1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright 2014 6WIND S.A.
4 */
5
6 #include <stdarg.h>
7 #include <stdio.h>
8 #include <errno.h>
9 #include <stdint.h>
10 #include <unistd.h>
11 #include <inttypes.h>
12
13 #include <sys/queue.h>
14 #include <sys/stat.h>
15
16 #include <rte_common.h>
17 #include <rte_byteorder.h>
18 #include <rte_log.h>
19 #include <rte_debug.h>
20 #include <rte_cycles.h>
21 #include <rte_memory.h>
22 #include <rte_memcpy.h>
23 #include <rte_launch.h>
24 #include <rte_eal.h>
25 #include <rte_per_lcore.h>
26 #include <rte_lcore.h>
27 #include <rte_atomic.h>
28 #include <rte_branch_prediction.h>
29 #include <rte_mempool.h>
30 #include <rte_mbuf.h>
31 #include <rte_interrupts.h>
32 #include <rte_pci.h>
33 #include <rte_ether.h>
34 #include <rte_ethdev.h>
35 #include <rte_ip.h>
36 #include <rte_tcp.h>
37 #include <rte_udp.h>
38 #include <rte_vxlan.h>
39 #include <rte_sctp.h>
40 #include <rte_gtp.h>
41 #include <rte_prefetch.h>
42 #include <rte_string_fns.h>
43 #include <rte_flow.h>
44 #include <rte_gro.h>
45 #include <rte_gso.h>
46 #include <rte_geneve.h>
47
48 #include "testpmd.h"
49
50 #define IP_DEFTTL 64 /* from RFC 1340. */
51
52 #define GRE_CHECKSUM_PRESENT 0x8000
53 #define GRE_KEY_PRESENT 0x2000
54 #define GRE_SEQUENCE_PRESENT 0x1000
55 #define GRE_EXT_LEN 4
56 #define GRE_SUPPORTED_FIELDS (GRE_CHECKSUM_PRESENT | GRE_KEY_PRESENT |\
57 GRE_SEQUENCE_PRESENT)
58
59 /* We cannot use rte_cpu_to_be_16() on a constant in a switch/case */
60 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
61 #define _htons(x) ((uint16_t)((((x) & 0x00ffU) << 8) | (((x) & 0xff00U) >> 8)))
62 #else
63 #define _htons(x) (x)
64 #endif
65
66 uint16_t vxlan_gpe_udp_port = RTE_VXLAN_GPE_DEFAULT_PORT;
67 uint16_t geneve_udp_port = RTE_GENEVE_DEFAULT_PORT;
68
69 /* structure that caches offload info for the current packet */
70 struct testpmd_offload_info {
71 uint16_t ethertype;
72 uint8_t gso_enable;
73 uint16_t l2_len;
74 uint16_t l3_len;
75 uint16_t l4_len;
76 uint8_t l4_proto;
77 uint8_t is_tunnel;
78 uint16_t outer_ethertype;
79 uint16_t outer_l2_len;
80 uint16_t outer_l3_len;
81 uint8_t outer_l4_proto;
82 uint16_t tso_segsz;
83 uint16_t tunnel_tso_segsz;
84 uint32_t pkt_len;
85 };
86
87 /* simplified GRE header */
88 struct simple_gre_hdr {
89 uint16_t flags;
90 uint16_t proto;
91 } __rte_packed;
92
93 static uint16_t
get_udptcp_checksum(void * l3_hdr,void * l4_hdr,uint16_t ethertype)94 get_udptcp_checksum(void *l3_hdr, void *l4_hdr, uint16_t ethertype)
95 {
96 if (ethertype == _htons(RTE_ETHER_TYPE_IPV4))
97 return rte_ipv4_udptcp_cksum(l3_hdr, l4_hdr);
98 else /* assume ethertype == RTE_ETHER_TYPE_IPV6 */
99 return rte_ipv6_udptcp_cksum(l3_hdr, l4_hdr);
100 }
101
102 /* Parse an IPv4 header to fill l3_len, l4_len, and l4_proto */
103 static void
parse_ipv4(struct rte_ipv4_hdr * ipv4_hdr,struct testpmd_offload_info * info)104 parse_ipv4(struct rte_ipv4_hdr *ipv4_hdr, struct testpmd_offload_info *info)
105 {
106 struct rte_tcp_hdr *tcp_hdr;
107
108 info->l3_len = rte_ipv4_hdr_len(ipv4_hdr);
109 info->l4_proto = ipv4_hdr->next_proto_id;
110
111 /* only fill l4_len for TCP, it's useful for TSO */
112 if (info->l4_proto == IPPROTO_TCP) {
113 tcp_hdr = (struct rte_tcp_hdr *)
114 ((char *)ipv4_hdr + info->l3_len);
115 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
116 } else if (info->l4_proto == IPPROTO_UDP)
117 info->l4_len = sizeof(struct rte_udp_hdr);
118 else
119 info->l4_len = 0;
120 }
121
122 /* Parse an IPv6 header to fill l3_len, l4_len, and l4_proto */
123 static void
parse_ipv6(struct rte_ipv6_hdr * ipv6_hdr,struct testpmd_offload_info * info)124 parse_ipv6(struct rte_ipv6_hdr *ipv6_hdr, struct testpmd_offload_info *info)
125 {
126 struct rte_tcp_hdr *tcp_hdr;
127
128 info->l3_len = sizeof(struct rte_ipv6_hdr);
129 info->l4_proto = ipv6_hdr->proto;
130
131 /* only fill l4_len for TCP, it's useful for TSO */
132 if (info->l4_proto == IPPROTO_TCP) {
133 tcp_hdr = (struct rte_tcp_hdr *)
134 ((char *)ipv6_hdr + info->l3_len);
135 info->l4_len = (tcp_hdr->data_off & 0xf0) >> 2;
136 } else if (info->l4_proto == IPPROTO_UDP)
137 info->l4_len = sizeof(struct rte_udp_hdr);
138 else
139 info->l4_len = 0;
140 }
141
142 /*
143 * Parse an ethernet header to fill the ethertype, l2_len, l3_len and
144 * ipproto. This function is able to recognize IPv4/IPv6 with optional VLAN
145 * headers. The l4_len argument is only set in case of TCP (useful for TSO).
146 */
147 static void
parse_ethernet(struct rte_ether_hdr * eth_hdr,struct testpmd_offload_info * info)148 parse_ethernet(struct rte_ether_hdr *eth_hdr, struct testpmd_offload_info *info)
149 {
150 struct rte_ipv4_hdr *ipv4_hdr;
151 struct rte_ipv6_hdr *ipv6_hdr;
152 struct rte_vlan_hdr *vlan_hdr;
153
154 info->l2_len = sizeof(struct rte_ether_hdr);
155 info->ethertype = eth_hdr->ether_type;
156
157 while (info->ethertype == _htons(RTE_ETHER_TYPE_VLAN) ||
158 info->ethertype == _htons(RTE_ETHER_TYPE_QINQ)) {
159 vlan_hdr = (struct rte_vlan_hdr *)
160 ((char *)eth_hdr + info->l2_len);
161 info->l2_len += sizeof(struct rte_vlan_hdr);
162 info->ethertype = vlan_hdr->eth_proto;
163 }
164
165 switch (info->ethertype) {
166 case _htons(RTE_ETHER_TYPE_IPV4):
167 ipv4_hdr = (struct rte_ipv4_hdr *)
168 ((char *)eth_hdr + info->l2_len);
169 parse_ipv4(ipv4_hdr, info);
170 break;
171 case _htons(RTE_ETHER_TYPE_IPV6):
172 ipv6_hdr = (struct rte_ipv6_hdr *)
173 ((char *)eth_hdr + info->l2_len);
174 parse_ipv6(ipv6_hdr, info);
175 break;
176 default:
177 info->l4_len = 0;
178 info->l3_len = 0;
179 info->l4_proto = 0;
180 break;
181 }
182 }
183
184 /* Fill in outer layers length */
185 static void
update_tunnel_outer(struct testpmd_offload_info * info)186 update_tunnel_outer(struct testpmd_offload_info *info)
187 {
188 info->is_tunnel = 1;
189 info->outer_ethertype = info->ethertype;
190 info->outer_l2_len = info->l2_len;
191 info->outer_l3_len = info->l3_len;
192 info->outer_l4_proto = info->l4_proto;
193 }
194
195 /*
196 * Parse a GTP protocol header.
197 * No optional fields and next extension header type.
198 */
199 static void
parse_gtp(struct rte_udp_hdr * udp_hdr,struct testpmd_offload_info * info)200 parse_gtp(struct rte_udp_hdr *udp_hdr,
201 struct testpmd_offload_info *info)
202 {
203 struct rte_ipv4_hdr *ipv4_hdr;
204 struct rte_ipv6_hdr *ipv6_hdr;
205 struct rte_gtp_hdr *gtp_hdr;
206 uint8_t gtp_len = sizeof(*gtp_hdr);
207 uint8_t ip_ver;
208
209 /* Check udp destination port. */
210 if (udp_hdr->dst_port != _htons(RTE_GTPC_UDP_PORT) &&
211 udp_hdr->src_port != _htons(RTE_GTPC_UDP_PORT) &&
212 udp_hdr->dst_port != _htons(RTE_GTPU_UDP_PORT))
213 return;
214
215 update_tunnel_outer(info);
216 info->l2_len = 0;
217
218 gtp_hdr = (struct rte_gtp_hdr *)((char *)udp_hdr +
219 sizeof(struct rte_udp_hdr));
220
221 /*
222 * Check message type. If message type is 0xff, it is
223 * a GTP data packet. If not, it is a GTP control packet
224 */
225 if (gtp_hdr->msg_type == 0xff) {
226 ip_ver = *(uint8_t *)((char *)udp_hdr +
227 sizeof(struct rte_udp_hdr) +
228 sizeof(struct rte_gtp_hdr));
229 ip_ver = (ip_ver) & 0xf0;
230
231 if (ip_ver == RTE_GTP_TYPE_IPV4) {
232 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gtp_hdr +
233 gtp_len);
234 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
235 parse_ipv4(ipv4_hdr, info);
236 } else if (ip_ver == RTE_GTP_TYPE_IPV6) {
237 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gtp_hdr +
238 gtp_len);
239 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
240 parse_ipv6(ipv6_hdr, info);
241 }
242 } else {
243 info->ethertype = 0;
244 info->l4_len = 0;
245 info->l3_len = 0;
246 info->l4_proto = 0;
247 }
248
249 info->l2_len += RTE_ETHER_GTP_HLEN;
250 }
251
252 /* Parse a vxlan header */
253 static void
parse_vxlan(struct rte_udp_hdr * udp_hdr,struct testpmd_offload_info * info,uint32_t pkt_type)254 parse_vxlan(struct rte_udp_hdr *udp_hdr,
255 struct testpmd_offload_info *info,
256 uint32_t pkt_type)
257 {
258 struct rte_ether_hdr *eth_hdr;
259
260 /* check udp destination port, RTE_VXLAN_DEFAULT_PORT (4789) is the
261 * default vxlan port (rfc7348) or that the rx offload flag is set
262 * (i40e only currently)
263 */
264 if (udp_hdr->dst_port != _htons(RTE_VXLAN_DEFAULT_PORT) &&
265 RTE_ETH_IS_TUNNEL_PKT(pkt_type) == 0)
266 return;
267
268 update_tunnel_outer(info);
269
270 eth_hdr = (struct rte_ether_hdr *)((char *)udp_hdr +
271 sizeof(struct rte_udp_hdr) +
272 sizeof(struct rte_vxlan_hdr));
273
274 parse_ethernet(eth_hdr, info);
275 info->l2_len += RTE_ETHER_VXLAN_HLEN; /* add udp + vxlan */
276 }
277
278 /* Parse a vxlan-gpe header */
279 static void
parse_vxlan_gpe(struct rte_udp_hdr * udp_hdr,struct testpmd_offload_info * info)280 parse_vxlan_gpe(struct rte_udp_hdr *udp_hdr,
281 struct testpmd_offload_info *info)
282 {
283 struct rte_ether_hdr *eth_hdr;
284 struct rte_ipv4_hdr *ipv4_hdr;
285 struct rte_ipv6_hdr *ipv6_hdr;
286 struct rte_vxlan_gpe_hdr *vxlan_gpe_hdr;
287 uint8_t vxlan_gpe_len = sizeof(*vxlan_gpe_hdr);
288
289 /* Check udp destination port. */
290 if (udp_hdr->dst_port != _htons(vxlan_gpe_udp_port))
291 return;
292
293 vxlan_gpe_hdr = (struct rte_vxlan_gpe_hdr *)((char *)udp_hdr +
294 sizeof(struct rte_udp_hdr));
295
296 if (!vxlan_gpe_hdr->proto || vxlan_gpe_hdr->proto ==
297 RTE_VXLAN_GPE_TYPE_IPV4) {
298 update_tunnel_outer(info);
299
300 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)vxlan_gpe_hdr +
301 vxlan_gpe_len);
302
303 parse_ipv4(ipv4_hdr, info);
304 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
305 info->l2_len = 0;
306
307 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_IPV6) {
308 update_tunnel_outer(info);
309
310 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)vxlan_gpe_hdr +
311 vxlan_gpe_len);
312
313 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
314 parse_ipv6(ipv6_hdr, info);
315 info->l2_len = 0;
316
317 } else if (vxlan_gpe_hdr->proto == RTE_VXLAN_GPE_TYPE_ETH) {
318 update_tunnel_outer(info);
319
320 eth_hdr = (struct rte_ether_hdr *)((char *)vxlan_gpe_hdr +
321 vxlan_gpe_len);
322
323 parse_ethernet(eth_hdr, info);
324 } else
325 return;
326
327 info->l2_len += RTE_ETHER_VXLAN_GPE_HLEN;
328 }
329
330 /* Parse a geneve header */
331 static void
parse_geneve(struct rte_udp_hdr * udp_hdr,struct testpmd_offload_info * info)332 parse_geneve(struct rte_udp_hdr *udp_hdr,
333 struct testpmd_offload_info *info)
334 {
335 struct rte_ether_hdr *eth_hdr;
336 struct rte_ipv4_hdr *ipv4_hdr;
337 struct rte_ipv6_hdr *ipv6_hdr;
338 struct rte_geneve_hdr *geneve_hdr;
339 uint16_t geneve_len;
340
341 /* Check udp destination port. */
342 if (udp_hdr->dst_port != _htons(geneve_udp_port))
343 return;
344
345 geneve_hdr = (struct rte_geneve_hdr *)((char *)udp_hdr +
346 sizeof(struct rte_udp_hdr));
347 geneve_len = sizeof(struct rte_geneve_hdr) + geneve_hdr->opt_len * 4;
348 if (!geneve_hdr->proto || geneve_hdr->proto ==
349 _htons(RTE_ETHER_TYPE_IPV4)) {
350 update_tunnel_outer(info);
351 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)geneve_hdr +
352 geneve_len);
353 parse_ipv4(ipv4_hdr, info);
354 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
355 info->l2_len = 0;
356 } else if (geneve_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
357 update_tunnel_outer(info);
358 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)geneve_hdr +
359 geneve_len);
360 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
361 parse_ipv6(ipv6_hdr, info);
362 info->l2_len = 0;
363
364 } else if (geneve_hdr->proto == _htons(RTE_GENEVE_TYPE_ETH)) {
365 update_tunnel_outer(info);
366 eth_hdr = (struct rte_ether_hdr *)((char *)geneve_hdr +
367 geneve_len);
368 parse_ethernet(eth_hdr, info);
369 } else
370 return;
371
372 info->l2_len +=
373 (sizeof(struct rte_udp_hdr) + sizeof(struct rte_geneve_hdr) +
374 ((struct rte_geneve_hdr *)geneve_hdr)->opt_len * 4);
375 }
376
377 /* Parse a gre header */
378 static void
parse_gre(struct simple_gre_hdr * gre_hdr,struct testpmd_offload_info * info)379 parse_gre(struct simple_gre_hdr *gre_hdr, struct testpmd_offload_info *info)
380 {
381 struct rte_ether_hdr *eth_hdr;
382 struct rte_ipv4_hdr *ipv4_hdr;
383 struct rte_ipv6_hdr *ipv6_hdr;
384 uint8_t gre_len = 0;
385
386 gre_len += sizeof(struct simple_gre_hdr);
387
388 if (gre_hdr->flags & _htons(GRE_KEY_PRESENT))
389 gre_len += GRE_EXT_LEN;
390 if (gre_hdr->flags & _htons(GRE_SEQUENCE_PRESENT))
391 gre_len += GRE_EXT_LEN;
392 if (gre_hdr->flags & _htons(GRE_CHECKSUM_PRESENT))
393 gre_len += GRE_EXT_LEN;
394
395 if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV4)) {
396 update_tunnel_outer(info);
397
398 ipv4_hdr = (struct rte_ipv4_hdr *)((char *)gre_hdr + gre_len);
399
400 parse_ipv4(ipv4_hdr, info);
401 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
402 info->l2_len = 0;
403
404 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_IPV6)) {
405 update_tunnel_outer(info);
406
407 ipv6_hdr = (struct rte_ipv6_hdr *)((char *)gre_hdr + gre_len);
408
409 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
410 parse_ipv6(ipv6_hdr, info);
411 info->l2_len = 0;
412
413 } else if (gre_hdr->proto == _htons(RTE_ETHER_TYPE_TEB)) {
414 update_tunnel_outer(info);
415
416 eth_hdr = (struct rte_ether_hdr *)((char *)gre_hdr + gre_len);
417
418 parse_ethernet(eth_hdr, info);
419 } else
420 return;
421
422 info->l2_len += gre_len;
423 }
424
425
426 /* Parse an encapsulated ip or ipv6 header */
427 static void
parse_encap_ip(void * encap_ip,struct testpmd_offload_info * info)428 parse_encap_ip(void *encap_ip, struct testpmd_offload_info *info)
429 {
430 struct rte_ipv4_hdr *ipv4_hdr = encap_ip;
431 struct rte_ipv6_hdr *ipv6_hdr = encap_ip;
432 uint8_t ip_version;
433
434 ip_version = (ipv4_hdr->version_ihl & 0xf0) >> 4;
435
436 if (ip_version != 4 && ip_version != 6)
437 return;
438
439 info->is_tunnel = 1;
440 info->outer_ethertype = info->ethertype;
441 info->outer_l2_len = info->l2_len;
442 info->outer_l3_len = info->l3_len;
443
444 if (ip_version == 4) {
445 parse_ipv4(ipv4_hdr, info);
446 info->ethertype = _htons(RTE_ETHER_TYPE_IPV4);
447 } else {
448 parse_ipv6(ipv6_hdr, info);
449 info->ethertype = _htons(RTE_ETHER_TYPE_IPV6);
450 }
451 info->l2_len = 0;
452 }
453
454 /* if possible, calculate the checksum of a packet in hw or sw,
455 * depending on the testpmd command line configuration */
456 static uint64_t
process_inner_cksums(void * l3_hdr,const struct testpmd_offload_info * info,uint64_t tx_offloads)457 process_inner_cksums(void *l3_hdr, const struct testpmd_offload_info *info,
458 uint64_t tx_offloads)
459 {
460 struct rte_ipv4_hdr *ipv4_hdr = l3_hdr;
461 struct rte_udp_hdr *udp_hdr;
462 struct rte_tcp_hdr *tcp_hdr;
463 struct rte_sctp_hdr *sctp_hdr;
464 uint64_t ol_flags = 0;
465 uint32_t max_pkt_len, tso_segsz = 0;
466
467 /* ensure packet is large enough to require tso */
468 if (!info->is_tunnel) {
469 max_pkt_len = info->l2_len + info->l3_len + info->l4_len +
470 info->tso_segsz;
471 if (info->tso_segsz != 0 && info->pkt_len > max_pkt_len)
472 tso_segsz = info->tso_segsz;
473 } else {
474 max_pkt_len = info->outer_l2_len + info->outer_l3_len +
475 info->l2_len + info->l3_len + info->l4_len +
476 info->tunnel_tso_segsz;
477 if (info->tunnel_tso_segsz != 0 && info->pkt_len > max_pkt_len)
478 tso_segsz = info->tunnel_tso_segsz;
479 }
480
481 if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
482 ipv4_hdr = l3_hdr;
483 ipv4_hdr->hdr_checksum = 0;
484
485 ol_flags |= PKT_TX_IPV4;
486 if (info->l4_proto == IPPROTO_TCP && tso_segsz) {
487 ol_flags |= PKT_TX_IP_CKSUM;
488 } else {
489 if (tx_offloads & DEV_TX_OFFLOAD_IPV4_CKSUM)
490 ol_flags |= PKT_TX_IP_CKSUM;
491 else
492 ipv4_hdr->hdr_checksum =
493 rte_ipv4_cksum(ipv4_hdr);
494 }
495 } else if (info->ethertype == _htons(RTE_ETHER_TYPE_IPV6))
496 ol_flags |= PKT_TX_IPV6;
497 else
498 return 0; /* packet type not supported, nothing to do */
499
500 if (info->l4_proto == IPPROTO_UDP) {
501 udp_hdr = (struct rte_udp_hdr *)((char *)l3_hdr + info->l3_len);
502 /* do not recalculate udp cksum if it was 0 */
503 if (udp_hdr->dgram_cksum != 0) {
504 udp_hdr->dgram_cksum = 0;
505 if (tx_offloads & DEV_TX_OFFLOAD_UDP_CKSUM)
506 ol_flags |= PKT_TX_UDP_CKSUM;
507 else {
508 udp_hdr->dgram_cksum =
509 get_udptcp_checksum(l3_hdr, udp_hdr,
510 info->ethertype);
511 }
512 }
513 if (info->gso_enable)
514 ol_flags |= PKT_TX_UDP_SEG;
515 } else if (info->l4_proto == IPPROTO_TCP) {
516 tcp_hdr = (struct rte_tcp_hdr *)((char *)l3_hdr + info->l3_len);
517 tcp_hdr->cksum = 0;
518 if (tso_segsz)
519 ol_flags |= PKT_TX_TCP_SEG;
520 else if (tx_offloads & DEV_TX_OFFLOAD_TCP_CKSUM)
521 ol_flags |= PKT_TX_TCP_CKSUM;
522 else {
523 tcp_hdr->cksum =
524 get_udptcp_checksum(l3_hdr, tcp_hdr,
525 info->ethertype);
526 }
527 if (info->gso_enable)
528 ol_flags |= PKT_TX_TCP_SEG;
529 } else if (info->l4_proto == IPPROTO_SCTP) {
530 sctp_hdr = (struct rte_sctp_hdr *)
531 ((char *)l3_hdr + info->l3_len);
532 sctp_hdr->cksum = 0;
533 /* sctp payload must be a multiple of 4 to be
534 * offloaded */
535 if ((tx_offloads & DEV_TX_OFFLOAD_SCTP_CKSUM) &&
536 ((ipv4_hdr->total_length & 0x3) == 0)) {
537 ol_flags |= PKT_TX_SCTP_CKSUM;
538 } else {
539 /* XXX implement CRC32c, example available in
540 * RFC3309 */
541 }
542 }
543
544 return ol_flags;
545 }
546
547 /* Calculate the checksum of outer header */
548 static uint64_t
process_outer_cksums(void * outer_l3_hdr,struct testpmd_offload_info * info,uint64_t tx_offloads,int tso_enabled)549 process_outer_cksums(void *outer_l3_hdr, struct testpmd_offload_info *info,
550 uint64_t tx_offloads, int tso_enabled)
551 {
552 struct rte_ipv4_hdr *ipv4_hdr = outer_l3_hdr;
553 struct rte_ipv6_hdr *ipv6_hdr = outer_l3_hdr;
554 struct rte_udp_hdr *udp_hdr;
555 uint64_t ol_flags = 0;
556
557 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4)) {
558 ipv4_hdr->hdr_checksum = 0;
559 ol_flags |= PKT_TX_OUTER_IPV4;
560
561 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM)
562 ol_flags |= PKT_TX_OUTER_IP_CKSUM;
563 else
564 ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);
565 } else
566 ol_flags |= PKT_TX_OUTER_IPV6;
567
568 if (info->outer_l4_proto != IPPROTO_UDP)
569 return ol_flags;
570
571 udp_hdr = (struct rte_udp_hdr *)
572 ((char *)outer_l3_hdr + info->outer_l3_len);
573
574 if (tso_enabled)
575 ol_flags |= PKT_TX_TCP_SEG;
576
577 /* Skip SW outer UDP checksum generation if HW supports it */
578 if (tx_offloads & DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) {
579 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
580 udp_hdr->dgram_cksum
581 = rte_ipv4_phdr_cksum(ipv4_hdr, ol_flags);
582 else
583 udp_hdr->dgram_cksum
584 = rte_ipv6_phdr_cksum(ipv6_hdr, ol_flags);
585
586 ol_flags |= PKT_TX_OUTER_UDP_CKSUM;
587 return ol_flags;
588 }
589
590 /* outer UDP checksum is done in software. In the other side, for
591 * UDP tunneling, like VXLAN or Geneve, outer UDP checksum can be
592 * set to zero.
593 *
594 * If a packet will be TSOed into small packets by NIC, we cannot
595 * set/calculate a non-zero checksum, because it will be a wrong
596 * value after the packet be split into several small packets.
597 */
598 if (tso_enabled)
599 udp_hdr->dgram_cksum = 0;
600
601 /* do not recalculate udp cksum if it was 0 */
602 if (udp_hdr->dgram_cksum != 0) {
603 udp_hdr->dgram_cksum = 0;
604 if (info->outer_ethertype == _htons(RTE_ETHER_TYPE_IPV4))
605 udp_hdr->dgram_cksum =
606 rte_ipv4_udptcp_cksum(ipv4_hdr, udp_hdr);
607 else
608 udp_hdr->dgram_cksum =
609 rte_ipv6_udptcp_cksum(ipv6_hdr, udp_hdr);
610 }
611
612 return ol_flags;
613 }
614
615 /*
616 * Helper function.
617 * Performs actual copying.
618 * Returns number of segments in the destination mbuf on success,
619 * or negative error code on failure.
620 */
621 static int
mbuf_copy_split(const struct rte_mbuf * ms,struct rte_mbuf * md[],uint16_t seglen[],uint8_t nb_seg)622 mbuf_copy_split(const struct rte_mbuf *ms, struct rte_mbuf *md[],
623 uint16_t seglen[], uint8_t nb_seg)
624 {
625 uint32_t dlen, slen, tlen;
626 uint32_t i, len;
627 const struct rte_mbuf *m;
628 const uint8_t *src;
629 uint8_t *dst;
630
631 dlen = 0;
632 slen = 0;
633 tlen = 0;
634
635 dst = NULL;
636 src = NULL;
637
638 m = ms;
639 i = 0;
640 while (ms != NULL && i != nb_seg) {
641
642 if (slen == 0) {
643 slen = rte_pktmbuf_data_len(ms);
644 src = rte_pktmbuf_mtod(ms, const uint8_t *);
645 }
646
647 if (dlen == 0) {
648 dlen = RTE_MIN(seglen[i], slen);
649 md[i]->data_len = dlen;
650 md[i]->next = (i + 1 == nb_seg) ? NULL : md[i + 1];
651 dst = rte_pktmbuf_mtod(md[i], uint8_t *);
652 }
653
654 len = RTE_MIN(slen, dlen);
655 memcpy(dst, src, len);
656 tlen += len;
657 slen -= len;
658 dlen -= len;
659 src += len;
660 dst += len;
661
662 if (slen == 0)
663 ms = ms->next;
664 if (dlen == 0)
665 i++;
666 }
667
668 if (ms != NULL)
669 return -ENOBUFS;
670 else if (tlen != m->pkt_len)
671 return -EINVAL;
672
673 md[0]->nb_segs = nb_seg;
674 md[0]->pkt_len = tlen;
675 md[0]->vlan_tci = m->vlan_tci;
676 md[0]->vlan_tci_outer = m->vlan_tci_outer;
677 md[0]->ol_flags = m->ol_flags;
678 md[0]->tx_offload = m->tx_offload;
679
680 return nb_seg;
681 }
682
683 /*
684 * Allocate a new mbuf with up to tx_pkt_nb_segs segments.
685 * Copy packet contents and offload information into the new segmented mbuf.
686 */
687 static struct rte_mbuf *
pkt_copy_split(const struct rte_mbuf * pkt)688 pkt_copy_split(const struct rte_mbuf *pkt)
689 {
690 int32_t n, rc;
691 uint32_t i, len, nb_seg;
692 struct rte_mempool *mp;
693 uint16_t seglen[RTE_MAX_SEGS_PER_PKT];
694 struct rte_mbuf *p, *md[RTE_MAX_SEGS_PER_PKT];
695
696 mp = current_fwd_lcore()->mbp;
697
698 if (tx_pkt_split == TX_PKT_SPLIT_RND)
699 nb_seg = random() % tx_pkt_nb_segs + 1;
700 else
701 nb_seg = tx_pkt_nb_segs;
702
703 memcpy(seglen, tx_pkt_seg_lengths, nb_seg * sizeof(seglen[0]));
704
705 /* calculate number of segments to use and their length. */
706 len = 0;
707 for (i = 0; i != nb_seg && len < pkt->pkt_len; i++) {
708 len += seglen[i];
709 md[i] = NULL;
710 }
711
712 n = pkt->pkt_len - len;
713
714 /* update size of the last segment to fit rest of the packet */
715 if (n >= 0) {
716 seglen[i - 1] += n;
717 len += n;
718 }
719
720 nb_seg = i;
721 while (i != 0) {
722 p = rte_pktmbuf_alloc(mp);
723 if (p == NULL) {
724 TESTPMD_LOG(ERR,
725 "failed to allocate %u-th of %u mbuf "
726 "from mempool: %s\n",
727 nb_seg - i, nb_seg, mp->name);
728 break;
729 }
730
731 md[--i] = p;
732 if (rte_pktmbuf_tailroom(md[i]) < seglen[i]) {
733 TESTPMD_LOG(ERR, "mempool %s, %u-th segment: "
734 "expected seglen: %u, "
735 "actual mbuf tailroom: %u\n",
736 mp->name, i, seglen[i],
737 rte_pktmbuf_tailroom(md[i]));
738 break;
739 }
740 }
741
742 /* all mbufs successfully allocated, do copy */
743 if (i == 0) {
744 rc = mbuf_copy_split(pkt, md, seglen, nb_seg);
745 if (rc < 0)
746 TESTPMD_LOG(ERR,
747 "mbuf_copy_split for %p(len=%u, nb_seg=%u) "
748 "into %u segments failed with error code: %d\n",
749 pkt, pkt->pkt_len, pkt->nb_segs, nb_seg, rc);
750
751 /* figure out how many mbufs to free. */
752 i = RTE_MAX(rc, 0);
753 }
754
755 /* free unused mbufs */
756 for (; i != nb_seg; i++) {
757 rte_pktmbuf_free_seg(md[i]);
758 md[i] = NULL;
759 }
760
761 return md[0];
762 }
763
764 /*
765 * Receive a burst of packets, and for each packet:
766 * - parse packet, and try to recognize a supported packet type (1)
767 * - if it's not a supported packet type, don't touch the packet, else:
768 * - reprocess the checksum of all supported layers. This is done in SW
769 * or HW, depending on testpmd command line configuration
770 * - if TSO is enabled in testpmd command line, also flag the mbuf for TCP
771 * segmentation offload (this implies HW TCP checksum)
772 * Then transmit packets on the output port.
773 *
774 * (1) Supported packets are:
775 * Ether / (vlan) / IP|IP6 / UDP|TCP|SCTP .
776 * Ether / (vlan) / outer IP|IP6 / outer UDP / VxLAN / Ether / IP|IP6 /
777 * UDP|TCP|SCTP
778 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / Ether / IP|IP6 /
779 * UDP|TCP|SCTP
780 * Ether / (vlan) / outer IP|IP6 / outer UDP / VXLAN-GPE / IP|IP6 /
781 * UDP|TCP|SCTP
782 * Ether / (vlan) / outer IP / outer UDP / GTP / IP|IP6 / UDP|TCP|SCTP
783 * Ether / (vlan) / outer IP|IP6 / GRE / Ether / IP|IP6 / UDP|TCP|SCTP
784 * Ether / (vlan) / outer IP|IP6 / GRE / IP|IP6 / UDP|TCP|SCTP
785 * Ether / (vlan) / outer IP|IP6 / IP|IP6 / UDP|TCP|SCTP
786 *
787 * The testpmd command line for this forward engine sets the flags
788 * TESTPMD_TX_OFFLOAD_* in ports[tx_port].tx_ol_flags. They control
789 * wether a checksum must be calculated in software or in hardware. The
790 * IP, UDP, TCP and SCTP flags always concern the inner layer. The
791 * OUTER_IP is only useful for tunnel packets.
792 */
793 static void
pkt_burst_checksum_forward(struct fwd_stream * fs)794 pkt_burst_checksum_forward(struct fwd_stream *fs)
795 {
796 struct rte_mbuf *pkts_burst[MAX_PKT_BURST];
797 struct rte_mbuf *gso_segments[GSO_MAX_PKT_BURST];
798 struct rte_gso_ctx *gso_ctx;
799 struct rte_mbuf **tx_pkts_burst;
800 struct rte_port *txp;
801 struct rte_mbuf *m, *p;
802 struct rte_ether_hdr *eth_hdr;
803 void *l3_hdr = NULL, *outer_l3_hdr = NULL; /* can be IPv4 or IPv6 */
804 void **gro_ctx;
805 uint16_t gro_pkts_num;
806 uint8_t gro_enable;
807 uint16_t nb_rx;
808 uint16_t nb_tx;
809 uint16_t nb_prep;
810 uint16_t i;
811 uint64_t rx_ol_flags, tx_ol_flags;
812 uint64_t tx_offloads;
813 uint32_t retry;
814 uint32_t rx_bad_ip_csum;
815 uint32_t rx_bad_l4_csum;
816 uint32_t rx_bad_outer_l4_csum;
817 struct testpmd_offload_info info;
818 uint16_t nb_segments = 0;
819 int ret;
820
821 uint64_t start_tsc = 0;
822
823 get_start_cycles(&start_tsc);
824
825 /* receive a burst of packet */
826 nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
827 nb_pkt_per_burst);
828 inc_rx_burst_stats(fs, nb_rx);
829 if (unlikely(nb_rx == 0))
830 return;
831
832 fs->rx_packets += nb_rx;
833 rx_bad_ip_csum = 0;
834 rx_bad_l4_csum = 0;
835 rx_bad_outer_l4_csum = 0;
836 gro_enable = gro_ports[fs->rx_port].enable;
837
838 txp = &ports[fs->tx_port];
839 tx_offloads = txp->dev_conf.txmode.offloads;
840 memset(&info, 0, sizeof(info));
841 info.tso_segsz = txp->tso_segsz;
842 info.tunnel_tso_segsz = txp->tunnel_tso_segsz;
843 if (gso_ports[fs->tx_port].enable)
844 info.gso_enable = 1;
845
846 for (i = 0; i < nb_rx; i++) {
847 if (likely(i < nb_rx - 1))
848 rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i + 1],
849 void *));
850
851 m = pkts_burst[i];
852 info.is_tunnel = 0;
853 info.pkt_len = rte_pktmbuf_pkt_len(m);
854 tx_ol_flags = m->ol_flags &
855 (IND_ATTACHED_MBUF | EXT_ATTACHED_MBUF);
856 rx_ol_flags = m->ol_flags;
857
858 /* Update the L3/L4 checksum error packet statistics */
859 if ((rx_ol_flags & PKT_RX_IP_CKSUM_MASK) == PKT_RX_IP_CKSUM_BAD)
860 rx_bad_ip_csum += 1;
861 if ((rx_ol_flags & PKT_RX_L4_CKSUM_MASK) == PKT_RX_L4_CKSUM_BAD)
862 rx_bad_l4_csum += 1;
863 if (rx_ol_flags & PKT_RX_OUTER_L4_CKSUM_BAD)
864 rx_bad_outer_l4_csum += 1;
865
866 /* step 1: dissect packet, parsing optional vlan, ip4/ip6, vxlan
867 * and inner headers */
868
869 eth_hdr = rte_pktmbuf_mtod(m, struct rte_ether_hdr *);
870 rte_ether_addr_copy(&peer_eth_addrs[fs->peer_addr],
871 ð_hdr->d_addr);
872 rte_ether_addr_copy(&ports[fs->tx_port].eth_addr,
873 ð_hdr->s_addr);
874 parse_ethernet(eth_hdr, &info);
875 l3_hdr = (char *)eth_hdr + info.l2_len;
876
877 /* check if it's a supported tunnel */
878 if (txp->parse_tunnel) {
879 if (info.l4_proto == IPPROTO_UDP) {
880 struct rte_udp_hdr *udp_hdr;
881
882 udp_hdr = (struct rte_udp_hdr *)
883 ((char *)l3_hdr + info.l3_len);
884 parse_gtp(udp_hdr, &info);
885 if (info.is_tunnel) {
886 tx_ol_flags |= PKT_TX_TUNNEL_GTP;
887 goto tunnel_update;
888 }
889 parse_vxlan_gpe(udp_hdr, &info);
890 if (info.is_tunnel) {
891 tx_ol_flags |=
892 PKT_TX_TUNNEL_VXLAN_GPE;
893 goto tunnel_update;
894 }
895 parse_vxlan(udp_hdr, &info,
896 m->packet_type);
897 if (info.is_tunnel) {
898 tx_ol_flags |=
899 PKT_TX_TUNNEL_VXLAN;
900 goto tunnel_update;
901 }
902 parse_geneve(udp_hdr, &info);
903 if (info.is_tunnel) {
904 tx_ol_flags |=
905 PKT_TX_TUNNEL_GENEVE;
906 goto tunnel_update;
907 }
908 } else if (info.l4_proto == IPPROTO_GRE) {
909 struct simple_gre_hdr *gre_hdr;
910
911 gre_hdr = (struct simple_gre_hdr *)
912 ((char *)l3_hdr + info.l3_len);
913 parse_gre(gre_hdr, &info);
914 if (info.is_tunnel)
915 tx_ol_flags |= PKT_TX_TUNNEL_GRE;
916 } else if (info.l4_proto == IPPROTO_IPIP) {
917 void *encap_ip_hdr;
918
919 encap_ip_hdr = (char *)l3_hdr + info.l3_len;
920 parse_encap_ip(encap_ip_hdr, &info);
921 if (info.is_tunnel)
922 tx_ol_flags |= PKT_TX_TUNNEL_IPIP;
923 }
924 }
925
926 tunnel_update:
927 /* update l3_hdr and outer_l3_hdr if a tunnel was parsed */
928 if (info.is_tunnel) {
929 outer_l3_hdr = l3_hdr;
930 l3_hdr = (char *)l3_hdr + info.outer_l3_len + info.l2_len;
931 }
932
933 /* step 2: depending on user command line configuration,
934 * recompute checksum either in software or flag the
935 * mbuf to offload the calculation to the NIC. If TSO
936 * is configured, prepare the mbuf for TCP segmentation. */
937
938 /* process checksums of inner headers first */
939 tx_ol_flags |= process_inner_cksums(l3_hdr, &info,
940 tx_offloads);
941
942 /* Then process outer headers if any. Note that the software
943 * checksum will be wrong if one of the inner checksums is
944 * processed in hardware. */
945 if (info.is_tunnel == 1) {
946 tx_ol_flags |= process_outer_cksums(outer_l3_hdr, &info,
947 tx_offloads,
948 !!(tx_ol_flags & PKT_TX_TCP_SEG));
949 }
950
951 /* step 3: fill the mbuf meta data (flags and header lengths) */
952
953 m->tx_offload = 0;
954 if (info.is_tunnel == 1) {
955 if (info.tunnel_tso_segsz ||
956 (tx_offloads &
957 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
958 (tx_offloads &
959 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
960 (tx_ol_flags & PKT_TX_OUTER_IPV6)) {
961 m->outer_l2_len = info.outer_l2_len;
962 m->outer_l3_len = info.outer_l3_len;
963 m->l2_len = info.l2_len;
964 m->l3_len = info.l3_len;
965 m->l4_len = info.l4_len;
966 m->tso_segsz = info.tunnel_tso_segsz;
967 }
968 else {
969 /* if there is a outer UDP cksum
970 processed in sw and the inner in hw,
971 the outer checksum will be wrong as
972 the payload will be modified by the
973 hardware */
974 m->l2_len = info.outer_l2_len +
975 info.outer_l3_len + info.l2_len;
976 m->l3_len = info.l3_len;
977 m->l4_len = info.l4_len;
978 }
979 } else {
980 /* this is only useful if an offload flag is
981 * set, but it does not hurt to fill it in any
982 * case */
983 m->l2_len = info.l2_len;
984 m->l3_len = info.l3_len;
985 m->l4_len = info.l4_len;
986 m->tso_segsz = info.tso_segsz;
987 }
988 m->ol_flags = tx_ol_flags;
989
990 /* Do split & copy for the packet. */
991 if (tx_pkt_split != TX_PKT_SPLIT_OFF) {
992 p = pkt_copy_split(m);
993 if (p != NULL) {
994 rte_pktmbuf_free(m);
995 m = p;
996 pkts_burst[i] = m;
997 }
998 }
999
1000 /* if verbose mode is enabled, dump debug info */
1001 if (verbose_level > 0) {
1002 char buf[256];
1003
1004 printf("-----------------\n");
1005 printf("port=%u, mbuf=%p, pkt_len=%u, nb_segs=%u:\n",
1006 fs->rx_port, m, m->pkt_len, m->nb_segs);
1007 /* dump rx parsed packet info */
1008 rte_get_rx_ol_flag_list(rx_ol_flags, buf, sizeof(buf));
1009 printf("rx: l2_len=%d ethertype=%x l3_len=%d "
1010 "l4_proto=%d l4_len=%d flags=%s\n",
1011 info.l2_len, rte_be_to_cpu_16(info.ethertype),
1012 info.l3_len, info.l4_proto, info.l4_len, buf);
1013 if (rx_ol_flags & PKT_RX_LRO)
1014 printf("rx: m->lro_segsz=%u\n", m->tso_segsz);
1015 if (info.is_tunnel == 1)
1016 printf("rx: outer_l2_len=%d outer_ethertype=%x "
1017 "outer_l3_len=%d\n", info.outer_l2_len,
1018 rte_be_to_cpu_16(info.outer_ethertype),
1019 info.outer_l3_len);
1020 /* dump tx packet info */
1021 if ((tx_offloads & (DEV_TX_OFFLOAD_IPV4_CKSUM |
1022 DEV_TX_OFFLOAD_UDP_CKSUM |
1023 DEV_TX_OFFLOAD_TCP_CKSUM |
1024 DEV_TX_OFFLOAD_SCTP_CKSUM)) ||
1025 info.tso_segsz != 0)
1026 printf("tx: m->l2_len=%d m->l3_len=%d "
1027 "m->l4_len=%d\n",
1028 m->l2_len, m->l3_len, m->l4_len);
1029 if (info.is_tunnel == 1) {
1030 if ((tx_offloads &
1031 DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM) ||
1032 (tx_offloads &
1033 DEV_TX_OFFLOAD_OUTER_UDP_CKSUM) ||
1034 (tx_ol_flags & PKT_TX_OUTER_IPV6))
1035 printf("tx: m->outer_l2_len=%d "
1036 "m->outer_l3_len=%d\n",
1037 m->outer_l2_len,
1038 m->outer_l3_len);
1039 if (info.tunnel_tso_segsz != 0 &&
1040 (m->ol_flags & PKT_TX_TCP_SEG))
1041 printf("tx: m->tso_segsz=%d\n",
1042 m->tso_segsz);
1043 } else if (info.tso_segsz != 0 &&
1044 (m->ol_flags & PKT_TX_TCP_SEG))
1045 printf("tx: m->tso_segsz=%d\n", m->tso_segsz);
1046 rte_get_tx_ol_flag_list(m->ol_flags, buf, sizeof(buf));
1047 printf("tx: flags=%s", buf);
1048 printf("\n");
1049 }
1050 }
1051
1052 if (unlikely(gro_enable)) {
1053 if (gro_flush_cycles == GRO_DEFAULT_FLUSH_CYCLES) {
1054 nb_rx = rte_gro_reassemble_burst(pkts_burst, nb_rx,
1055 &(gro_ports[fs->rx_port].param));
1056 } else {
1057 gro_ctx = current_fwd_lcore()->gro_ctx;
1058 nb_rx = rte_gro_reassemble(pkts_burst, nb_rx, gro_ctx);
1059
1060 if (++fs->gro_times >= gro_flush_cycles) {
1061 gro_pkts_num = rte_gro_get_pkt_count(gro_ctx);
1062 if (gro_pkts_num > MAX_PKT_BURST - nb_rx)
1063 gro_pkts_num = MAX_PKT_BURST - nb_rx;
1064
1065 nb_rx += rte_gro_timeout_flush(gro_ctx, 0,
1066 RTE_GRO_TCP_IPV4,
1067 &pkts_burst[nb_rx],
1068 gro_pkts_num);
1069 fs->gro_times = 0;
1070 }
1071 }
1072 }
1073
1074 if (gso_ports[fs->tx_port].enable == 0)
1075 tx_pkts_burst = pkts_burst;
1076 else {
1077 gso_ctx = &(current_fwd_lcore()->gso_ctx);
1078 gso_ctx->gso_size = gso_max_segment_size;
1079 for (i = 0; i < nb_rx; i++) {
1080 ret = rte_gso_segment(pkts_burst[i], gso_ctx,
1081 &gso_segments[nb_segments],
1082 GSO_MAX_PKT_BURST - nb_segments);
1083 if (ret >= 1) {
1084 /* pkts_burst[i] can be freed safely here. */
1085 rte_pktmbuf_free(pkts_burst[i]);
1086 nb_segments += ret;
1087 } else if (ret == 0) {
1088 /* 0 means it can be transmitted directly
1089 * without gso.
1090 */
1091 gso_segments[nb_segments] = pkts_burst[i];
1092 nb_segments += 1;
1093 } else {
1094 TESTPMD_LOG(DEBUG, "Unable to segment packet");
1095 rte_pktmbuf_free(pkts_burst[i]);
1096 }
1097 }
1098
1099 tx_pkts_burst = gso_segments;
1100 nb_rx = nb_segments;
1101 }
1102
1103 nb_prep = rte_eth_tx_prepare(fs->tx_port, fs->tx_queue,
1104 tx_pkts_burst, nb_rx);
1105 if (nb_prep != nb_rx)
1106 printf("Preparing packet burst to transmit failed: %s\n",
1107 rte_strerror(rte_errno));
1108
1109 nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, tx_pkts_burst,
1110 nb_prep);
1111
1112 /*
1113 * Retry if necessary
1114 */
1115 if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
1116 retry = 0;
1117 while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
1118 rte_delay_us(burst_tx_delay_time);
1119 nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
1120 &tx_pkts_burst[nb_tx], nb_rx - nb_tx);
1121 }
1122 }
1123 fs->tx_packets += nb_tx;
1124 fs->rx_bad_ip_csum += rx_bad_ip_csum;
1125 fs->rx_bad_l4_csum += rx_bad_l4_csum;
1126 fs->rx_bad_outer_l4_csum += rx_bad_outer_l4_csum;
1127
1128 inc_tx_burst_stats(fs, nb_tx);
1129 if (unlikely(nb_tx < nb_rx)) {
1130 fs->fwd_dropped += (nb_rx - nb_tx);
1131 do {
1132 rte_pktmbuf_free(tx_pkts_burst[nb_tx]);
1133 } while (++nb_tx < nb_rx);
1134 }
1135
1136 get_end_cycles(fs, start_tsc);
1137 }
1138
1139 struct fwd_engine csum_fwd_engine = {
1140 .fwd_mode_name = "csum",
1141 .port_fwd_begin = NULL,
1142 .port_fwd_end = NULL,
1143 .packet_fwd = pkt_burst_checksum_forward,
1144 };
1145