_NUM_M, HNS3_VF_VEC_NUM_S);
1696 	if (num_msi < HNS3_MIN_VECTOR_NUM) {
1697 		hns3_err(hw, "Just %u msi resources, not enough for vf(min:%d)",
1698 			 num_msi, HNS3_MIN_VECTOR_NUM);
1699 		return -EINVAL;
1700 	}
1701 
1702 	hw->num_msi = num_msi;
1703 
1704 	return 0;
1705 }
1706 
1707 static int
hns3vf_init_hardware(struct hns3_adapter * hns)1708 hns3vf_init_hardware(struct hns3_adapter *hns)
1709 {
1710 	struct hns3_hw *hw = &hns->hw;
1711 	uint16_t mtu = hw->data->mtu;
1712 	int ret;
1713 
1714 	ret = hns3vf_set_promisc_mode(hw, true, false, false);
1715 	if (ret)
1716 		return ret;
1717 
1718 	ret = hns3vf_config_mtu(hw, mtu);
1719 	if (ret)
1720 		goto err_init_hardware;
1721 
1722 	ret = hns3vf_vlan_filter_configure(hns, 0, 1);
1723 	if (ret) {
1724 		PMD_INIT_LOG(ERR, "Failed to initialize VLAN config: %d", ret);
1725 		goto err_init_hardware;
1726 	}
1727 
1728 	ret = hns3_config_gro(hw, false);
1729 	if (ret) {
1730 		PMD_INIT_LOG(ERR, "Failed to config gro: %d", ret);
1731 		goto err_init_hardware;
1732 	}
1733 
1734 	/*
1735 	 * In the initialization clearing the all hardware mapping relationship
1736 	 * configurations between queues and interrupt vectors is needed, so
1737 	 * some error caused by the residual configurations, such as the
1738 	 * unexpected interrupt, can be avoid.
1739 	 */
1740 	ret = hns3vf_init_ring_with_vector(hw);
1741 	if (ret) {
1742 		PMD_INIT_LOG(ERR, "Failed to init ring intr vector: %d", ret);
1743 		goto err_init_hardware;
1744 	}
1745 
1746 	ret = hns3vf_set_alive(hw, true);
1747 	if (ret) {
1748 		PMD_INIT_LOG(ERR, "Failed to VF send alive to PF: %d", ret);
1749 		goto err_init_hardware;
1750 	}
1751 
1752 	hns3vf_request_link_info(hw);
1753 	return 0;
1754 
1755 err_init_hardware:
1756 	(void)hns3vf_set_promisc_mode(hw, false, false, false);
1757 	return ret;
1758 }
1759 
1760 static int
hns3vf_clear_vport_list(struct hns3_hw * hw)1761 hns3vf_clear_vport_list(struct hns3_hw *hw)
1762 {
1763 	return hns3_send_mbx_msg(hw, HNS3_MBX_HANDLE_VF_TBL,
1764 				 HNS3_MBX_VPORT_LIST_CLEAR, NULL, 0, false,
1765 				 NULL, 0);
1766 }
1767 
1768 static int
hns3vf_init_vf(struct rte_eth_dev * eth_dev)1769 hns3vf_init_vf(struct rte_eth_dev *eth_dev)
1770 {
1771 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1772 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1773 	struct hns3_hw *hw = &hns->hw;
1774 	int ret;
1775 
1776 	PMD_INIT_FUNC_TRACE();
1777 
1778 	/* Get hardware io base address from pcie BAR2 IO space */
1779 	hw->io_base = pci_dev->mem_resource[2].addr;
1780 
1781 	/* Firmware command queue initialize */
1782 	ret = hns3_cmd_init_queue(hw);
1783 	if (ret) {
1784 		PMD_INIT_LOG(ERR, "Failed to init cmd queue: %d", ret);
1785 		goto err_cmd_init_queue;
1786 	}
1787 
1788 	/* Firmware command initialize */
1789 	ret = hns3_cmd_init(hw);
1790 	if (ret) {
1791 		PMD_INIT_LOG(ERR, "Failed to init cmd: %d", ret);
1792 		goto err_cmd_init;
1793 	}
1794 
1795 	/* Get VF resource */
1796 	ret = hns3_query_vf_resource(hw);
1797 	if (ret)
1798 		goto err_cmd_init;
1799 
1800 	rte_spinlock_init(&hw->mbx_resp.lock);
1801 
1802 	hns3vf_clear_event_cause(hw, 0);
1803 
1804 	ret = rte_intr_callback_register(&pci_dev->intr_handle,
1805 					 hns3vf_interrupt_handler, eth_dev);
1806 	if (ret) {
1807 		PMD_INIT_LOG(ERR, "Failed to register intr: %d", ret);
1808 		goto err_intr_callback_register;
1809 	}
1810 
1811 	/* Enable interrupt */
1812 	rte_intr_enable(&pci_dev->intr_handle);
1813 	hns3vf_enable_irq0(hw);
1814 
1815 	/* Get configuration from PF */
1816 	ret = hns3vf_get_configuration(hw);
1817 	if (ret) {
1818 		PMD_INIT_LOG(ERR, "Failed to fetch configuration: %d", ret);
1819 		goto err_get_config;
1820 	}
1821 
1822 	ret = hns3_tqp_stats_init(hw);
1823 	if (ret)
1824 		goto err_get_config;
1825 
1826 	ret = hns3vf_set_tc_queue_mapping(hns, hw->tqps_num, hw->tqps_num);
1827 	if (ret) {
1828 		PMD_INIT_LOG(ERR, "failed to set tc info, ret = %d.", ret);
1829 		goto err_set_tc_queue;
1830 	}
1831 
1832 	ret = hns3vf_clear_vport_list(hw);
1833 	if (ret) {
1834 		PMD_INIT_LOG(ERR, "Failed to clear tbl list: %d", ret);
1835 		goto err_set_tc_queue;
1836 	}
1837 
1838 	ret = hns3vf_init_hardware(hns);
1839 	if (ret)
1840 		goto err_set_tc_queue;
1841 
1842 	hns3_set_default_rss_args(hw);
1843 
1844 	return 0;
1845 
1846 err_set_tc_queue:
1847 	hns3_tqp_stats_uninit(hw);
1848 
1849 err_get_config:
1850 	hns3vf_disable_irq0(hw);
1851 	rte_intr_disable(&pci_dev->intr_handle);
1852 	hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1853 			     eth_dev);
1854 err_intr_callback_register:
1855 err_cmd_init:
1856 	hns3_cmd_uninit(hw);
1857 	hns3_cmd_destroy_queue(hw);
1858 err_cmd_init_queue:
1859 	hw->io_base = NULL;
1860 
1861 	return ret;
1862 }
1863 
1864 static void
hns3vf_uninit_vf(struct rte_eth_dev * eth_dev)1865 hns3vf_uninit_vf(struct rte_eth_dev *eth_dev)
1866 {
1867 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
1868 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1869 	struct hns3_hw *hw = &hns->hw;
1870 
1871 	PMD_INIT_FUNC_TRACE();
1872 
1873 	hns3_rss_uninit(hns);
1874 	(void)hns3_config_gro(hw, false);
1875 	(void)hns3vf_set_alive(hw, false);
1876 	(void)hns3vf_set_promisc_mode(hw, false, false, false);
1877 	hns3_tqp_stats_uninit(hw);
1878 	hns3vf_disable_irq0(hw);
1879 	rte_intr_disable(&pci_dev->intr_handle);
1880 	hns3_intr_unregister(&pci_dev->intr_handle, hns3vf_interrupt_handler,
1881 			     eth_dev);
1882 	hns3_cmd_uninit(hw);
1883 	hns3_cmd_destroy_queue(hw);
1884 	hw->io_base = NULL;
1885 }
1886 
1887 static int
hns3vf_do_stop(struct hns3_adapter * hns)1888 hns3vf_do_stop(struct hns3_adapter *hns)
1889 {
1890 	struct hns3_hw *hw = &hns->hw;
1891 	int ret;
1892 
1893 	hw->mac.link_status = ETH_LINK_DOWN;
1894 
1895 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0) {
1896 		hns3vf_configure_mac_addr(hns, true);
1897 		ret = hns3_reset_all_tqps(hns);
1898 		if (ret) {
1899 			hns3_err(hw, "failed to reset all queues ret = %d",
1900 				 ret);
1901 			return ret;
1902 		}
1903 	}
1904 	return 0;
1905 }
1906 
1907 static void
hns3vf_unmap_rx_interrupt(struct rte_eth_dev * dev)1908 hns3vf_unmap_rx_interrupt(struct rte_eth_dev *dev)
1909 {
1910 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1911 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1912 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1913 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
1914 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
1915 	uint16_t q_id;
1916 
1917 	if (dev->data->dev_conf.intr_conf.rxq == 0)
1918 		return;
1919 
1920 	/* unmap the ring with vector */
1921 	if (rte_intr_allow_others(intr_handle)) {
1922 		vec = RTE_INTR_VEC_RXTX_OFFSET;
1923 		base = RTE_INTR_VEC_RXTX_OFFSET;
1924 	}
1925 	if (rte_intr_dp_is_en(intr_handle)) {
1926 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
1927 			(void)hns3vf_bind_ring_with_vector(hw, vec, false,
1928 							   HNS3_RING_TYPE_RX,
1929 							   q_id);
1930 			if (vec < base + intr_handle->nb_efd - 1)
1931 				vec++;
1932 		}
1933 	}
1934 	/* Clean datapath event and queue/vec mapping */
1935 	rte_intr_efd_disable(intr_handle);
1936 	if (intr_handle->intr_vec) {
1937 		rte_free(intr_handle->intr_vec);
1938 		intr_handle->intr_vec = NULL;
1939 	}
1940 }
1941 
1942 static int
hns3vf_dev_stop(struct rte_eth_dev * dev)1943 hns3vf_dev_stop(struct rte_eth_dev *dev)
1944 {
1945 	struct hns3_adapter *hns = dev->data->dev_private;
1946 	struct hns3_hw *hw = &hns->hw;
1947 
1948 	PMD_INIT_FUNC_TRACE();
1949 	dev->data->dev_started = 0;
1950 
1951 	hw->adapter_state = HNS3_NIC_STOPPING;
1952 	hns3_set_rxtx_function(dev);
1953 	rte_wmb();
1954 	/* Disable datapath on secondary process. */
1955 	hns3_mp_req_stop_rxtx(dev);
1956 	/* Prevent crashes when queues are still in use. */
1957 	rte_delay_ms(hw->tqps_num);
1958 
1959 	rte_spinlock_lock(&hw->lock);
1960 	if (rte_atomic16_read(&hw->reset.resetting) == 0) {
1961 		hns3_stop_tqps(hw);
1962 		hns3vf_do_stop(hns);
1963 		hns3vf_unmap_rx_interrupt(dev);
1964 		hns3_dev_release_mbufs(hns);
1965 		hw->adapter_state = HNS3_NIC_CONFIGURED;
1966 	}
1967 	hns3_rx_scattered_reset(dev);
1968 	rte_eal_alarm_cancel(hns3vf_service_handler, dev);
1969 	rte_spinlock_unlock(&hw->lock);
1970 
1971 	return 0;
1972 }
1973 
1974 static int
hns3vf_dev_close(struct rte_eth_dev * eth_dev)1975 hns3vf_dev_close(struct rte_eth_dev *eth_dev)
1976 {
1977 	struct hns3_adapter *hns = eth_dev->data->dev_private;
1978 	struct hns3_hw *hw = &hns->hw;
1979 	int ret = 0;
1980 
1981 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1982 		return 0;
1983 
1984 	if (hw->adapter_state == HNS3_NIC_STARTED)
1985 		ret = hns3vf_dev_stop(eth_dev);
1986 
1987 	hw->adapter_state = HNS3_NIC_CLOSING;
1988 	hns3_reset_abort(hns);
1989 	hw->adapter_state = HNS3_NIC_CLOSED;
1990 	rte_eal_alarm_cancel(hns3vf_keep_alive_handler, eth_dev);
1991 	hns3vf_configure_all_mc_mac_addr(hns, true);
1992 	hns3vf_remove_all_vlan_table(hns);
1993 	hns3vf_uninit_vf(eth_dev);
1994 	hns3_free_all_queues(eth_dev);
1995 	rte_free(hw->reset.wait_data);
1996 	rte_free(eth_dev->process_private);
1997 	eth_dev->process_private = NULL;
1998 	hns3_mp_uninit_primary();
1999 	hns3_warn(hw, "Close port %u finished", hw->data->port_id);
2000 
2001 	return ret;
2002 }
2003 
2004 static int
hns3vf_fw_version_get(struct rte_eth_dev * eth_dev,char * fw_version,size_t fw_size)2005 hns3vf_fw_version_get(struct rte_eth_dev *eth_dev, char *fw_version,
2006 		      size_t fw_size)
2007 {
2008 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2009 	struct hns3_hw *hw = &hns->hw;
2010 	uint32_t version = hw->fw_version;
2011 	int ret;
2012 
2013 	ret = snprintf(fw_version, fw_size, "%lu.%lu.%lu.%lu",
2014 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE3_M,
2015 				      HNS3_FW_VERSION_BYTE3_S),
2016 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE2_M,
2017 				      HNS3_FW_VERSION_BYTE2_S),
2018 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE1_M,
2019 				      HNS3_FW_VERSION_BYTE1_S),
2020 		       hns3_get_field(version, HNS3_FW_VERSION_BYTE0_M,
2021 				      HNS3_FW_VERSION_BYTE0_S));
2022 	ret += 1; /* add the size of '\0' */
2023 	if (fw_size < (uint32_t)ret)
2024 		return ret;
2025 	else
2026 		return 0;
2027 }
2028 
2029 static int
hns3vf_dev_link_update(struct rte_eth_dev * eth_dev,__rte_unused int wait_to_complete)2030 hns3vf_dev_link_update(struct rte_eth_dev *eth_dev,
2031 		       __rte_unused int wait_to_complete)
2032 {
2033 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2034 	struct hns3_hw *hw = &hns->hw;
2035 	struct hns3_mac *mac = &hw->mac;
2036 	struct rte_eth_link new_link;
2037 
2038 	memset(&new_link, 0, sizeof(new_link));
2039 	switch (mac->link_speed) {
2040 	case ETH_SPEED_NUM_10M:
2041 	case ETH_SPEED_NUM_100M:
2042 	case ETH_SPEED_NUM_1G:
2043 	case ETH_SPEED_NUM_10G:
2044 	case ETH_SPEED_NUM_25G:
2045 	case ETH_SPEED_NUM_40G:
2046 	case ETH_SPEED_NUM_50G:
2047 	case ETH_SPEED_NUM_100G:
2048 	case ETH_SPEED_NUM_200G:
2049 		new_link.link_speed = mac->link_speed;
2050 		break;
2051 	default:
2052 		new_link.link_speed = ETH_SPEED_NUM_100M;
2053 		break;
2054 	}
2055 
2056 	new_link.link_duplex = mac->link_duplex;
2057 	new_link.link_status = mac->link_status ? ETH_LINK_UP : ETH_LINK_DOWN;
2058 	new_link.link_autoneg =
2059 	    !(eth_dev->data->dev_conf.link_speeds & ETH_LINK_SPEED_FIXED);
2060 
2061 	return rte_eth_linkstatus_set(eth_dev, &new_link);
2062 }
2063 
2064 static int
hns3vf_do_start(struct hns3_adapter * hns,bool reset_queue)2065 hns3vf_do_start(struct hns3_adapter *hns, bool reset_queue)
2066 {
2067 	struct hns3_hw *hw = &hns->hw;
2068 	uint16_t nb_rx_q = hw->data->nb_rx_queues;
2069 	uint16_t nb_tx_q = hw->data->nb_tx_queues;
2070 	int ret;
2071 
2072 	ret = hns3vf_set_tc_queue_mapping(hns, nb_rx_q, nb_tx_q);
2073 	if (ret)
2074 		return ret;
2075 
2076 	ret = hns3_init_queues(hns, reset_queue);
2077 	if (ret)
2078 		hns3_err(hw, "failed to init queues, ret = %d.", ret);
2079 
2080 	return ret;
2081 }
2082 
2083 static int
hns3vf_map_rx_interrupt(struct rte_eth_dev * dev)2084 hns3vf_map_rx_interrupt(struct rte_eth_dev *dev)
2085 {
2086 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2087 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2088 	struct hns3_hw *hw = HNS3_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2089 	uint8_t base = RTE_INTR_VEC_ZERO_OFFSET;
2090 	uint8_t vec = RTE_INTR_VEC_ZERO_OFFSET;
2091 	uint32_t intr_vector;
2092 	uint16_t q_id;
2093 	int ret;
2094 
2095 	if (dev->data->dev_conf.intr_conf.rxq == 0)
2096 		return 0;
2097 
2098 	/* disable uio/vfio intr/eventfd mapping */
2099 	rte_intr_disable(intr_handle);
2100 
2101 	/* check and configure queue intr-vector mapping */
2102 	if (rte_intr_cap_multiple(intr_handle) ||
2103 	    !RTE_ETH_DEV_SRIOV(dev).active) {
2104 		intr_vector = hw->used_rx_queues;
2105 		/* It creates event fd for each intr vector when MSIX is used */
2106 		if (rte_intr_efd_enable(intr_handle, intr_vector))
2107 			return -EINVAL;
2108 	}
2109 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
2110 		intr_handle->intr_vec =
2111 			rte_zmalloc("intr_vec",
2112 				    hw->used_rx_queues * sizeof(int), 0);
2113 		if (intr_handle->intr_vec == NULL) {
2114 			hns3_err(hw, "Failed to allocate %u rx_queues"
2115 				     " intr_vec", hw->used_rx_queues);
2116 			ret = -ENOMEM;
2117 			goto vf_alloc_intr_vec_error;
2118 		}
2119 	}
2120 
2121 	if (rte_intr_allow_others(intr_handle)) {
2122 		vec = RTE_INTR_VEC_RXTX_OFFSET;
2123 		base = RTE_INTR_VEC_RXTX_OFFSET;
2124 	}
2125 	if (rte_intr_dp_is_en(intr_handle)) {
2126 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2127 			ret = hns3vf_bind_ring_with_vector(hw, vec, true,
2128 							   HNS3_RING_TYPE_RX,
2129 							   q_id);
2130 			if (ret)
2131 				goto vf_bind_vector_error;
2132 			intr_handle->intr_vec[q_id] = vec;
2133 			if (vec < base + intr_handle->nb_efd - 1)
2134 				vec++;
2135 		}
2136 	}
2137 	rte_intr_enable(intr_handle);
2138 	return 0;
2139 
2140 vf_bind_vector_error:
2141 	rte_intr_efd_disable(intr_handle);
2142 	if (intr_handle->intr_vec) {
2143 		free(intr_handle->intr_vec);
2144 		intr_handle->intr_vec = NULL;
2145 	}
2146 	return ret;
2147 vf_alloc_intr_vec_error:
2148 	rte_intr_efd_disable(intr_handle);
2149 	return ret;
2150 }
2151 
2152 static int
hns3vf_restore_rx_interrupt(struct hns3_hw * hw)2153 hns3vf_restore_rx_interrupt(struct hns3_hw *hw)
2154 {
2155 	struct rte_eth_dev *dev = &rte_eth_devices[hw->data->port_id];
2156 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2157 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2158 	uint16_t q_id;
2159 	int ret;
2160 
2161 	if (dev->data->dev_conf.intr_conf.rxq == 0)
2162 		return 0;
2163 
2164 	if (rte_intr_dp_is_en(intr_handle)) {
2165 		for (q_id = 0; q_id < hw->used_rx_queues; q_id++) {
2166 			ret = hns3vf_bind_ring_with_vector(hw,
2167 					intr_handle->intr_vec[q_id], true,
2168 					HNS3_RING_TYPE_RX, q_id);
2169 			if (ret)
2170 				return ret;
2171 		}
2172 	}
2173 
2174 	return 0;
2175 }
2176 
2177 static void
hns3vf_restore_filter(struct rte_eth_dev * dev)2178 hns3vf_restore_filter(struct rte_eth_dev *dev)
2179 {
2180 	hns3_restore_rss_filter(dev);
2181 }
2182 
2183 static int
hns3vf_dev_start(struct rte_eth_dev * dev)2184 hns3vf_dev_start(struct rte_eth_dev *dev)
2185 {
2186 	struct hns3_adapter *hns = dev->data->dev_private;
2187 	struct hns3_hw *hw = &hns->hw;
2188 	int ret;
2189 
2190 	PMD_INIT_FUNC_TRACE();
2191 	if (rte_atomic16_read(&hw->reset.resetting))
2192 		return -EBUSY;
2193 
2194 	rte_spinlock_lock(&hw->lock);
2195 	hw->adapter_state = HNS3_NIC_STARTING;
2196 	ret = hns3vf_do_start(hns, true);
2197 	if (ret) {
2198 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2199 		rte_spinlock_unlock(&hw->lock);
2200 		return ret;
2201 	}
2202 	ret = hns3vf_map_rx_interrupt(dev);
2203 	if (ret) {
2204 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2205 		rte_spinlock_unlock(&hw->lock);
2206 		return ret;
2207 	}
2208 
2209 	/*
2210 	 * There are three register used to control the status of a TQP
2211 	 * (contains a pair of Tx queue and Rx queue) in the new version network
2212 	 * engine. One is used to control the enabling of Tx queue, the other is
2213 	 * used to control the enabling of Rx queue, and the last is the master
2214 	 * switch used to control the enabling of the tqp. The Tx register and
2215 	 * TQP register must be enabled at the same time to enable a Tx queue.
2216 	 * The same applies to the Rx queue. For the older network enginem, this
2217 	 * function only refresh the enabled flag, and it is used to update the
2218 	 * status of queue in the dpdk framework.
2219 	 */
2220 	ret = hns3_start_all_txqs(dev);
2221 	if (ret) {
2222 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2223 		rte_spinlock_unlock(&hw->lock);
2224 		return ret;
2225 	}
2226 
2227 	ret = hns3_start_all_rxqs(dev);
2228 	if (ret) {
2229 		hns3_stop_all_txqs(dev);
2230 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2231 		rte_spinlock_unlock(&hw->lock);
2232 		return ret;
2233 	}
2234 
2235 	hw->adapter_state = HNS3_NIC_STARTED;
2236 	rte_spinlock_unlock(&hw->lock);
2237 
2238 	hns3_rx_scattered_calc(dev);
2239 	hns3_set_rxtx_function(dev);
2240 	hns3_mp_req_start_rxtx(dev);
2241 	rte_eal_alarm_set(HNS3VF_SERVICE_INTERVAL, hns3vf_service_handler, dev);
2242 
2243 	hns3vf_restore_filter(dev);
2244 
2245 	/* Enable interrupt of all rx queues before enabling queues */
2246 	hns3_dev_all_rx_queue_intr_enable(hw, true);
2247 
2248 	/*
2249 	 * After finished the initialization, start all tqps to receive/transmit
2250 	 * packets and refresh all queue status.
2251 	 */
2252 	hns3_start_tqps(hw);
2253 
2254 	return ret;
2255 }
2256 
2257 static bool
is_vf_reset_done(struct hns3_hw * hw)2258 is_vf_reset_done(struct hns3_hw *hw)
2259 {
2260 #define HNS3_FUN_RST_ING_BITS \
2261 	(BIT(HNS3_VECTOR0_GLOBALRESET_INT_B) | \
2262 	 BIT(HNS3_VECTOR0_CORERESET_INT_B) | \
2263 	 BIT(HNS3_VECTOR0_IMPRESET_INT_B) | \
2264 	 BIT(HNS3_VECTOR0_FUNCRESET_INT_B))
2265 
2266 	uint32_t val;
2267 
2268 	if (hw->reset.level == HNS3_VF_RESET) {
2269 		val = hns3_read_dev(hw, HNS3_VF_RST_ING);
2270 		if (val & HNS3_VF_RST_ING_BIT)
2271 			return false;
2272 	} else {
2273 		val = hns3_read_dev(hw, HNS3_FUN_RST_ING);
2274 		if (val & HNS3_FUN_RST_ING_BITS)
2275 			return false;
2276 	}
2277 	return true;
2278 }
2279 
2280 bool
hns3vf_is_reset_pending(struct hns3_adapter * hns)2281 hns3vf_is_reset_pending(struct hns3_adapter *hns)
2282 {
2283 	struct hns3_hw *hw = &hns->hw;
2284 	enum hns3_reset_level reset;
2285 
2286 	/*
2287 	 * According to the protocol of PCIe, FLR to a PF device resets the PF
2288 	 * state as well as the SR-IOV extended capability including VF Enable
2289 	 * which means that VFs no longer exist.
2290 	 *
2291 	 * HNS3_VF_FULL_RESET means PF device is in FLR reset. when PF device
2292 	 * is in FLR stage, the register state of VF device is not reliable,
2293 	 * so register states detection can not be carried out. In this case,
2294 	 * we just ignore the register states and return false to indicate that
2295 	 * there are no other reset states that need to be processed by driver.
2296 	 */
2297 	if (hw->reset.level == HNS3_VF_FULL_RESET)
2298 		return false;
2299 
2300 	/* Check the registers to confirm whether there is reset pending */
2301 	hns3vf_check_event_cause(hns, NULL);
2302 	reset = hns3vf_get_reset_level(hw, &hw->reset.pending);
2303 	if (hw->reset.level != HNS3_NONE_RESET && hw->reset.level < reset) {
2304 		hns3_warn(hw, "High level reset %d is pending", reset);
2305 		return true;
2306 	}
2307 	return false;
2308 }
2309 
2310 static int
hns3vf_wait_hardware_ready(struct hns3_adapter * hns)2311 hns3vf_wait_hardware_ready(struct hns3_adapter *hns)
2312 {
2313 	struct hns3_hw *hw = &hns->hw;
2314 	struct hns3_wait_data *wait_data = hw->reset.wait_data;
2315 	struct timeval tv;
2316 
2317 	if (wait_data->result == HNS3_WAIT_SUCCESS) {
2318 		/*
2319 		 * After vf reset is ready, the PF may not have completed
2320 		 * the reset processing. The vf sending mbox to PF may fail
2321 		 * during the pf reset, so it is better to add extra delay.
2322 		 */
2323 		if (hw->reset.level == HNS3_VF_FUNC_RESET ||
2324 		    hw->reset.level == HNS3_FLR_RESET)
2325 			return 0;
2326 		/* Reset retry process, no need to add extra delay. */
2327 		if (hw->reset.attempts)
2328 			return 0;
2329 		if (wait_data->check_completion == NULL)
2330 			return 0;
2331 
2332 		wait_data->check_completion = NULL;
2333 		wait_data->interval = 1 * MSEC_PER_SEC * USEC_PER_MSEC;
2334 		wait_data->count = 1;
2335 		wait_data->result = HNS3_WAIT_REQUEST;
2336 		rte_eal_alarm_set(wait_data->interval, hns3_wait_callback,
2337 				  wait_data);
2338 		hns3_warn(hw, "hardware is ready, delay 1 sec for PF reset complete");
2339 		return -EAGAIN;
2340 	} else if (wait_data->result == HNS3_WAIT_TIMEOUT) {
2341 		gettimeofday(&tv, NULL);
2342 		hns3_warn(hw, "Reset step4 hardware not ready after reset time=%ld.%.6ld",
2343 			  tv.tv_sec, tv.tv_usec);
2344 		return -ETIME;
2345 	} else if (wait_data->result == HNS3_WAIT_REQUEST)
2346 		return -EAGAIN;
2347 
2348 	wait_data->hns = hns;
2349 	wait_data->check_completion = is_vf_reset_done;
2350 	wait_data->end_ms = (uint64_t)HNS3VF_RESET_WAIT_CNT *
2351 				      HNS3VF_RESET_WAIT_MS + get_timeofday_ms();
2352 	wait_data->interval = HNS3VF_RESET_WAIT_MS * USEC_PER_MSEC;
2353 	wait_data->count = HNS3VF_RESET_WAIT_CNT;
2354 	wait_data->result = HNS3_WAIT_REQUEST;
2355 	rte_eal_alarm_set(wait_data->interval, hns3_wait_callback, wait_data);
2356 	return -EAGAIN;
2357 }
2358 
2359 static int
hns3vf_prepare_reset(struct hns3_adapter * hns)2360 hns3vf_prepare_reset(struct hns3_adapter *hns)
2361 {
2362 	struct hns3_hw *hw = &hns->hw;
2363 	int ret = 0;
2364 
2365 	if (hw->reset.level == HNS3_VF_FUNC_RESET) {
2366 		ret = hns3_send_mbx_msg(hw, HNS3_MBX_RESET, 0, NULL,
2367 					0, true, NULL, 0);
2368 	}
2369 	rte_atomic16_set(&hw->reset.disable_cmd, 1);
2370 
2371 	return ret;
2372 }
2373 
2374 static int
hns3vf_stop_service(struct hns3_adapter * hns)2375 hns3vf_stop_service(struct hns3_adapter *hns)
2376 {
2377 	struct hns3_hw *hw = &hns->hw;
2378 	struct rte_eth_dev *eth_dev;
2379 
2380 	eth_dev = &rte_eth_devices[hw->data->port_id];
2381 	if (hw->adapter_state == HNS3_NIC_STARTED)
2382 		rte_eal_alarm_cancel(hns3vf_service_handler, eth_dev);
2383 	hw->mac.link_status = ETH_LINK_DOWN;
2384 
2385 	hns3_set_rxtx_function(eth_dev);
2386 	rte_wmb();
2387 	/* Disable datapath on secondary process. */
2388 	hns3_mp_req_stop_rxtx(eth_dev);
2389 	rte_delay_ms(hw->tqps_num);
2390 
2391 	rte_spinlock_lock(&hw->lock);
2392 	if (hw->adapter_state == HNS3_NIC_STARTED ||
2393 	    hw->adapter_state == HNS3_NIC_STOPPING) {
2394 		hns3_enable_all_queues(hw, false);
2395 		hns3vf_do_stop(hns);
2396 		hw->reset.mbuf_deferred_free = true;
2397 	} else
2398 		hw->reset.mbuf_deferred_free = false;
2399 
2400 	/*
2401 	 * It is cumbersome for hardware to pick-and-choose entries for deletion
2402 	 * from table space. Hence, for function reset software intervention is
2403 	 * required to delete the entries.
2404 	 */
2405 	if (rte_atomic16_read(&hw->reset.disable_cmd) == 0)
2406 		hns3vf_configure_all_mc_mac_addr(hns, true);
2407 	rte_spinlock_unlock(&hw->lock);
2408 
2409 	return 0;
2410 }
2411 
2412 static int
hns3vf_start_service(struct hns3_adapter * hns)2413 hns3vf_start_service(struct hns3_adapter *hns)
2414 {
2415 	struct hns3_hw *hw = &hns->hw;
2416 	struct rte_eth_dev *eth_dev;
2417 
2418 	eth_dev = &rte_eth_devices[hw->data->port_id];
2419 	hns3_set_rxtx_function(eth_dev);
2420 	hns3_mp_req_start_rxtx(eth_dev);
2421 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2422 		hns3vf_service_handler(eth_dev);
2423 
2424 		/* Enable interrupt of all rx queues before enabling queues */
2425 		hns3_dev_all_rx_queue_intr_enable(hw, true);
2426 		/*
2427 		 * Enable state of each rxq and txq will be recovered after
2428 		 * reset, so we need to restore them before enable all tqps;
2429 		 */
2430 		hns3_restore_tqp_enable_state(hw);
2431 		/*
2432 		 * When finished the initialization, enable queues to receive
2433 		 * and transmit packets.
2434 		 */
2435 		hns3_enable_all_queues(hw, true);
2436 	}
2437 
2438 	return 0;
2439 }
2440 
2441 static int
hns3vf_check_default_mac_change(struct hns3_hw * hw)2442 hns3vf_check_default_mac_change(struct hns3_hw *hw)
2443 {
2444 	char mac_str[RTE_ETHER_ADDR_FMT_SIZE];
2445 	struct rte_ether_addr *hw_mac;
2446 	int ret;
2447 
2448 	/*
2449 	 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2450 	 * on the host by "ip link set ..." command. If the hns3 PF kernel
2451 	 * ethdev driver sets the MAC address for VF device after the
2452 	 * initialization of the related VF device, the PF driver will notify
2453 	 * VF driver to reset VF device to make the new MAC address effective
2454 	 * immediately. The hns3 VF PMD driver should check whether the MAC
2455 	 * address has been changed by the PF kernel ethdev driver, if changed
2456 	 * VF driver should configure hardware using the new MAC address in the
2457 	 * recovering hardware configuration stage of the reset process.
2458 	 */
2459 	ret = hns3vf_get_host_mac_addr(hw);
2460 	if (ret)
2461 		return ret;
2462 
2463 	hw_mac = (struct rte_ether_addr *)hw->mac.mac_addr;
2464 	ret = rte_is_zero_ether_addr(hw_mac);
2465 	if (ret) {
2466 		rte_ether_addr_copy(&hw->data->mac_addrs[0], hw_mac);
2467 	} else {
2468 		ret = rte_is_same_ether_addr(&hw->data->mac_addrs[0], hw_mac);
2469 		if (!ret) {
2470 			rte_ether_addr_copy(hw_mac, &hw->data->mac_addrs[0]);
2471 			rte_ether_format_addr(mac_str, RTE_ETHER_ADDR_FMT_SIZE,
2472 					      &hw->data->mac_addrs[0]);
2473 			hns3_warn(hw, "Default MAC address has been changed to:"
2474 				  " %s by the host PF kernel ethdev driver",
2475 				  mac_str);
2476 		}
2477 	}
2478 
2479 	return 0;
2480 }
2481 
2482 static int
hns3vf_restore_conf(struct hns3_adapter * hns)2483 hns3vf_restore_conf(struct hns3_adapter *hns)
2484 {
2485 	struct hns3_hw *hw = &hns->hw;
2486 	int ret;
2487 
2488 	ret = hns3vf_check_default_mac_change(hw);
2489 	if (ret)
2490 		return ret;
2491 
2492 	ret = hns3vf_configure_mac_addr(hns, false);
2493 	if (ret)
2494 		return ret;
2495 
2496 	ret = hns3vf_configure_all_mc_mac_addr(hns, false);
2497 	if (ret)
2498 		goto err_mc_mac;
2499 
2500 	ret = hns3vf_restore_promisc(hns);
2501 	if (ret)
2502 		goto err_vlan_table;
2503 
2504 	ret = hns3vf_restore_vlan_conf(hns);
2505 	if (ret)
2506 		goto err_vlan_table;
2507 
2508 	ret = hns3vf_get_port_base_vlan_filter_state(hw);
2509 	if (ret)
2510 		goto err_vlan_table;
2511 
2512 	ret = hns3vf_restore_rx_interrupt(hw);
2513 	if (ret)
2514 		goto err_vlan_table;
2515 
2516 	ret = hns3_restore_gro_conf(hw);
2517 	if (ret)
2518 		goto err_vlan_table;
2519 
2520 	if (hw->adapter_state == HNS3_NIC_STARTED) {
2521 		ret = hns3vf_do_start(hns, false);
2522 		if (ret)
2523 			goto err_vlan_table;
2524 		hns3_info(hw, "hns3vf dev restart successful!");
2525 	} else if (hw->adapter_state == HNS3_NIC_STOPPING)
2526 		hw->adapter_state = HNS3_NIC_CONFIGURED;
2527 	return 0;
2528 
2529 err_vlan_table:
2530 	hns3vf_configure_all_mc_mac_addr(hns, true);
2531 err_mc_mac:
2532 	hns3vf_configure_mac_addr(hns, true);
2533 	return ret;
2534 }
2535 
2536 static enum hns3_reset_level
hns3vf_get_reset_level(struct hns3_hw * hw,uint64_t * levels)2537 hns3vf_get_reset_level(struct hns3_hw *hw, uint64_t *levels)
2538 {
2539 	enum hns3_reset_level reset_level;
2540 
2541 	/* return the highest priority reset level amongst all */
2542 	if (hns3_atomic_test_bit(HNS3_VF_RESET, levels))
2543 		reset_level = HNS3_VF_RESET;
2544 	else if (hns3_atomic_test_bit(HNS3_VF_FULL_RESET, levels))
2545 		reset_level = HNS3_VF_FULL_RESET;
2546 	else if (hns3_atomic_test_bit(HNS3_VF_PF_FUNC_RESET, levels))
2547 		reset_level = HNS3_VF_PF_FUNC_RESET;
2548 	else if (hns3_atomic_test_bit(HNS3_VF_FUNC_RESET, levels))
2549 		reset_level = HNS3_VF_FUNC_RESET;
2550 	else if (hns3_atomic_test_bit(HNS3_FLR_RESET, levels))
2551 		reset_level = HNS3_FLR_RESET;
2552 	else
2553 		reset_level = HNS3_NONE_RESET;
2554 
2555 	if (hw->reset.level != HNS3_NONE_RESET && reset_level < hw->reset.level)
2556 		return HNS3_NONE_RESET;
2557 
2558 	return reset_level;
2559 }
2560 
2561 static void
hns3vf_reset_service(void * param)2562 hns3vf_reset_service(void *param)
2563 {
2564 	struct hns3_adapter *hns = (struct hns3_adapter *)param;
2565 	struct hns3_hw *hw = &hns->hw;
2566 	enum hns3_reset_level reset_level;
2567 	struct timeval tv_delta;
2568 	struct timeval tv_start;
2569 	struct timeval tv;
2570 	uint64_t msec;
2571 
2572 	/*
2573 	 * The interrupt is not triggered within the delay time.
2574 	 * The interrupt may have been lost. It is necessary to handle
2575 	 * the interrupt to recover from the error.
2576 	 */
2577 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_DEFERRED) {
2578 		rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_REQUESTED);
2579 		hns3_err(hw, "Handling interrupts in delayed tasks");
2580 		hns3vf_interrupt_handler(&rte_eth_devices[hw->data->port_id]);
2581 		reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2582 		if (reset_level == HNS3_NONE_RESET) {
2583 			hns3_err(hw, "No reset level is set, try global reset");
2584 			hns3_atomic_set_bit(HNS3_VF_RESET, &hw->reset.pending);
2585 		}
2586 	}
2587 	rte_atomic16_set(&hns->hw.reset.schedule, SCHEDULE_NONE);
2588 
2589 	/*
2590 	 * Hardware reset has been notified, we now have to poll & check if
2591 	 * hardware has actually completed the reset sequence.
2592 	 */
2593 	reset_level = hns3vf_get_reset_level(hw, &hw->reset.pending);
2594 	if (reset_level != HNS3_NONE_RESET) {
2595 		gettimeofday(&tv_start, NULL);
2596 		hns3_reset_process(hns, reset_level);
2597 		gettimeofday(&tv, NULL);
2598 		timersub(&tv, &tv_start, &tv_delta);
2599 		msec = tv_delta.tv_sec * MSEC_PER_SEC +
2600 		       tv_delta.tv_usec / USEC_PER_MSEC;
2601 		if (msec > HNS3_RESET_PROCESS_MS)
2602 			hns3_err(hw, "%d handle long time delta %" PRIx64
2603 				 " ms time=%ld.%.6ld",
2604 				 hw->reset.level, msec, tv.tv_sec, tv.tv_usec);
2605 	}
2606 }
2607 
2608 static int
hns3vf_reinit_dev(struct hns3_adapter * hns)2609 hns3vf_reinit_dev(struct hns3_adapter *hns)
2610 {
2611 	struct rte_eth_dev *eth_dev = &rte_eth_devices[hns->hw.data->port_id];
2612 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
2613 	struct hns3_hw *hw = &hns->hw;
2614 	int ret;
2615 
2616 	if (hw->reset.level == HNS3_VF_FULL_RESET) {
2617 		rte_intr_disable(&pci_dev->intr_handle);
2618 		ret = hns3vf_set_bus_master(pci_dev, true);
2619 		if (ret < 0) {
2620 			hns3_err(hw, "failed to set pci bus, ret = %d", ret);
2621 			return ret;
2622 		}
2623 	}
2624 
2625 	/* Firmware command initialize */
2626 	ret = hns3_cmd_init(hw);
2627 	if (ret) {
2628 		hns3_err(hw, "Failed to init cmd: %d", ret);
2629 		return ret;
2630 	}
2631 
2632 	if (hw->reset.level == HNS3_VF_FULL_RESET) {
2633 		/*
2634 		 * UIO enables msix by writing the pcie configuration space
2635 		 * vfio_pci enables msix in rte_intr_enable.
2636 		 */
2637 		if (pci_dev->kdrv == RTE_PCI_KDRV_IGB_UIO ||
2638 		    pci_dev->kdrv == RTE_PCI_KDRV_UIO_GENERIC) {
2639 			if (hns3vf_enable_msix(pci_dev, true))
2640 				hns3_err(hw, "Failed to enable msix");
2641 		}
2642 
2643 		rte_intr_enable(&pci_dev->intr_handle);
2644 	}
2645 
2646 	ret = hns3_reset_all_tqps(hns);
2647 	if (ret) {
2648 		hns3_err(hw, "Failed to reset all queues: %d", ret);
2649 		return ret;
2650 	}
2651 
2652 	ret = hns3vf_init_hardware(hns);
2653 	if (ret) {
2654 		hns3_err(hw, "Failed to init hardware: %d", ret);
2655 		return ret;
2656 	}
2657 
2658 	return 0;
2659 }
2660 
2661 static const struct eth_dev_ops hns3vf_eth_dev_ops = {
2662 	.dev_configure      = hns3vf_dev_configure,
2663 	.dev_start          = hns3vf_dev_start,
2664 	.dev_stop           = hns3vf_dev_stop,
2665 	.dev_close          = hns3vf_dev_close,
2666 	.mtu_set            = hns3vf_dev_mtu_set,
2667 	.promiscuous_enable = hns3vf_dev_promiscuous_enable,
2668 	.promiscuous_disable = hns3vf_dev_promiscuous_disable,
2669 	.allmulticast_enable = hns3vf_dev_allmulticast_enable,
2670 	.allmulticast_disable = hns3vf_dev_allmulticast_disable,
2671 	.stats_get          = hns3_stats_get,
2672 	.stats_reset        = hns3_stats_reset,
2673 	.xstats_get         = hns3_dev_xstats_get,
2674 	.xstats_get_names   = hns3_dev_xstats_get_names,
2675 	.xstats_reset       = hns3_dev_xstats_reset,
2676 	.xstats_get_by_id   = hns3_dev_xstats_get_by_id,
2677 	.xstats_get_names_by_id = hns3_dev_xstats_get_names_by_id,
2678 	.dev_infos_get      = hns3vf_dev_infos_get,
2679 	.fw_version_get     = hns3vf_fw_version_get,
2680 	.rx_queue_setup     = hns3_rx_queue_setup,
2681 	.tx_queue_setup     = hns3_tx_queue_setup,
2682 	.rx_queue_release   = hns3_dev_rx_queue_release,
2683 	.tx_queue_release   = hns3_dev_tx_queue_release,
2684 	.rx_queue_start     = hns3_dev_rx_queue_start,
2685 	.rx_queue_stop      = hns3_dev_rx_queue_stop,
2686 	.tx_queue_start     = hns3_dev_tx_queue_start,
2687 	.tx_queue_stop      = hns3_dev_tx_queue_stop,
2688 	.rx_queue_intr_enable   = hns3_dev_rx_queue_intr_enable,
2689 	.rx_queue_intr_disable  = hns3_dev_rx_queue_intr_disable,
2690 	.rxq_info_get       = hns3_rxq_info_get,
2691 	.txq_info_get       = hns3_txq_info_get,
2692 	.rx_burst_mode_get  = hns3_rx_burst_mode_get,
2693 	.tx_burst_mode_get  = hns3_tx_burst_mode_get,
2694 	.mac_addr_add       = hns3vf_add_mac_addr,
2695 	.mac_addr_remove    = hns3vf_remove_mac_addr,
2696 	.mac_addr_set       = hns3vf_set_default_mac_addr,
2697 	.set_mc_addr_list   = hns3vf_set_mc_mac_addr_list,
2698 	.link_update        = hns3vf_dev_link_update,
2699 	.rss_hash_update    = hns3_dev_rss_hash_update,
2700 	.rss_hash_conf_get  = hns3_dev_rss_hash_conf_get,
2701 	.reta_update        = hns3_dev_rss_reta_update,
2702 	.reta_query         = hns3_dev_rss_reta_query,
2703 	.filter_ctrl        = hns3_dev_filter_ctrl,
2704 	.vlan_filter_set    = hns3vf_vlan_filter_set,
2705 	.vlan_offload_set   = hns3vf_vlan_offload_set,
2706 	.get_reg            = hns3_get_regs,
2707 	.dev_supported_ptypes_get = hns3_dev_supported_ptypes_get,
2708 };
2709 
2710 static const struct hns3_reset_ops hns3vf_reset_ops = {
2711 	.reset_service       = hns3vf_reset_service,
2712 	.stop_service        = hns3vf_stop_service,
2713 	.prepare_reset       = hns3vf_prepare_reset,
2714 	.wait_hardware_ready = hns3vf_wait_hardware_ready,
2715 	.reinit_dev          = hns3vf_reinit_dev,
2716 	.restore_conf        = hns3vf_restore_conf,
2717 	.start_service       = hns3vf_start_service,
2718 };
2719 
2720 static int
hns3vf_dev_init(struct rte_eth_dev * eth_dev)2721 hns3vf_dev_init(struct rte_eth_dev *eth_dev)
2722 {
2723 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2724 	struct hns3_hw *hw = &hns->hw;
2725 	int ret;
2726 
2727 	PMD_INIT_FUNC_TRACE();
2728 
2729 	eth_dev->process_private = (struct hns3_process_private *)
2730 	    rte_zmalloc_socket("hns3_filter_list",
2731 			       sizeof(struct hns3_process_private),
2732 			       RTE_CACHE_LINE_SIZE, eth_dev->device->numa_node);
2733 	if (eth_dev->process_private == NULL) {
2734 		PMD_INIT_LOG(ERR, "Failed to alloc memory for process private");
2735 		return -ENOMEM;
2736 	}
2737 
2738 	/* initialize flow filter lists */
2739 	hns3_filterlist_init(eth_dev);
2740 
2741 	hns3_set_rxtx_function(eth_dev);
2742 	eth_dev->dev_ops = &hns3vf_eth_dev_ops;
2743 	eth_dev->rx_queue_count = hns3_rx_queue_count;
2744 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2745 		ret = hns3_mp_init_secondary();
2746 		if (ret) {
2747 			PMD_INIT_LOG(ERR, "Failed to init for secondary "
2748 					  "process, ret = %d", ret);
2749 			goto err_mp_init_secondary;
2750 		}
2751 
2752 		hw->secondary_cnt++;
2753 		return 0;
2754 	}
2755 
2756 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2757 
2758 	ret = hns3_mp_init_primary();
2759 	if (ret) {
2760 		PMD_INIT_LOG(ERR,
2761 			     "Failed to init for primary process, ret = %d",
2762 			     ret);
2763 		goto err_mp_init_primary;
2764 	}
2765 
2766 	hw->adapter_state = HNS3_NIC_UNINITIALIZED;
2767 	hns->is_vf = true;
2768 	hw->data = eth_dev->data;
2769 
2770 	ret = hns3_reset_init(hw);
2771 	if (ret)
2772 		goto err_init_reset;
2773 	hw->reset.ops = &hns3vf_reset_ops;
2774 
2775 	ret = hns3vf_init_vf(eth_dev);
2776 	if (ret) {
2777 		PMD_INIT_LOG(ERR, "Failed to init vf: %d", ret);
2778 		goto err_init_vf;
2779 	}
2780 
2781 	/* Allocate memory for storing MAC addresses */
2782 	eth_dev->data->mac_addrs = rte_zmalloc("hns3vf-mac",
2783 					       sizeof(struct rte_ether_addr) *
2784 					       HNS3_VF_UC_MACADDR_NUM, 0);
2785 	if (eth_dev->data->mac_addrs == NULL) {
2786 		PMD_INIT_LOG(ERR, "Failed to allocate %zx bytes needed "
2787 			     "to store MAC addresses",
2788 			     sizeof(struct rte_ether_addr) *
2789 			     HNS3_VF_UC_MACADDR_NUM);
2790 		ret = -ENOMEM;
2791 		goto err_rte_zmalloc;
2792 	}
2793 
2794 	/*
2795 	 * The hns3 PF ethdev driver in kernel support setting VF MAC address
2796 	 * on the host by "ip link set ..." command. To avoid some incorrect
2797 	 * scenes, for example, hns3 VF PMD driver fails to receive and send
2798 	 * packets after user configure the MAC address by using the
2799 	 * "ip link set ..." command, hns3 VF PMD driver keep the same MAC
2800 	 * address strategy as the hns3 kernel ethdev driver in the
2801 	 * initialization. If user configure a MAC address by the ip command
2802 	 * for VF device, then hns3 VF PMD driver will start with it, otherwise
2803 	 * start with a random MAC address in the initialization.
2804 	 */
2805 	if (rte_is_zero_ether_addr((struct rte_ether_addr *)hw->mac.mac_addr))
2806 		rte_eth_random_addr(hw->mac.mac_addr);
2807 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.mac_addr,
2808 			    &eth_dev->data->mac_addrs[0]);
2809 
2810 	hw->adapter_state = HNS3_NIC_INITIALIZED;
2811 
2812 	if (rte_atomic16_read(&hns->hw.reset.schedule) == SCHEDULE_PENDING) {
2813 		hns3_err(hw, "Reschedule reset service after dev_init");
2814 		hns3_schedule_reset(hns);
2815 	} else {
2816 		/* IMP will wait ready flag before reset */
2817 		hns3_notify_reset_ready(hw, false);
2818 	}
2819 	rte_eal_alarm_set(HNS3VF_KEEP_ALIVE_INTERVAL, hns3vf_keep_alive_handler,
2820 			  eth_dev);
2821 	return 0;
2822 
2823 err_rte_zmalloc:
2824 	hns3vf_uninit_vf(eth_dev);
2825 
2826 err_init_vf:
2827 	rte_free(hw->reset.wait_data);
2828 
2829 err_init_reset:
2830 	hns3_mp_uninit_primary();
2831 
2832 err_mp_init_primary:
2833 err_mp_init_secondary:
2834 	eth_dev->dev_ops = NULL;
2835 	eth_dev->rx_pkt_burst = NULL;
2836 	eth_dev->tx_pkt_burst = NULL;
2837 	eth_dev->tx_pkt_prepare = NULL;
2838 	rte_free(eth_dev->process_private);
2839 	eth_dev->process_private = NULL;
2840 
2841 	return ret;
2842 }
2843 
2844 static int
hns3vf_dev_uninit(struct rte_eth_dev * eth_dev)2845 hns3vf_dev_uninit(struct rte_eth_dev *eth_dev)
2846 {
2847 	struct hns3_adapter *hns = eth_dev->data->dev_private;
2848 	struct hns3_hw *hw = &hns->hw;
2849 
2850 	PMD_INIT_FUNC_TRACE();
2851 
2852 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2853 		return -EPERM;
2854 
2855 	if (hw->adapter_state < HNS3_NIC_CLOSING)
2856 		hns3vf_dev_close(eth_dev);
2857 
2858 	hw->adapter_state = HNS3_NIC_REMOVED;
2859 	return 0;
2860 }
2861 
2862 static int
eth_hns3vf_pci_probe(struct rte_pci_driver * pci_drv __rte_unused,struct rte_pci_device * pci_dev)2863 eth_hns3vf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
2864 		     struct rte_pci_device *pci_dev)
2865 {
2866 	return rte_eth_dev_pci_generic_probe(pci_dev,
2867 					     sizeof(struct hns3_adapter),
2868 					     hns3vf_dev_init);
2869 }
2870 
2871 static int
eth_hns3vf_pci_remove(struct rte_pci_device * pci_dev)2872 eth_hns3vf_pci_remove(struct rte_pci_device *pci_dev)
2873 {
2874 	return rte_eth_dev_pci_generic_remove(pci_dev, hns3vf_dev_uninit);
2875 }
2876 
2877 static const struct rte_pci_id pci_id_hns3vf_map[] = {
2878 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_VF) },
2879 	{ RTE_PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, HNS3_DEV_ID_100G_RDMA_PFC_VF) },
2880 	{ .vendor_id = 0, }, /* sentinel */
2881 };
2882 
2883 static struct rte_pci_driver rte_hns3vf_pmd = {
2884 	.id_table = pci_id_hns3vf_map,
2885 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
2886 	.probe = eth_hns3vf_pci_probe,
2887 	.remove = eth_hns3vf_pci_remove,
2888 };
2889 
2890 RTE_PMD_REGISTER_PCI(net_hns3_vf, rte_hns3vf_pmd);
2891 RTE_PMD_REGISTER_PCI_TABLE(net_hns3_vf, pci_id_hns3vf_map);
2892 RTE_PMD_REGISTER_KMOD_DEP(net_hns3_vf, "* igb_uio | vfio-pci");
2893