1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation.
3 * Copyright(c) 2016 6WIND S.A.
4 */
5
6 #ifndef _RTE_MEMPOOL_H_
7 #define _RTE_MEMPOOL_H_
8
9 /**
10 * @file
11 * RTE Mempool.
12 *
13 * A memory pool is an allocator of fixed-size object. It is
14 * identified by its name, and uses a ring to store free objects. It
15 * provides some other optional services, like a per-core object
16 * cache, and an alignment helper to ensure that objects are padded
17 * to spread them equally on all RAM channels, ranks, and so on.
18 *
19 * Objects owned by a mempool should never be added in another
20 * mempool. When an object is freed using rte_mempool_put() or
21 * equivalent, the object data is not modified; the user can save some
22 * meta-data in the object data and retrieve them when allocating a
23 * new object.
24 *
25 * Note: the mempool implementation is not preemptible. An lcore must not be
26 * interrupted by another task that uses the same mempool (because it uses a
27 * ring which is not preemptible). Also, usual mempool functions like
28 * rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
29 * thread due to the internal per-lcore cache. Due to the lack of caching,
30 * rte_mempool_get() or rte_mempool_put() performance will suffer when called
31 * by unregistered non-EAL threads. Instead, unregistered non-EAL threads
32 * should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
33 * user cache created with rte_mempool_cache_create().
34 */
35
36 #include <stdio.h>
37 #include <stdint.h>
38 #include <inttypes.h>
39
40 #include <rte_config.h>
41 #include <rte_spinlock.h>
42 #include <rte_debug.h>
43 #include <rte_lcore.h>
44 #include <rte_branch_prediction.h>
45 #include <rte_ring.h>
46 #include <rte_memcpy.h>
47 #include <rte_common.h>
48
49 #include "rte_mempool_trace_fp.h"
50
51 #ifdef __cplusplus
52 extern "C" {
53 #endif
54
55 #define RTE_MEMPOOL_HEADER_COOKIE1 0xbadbadbadadd2e55ULL /**< Header cookie. */
56 #define RTE_MEMPOOL_HEADER_COOKIE2 0xf2eef2eedadd2e55ULL /**< Header cookie. */
57 #define RTE_MEMPOOL_TRAILER_COOKIE 0xadd2e55badbadbadULL /**< Trailer cookie.*/
58
59 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
60 /**
61 * A structure that stores the mempool statistics (per-lcore).
62 * Note: Cache stats (put_cache_bulk/objs, get_cache_bulk/objs) are not
63 * captured since they can be calculated from other stats.
64 * For example: put_cache_objs = put_objs - put_common_pool_objs.
65 */
66 struct rte_mempool_debug_stats {
67 uint64_t put_bulk; /**< Number of puts. */
68 uint64_t put_objs; /**< Number of objects successfully put. */
69 uint64_t put_common_pool_bulk; /**< Number of bulks enqueued in common pool. */
70 uint64_t put_common_pool_objs; /**< Number of objects enqueued in common pool. */
71 uint64_t get_common_pool_bulk; /**< Number of bulks dequeued from common pool. */
72 uint64_t get_common_pool_objs; /**< Number of objects dequeued from common pool. */
73 uint64_t get_success_bulk; /**< Successful allocation number. */
74 uint64_t get_success_objs; /**< Objects successfully allocated. */
75 uint64_t get_fail_bulk; /**< Failed allocation number. */
76 uint64_t get_fail_objs; /**< Objects that failed to be allocated. */
77 uint64_t get_success_blks; /**< Successful allocation number of contiguous blocks. */
78 uint64_t get_fail_blks; /**< Failed allocation number of contiguous blocks. */
79 } __rte_cache_aligned;
80 #endif
81
82 /**
83 * A structure that stores a per-core object cache.
84 */
85 struct rte_mempool_cache {
86 uint32_t size; /**< Size of the cache */
87 uint32_t flushthresh; /**< Threshold before we flush excess elements */
88 uint32_t len; /**< Current cache count */
89 /*
90 * Cache is allocated to this size to allow it to overflow in certain
91 * cases to avoid needless emptying of cache.
92 */
93 void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 3]; /**< Cache objects */
94 } __rte_cache_aligned;
95
96 /**
97 * A structure that stores the size of mempool elements.
98 */
99 struct rte_mempool_objsz {
100 uint32_t elt_size; /**< Size of an element. */
101 uint32_t header_size; /**< Size of header (before elt). */
102 uint32_t trailer_size; /**< Size of trailer (after elt). */
103 uint32_t total_size;
104 /**< Total size of an object (header + elt + trailer). */
105 };
106
107 /**< Maximum length of a memory pool's name. */
108 #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
109 sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
110 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
111
112 /* "MP_<name>" */
113 #define RTE_MEMPOOL_MZ_FORMAT RTE_MEMPOOL_MZ_PREFIX "%s"
114
115 #define MEMPOOL_PG_SHIFT_MAX \
116 RTE_DEPRECATED(MEMPOOL_PG_SHIFT_MAX) (sizeof(uintptr_t) * CHAR_BIT - 1)
117
118 /** Deprecated. Mempool over one chunk of physically continuous memory */
119 #define MEMPOOL_PG_NUM_DEFAULT RTE_DEPRECATED(MEMPOOL_PG_NUM_DEFAULT) 1
120
121 #ifndef RTE_MEMPOOL_ALIGN
122 /**
123 * Alignment of elements inside mempool.
124 */
125 #define RTE_MEMPOOL_ALIGN RTE_CACHE_LINE_SIZE
126 #endif
127
128 #define RTE_MEMPOOL_ALIGN_MASK (RTE_MEMPOOL_ALIGN - 1)
129
130 /**
131 * Mempool object header structure
132 *
133 * Each object stored in mempools are prefixed by this header structure,
134 * it allows to retrieve the mempool pointer from the object and to
135 * iterate on all objects attached to a mempool. When debug is enabled,
136 * a cookie is also added in this structure preventing corruptions and
137 * double-frees.
138 */
139 struct rte_mempool_objhdr {
140 RTE_STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
141 struct rte_mempool *mp; /**< The mempool owning the object. */
142 rte_iova_t iova; /**< IO address of the object. */
143 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
144 uint64_t cookie; /**< Debug cookie. */
145 #endif
146 };
147
148 /**
149 * A list of object headers type
150 */
151 RTE_STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
152
153 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
154
155 /**
156 * Mempool object trailer structure
157 *
158 * In debug mode, each object stored in mempools are suffixed by this
159 * trailer structure containing a cookie preventing memory corruptions.
160 */
161 struct rte_mempool_objtlr {
162 uint64_t cookie; /**< Debug cookie. */
163 };
164
165 #endif
166
167 /**
168 * A list of memory where objects are stored
169 */
170 RTE_STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
171
172 /**
173 * Callback used to free a memory chunk
174 */
175 typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
176 void *opaque);
177
178 /**
179 * Mempool objects memory header structure
180 *
181 * The memory chunks where objects are stored. Each chunk is virtually
182 * and physically contiguous.
183 */
184 struct rte_mempool_memhdr {
185 RTE_STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
186 struct rte_mempool *mp; /**< The mempool owning the chunk */
187 void *addr; /**< Virtual address of the chunk */
188 rte_iova_t iova; /**< IO address of the chunk */
189 size_t len; /**< length of the chunk */
190 rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
191 void *opaque; /**< Argument passed to the free callback */
192 };
193
194 /**
195 * Additional information about the mempool
196 *
197 * The structure is cache-line aligned to avoid ABI breakages in
198 * a number of cases when something small is added.
199 */
200 struct rte_mempool_info {
201 /** Number of objects in the contiguous block */
202 unsigned int contig_block_size;
203 } __rte_cache_aligned;
204
205 /**
206 * The RTE mempool structure.
207 */
208 struct rte_mempool {
209 char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
210 RTE_STD_C11
211 union {
212 void *pool_data; /**< Ring or pool to store objects. */
213 uint64_t pool_id; /**< External mempool identifier. */
214 };
215 void *pool_config; /**< optional args for ops alloc. */
216 const struct rte_memzone *mz; /**< Memzone where pool is alloc'd. */
217 unsigned int flags; /**< Flags of the mempool. */
218 int socket_id; /**< Socket id passed at create. */
219 uint32_t size; /**< Max size of the mempool. */
220 uint32_t cache_size;
221 /**< Size of per-lcore default local cache. */
222
223 uint32_t elt_size; /**< Size of an element. */
224 uint32_t header_size; /**< Size of header (before elt). */
225 uint32_t trailer_size; /**< Size of trailer (after elt). */
226
227 unsigned private_data_size; /**< Size of private data. */
228 /**
229 * Index into rte_mempool_ops_table array of mempool ops
230 * structs, which contain callback function pointers.
231 * We're using an index here rather than pointers to the callbacks
232 * to facilitate any secondary processes that may want to use
233 * this mempool.
234 */
235 int32_t ops_index;
236
237 struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
238
239 uint32_t populated_size; /**< Number of populated objects. */
240 struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
241 uint32_t nb_mem_chunks; /**< Number of memory chunks */
242 struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
243
244 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
245 /** Per-lcore statistics. */
246 struct rte_mempool_debug_stats stats[RTE_MAX_LCORE];
247 #endif
248 } __rte_cache_aligned;
249
250 /** Spreading among memory channels not required. */
251 #define RTE_MEMPOOL_F_NO_SPREAD 0x0001
252 /**
253 * Backward compatibility synonym for RTE_MEMPOOL_F_NO_SPREAD.
254 * To be deprecated.
255 */
256 #define MEMPOOL_F_NO_SPREAD RTE_MEMPOOL_F_NO_SPREAD
257 /** Do not align objects on cache lines. */
258 #define RTE_MEMPOOL_F_NO_CACHE_ALIGN 0x0002
259 /**
260 * Backward compatibility synonym for RTE_MEMPOOL_F_NO_CACHE_ALIGN.
261 * To be deprecated.
262 */
263 #define MEMPOOL_F_NO_CACHE_ALIGN RTE_MEMPOOL_F_NO_CACHE_ALIGN
264 /** Default put is "single-producer". */
265 #define RTE_MEMPOOL_F_SP_PUT 0x0004
266 /**
267 * Backward compatibility synonym for RTE_MEMPOOL_F_SP_PUT.
268 * To be deprecated.
269 */
270 #define MEMPOOL_F_SP_PUT RTE_MEMPOOL_F_SP_PUT
271 /** Default get is "single-consumer". */
272 #define RTE_MEMPOOL_F_SC_GET 0x0008
273 /**
274 * Backward compatibility synonym for RTE_MEMPOOL_F_SC_GET.
275 * To be deprecated.
276 */
277 #define MEMPOOL_F_SC_GET RTE_MEMPOOL_F_SC_GET
278 /** Internal: pool is created. */
279 #define RTE_MEMPOOL_F_POOL_CREATED 0x0010
280 /** Don't need IOVA contiguous objects. */
281 #define RTE_MEMPOOL_F_NO_IOVA_CONTIG 0x0020
282 /**
283 * Backward compatibility synonym for RTE_MEMPOOL_F_NO_IOVA_CONTIG.
284 * To be deprecated.
285 */
286 #define MEMPOOL_F_NO_IOVA_CONTIG RTE_MEMPOOL_F_NO_IOVA_CONTIG
287 /** Internal: no object from the pool can be used for device IO (DMA). */
288 #define RTE_MEMPOOL_F_NON_IO 0x0040
289
290 /**
291 * This macro lists all the mempool flags an application may request.
292 */
293 #define RTE_MEMPOOL_VALID_USER_FLAGS (RTE_MEMPOOL_F_NO_SPREAD \
294 | RTE_MEMPOOL_F_NO_CACHE_ALIGN \
295 | RTE_MEMPOOL_F_SP_PUT \
296 | RTE_MEMPOOL_F_SC_GET \
297 | RTE_MEMPOOL_F_NO_IOVA_CONTIG \
298 )
299 /**
300 * @internal When debug is enabled, store some statistics.
301 *
302 * @param mp
303 * Pointer to the memory pool.
304 * @param name
305 * Name of the statistics field to increment in the memory pool.
306 * @param n
307 * Number to add to the object-oriented statistics.
308 */
309 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
310 #define RTE_MEMPOOL_STAT_ADD(mp, name, n) do { \
311 unsigned __lcore_id = rte_lcore_id(); \
312 if (__lcore_id < RTE_MAX_LCORE) { \
313 mp->stats[__lcore_id].name += n; \
314 } \
315 } while (0)
316 #else
317 #define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {} while (0)
318 #endif
319
320 /**
321 * @internal Calculate the size of the mempool header.
322 *
323 * @param mp
324 * Pointer to the memory pool.
325 * @param cs
326 * Size of the per-lcore cache.
327 */
328 #define RTE_MEMPOOL_HEADER_SIZE(mp, cs) \
329 (sizeof(*(mp)) + (((cs) == 0) ? 0 : \
330 (sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
331
332 /** Deprecated. Use RTE_MEMPOOL_HEADER_SIZE() for internal purposes only. */
333 #define MEMPOOL_HEADER_SIZE(mp, cs) \
334 RTE_DEPRECATED(MEMPOOL_HEADER_SIZE) RTE_MEMPOOL_HEADER_SIZE(mp, cs)
335
336 /* return the header of a mempool object (internal) */
337 static inline struct rte_mempool_objhdr *
rte_mempool_get_header(void * obj)338 rte_mempool_get_header(void *obj)
339 {
340 return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
341 sizeof(struct rte_mempool_objhdr));
342 }
343
344 /**
345 * Return a pointer to the mempool owning this object.
346 *
347 * @param obj
348 * An object that is owned by a pool. If this is not the case,
349 * the behavior is undefined.
350 * @return
351 * A pointer to the mempool structure.
352 */
rte_mempool_from_obj(void * obj)353 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
354 {
355 struct rte_mempool_objhdr *hdr = rte_mempool_get_header(obj);
356 return hdr->mp;
357 }
358
359 /* return the trailer of a mempool object (internal) */
rte_mempool_get_trailer(void * obj)360 static inline struct rte_mempool_objtlr *rte_mempool_get_trailer(void *obj)
361 {
362 struct rte_mempool *mp = rte_mempool_from_obj(obj);
363 return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
364 }
365
366 /**
367 * @internal Check and update cookies or panic.
368 *
369 * @param mp
370 * Pointer to the memory pool.
371 * @param obj_table_const
372 * Pointer to a table of void * pointers (objects).
373 * @param n
374 * Index of object in object table.
375 * @param free
376 * - 0: object is supposed to be allocated, mark it as free
377 * - 1: object is supposed to be free, mark it as allocated
378 * - 2: just check that cookie is valid (free or allocated)
379 */
380 void rte_mempool_check_cookies(const struct rte_mempool *mp,
381 void * const *obj_table_const, unsigned n, int free);
382
383 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
384 #define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) \
385 rte_mempool_check_cookies(mp, obj_table_const, n, free)
386 #else
387 #define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) do {} while (0)
388 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
389
390 /**
391 * @internal Check contiguous object blocks and update cookies or panic.
392 *
393 * @param mp
394 * Pointer to the memory pool.
395 * @param first_obj_table_const
396 * Pointer to a table of void * pointers (first object of the contiguous
397 * object blocks).
398 * @param n
399 * Number of contiguous object blocks.
400 * @param free
401 * - 0: object is supposed to be allocated, mark it as free
402 * - 1: object is supposed to be free, mark it as allocated
403 * - 2: just check that cookie is valid (free or allocated)
404 */
405 void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
406 void * const *first_obj_table_const, unsigned int n, int free);
407
408 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
409 #define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
410 free) \
411 rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
412 free)
413 #else
414 #define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
415 free) \
416 do {} while (0)
417 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
418
419 #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
420
421 /**
422 * Prototype for implementation specific data provisioning function.
423 *
424 * The function should provide the implementation specific memory for
425 * use by the other mempool ops functions in a given mempool ops struct.
426 * E.g. the default ops provides an instance of the rte_ring for this purpose.
427 * it will most likely point to a different type of data structure, and
428 * will be transparent to the application programmer.
429 * This function should set mp->pool_data.
430 */
431 typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
432
433 /**
434 * Free the opaque private data pointed to by mp->pool_data pointer.
435 */
436 typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
437
438 /**
439 * Enqueue an object into the external pool.
440 */
441 typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
442 void * const *obj_table, unsigned int n);
443
444 /**
445 * Dequeue an object from the external pool.
446 */
447 typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
448 void **obj_table, unsigned int n);
449
450 /**
451 * Dequeue a number of contiguous object blocks from the external pool.
452 */
453 typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
454 void **first_obj_table, unsigned int n);
455
456 /**
457 * Return the number of available objects in the external pool.
458 */
459 typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
460
461 /**
462 * Calculate memory size required to store given number of objects.
463 *
464 * If mempool objects are not required to be IOVA-contiguous
465 * (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
466 * virtually contiguous chunk size. Otherwise, if mempool objects must
467 * be IOVA-contiguous (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is clear),
468 * min_chunk_size defines IOVA-contiguous chunk size.
469 *
470 * @param[in] mp
471 * Pointer to the memory pool.
472 * @param[in] obj_num
473 * Number of objects.
474 * @param[in] pg_shift
475 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
476 * @param[out] min_chunk_size
477 * Location for minimum size of the memory chunk which may be used to
478 * store memory pool objects.
479 * @param[out] align
480 * Location for required memory chunk alignment.
481 * @return
482 * Required memory size.
483 */
484 typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
485 uint32_t obj_num, uint32_t pg_shift,
486 size_t *min_chunk_size, size_t *align);
487
488 /**
489 * @internal Helper to calculate memory size required to store given
490 * number of objects.
491 *
492 * This function is internal to mempool library and mempool drivers.
493 *
494 * If page boundaries may be ignored, it is just a product of total
495 * object size including header and trailer and number of objects.
496 * Otherwise, it is a number of pages required to store given number of
497 * objects without crossing page boundary.
498 *
499 * Note that if object size is bigger than page size, then it assumes
500 * that pages are grouped in subsets of physically continuous pages big
501 * enough to store at least one object.
502 *
503 * Minimum size of memory chunk is the total element size.
504 * Required memory chunk alignment is the cache line size.
505 *
506 * @param[in] mp
507 * A pointer to the mempool structure.
508 * @param[in] obj_num
509 * Number of objects to be added in mempool.
510 * @param[in] pg_shift
511 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
512 * @param[in] chunk_reserve
513 * Amount of memory that must be reserved at the beginning of each page,
514 * or at the beginning of the memory area if pg_shift is 0.
515 * @param[out] min_chunk_size
516 * Location for minimum size of the memory chunk which may be used to
517 * store memory pool objects.
518 * @param[out] align
519 * Location for required memory chunk alignment.
520 * @return
521 * Required memory size.
522 */
523 ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
524 uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
525 size_t *min_chunk_size, size_t *align);
526
527 /**
528 * Default way to calculate memory size required to store given number of
529 * objects.
530 *
531 * Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
532 * 0, min_chunk_size, align).
533 */
534 ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
535 uint32_t obj_num, uint32_t pg_shift,
536 size_t *min_chunk_size, size_t *align);
537
538 /**
539 * Function to be called for each populated object.
540 *
541 * @param[in] mp
542 * A pointer to the mempool structure.
543 * @param[in] opaque
544 * An opaque pointer passed to iterator.
545 * @param[in] vaddr
546 * Object virtual address.
547 * @param[in] iova
548 * Input/output virtual address of the object or RTE_BAD_IOVA.
549 */
550 typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
551 void *opaque, void *vaddr, rte_iova_t iova);
552
553 /**
554 * Populate memory pool objects using provided memory chunk.
555 *
556 * Populated objects should be enqueued to the pool, e.g. using
557 * rte_mempool_ops_enqueue_bulk().
558 *
559 * If the given IO address is unknown (iova = RTE_BAD_IOVA),
560 * the chunk doesn't need to be physically contiguous (only virtually),
561 * and allocated objects may span two pages.
562 *
563 * @param[in] mp
564 * A pointer to the mempool structure.
565 * @param[in] max_objs
566 * Maximum number of objects to be populated.
567 * @param[in] vaddr
568 * The virtual address of memory that should be used to store objects.
569 * @param[in] iova
570 * The IO address
571 * @param[in] len
572 * The length of memory in bytes.
573 * @param[in] obj_cb
574 * Callback function to be executed for each populated object.
575 * @param[in] obj_cb_arg
576 * An opaque pointer passed to the callback function.
577 * @return
578 * The number of objects added on success.
579 * On error, no objects are populated and a negative errno is returned.
580 */
581 typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
582 unsigned int max_objs,
583 void *vaddr, rte_iova_t iova, size_t len,
584 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
585
586 /**
587 * Align objects on addresses multiple of total_elt_sz.
588 */
589 #define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
590
591 /**
592 * @internal Helper to populate memory pool object using provided memory
593 * chunk: just slice objects one by one, taking care of not
594 * crossing page boundaries.
595 *
596 * If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
597 * of object headers will be aligned on a multiple of total_elt_sz.
598 * This feature is used by octeontx hardware.
599 *
600 * This function is internal to mempool library and mempool drivers.
601 *
602 * @param[in] mp
603 * A pointer to the mempool structure.
604 * @param[in] flags
605 * Logical OR of following flags:
606 * - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
607 * multiple of total_elt_sz.
608 * @param[in] max_objs
609 * Maximum number of objects to be added in mempool.
610 * @param[in] vaddr
611 * The virtual address of memory that should be used to store objects.
612 * @param[in] iova
613 * The IO address corresponding to vaddr, or RTE_BAD_IOVA.
614 * @param[in] len
615 * The length of memory in bytes.
616 * @param[in] obj_cb
617 * Callback function to be executed for each populated object.
618 * @param[in] obj_cb_arg
619 * An opaque pointer passed to the callback function.
620 * @return
621 * The number of objects added in mempool.
622 */
623 int rte_mempool_op_populate_helper(struct rte_mempool *mp,
624 unsigned int flags, unsigned int max_objs,
625 void *vaddr, rte_iova_t iova, size_t len,
626 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
627
628 /**
629 * Default way to populate memory pool object using provided memory chunk.
630 *
631 * Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
632 * len, obj_cb, obj_cb_arg).
633 */
634 int rte_mempool_op_populate_default(struct rte_mempool *mp,
635 unsigned int max_objs,
636 void *vaddr, rte_iova_t iova, size_t len,
637 rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
638
639 /**
640 * Get some additional information about a mempool.
641 */
642 typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
643 struct rte_mempool_info *info);
644
645
646 /** Structure defining mempool operations structure */
647 struct rte_mempool_ops {
648 char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
649 rte_mempool_alloc_t alloc; /**< Allocate private data. */
650 rte_mempool_free_t free; /**< Free the external pool. */
651 rte_mempool_enqueue_t enqueue; /**< Enqueue an object. */
652 rte_mempool_dequeue_t dequeue; /**< Dequeue an object. */
653 rte_mempool_get_count get_count; /**< Get qty of available objs. */
654 /**
655 * Optional callback to calculate memory size required to
656 * store specified number of objects.
657 */
658 rte_mempool_calc_mem_size_t calc_mem_size;
659 /**
660 * Optional callback to populate mempool objects using
661 * provided memory chunk.
662 */
663 rte_mempool_populate_t populate;
664 /**
665 * Get mempool info
666 */
667 rte_mempool_get_info_t get_info;
668 /**
669 * Dequeue a number of contiguous object blocks.
670 */
671 rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
672 } __rte_cache_aligned;
673
674 #define RTE_MEMPOOL_MAX_OPS_IDX 16 /**< Max registered ops structs */
675
676 /**
677 * Structure storing the table of registered ops structs, each of which contain
678 * the function pointers for the mempool ops functions.
679 * Each process has its own storage for this ops struct array so that
680 * the mempools can be shared across primary and secondary processes.
681 * The indices used to access the array are valid across processes, whereas
682 * any function pointers stored directly in the mempool struct would not be.
683 * This results in us simply having "ops_index" in the mempool struct.
684 */
685 struct rte_mempool_ops_table {
686 rte_spinlock_t sl; /**< Spinlock for add/delete. */
687 uint32_t num_ops; /**< Number of used ops structs in the table. */
688 /**
689 * Storage for all possible ops structs.
690 */
691 struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
692 } __rte_cache_aligned;
693
694 /** Array of registered ops structs. */
695 extern struct rte_mempool_ops_table rte_mempool_ops_table;
696
697 /**
698 * @internal Get the mempool ops struct from its index.
699 *
700 * @param ops_index
701 * The index of the ops struct in the ops struct table. It must be a valid
702 * index: (0 <= idx < num_ops).
703 * @return
704 * The pointer to the ops struct in the table.
705 */
706 static inline struct rte_mempool_ops *
rte_mempool_get_ops(int ops_index)707 rte_mempool_get_ops(int ops_index)
708 {
709 RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
710
711 return &rte_mempool_ops_table.ops[ops_index];
712 }
713
714 /**
715 * @internal Wrapper for mempool_ops alloc callback.
716 *
717 * @param mp
718 * Pointer to the memory pool.
719 * @return
720 * - 0: Success; successfully allocated mempool pool_data.
721 * - <0: Error; code of alloc function.
722 */
723 int
724 rte_mempool_ops_alloc(struct rte_mempool *mp);
725
726 /**
727 * @internal Wrapper for mempool_ops dequeue callback.
728 *
729 * @param mp
730 * Pointer to the memory pool.
731 * @param obj_table
732 * Pointer to a table of void * pointers (objects).
733 * @param n
734 * Number of objects to get.
735 * @return
736 * - 0: Success; got n objects.
737 * - <0: Error; code of dequeue function.
738 */
739 static inline int
rte_mempool_ops_dequeue_bulk(struct rte_mempool * mp,void ** obj_table,unsigned n)740 rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
741 void **obj_table, unsigned n)
742 {
743 struct rte_mempool_ops *ops;
744 int ret;
745
746 rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
747 ops = rte_mempool_get_ops(mp->ops_index);
748 ret = ops->dequeue(mp, obj_table, n);
749 if (ret == 0) {
750 RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_bulk, 1);
751 RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_objs, n);
752 }
753 return ret;
754 }
755
756 /**
757 * @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
758 *
759 * @param[in] mp
760 * Pointer to the memory pool.
761 * @param[out] first_obj_table
762 * Pointer to a table of void * pointers (first objects).
763 * @param[in] n
764 * Number of blocks to get.
765 * @return
766 * - 0: Success; got n objects.
767 * - <0: Error; code of dequeue function.
768 */
769 static inline int
rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)770 rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
771 void **first_obj_table, unsigned int n)
772 {
773 struct rte_mempool_ops *ops;
774
775 ops = rte_mempool_get_ops(mp->ops_index);
776 RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
777 rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
778 return ops->dequeue_contig_blocks(mp, first_obj_table, n);
779 }
780
781 /**
782 * @internal wrapper for mempool_ops enqueue callback.
783 *
784 * @param mp
785 * Pointer to the memory pool.
786 * @param obj_table
787 * Pointer to a table of void * pointers (objects).
788 * @param n
789 * Number of objects to put.
790 * @return
791 * - 0: Success; n objects supplied.
792 * - <0: Error; code of enqueue function.
793 */
794 static inline int
rte_mempool_ops_enqueue_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned n)795 rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
796 unsigned n)
797 {
798 struct rte_mempool_ops *ops;
799
800 RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_bulk, 1);
801 RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_objs, n);
802 rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
803 ops = rte_mempool_get_ops(mp->ops_index);
804 return ops->enqueue(mp, obj_table, n);
805 }
806
807 /**
808 * @internal wrapper for mempool_ops get_count callback.
809 *
810 * @param mp
811 * Pointer to the memory pool.
812 * @return
813 * The number of available objects in the external pool.
814 */
815 unsigned
816 rte_mempool_ops_get_count(const struct rte_mempool *mp);
817
818 /**
819 * @internal wrapper for mempool_ops calc_mem_size callback.
820 * API to calculate size of memory required to store specified number of
821 * object.
822 *
823 * @param[in] mp
824 * Pointer to the memory pool.
825 * @param[in] obj_num
826 * Number of objects.
827 * @param[in] pg_shift
828 * LOG2 of the physical pages size. If set to 0, ignore page boundaries.
829 * @param[out] min_chunk_size
830 * Location for minimum size of the memory chunk which may be used to
831 * store memory pool objects.
832 * @param[out] align
833 * Location for required memory chunk alignment.
834 * @return
835 * Required memory size aligned at page boundary.
836 */
837 ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
838 uint32_t obj_num, uint32_t pg_shift,
839 size_t *min_chunk_size, size_t *align);
840
841 /**
842 * @internal wrapper for mempool_ops populate callback.
843 *
844 * Populate memory pool objects using provided memory chunk.
845 *
846 * @param[in] mp
847 * A pointer to the mempool structure.
848 * @param[in] max_objs
849 * Maximum number of objects to be populated.
850 * @param[in] vaddr
851 * The virtual address of memory that should be used to store objects.
852 * @param[in] iova
853 * The IO address
854 * @param[in] len
855 * The length of memory in bytes.
856 * @param[in] obj_cb
857 * Callback function to be executed for each populated object.
858 * @param[in] obj_cb_arg
859 * An opaque pointer passed to the callback function.
860 * @return
861 * The number of objects added on success.
862 * On error, no objects are populated and a negative errno is returned.
863 */
864 int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
865 void *vaddr, rte_iova_t iova, size_t len,
866 rte_mempool_populate_obj_cb_t *obj_cb,
867 void *obj_cb_arg);
868
869 /**
870 * Wrapper for mempool_ops get_info callback.
871 *
872 * @param[in] mp
873 * Pointer to the memory pool.
874 * @param[out] info
875 * Pointer to the rte_mempool_info structure
876 * @return
877 * - 0: Success; The mempool driver supports retrieving supplementary
878 * mempool information
879 * - -ENOTSUP - doesn't support get_info ops (valid case).
880 */
881 int rte_mempool_ops_get_info(const struct rte_mempool *mp,
882 struct rte_mempool_info *info);
883
884 /**
885 * @internal wrapper for mempool_ops free callback.
886 *
887 * @param mp
888 * Pointer to the memory pool.
889 */
890 void
891 rte_mempool_ops_free(struct rte_mempool *mp);
892
893 /**
894 * Set the ops of a mempool.
895 *
896 * This can only be done on a mempool that is not populated, i.e. just after
897 * a call to rte_mempool_create_empty().
898 *
899 * @param mp
900 * Pointer to the memory pool.
901 * @param name
902 * Name of the ops structure to use for this mempool.
903 * @param pool_config
904 * Opaque data that can be passed by the application to the ops functions.
905 * @return
906 * - 0: Success; the mempool is now using the requested ops functions.
907 * - -EINVAL - Invalid ops struct name provided.
908 * - -EEXIST - mempool already has an ops struct assigned.
909 */
910 int
911 rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
912 void *pool_config);
913
914 /**
915 * Register mempool operations.
916 *
917 * @param ops
918 * Pointer to an ops structure to register.
919 * @return
920 * - >=0: Success; return the index of the ops struct in the table.
921 * - -EINVAL - some missing callbacks while registering ops struct.
922 * - -ENOSPC - the maximum number of ops structs has been reached.
923 */
924 int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
925
926 /**
927 * Macro to statically register the ops of a mempool handler.
928 * Note that the rte_mempool_register_ops fails silently here when
929 * more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
930 */
931 #define RTE_MEMPOOL_REGISTER_OPS(ops) \
932 RTE_INIT(mp_hdlr_init_##ops) \
933 { \
934 rte_mempool_register_ops(&ops); \
935 }
936
937 /** Deprecated. Use RTE_MEMPOOL_REGISTER_OPS() instead. */
938 #define MEMPOOL_REGISTER_OPS(ops) \
939 RTE_DEPRECATED(MEMPOOL_REGISTER_OPS) RTE_MEMPOOL_REGISTER_OPS(ops)
940
941 /**
942 * An object callback function for mempool.
943 *
944 * Used by rte_mempool_create() and rte_mempool_obj_iter().
945 */
946 typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
947 void *opaque, void *obj, unsigned obj_idx);
948 typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
949
950 /**
951 * A memory callback function for mempool.
952 *
953 * Used by rte_mempool_mem_iter().
954 */
955 typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
956 void *opaque, struct rte_mempool_memhdr *memhdr,
957 unsigned mem_idx);
958
959 /**
960 * A mempool constructor callback function.
961 *
962 * Arguments are the mempool and the opaque pointer given by the user in
963 * rte_mempool_create().
964 */
965 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
966
967 /**
968 * Create a new mempool named *name* in memory.
969 *
970 * This function uses ``rte_memzone_reserve()`` to allocate memory. The
971 * pool contains n elements of elt_size. Its size is set to n.
972 *
973 * @param name
974 * The name of the mempool.
975 * @param n
976 * The number of elements in the mempool. The optimum size (in terms of
977 * memory usage) for a mempool is when n is a power of two minus one:
978 * n = (2^q - 1).
979 * @param elt_size
980 * The size of each element.
981 * @param cache_size
982 * If cache_size is non-zero, the rte_mempool library will try to
983 * limit the accesses to the common lockless pool, by maintaining a
984 * per-lcore object cache. This argument must be lower or equal to
985 * RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
986 * cache_size to have "n modulo cache_size == 0": if this is
987 * not the case, some elements will always stay in the pool and will
988 * never be used. The access to the per-lcore table is of course
989 * faster than the multi-producer/consumer pool. The cache can be
990 * disabled if the cache_size argument is set to 0; it can be useful to
991 * avoid losing objects in cache.
992 * @param private_data_size
993 * The size of the private data appended after the mempool
994 * structure. This is useful for storing some private data after the
995 * mempool structure, as is done for rte_mbuf_pool for example.
996 * @param mp_init
997 * A function pointer that is called for initialization of the pool,
998 * before object initialization. The user can initialize the private
999 * data in this function if needed. This parameter can be NULL if
1000 * not needed.
1001 * @param mp_init_arg
1002 * An opaque pointer to data that can be used in the mempool
1003 * constructor function.
1004 * @param obj_init
1005 * A function pointer that is called for each object at
1006 * initialization of the pool. The user can set some meta data in
1007 * objects if needed. This parameter can be NULL if not needed.
1008 * The obj_init() function takes the mempool pointer, the init_arg,
1009 * the object pointer and the object number as parameters.
1010 * @param obj_init_arg
1011 * An opaque pointer to data that can be used as an argument for
1012 * each call to the object constructor function.
1013 * @param socket_id
1014 * The *socket_id* argument is the socket identifier in the case of
1015 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1016 * constraint for the reserved zone.
1017 * @param flags
1018 * The *flags* arguments is an OR of following flags:
1019 * - RTE_MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
1020 * between channels in RAM: the pool allocator will add padding
1021 * between objects depending on the hardware configuration. See
1022 * Memory alignment constraints for details. If this flag is set,
1023 * the allocator will just align them to a cache line.
1024 * - RTE_MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
1025 * cache-aligned. This flag removes this constraint, and no
1026 * padding will be present between objects. This flag implies
1027 * RTE_MEMPOOL_F_NO_SPREAD.
1028 * - RTE_MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
1029 * when using rte_mempool_put() or rte_mempool_put_bulk() is
1030 * "single-producer". Otherwise, it is "multi-producers".
1031 * - RTE_MEMPOOL_F_SC_GET: If this flag is set, the default behavior
1032 * when using rte_mempool_get() or rte_mempool_get_bulk() is
1033 * "single-consumer". Otherwise, it is "multi-consumers".
1034 * - RTE_MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
1035 * necessarily be contiguous in IO memory.
1036 * @return
1037 * The pointer to the new allocated mempool, on success. NULL on error
1038 * with rte_errno set appropriately. Possible rte_errno values include:
1039 * - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1040 * - E_RTE_SECONDARY - function was called from a secondary process instance
1041 * - EINVAL - cache size provided is too large or an unknown flag was passed
1042 * - ENOSPC - the maximum number of memzones has already been allocated
1043 * - EEXIST - a memzone with the same name already exists
1044 * - ENOMEM - no appropriate memory area found in which to create memzone
1045 */
1046 struct rte_mempool *
1047 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
1048 unsigned cache_size, unsigned private_data_size,
1049 rte_mempool_ctor_t *mp_init, void *mp_init_arg,
1050 rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
1051 int socket_id, unsigned flags);
1052
1053 /**
1054 * Create an empty mempool
1055 *
1056 * The mempool is allocated and initialized, but it is not populated: no
1057 * memory is allocated for the mempool elements. The user has to call
1058 * rte_mempool_populate_*() to add memory chunks to the pool. Once
1059 * populated, the user may also want to initialize each object with
1060 * rte_mempool_obj_iter().
1061 *
1062 * @param name
1063 * The name of the mempool.
1064 * @param n
1065 * The maximum number of elements that can be added in the mempool.
1066 * The optimum size (in terms of memory usage) for a mempool is when n
1067 * is a power of two minus one: n = (2^q - 1).
1068 * @param elt_size
1069 * The size of each element.
1070 * @param cache_size
1071 * Size of the cache. See rte_mempool_create() for details.
1072 * @param private_data_size
1073 * The size of the private data appended after the mempool
1074 * structure. This is useful for storing some private data after the
1075 * mempool structure, as is done for rte_mbuf_pool for example.
1076 * @param socket_id
1077 * The *socket_id* argument is the socket identifier in the case of
1078 * NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1079 * constraint for the reserved zone.
1080 * @param flags
1081 * Flags controlling the behavior of the mempool. See
1082 * rte_mempool_create() for details.
1083 * @return
1084 * The pointer to the new allocated mempool, on success. NULL on error
1085 * with rte_errno set appropriately. See rte_mempool_create() for details.
1086 */
1087 struct rte_mempool *
1088 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
1089 unsigned cache_size, unsigned private_data_size,
1090 int socket_id, unsigned flags);
1091 /**
1092 * Free a mempool
1093 *
1094 * Unlink the mempool from global list, free the memory chunks, and all
1095 * memory referenced by the mempool. The objects must not be used by
1096 * other cores as they will be freed.
1097 *
1098 * @param mp
1099 * A pointer to the mempool structure.
1100 * If NULL then, the function does nothing.
1101 */
1102 void
1103 rte_mempool_free(struct rte_mempool *mp);
1104
1105 /**
1106 * Add physically contiguous memory for objects in the pool at init
1107 *
1108 * Add a virtually and physically contiguous memory chunk in the pool
1109 * where objects can be instantiated.
1110 *
1111 * If the given IO address is unknown (iova = RTE_BAD_IOVA),
1112 * the chunk doesn't need to be physically contiguous (only virtually),
1113 * and allocated objects may span two pages.
1114 *
1115 * @param mp
1116 * A pointer to the mempool structure.
1117 * @param vaddr
1118 * The virtual address of memory that should be used to store objects.
1119 * @param iova
1120 * The IO address
1121 * @param len
1122 * The length of memory in bytes.
1123 * @param free_cb
1124 * The callback used to free this chunk when destroying the mempool.
1125 * @param opaque
1126 * An opaque argument passed to free_cb.
1127 * @return
1128 * The number of objects added on success (strictly positive).
1129 * On error, the chunk is not added in the memory list of the
1130 * mempool the following code is returned:
1131 * (0): not enough room in chunk for one object.
1132 * (-ENOSPC): mempool is already populated.
1133 * (-ENOMEM): allocation failure.
1134 */
1135 int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
1136 rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
1137 void *opaque);
1138
1139 /**
1140 * Add virtually contiguous memory for objects in the pool at init
1141 *
1142 * Add a virtually contiguous memory chunk in the pool where objects can
1143 * be instantiated.
1144 *
1145 * @param mp
1146 * A pointer to the mempool structure.
1147 * @param addr
1148 * The virtual address of memory that should be used to store objects.
1149 * @param len
1150 * The length of memory in bytes.
1151 * @param pg_sz
1152 * The size of memory pages in this virtual area.
1153 * @param free_cb
1154 * The callback used to free this chunk when destroying the mempool.
1155 * @param opaque
1156 * An opaque argument passed to free_cb.
1157 * @return
1158 * The number of objects added on success (strictly positive).
1159 * On error, the chunk is not added in the memory list of the
1160 * mempool the following code is returned:
1161 * (0): not enough room in chunk for one object.
1162 * (-ENOSPC): mempool is already populated.
1163 * (-ENOMEM): allocation failure.
1164 */
1165 int
1166 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
1167 size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
1168 void *opaque);
1169
1170 /**
1171 * Add memory for objects in the pool at init
1172 *
1173 * This is the default function used by rte_mempool_create() to populate
1174 * the mempool. It adds memory allocated using rte_memzone_reserve().
1175 *
1176 * @param mp
1177 * A pointer to the mempool structure.
1178 * @return
1179 * The number of objects added on success.
1180 * On error, the chunk is not added in the memory list of the
1181 * mempool and a negative errno is returned.
1182 */
1183 int rte_mempool_populate_default(struct rte_mempool *mp);
1184
1185 /**
1186 * Add memory from anonymous mapping for objects in the pool at init
1187 *
1188 * This function mmap an anonymous memory zone that is locked in
1189 * memory to store the objects of the mempool.
1190 *
1191 * @param mp
1192 * A pointer to the mempool structure.
1193 * @return
1194 * The number of objects added on success.
1195 * On error, 0 is returned, rte_errno is set, and the chunk is not added in
1196 * the memory list of the mempool.
1197 */
1198 int rte_mempool_populate_anon(struct rte_mempool *mp);
1199
1200 /**
1201 * Call a function for each mempool element
1202 *
1203 * Iterate across all objects attached to a rte_mempool and call the
1204 * callback function on it.
1205 *
1206 * @param mp
1207 * A pointer to an initialized mempool.
1208 * @param obj_cb
1209 * A function pointer that is called for each object.
1210 * @param obj_cb_arg
1211 * An opaque pointer passed to the callback function.
1212 * @return
1213 * Number of objects iterated.
1214 */
1215 uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
1216 rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
1217
1218 /**
1219 * Call a function for each mempool memory chunk
1220 *
1221 * Iterate across all memory chunks attached to a rte_mempool and call
1222 * the callback function on it.
1223 *
1224 * @param mp
1225 * A pointer to an initialized mempool.
1226 * @param mem_cb
1227 * A function pointer that is called for each memory chunk.
1228 * @param mem_cb_arg
1229 * An opaque pointer passed to the callback function.
1230 * @return
1231 * Number of memory chunks iterated.
1232 */
1233 uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
1234 rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
1235
1236 /**
1237 * Dump the status of the mempool to a file.
1238 *
1239 * @param f
1240 * A pointer to a file for output
1241 * @param mp
1242 * A pointer to the mempool structure.
1243 */
1244 void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
1245
1246 /**
1247 * Create a user-owned mempool cache.
1248 *
1249 * This can be used by unregistered non-EAL threads to enable caching when they
1250 * interact with a mempool.
1251 *
1252 * @param size
1253 * The size of the mempool cache. See rte_mempool_create()'s cache_size
1254 * parameter description for more information. The same limits and
1255 * considerations apply here too.
1256 * @param socket_id
1257 * The socket identifier in the case of NUMA. The value can be
1258 * SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
1259 */
1260 struct rte_mempool_cache *
1261 rte_mempool_cache_create(uint32_t size, int socket_id);
1262
1263 /**
1264 * Free a user-owned mempool cache.
1265 *
1266 * @param cache
1267 * A pointer to the mempool cache.
1268 */
1269 void
1270 rte_mempool_cache_free(struct rte_mempool_cache *cache);
1271
1272 /**
1273 * Get a pointer to the per-lcore default mempool cache.
1274 *
1275 * @param mp
1276 * A pointer to the mempool structure.
1277 * @param lcore_id
1278 * The logical core id.
1279 * @return
1280 * A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
1281 * thread.
1282 */
1283 static __rte_always_inline struct rte_mempool_cache *
rte_mempool_default_cache(struct rte_mempool * mp,unsigned lcore_id)1284 rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
1285 {
1286 if (mp->cache_size == 0)
1287 return NULL;
1288
1289 if (lcore_id >= RTE_MAX_LCORE)
1290 return NULL;
1291
1292 rte_mempool_trace_default_cache(mp, lcore_id,
1293 &mp->local_cache[lcore_id]);
1294 return &mp->local_cache[lcore_id];
1295 }
1296
1297 /**
1298 * Flush a user-owned mempool cache to the specified mempool.
1299 *
1300 * @param cache
1301 * A pointer to the mempool cache.
1302 * @param mp
1303 * A pointer to the mempool.
1304 */
1305 static __rte_always_inline void
rte_mempool_cache_flush(struct rte_mempool_cache * cache,struct rte_mempool * mp)1306 rte_mempool_cache_flush(struct rte_mempool_cache *cache,
1307 struct rte_mempool *mp)
1308 {
1309 if (cache == NULL)
1310 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1311 if (cache == NULL || cache->len == 0)
1312 return;
1313 rte_mempool_trace_cache_flush(cache, mp);
1314 rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
1315 cache->len = 0;
1316 }
1317
1318 /**
1319 * @internal Put several objects back in the mempool; used internally.
1320 * @param mp
1321 * A pointer to the mempool structure.
1322 * @param obj_table
1323 * A pointer to a table of void * pointers (objects).
1324 * @param n
1325 * The number of objects to store back in the mempool, must be strictly
1326 * positive.
1327 * @param cache
1328 * A pointer to a mempool cache structure. May be NULL if not needed.
1329 */
1330 static __rte_always_inline void
rte_mempool_do_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1331 rte_mempool_do_generic_put(struct rte_mempool *mp, void * const *obj_table,
1332 unsigned int n, struct rte_mempool_cache *cache)
1333 {
1334 void **cache_objs;
1335
1336 /* increment stat now, adding in mempool always success */
1337 RTE_MEMPOOL_STAT_ADD(mp, put_bulk, 1);
1338 RTE_MEMPOOL_STAT_ADD(mp, put_objs, n);
1339
1340 /* No cache provided or if put would overflow mem allocated for cache */
1341 if (unlikely(cache == NULL || n > RTE_MEMPOOL_CACHE_MAX_SIZE))
1342 goto ring_enqueue;
1343
1344 cache_objs = &cache->objs[cache->len];
1345
1346 /*
1347 * The cache follows the following algorithm
1348 * 1. Add the objects to the cache
1349 * 2. Anything greater than the cache min value (if it crosses the
1350 * cache flush threshold) is flushed to the ring.
1351 */
1352
1353 /* Add elements back into the cache */
1354 rte_memcpy(&cache_objs[0], obj_table, sizeof(void *) * n);
1355
1356 cache->len += n;
1357
1358 if (cache->len >= cache->flushthresh) {
1359 rte_mempool_ops_enqueue_bulk(mp, &cache->objs[cache->size],
1360 cache->len - cache->size);
1361 cache->len = cache->size;
1362 }
1363
1364 return;
1365
1366 ring_enqueue:
1367
1368 /* push remaining objects in ring */
1369 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
1370 if (rte_mempool_ops_enqueue_bulk(mp, obj_table, n) < 0)
1371 rte_panic("cannot put objects in mempool\n");
1372 #else
1373 rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
1374 #endif
1375 }
1376
1377
1378 /**
1379 * Put several objects back in the mempool.
1380 *
1381 * @param mp
1382 * A pointer to the mempool structure.
1383 * @param obj_table
1384 * A pointer to a table of void * pointers (objects).
1385 * @param n
1386 * The number of objects to add in the mempool from the obj_table.
1387 * @param cache
1388 * A pointer to a mempool cache structure. May be NULL if not needed.
1389 */
1390 static __rte_always_inline void
rte_mempool_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1391 rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1392 unsigned int n, struct rte_mempool_cache *cache)
1393 {
1394 rte_mempool_trace_generic_put(mp, obj_table, n, cache);
1395 RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 0);
1396 rte_mempool_do_generic_put(mp, obj_table, n, cache);
1397 }
1398
1399 /**
1400 * Put several objects back in the mempool.
1401 *
1402 * This function calls the multi-producer or the single-producer
1403 * version depending on the default behavior that was specified at
1404 * mempool creation time (see flags).
1405 *
1406 * @param mp
1407 * A pointer to the mempool structure.
1408 * @param obj_table
1409 * A pointer to a table of void * pointers (objects).
1410 * @param n
1411 * The number of objects to add in the mempool from obj_table.
1412 */
1413 static __rte_always_inline void
rte_mempool_put_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned int n)1414 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
1415 unsigned int n)
1416 {
1417 struct rte_mempool_cache *cache;
1418 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1419 rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
1420 rte_mempool_generic_put(mp, obj_table, n, cache);
1421 }
1422
1423 /**
1424 * Put one object back in the mempool.
1425 *
1426 * This function calls the multi-producer or the single-producer
1427 * version depending on the default behavior that was specified at
1428 * mempool creation time (see flags).
1429 *
1430 * @param mp
1431 * A pointer to the mempool structure.
1432 * @param obj
1433 * A pointer to the object to be added.
1434 */
1435 static __rte_always_inline void
rte_mempool_put(struct rte_mempool * mp,void * obj)1436 rte_mempool_put(struct rte_mempool *mp, void *obj)
1437 {
1438 rte_mempool_put_bulk(mp, &obj, 1);
1439 }
1440
1441 /**
1442 * @internal Get several objects from the mempool; used internally.
1443 * @param mp
1444 * A pointer to the mempool structure.
1445 * @param obj_table
1446 * A pointer to a table of void * pointers (objects).
1447 * @param n
1448 * The number of objects to get, must be strictly positive.
1449 * @param cache
1450 * A pointer to a mempool cache structure. May be NULL if not needed.
1451 * @return
1452 * - >=0: Success; number of objects supplied.
1453 * - <0: Error; code of ring dequeue function.
1454 */
1455 static __rte_always_inline int
rte_mempool_do_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1456 rte_mempool_do_generic_get(struct rte_mempool *mp, void **obj_table,
1457 unsigned int n, struct rte_mempool_cache *cache)
1458 {
1459 int ret;
1460 uint32_t index, len;
1461 void **cache_objs;
1462
1463 /* No cache provided or cannot be satisfied from cache */
1464 if (unlikely(cache == NULL || n >= cache->size))
1465 goto ring_dequeue;
1466
1467 cache_objs = cache->objs;
1468
1469 /* Can this be satisfied from the cache? */
1470 if (cache->len < n) {
1471 /* No. Backfill the cache first, and then fill from it */
1472 uint32_t req = n + (cache->size - cache->len);
1473
1474 /* How many do we require i.e. number to fill the cache + the request */
1475 ret = rte_mempool_ops_dequeue_bulk(mp,
1476 &cache->objs[cache->len], req);
1477 if (unlikely(ret < 0)) {
1478 /*
1479 * In the off chance that we are buffer constrained,
1480 * where we are not able to allocate cache + n, go to
1481 * the ring directly. If that fails, we are truly out of
1482 * buffers.
1483 */
1484 goto ring_dequeue;
1485 }
1486
1487 cache->len += req;
1488 }
1489
1490 /* Now fill in the response ... */
1491 for (index = 0, len = cache->len - 1; index < n; ++index, len--, obj_table++)
1492 *obj_table = cache_objs[len];
1493
1494 cache->len -= n;
1495
1496 RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1497 RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
1498
1499 return 0;
1500
1501 ring_dequeue:
1502
1503 /* get remaining objects from ring */
1504 ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, n);
1505
1506 if (ret < 0) {
1507 RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
1508 RTE_MEMPOOL_STAT_ADD(mp, get_fail_objs, n);
1509 } else {
1510 RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1511 RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
1512 }
1513
1514 return ret;
1515 }
1516
1517 /**
1518 * Get several objects from the mempool.
1519 *
1520 * If cache is enabled, objects will be retrieved first from cache,
1521 * subsequently from the common pool. Note that it can return -ENOENT when
1522 * the local cache and common pool are empty, even if cache from other
1523 * lcores are full.
1524 *
1525 * @param mp
1526 * A pointer to the mempool structure.
1527 * @param obj_table
1528 * A pointer to a table of void * pointers (objects) that will be filled.
1529 * @param n
1530 * The number of objects to get from mempool to obj_table.
1531 * @param cache
1532 * A pointer to a mempool cache structure. May be NULL if not needed.
1533 * @return
1534 * - 0: Success; objects taken.
1535 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1536 */
1537 static __rte_always_inline int
rte_mempool_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1538 rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1539 unsigned int n, struct rte_mempool_cache *cache)
1540 {
1541 int ret;
1542 ret = rte_mempool_do_generic_get(mp, obj_table, n, cache);
1543 if (ret == 0)
1544 RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 1);
1545 rte_mempool_trace_generic_get(mp, obj_table, n, cache);
1546 return ret;
1547 }
1548
1549 /**
1550 * Get several objects from the mempool.
1551 *
1552 * This function calls the multi-consumers or the single-consumer
1553 * version, depending on the default behaviour that was specified at
1554 * mempool creation time (see flags).
1555 *
1556 * If cache is enabled, objects will be retrieved first from cache,
1557 * subsequently from the common pool. Note that it can return -ENOENT when
1558 * the local cache and common pool are empty, even if cache from other
1559 * lcores are full.
1560 *
1561 * @param mp
1562 * A pointer to the mempool structure.
1563 * @param obj_table
1564 * A pointer to a table of void * pointers (objects) that will be filled.
1565 * @param n
1566 * The number of objects to get from the mempool to obj_table.
1567 * @return
1568 * - 0: Success; objects taken
1569 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1570 */
1571 static __rte_always_inline int
rte_mempool_get_bulk(struct rte_mempool * mp,void ** obj_table,unsigned int n)1572 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
1573 {
1574 struct rte_mempool_cache *cache;
1575 cache = rte_mempool_default_cache(mp, rte_lcore_id());
1576 rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
1577 return rte_mempool_generic_get(mp, obj_table, n, cache);
1578 }
1579
1580 /**
1581 * Get one object from the mempool.
1582 *
1583 * This function calls the multi-consumers or the single-consumer
1584 * version, depending on the default behavior that was specified at
1585 * mempool creation (see flags).
1586 *
1587 * If cache is enabled, objects will be retrieved first from cache,
1588 * subsequently from the common pool. Note that it can return -ENOENT when
1589 * the local cache and common pool are empty, even if cache from other
1590 * lcores are full.
1591 *
1592 * @param mp
1593 * A pointer to the mempool structure.
1594 * @param obj_p
1595 * A pointer to a void * pointer (object) that will be filled.
1596 * @return
1597 * - 0: Success; objects taken.
1598 * - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1599 */
1600 static __rte_always_inline int
rte_mempool_get(struct rte_mempool * mp,void ** obj_p)1601 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1602 {
1603 return rte_mempool_get_bulk(mp, obj_p, 1);
1604 }
1605
1606 /**
1607 * Get a contiguous blocks of objects from the mempool.
1608 *
1609 * If cache is enabled, consider to flush it first, to reuse objects
1610 * as soon as possible.
1611 *
1612 * The application should check that the driver supports the operation
1613 * by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
1614 * is not zero.
1615 *
1616 * @param mp
1617 * A pointer to the mempool structure.
1618 * @param first_obj_table
1619 * A pointer to a pointer to the first object in each block.
1620 * @param n
1621 * The number of blocks to get from mempool.
1622 * @return
1623 * - 0: Success; blocks taken.
1624 * - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
1625 * - -EOPNOTSUPP: The mempool driver does not support block dequeue
1626 */
1627 static __rte_always_inline int
rte_mempool_get_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)1628 rte_mempool_get_contig_blocks(struct rte_mempool *mp,
1629 void **first_obj_table, unsigned int n)
1630 {
1631 int ret;
1632
1633 ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
1634 if (ret == 0) {
1635 RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1636 RTE_MEMPOOL_STAT_ADD(mp, get_success_blks, n);
1637 RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table, n,
1638 1);
1639 } else {
1640 RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
1641 RTE_MEMPOOL_STAT_ADD(mp, get_fail_blks, n);
1642 }
1643
1644 rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
1645 return ret;
1646 }
1647
1648 /**
1649 * Return the number of entries in the mempool.
1650 *
1651 * When cache is enabled, this function has to browse the length of
1652 * all lcores, so it should not be used in a data path, but only for
1653 * debug purposes. User-owned mempool caches are not accounted for.
1654 *
1655 * @param mp
1656 * A pointer to the mempool structure.
1657 * @return
1658 * The number of entries in the mempool.
1659 */
1660 unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
1661
1662 /**
1663 * Return the number of elements which have been allocated from the mempool
1664 *
1665 * When cache is enabled, this function has to browse the length of
1666 * all lcores, so it should not be used in a data path, but only for
1667 * debug purposes.
1668 *
1669 * @param mp
1670 * A pointer to the mempool structure.
1671 * @return
1672 * The number of free entries in the mempool.
1673 */
1674 unsigned int
1675 rte_mempool_in_use_count(const struct rte_mempool *mp);
1676
1677 /**
1678 * Test if the mempool is full.
1679 *
1680 * When cache is enabled, this function has to browse the length of all
1681 * lcores, so it should not be used in a data path, but only for debug
1682 * purposes. User-owned mempool caches are not accounted for.
1683 *
1684 * @param mp
1685 * A pointer to the mempool structure.
1686 * @return
1687 * - 1: The mempool is full.
1688 * - 0: The mempool is not full.
1689 */
1690 static inline int
rte_mempool_full(const struct rte_mempool * mp)1691 rte_mempool_full(const struct rte_mempool *mp)
1692 {
1693 return rte_mempool_avail_count(mp) == mp->size;
1694 }
1695
1696 /**
1697 * Test if the mempool is empty.
1698 *
1699 * When cache is enabled, this function has to browse the length of all
1700 * lcores, so it should not be used in a data path, but only for debug
1701 * purposes. User-owned mempool caches are not accounted for.
1702 *
1703 * @param mp
1704 * A pointer to the mempool structure.
1705 * @return
1706 * - 1: The mempool is empty.
1707 * - 0: The mempool is not empty.
1708 */
1709 static inline int
rte_mempool_empty(const struct rte_mempool * mp)1710 rte_mempool_empty(const struct rte_mempool *mp)
1711 {
1712 return rte_mempool_avail_count(mp) == 0;
1713 }
1714
1715 /**
1716 * Return the IO address of elt, which is an element of the pool mp.
1717 *
1718 * @param elt
1719 * A pointer (virtual address) to the element of the pool.
1720 * @return
1721 * The IO address of the elt element.
1722 * If the mempool was created with RTE_MEMPOOL_F_NO_IOVA_CONTIG, the
1723 * returned value is RTE_BAD_IOVA.
1724 */
1725 static inline rte_iova_t
rte_mempool_virt2iova(const void * elt)1726 rte_mempool_virt2iova(const void *elt)
1727 {
1728 const struct rte_mempool_objhdr *hdr;
1729 hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
1730 sizeof(*hdr));
1731 return hdr->iova;
1732 }
1733
1734 /**
1735 * Check the consistency of mempool objects.
1736 *
1737 * Verify the coherency of fields in the mempool structure. Also check
1738 * that the cookies of mempool objects (even the ones that are not
1739 * present in pool) have a correct value. If not, a panic will occur.
1740 *
1741 * @param mp
1742 * A pointer to the mempool structure.
1743 */
1744 void rte_mempool_audit(struct rte_mempool *mp);
1745
1746 /**
1747 * Return a pointer to the private data in an mempool structure.
1748 *
1749 * @param mp
1750 * A pointer to the mempool structure.
1751 * @return
1752 * A pointer to the private data.
1753 */
rte_mempool_get_priv(struct rte_mempool * mp)1754 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1755 {
1756 return (char *)mp +
1757 RTE_MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
1758 }
1759
1760 /**
1761 * Dump the status of all mempools on the console
1762 *
1763 * @param f
1764 * A pointer to a file for output
1765 */
1766 void rte_mempool_list_dump(FILE *f);
1767
1768 /**
1769 * Search a mempool from its name
1770 *
1771 * @param name
1772 * The name of the mempool.
1773 * @return
1774 * The pointer to the mempool matching the name, or NULL if not found.
1775 * NULL on error
1776 * with rte_errno set appropriately. Possible rte_errno values include:
1777 * - ENOENT - required entry not available to return.
1778 *
1779 */
1780 struct rte_mempool *rte_mempool_lookup(const char *name);
1781
1782 /**
1783 * Get the header, trailer and total size of a mempool element.
1784 *
1785 * Given a desired size of the mempool element and mempool flags,
1786 * calculates header, trailer, body and total sizes of the mempool object.
1787 *
1788 * @param elt_size
1789 * The size of each element, without header and trailer.
1790 * @param flags
1791 * The flags used for the mempool creation.
1792 * Consult rte_mempool_create() for more information about possible values.
1793 * The size of each element.
1794 * @param sz
1795 * The calculated detailed size the mempool object. May be NULL.
1796 * @return
1797 * Total size of the mempool object.
1798 */
1799 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1800 struct rte_mempool_objsz *sz);
1801
1802 /**
1803 * Walk list of all memory pools
1804 *
1805 * @param func
1806 * Iterator function
1807 * @param arg
1808 * Argument passed to iterator
1809 */
1810 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
1811 void *arg);
1812
1813 /**
1814 * @internal Get page size used for mempool object allocation.
1815 * This function is internal to mempool library and mempool drivers.
1816 */
1817 int
1818 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
1819
1820 /**
1821 * Mempool event type.
1822 * @internal
1823 */
1824 enum rte_mempool_event {
1825 /** Occurs after a mempool is fully populated. */
1826 RTE_MEMPOOL_EVENT_READY = 0,
1827 /** Occurs before the destruction of a mempool begins. */
1828 RTE_MEMPOOL_EVENT_DESTROY = 1,
1829 };
1830
1831 /**
1832 * @internal
1833 * Mempool event callback.
1834 *
1835 * rte_mempool_event_callback_register() may be called from within the callback,
1836 * but the callbacks registered this way will not be invoked for the same event.
1837 * rte_mempool_event_callback_unregister() may only be safely called
1838 * to remove the running callback.
1839 */
1840 typedef void (rte_mempool_event_callback)(
1841 enum rte_mempool_event event,
1842 struct rte_mempool *mp,
1843 void *user_data);
1844
1845 /**
1846 * @internal
1847 * Register a callback function invoked on mempool life cycle event.
1848 * The function will be invoked in the process
1849 * that performs an action which triggers the callback.
1850 *
1851 * @param func
1852 * Callback function.
1853 * @param user_data
1854 * User data.
1855 *
1856 * @return
1857 * 0 on success, negative on failure and rte_errno is set.
1858 */
1859 __rte_internal
1860 int
1861 rte_mempool_event_callback_register(rte_mempool_event_callback *func,
1862 void *user_data);
1863
1864 /**
1865 * @internal
1866 * Unregister a callback added with rte_mempool_event_callback_register().
1867 * @p func and @p user_data must exactly match registration parameters.
1868 *
1869 * @param func
1870 * Callback function.
1871 * @param user_data
1872 * User data.
1873 *
1874 * @return
1875 * 0 on success, negative on failure and rte_errno is set.
1876 */
1877 __rte_internal
1878 int
1879 rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
1880 void *user_data);
1881
1882 #ifdef __cplusplus
1883 }
1884 #endif
1885
1886 #endif /* _RTE_MEMPOOL_H_ */
1887