xref: /dpdk/lib/hash/rte_thash.c (revision 30a1de10)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2021 Intel Corporation
3  */
4 
5 #include <sys/queue.h>
6 
7 #include <rte_thash.h>
8 #include <rte_tailq.h>
9 #include <rte_random.h>
10 #include <rte_memcpy.h>
11 #include <rte_errno.h>
12 #include <rte_eal_memconfig.h>
13 #include <rte_log.h>
14 #include <rte_malloc.h>
15 
16 #define THASH_NAME_LEN		64
17 #define TOEPLITZ_HASH_LEN	32
18 
19 #define RETA_SZ_IN_RANGE(reta_sz)	((reta_sz >= RTE_THASH_RETA_SZ_MIN) &&\
20 					(reta_sz <= RTE_THASH_RETA_SZ_MAX))
21 
22 TAILQ_HEAD(rte_thash_list, rte_tailq_entry);
23 static struct rte_tailq_elem rte_thash_tailq = {
24 	.name = "RTE_THASH",
25 };
26 EAL_REGISTER_TAILQ(rte_thash_tailq)
27 
28 /**
29  * Table of some irreducible polinomials over GF(2).
30  * For lfsr they are represented in BE bit order, and
31  * x^0 is masked out.
32  * For example, poly x^5 + x^2 + 1 will be represented
33  * as (101001b & 11111b) = 01001b = 0x9
34  */
35 static const uint32_t irreducible_poly_table[][4] = {
36 	{0, 0, 0, 0},	/** < degree 0 */
37 	{1, 1, 1, 1},	/** < degree 1 */
38 	{0x3, 0x3, 0x3, 0x3},	/** < degree 2 and so on... */
39 	{0x5, 0x3, 0x5, 0x3},
40 	{0x9, 0x3, 0x9, 0x3},
41 	{0x9, 0x1b, 0xf, 0x5},
42 	{0x21, 0x33, 0x1b, 0x2d},
43 	{0x41, 0x11, 0x71, 0x9},
44 	{0x71, 0xa9, 0xf5, 0x8d},
45 	{0x21, 0xd1, 0x69, 0x1d9},
46 	{0x81, 0x2c1, 0x3b1, 0x185},
47 	{0x201, 0x541, 0x341, 0x461},
48 	{0x941, 0x609, 0xe19, 0x45d},
49 	{0x1601, 0x1f51, 0x1171, 0x359},
50 	{0x2141, 0x2111, 0x2db1, 0x2109},
51 	{0x4001, 0x801, 0x101, 0x7301},
52 	{0x7781, 0xa011, 0x4211, 0x86d9},
53 };
54 
55 struct thash_lfsr {
56 	uint32_t	ref_cnt;
57 	uint32_t	poly;
58 	/**< polynomial associated with the lfsr */
59 	uint32_t	rev_poly;
60 	/**< polynomial to generate the sequence in reverse direction */
61 	uint32_t	state;
62 	/**< current state of the lfsr */
63 	uint32_t	rev_state;
64 	/**< current state of the lfsr for reverse direction */
65 	uint32_t	deg;	/**< polynomial degree*/
66 	uint32_t	bits_cnt;  /**< number of bits generated by lfsr*/
67 };
68 
69 struct rte_thash_subtuple_helper {
70 	char	name[THASH_NAME_LEN];	/** < Name of subtuple configuration */
71 	LIST_ENTRY(rte_thash_subtuple_helper)	next;
72 	struct thash_lfsr	*lfsr;
73 	uint32_t	offset;		/** < Offset of the m-sequence */
74 	uint32_t	len;		/** < Length of the m-sequence */
75 	uint32_t	tuple_offset;	/** < Offset in bits of the subtuple */
76 	uint32_t	tuple_len;	/** < Length in bits of the subtuple */
77 	uint32_t	lsb_msk;	/** < (1 << reta_sz_log) - 1 */
78 	__extension__ uint32_t	compl_table[0] __rte_cache_aligned;
79 	/** < Complementary table */
80 };
81 
82 struct rte_thash_ctx {
83 	char		name[THASH_NAME_LEN];
84 	LIST_HEAD(, rte_thash_subtuple_helper) head;
85 	uint32_t	key_len;	/** < Length of the NIC RSS hash key */
86 	uint32_t	reta_sz_log;	/** < size of the RSS ReTa in bits */
87 	uint32_t	subtuples_nb;	/** < number of subtuples */
88 	uint32_t	flags;
89 	uint64_t	*matrices;
90 	/**< matrices used with rte_thash_gfni implementation */
91 	uint8_t		hash_key[0];
92 };
93 
94 int
rte_thash_gfni_supported(void)95 rte_thash_gfni_supported(void)
96 {
97 #ifdef RTE_THASH_GFNI_DEFINED
98 	if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_GFNI) &&
99 			(rte_vect_get_max_simd_bitwidth() >=
100 			RTE_VECT_SIMD_512))
101 		return 1;
102 #endif
103 
104 	return 0;
105 };
106 
107 void
rte_thash_complete_matrix(uint64_t * matrixes,const uint8_t * rss_key,int size)108 rte_thash_complete_matrix(uint64_t *matrixes, const uint8_t *rss_key, int size)
109 {
110 	int i, j;
111 	uint8_t *m = (uint8_t *)matrixes;
112 	uint8_t left_part, right_part;
113 
114 	for (i = 0; i < size; i++) {
115 		for (j = 0; j < 8; j++) {
116 			left_part = rss_key[i] << j;
117 			right_part = (uint16_t)(rss_key[(i + 1) % size]) >>
118 				(8 - j);
119 			m[i * 8 + j] = left_part|right_part;
120 		}
121 	}
122 }
123 
124 static inline uint32_t
get_bit_lfsr(struct thash_lfsr * lfsr)125 get_bit_lfsr(struct thash_lfsr *lfsr)
126 {
127 	uint32_t bit, ret;
128 
129 	/*
130 	 * masking the TAP bits defined by the polynomial and
131 	 * calculating parity
132 	 */
133 	bit = __builtin_popcount(lfsr->state & lfsr->poly) & 0x1;
134 	ret = lfsr->state & 0x1;
135 	lfsr->state = ((lfsr->state >> 1) | (bit << (lfsr->deg - 1))) &
136 		((1 << lfsr->deg) - 1);
137 
138 	lfsr->bits_cnt++;
139 	return ret;
140 }
141 
142 static inline uint32_t
get_rev_bit_lfsr(struct thash_lfsr * lfsr)143 get_rev_bit_lfsr(struct thash_lfsr *lfsr)
144 {
145 	uint32_t bit, ret;
146 
147 	bit = __builtin_popcount(lfsr->rev_state & lfsr->rev_poly) & 0x1;
148 	ret = lfsr->rev_state & (1 << (lfsr->deg - 1));
149 	lfsr->rev_state = ((lfsr->rev_state << 1) | bit) &
150 		((1 << lfsr->deg) - 1);
151 
152 	lfsr->bits_cnt++;
153 	return ret;
154 }
155 
156 static inline uint32_t
thash_get_rand_poly(uint32_t poly_degree)157 thash_get_rand_poly(uint32_t poly_degree)
158 {
159 	return irreducible_poly_table[poly_degree][rte_rand() %
160 		RTE_DIM(irreducible_poly_table[poly_degree])];
161 }
162 
163 static struct thash_lfsr *
alloc_lfsr(struct rte_thash_ctx * ctx)164 alloc_lfsr(struct rte_thash_ctx *ctx)
165 {
166 	struct thash_lfsr *lfsr;
167 	uint32_t i;
168 
169 	if (ctx == NULL)
170 		return NULL;
171 
172 	lfsr = rte_zmalloc(NULL, sizeof(struct thash_lfsr), 0);
173 	if (lfsr == NULL)
174 		return NULL;
175 
176 	lfsr->deg = ctx->reta_sz_log;
177 	lfsr->poly = thash_get_rand_poly(lfsr->deg);
178 	do {
179 		lfsr->state = rte_rand() & ((1 << lfsr->deg) - 1);
180 	} while (lfsr->state == 0);
181 	/* init reverse order polynomial */
182 	lfsr->rev_poly = (lfsr->poly >> 1) | (1 << (lfsr->deg - 1));
183 	/* init proper rev_state*/
184 	lfsr->rev_state = lfsr->state;
185 	for (i = 0; i <= lfsr->deg; i++)
186 		get_rev_bit_lfsr(lfsr);
187 
188 	/* clear bits_cnt after rev_state was inited */
189 	lfsr->bits_cnt = 0;
190 	lfsr->ref_cnt = 1;
191 
192 	return lfsr;
193 }
194 
195 static void
attach_lfsr(struct rte_thash_subtuple_helper * h,struct thash_lfsr * lfsr)196 attach_lfsr(struct rte_thash_subtuple_helper *h, struct thash_lfsr *lfsr)
197 {
198 	lfsr->ref_cnt++;
199 	h->lfsr = lfsr;
200 }
201 
202 static void
free_lfsr(struct thash_lfsr * lfsr)203 free_lfsr(struct thash_lfsr *lfsr)
204 {
205 	lfsr->ref_cnt--;
206 	if (lfsr->ref_cnt == 0)
207 		rte_free(lfsr);
208 }
209 
210 struct rte_thash_ctx *
rte_thash_init_ctx(const char * name,uint32_t key_len,uint32_t reta_sz,uint8_t * key,uint32_t flags)211 rte_thash_init_ctx(const char *name, uint32_t key_len, uint32_t reta_sz,
212 	uint8_t *key, uint32_t flags)
213 {
214 	struct rte_thash_ctx *ctx;
215 	struct rte_tailq_entry *te;
216 	struct rte_thash_list *thash_list;
217 	uint32_t i;
218 
219 	if ((name == NULL) || (key_len == 0) || !RETA_SZ_IN_RANGE(reta_sz)) {
220 		rte_errno = EINVAL;
221 		return NULL;
222 	}
223 
224 	thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list);
225 
226 	rte_mcfg_tailq_write_lock();
227 
228 	/* guarantee there's no existing */
229 	TAILQ_FOREACH(te, thash_list, next) {
230 		ctx = (struct rte_thash_ctx *)te->data;
231 		if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
232 			break;
233 	}
234 	ctx = NULL;
235 	if (te != NULL) {
236 		rte_errno = EEXIST;
237 		goto exit;
238 	}
239 
240 	/* allocate tailq entry */
241 	te = rte_zmalloc("THASH_TAILQ_ENTRY", sizeof(*te), 0);
242 	if (te == NULL) {
243 		RTE_LOG(ERR, HASH,
244 			"Can not allocate tailq entry for thash context %s\n",
245 			name);
246 		rte_errno = ENOMEM;
247 		goto exit;
248 	}
249 
250 	ctx = rte_zmalloc(NULL, sizeof(struct rte_thash_ctx) + key_len, 0);
251 	if (ctx == NULL) {
252 		RTE_LOG(ERR, HASH, "thash ctx %s memory allocation failed\n",
253 			name);
254 		rte_errno = ENOMEM;
255 		goto free_te;
256 	}
257 
258 	rte_strlcpy(ctx->name, name, sizeof(ctx->name));
259 	ctx->key_len = key_len;
260 	ctx->reta_sz_log = reta_sz;
261 	LIST_INIT(&ctx->head);
262 	ctx->flags = flags;
263 
264 	if (key)
265 		rte_memcpy(ctx->hash_key, key, key_len);
266 	else {
267 		for (i = 0; i < key_len; i++)
268 			ctx->hash_key[i] = rte_rand();
269 	}
270 
271 	if (rte_thash_gfni_supported()) {
272 		ctx->matrices = rte_zmalloc(NULL, key_len * sizeof(uint64_t),
273 			RTE_CACHE_LINE_SIZE);
274 		if (ctx->matrices == NULL) {
275 			RTE_LOG(ERR, HASH, "Cannot allocate matrices\n");
276 			rte_errno = ENOMEM;
277 			goto free_ctx;
278 		}
279 
280 		rte_thash_complete_matrix(ctx->matrices, ctx->hash_key,
281 			key_len);
282 	}
283 
284 	te->data = (void *)ctx;
285 	TAILQ_INSERT_TAIL(thash_list, te, next);
286 
287 	rte_mcfg_tailq_write_unlock();
288 
289 	return ctx;
290 
291 free_ctx:
292 	rte_free(ctx);
293 free_te:
294 	rte_free(te);
295 exit:
296 	rte_mcfg_tailq_write_unlock();
297 	return NULL;
298 }
299 
300 struct rte_thash_ctx *
rte_thash_find_existing(const char * name)301 rte_thash_find_existing(const char *name)
302 {
303 	struct rte_thash_ctx *ctx;
304 	struct rte_tailq_entry *te;
305 	struct rte_thash_list *thash_list;
306 
307 	thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list);
308 
309 	rte_mcfg_tailq_read_lock();
310 	TAILQ_FOREACH(te, thash_list, next) {
311 		ctx = (struct rte_thash_ctx *)te->data;
312 		if (strncmp(name, ctx->name, sizeof(ctx->name)) == 0)
313 			break;
314 	}
315 
316 	rte_mcfg_tailq_read_unlock();
317 
318 	if (te == NULL) {
319 		rte_errno = ENOENT;
320 		return NULL;
321 	}
322 
323 	return ctx;
324 }
325 
326 void
rte_thash_free_ctx(struct rte_thash_ctx * ctx)327 rte_thash_free_ctx(struct rte_thash_ctx *ctx)
328 {
329 	struct rte_tailq_entry *te;
330 	struct rte_thash_list *thash_list;
331 	struct rte_thash_subtuple_helper *ent, *tmp;
332 
333 	if (ctx == NULL)
334 		return;
335 
336 	thash_list = RTE_TAILQ_CAST(rte_thash_tailq.head, rte_thash_list);
337 	rte_mcfg_tailq_write_lock();
338 	TAILQ_FOREACH(te, thash_list, next) {
339 		if (te->data == (void *)ctx)
340 			break;
341 	}
342 
343 	if (te != NULL)
344 		TAILQ_REMOVE(thash_list, te, next);
345 
346 	rte_mcfg_tailq_write_unlock();
347 	ent = LIST_FIRST(&(ctx->head));
348 	while (ent) {
349 		free_lfsr(ent->lfsr);
350 		tmp = ent;
351 		ent = LIST_NEXT(ent, next);
352 		LIST_REMOVE(tmp, next);
353 		rte_free(tmp);
354 	}
355 
356 	rte_free(ctx);
357 	rte_free(te);
358 }
359 
360 static inline void
set_bit(uint8_t * ptr,uint32_t bit,uint32_t pos)361 set_bit(uint8_t *ptr, uint32_t bit, uint32_t pos)
362 {
363 	uint32_t byte_idx = pos / CHAR_BIT;
364 	/* index of the bit int byte, indexing starts from MSB */
365 	uint32_t bit_idx = (CHAR_BIT - 1) - (pos & (CHAR_BIT - 1));
366 	uint8_t tmp;
367 
368 	tmp = ptr[byte_idx];
369 	tmp &= ~(1 << bit_idx);
370 	tmp |= bit << bit_idx;
371 	ptr[byte_idx] = tmp;
372 }
373 
374 /**
375  * writes m-sequence to the hash_key for range [start, end]
376  * (i.e. including start and end positions)
377  */
378 static int
generate_subkey(struct rte_thash_ctx * ctx,struct thash_lfsr * lfsr,uint32_t start,uint32_t end)379 generate_subkey(struct rte_thash_ctx *ctx, struct thash_lfsr *lfsr,
380 	uint32_t start, uint32_t end)
381 {
382 	uint32_t i;
383 	uint32_t req_bits = (start < end) ? (end - start) : (start - end);
384 	req_bits++; /* due to including end */
385 
386 	/* check if lfsr overflow period of the m-sequence */
387 	if (((lfsr->bits_cnt + req_bits) > (1ULL << lfsr->deg) - 1) &&
388 			((ctx->flags & RTE_THASH_IGNORE_PERIOD_OVERFLOW) !=
389 			RTE_THASH_IGNORE_PERIOD_OVERFLOW)) {
390 		RTE_LOG(ERR, HASH,
391 			"Can't generate m-sequence due to period overflow\n");
392 		return -ENOSPC;
393 	}
394 
395 	if (start < end) {
396 		/* original direction (from left to right)*/
397 		for (i = start; i <= end; i++)
398 			set_bit(ctx->hash_key, get_bit_lfsr(lfsr), i);
399 
400 	} else {
401 		/* reverse direction (from right to left) */
402 		for (i = end; i >= start; i--)
403 			set_bit(ctx->hash_key, get_rev_bit_lfsr(lfsr), i);
404 	}
405 
406 	if (ctx->matrices != NULL)
407 		rte_thash_complete_matrix(ctx->matrices, ctx->hash_key,
408 			ctx->key_len);
409 
410 	return 0;
411 }
412 
413 static inline uint32_t
get_subvalue(struct rte_thash_ctx * ctx,uint32_t offset)414 get_subvalue(struct rte_thash_ctx *ctx, uint32_t offset)
415 {
416 	uint32_t *tmp, val;
417 
418 	tmp = (uint32_t *)(&ctx->hash_key[offset >> 3]);
419 	val = rte_be_to_cpu_32(*tmp);
420 	val >>= (TOEPLITZ_HASH_LEN - ((offset & (CHAR_BIT - 1)) +
421 		ctx->reta_sz_log));
422 
423 	return val & ((1 << ctx->reta_sz_log) - 1);
424 }
425 
426 static inline void
generate_complement_table(struct rte_thash_ctx * ctx,struct rte_thash_subtuple_helper * h)427 generate_complement_table(struct rte_thash_ctx *ctx,
428 	struct rte_thash_subtuple_helper *h)
429 {
430 	int i, j, k;
431 	uint32_t val;
432 	uint32_t start;
433 
434 	start = h->offset + h->len - (2 * ctx->reta_sz_log - 1);
435 
436 	for (i = 1; i < (1 << ctx->reta_sz_log); i++) {
437 		val = 0;
438 		for (j = i; j; j &= (j - 1)) {
439 			k = rte_bsf32(j);
440 			val ^= get_subvalue(ctx, start - k +
441 				ctx->reta_sz_log - 1);
442 		}
443 		h->compl_table[val] = i;
444 	}
445 }
446 
447 static inline int
insert_before(struct rte_thash_ctx * ctx,struct rte_thash_subtuple_helper * ent,struct rte_thash_subtuple_helper * cur_ent,struct rte_thash_subtuple_helper * next_ent,uint32_t start,uint32_t end,uint32_t range_end)448 insert_before(struct rte_thash_ctx *ctx,
449 	struct rte_thash_subtuple_helper *ent,
450 	struct rte_thash_subtuple_helper *cur_ent,
451 	struct rte_thash_subtuple_helper *next_ent,
452 	uint32_t start, uint32_t end, uint32_t range_end)
453 {
454 	int ret;
455 
456 	if (end < cur_ent->offset) {
457 		ent->lfsr = alloc_lfsr(ctx);
458 		if (ent->lfsr == NULL) {
459 			rte_free(ent);
460 			return -ENOMEM;
461 		}
462 		/* generate nonoverlapping range [start, end) */
463 		ret = generate_subkey(ctx, ent->lfsr, start, end - 1);
464 		if (ret != 0) {
465 			free_lfsr(ent->lfsr);
466 			rte_free(ent);
467 			return ret;
468 		}
469 	} else if ((next_ent != NULL) && (end > next_ent->offset)) {
470 		RTE_LOG(ERR, HASH,
471 			"Can't add helper %s due to conflict with existing"
472 			" helper %s\n", ent->name, next_ent->name);
473 		rte_free(ent);
474 		return -ENOSPC;
475 	}
476 	attach_lfsr(ent, cur_ent->lfsr);
477 
478 	/**
479 	 * generate partially overlapping range
480 	 * [start, cur_ent->start) in reverse order
481 	 */
482 	ret = generate_subkey(ctx, ent->lfsr, cur_ent->offset - 1, start);
483 	if (ret != 0) {
484 		free_lfsr(ent->lfsr);
485 		rte_free(ent);
486 		return ret;
487 	}
488 
489 	if (end > range_end) {
490 		/**
491 		 * generate partially overlapping range
492 		 * (range_end, end)
493 		 */
494 		ret = generate_subkey(ctx, ent->lfsr, range_end, end - 1);
495 		if (ret != 0) {
496 			free_lfsr(ent->lfsr);
497 			rte_free(ent);
498 			return ret;
499 		}
500 	}
501 
502 	LIST_INSERT_BEFORE(cur_ent, ent, next);
503 	generate_complement_table(ctx, ent);
504 	ctx->subtuples_nb++;
505 	return 0;
506 }
507 
508 static inline int
insert_after(struct rte_thash_ctx * ctx,struct rte_thash_subtuple_helper * ent,struct rte_thash_subtuple_helper * cur_ent,struct rte_thash_subtuple_helper * next_ent,struct rte_thash_subtuple_helper * prev_ent,uint32_t end,uint32_t range_end)509 insert_after(struct rte_thash_ctx *ctx,
510 	struct rte_thash_subtuple_helper *ent,
511 	struct rte_thash_subtuple_helper *cur_ent,
512 	struct rte_thash_subtuple_helper *next_ent,
513 	struct rte_thash_subtuple_helper *prev_ent,
514 	uint32_t end, uint32_t range_end)
515 {
516 	int ret;
517 
518 	if ((next_ent != NULL) && (end > next_ent->offset)) {
519 		RTE_LOG(ERR, HASH,
520 			"Can't add helper %s due to conflict with existing"
521 			" helper %s\n", ent->name, next_ent->name);
522 		rte_free(ent);
523 		return -EEXIST;
524 	}
525 
526 	attach_lfsr(ent, cur_ent->lfsr);
527 	if (end > range_end) {
528 		/**
529 		 * generate partially overlapping range
530 		 * (range_end, end)
531 		 */
532 		ret = generate_subkey(ctx, ent->lfsr, range_end, end - 1);
533 		if (ret != 0) {
534 			free_lfsr(ent->lfsr);
535 			rte_free(ent);
536 			return ret;
537 		}
538 	}
539 
540 	LIST_INSERT_AFTER(prev_ent, ent, next);
541 	generate_complement_table(ctx, ent);
542 	ctx->subtuples_nb++;
543 
544 	return 0;
545 }
546 
547 int
rte_thash_add_helper(struct rte_thash_ctx * ctx,const char * name,uint32_t len,uint32_t offset)548 rte_thash_add_helper(struct rte_thash_ctx *ctx, const char *name, uint32_t len,
549 	uint32_t offset)
550 {
551 	struct rte_thash_subtuple_helper *ent, *cur_ent, *prev_ent, *next_ent;
552 	uint32_t start, end;
553 	int ret;
554 
555 	if ((ctx == NULL) || (name == NULL) || (len < ctx->reta_sz_log) ||
556 			((offset + len + TOEPLITZ_HASH_LEN - 1) >
557 			ctx->key_len * CHAR_BIT))
558 		return -EINVAL;
559 
560 	/* Check for existing name*/
561 	LIST_FOREACH(cur_ent, &ctx->head, next) {
562 		if (strncmp(name, cur_ent->name, sizeof(cur_ent->name)) == 0)
563 			return -EEXIST;
564 	}
565 
566 	end = offset + len + TOEPLITZ_HASH_LEN - 1;
567 	start = ((ctx->flags & RTE_THASH_MINIMAL_SEQ) ==
568 		RTE_THASH_MINIMAL_SEQ) ? (end - (2 * ctx->reta_sz_log - 1)) :
569 		offset;
570 
571 	ent = rte_zmalloc(NULL, sizeof(struct rte_thash_subtuple_helper) +
572 		sizeof(uint32_t) * (1 << ctx->reta_sz_log),
573 		RTE_CACHE_LINE_SIZE);
574 	if (ent == NULL)
575 		return -ENOMEM;
576 
577 	rte_strlcpy(ent->name, name, sizeof(ent->name));
578 	ent->offset = start;
579 	ent->len = end - start;
580 	ent->tuple_offset = offset;
581 	ent->tuple_len = len;
582 	ent->lsb_msk = (1 << ctx->reta_sz_log) - 1;
583 
584 	cur_ent = LIST_FIRST(&ctx->head);
585 	while (cur_ent) {
586 		uint32_t range_end = cur_ent->offset + cur_ent->len;
587 		next_ent = LIST_NEXT(cur_ent, next);
588 		prev_ent = cur_ent;
589 		/* Iterate through overlapping ranges */
590 		while ((next_ent != NULL) && (next_ent->offset < range_end)) {
591 			range_end = RTE_MAX(next_ent->offset + next_ent->len,
592 				range_end);
593 			if (start > next_ent->offset)
594 				prev_ent = next_ent;
595 
596 			next_ent = LIST_NEXT(next_ent, next);
597 		}
598 
599 		if (start < cur_ent->offset)
600 			return insert_before(ctx, ent, cur_ent, next_ent,
601 				start, end, range_end);
602 		else if (start < range_end)
603 			return insert_after(ctx, ent, cur_ent, next_ent,
604 				prev_ent, end, range_end);
605 
606 		cur_ent = next_ent;
607 		continue;
608 	}
609 
610 	ent->lfsr = alloc_lfsr(ctx);
611 	if (ent->lfsr == NULL) {
612 		rte_free(ent);
613 		return -ENOMEM;
614 	}
615 
616 	/* generate nonoverlapping range [start, end) */
617 	ret = generate_subkey(ctx, ent->lfsr, start, end - 1);
618 	if (ret != 0) {
619 		free_lfsr(ent->lfsr);
620 		rte_free(ent);
621 		return ret;
622 	}
623 	if (LIST_EMPTY(&ctx->head)) {
624 		LIST_INSERT_HEAD(&ctx->head, ent, next);
625 	} else {
626 		LIST_FOREACH(next_ent, &ctx->head, next)
627 			prev_ent = next_ent;
628 
629 		LIST_INSERT_AFTER(prev_ent, ent, next);
630 	}
631 	generate_complement_table(ctx, ent);
632 	ctx->subtuples_nb++;
633 
634 	return 0;
635 }
636 
637 struct rte_thash_subtuple_helper *
rte_thash_get_helper(struct rte_thash_ctx * ctx,const char * name)638 rte_thash_get_helper(struct rte_thash_ctx *ctx, const char *name)
639 {
640 	struct rte_thash_subtuple_helper *ent;
641 
642 	if ((ctx == NULL) || (name == NULL))
643 		return NULL;
644 
645 	LIST_FOREACH(ent, &ctx->head, next) {
646 		if (strncmp(name, ent->name, sizeof(ent->name)) == 0)
647 			return ent;
648 	}
649 
650 	return NULL;
651 }
652 
653 uint32_t
rte_thash_get_complement(struct rte_thash_subtuple_helper * h,uint32_t hash,uint32_t desired_hash)654 rte_thash_get_complement(struct rte_thash_subtuple_helper *h,
655 	uint32_t hash, uint32_t desired_hash)
656 {
657 	return h->compl_table[(hash ^ desired_hash) & h->lsb_msk];
658 }
659 
660 const uint8_t *
rte_thash_get_key(struct rte_thash_ctx * ctx)661 rte_thash_get_key(struct rte_thash_ctx *ctx)
662 {
663 	return ctx->hash_key;
664 }
665 
666 const uint64_t *
rte_thash_get_gfni_matrices(struct rte_thash_ctx * ctx)667 rte_thash_get_gfni_matrices(struct rte_thash_ctx *ctx)
668 {
669 	return ctx->matrices;
670 }
671 
672 static inline uint8_t
read_unaligned_byte(uint8_t * ptr,unsigned int len,unsigned int offset)673 read_unaligned_byte(uint8_t *ptr, unsigned int len, unsigned int offset)
674 {
675 	uint8_t ret = 0;
676 
677 	ret = ptr[offset / CHAR_BIT];
678 	if (offset % CHAR_BIT) {
679 		ret <<= (offset % CHAR_BIT);
680 		ret |= ptr[(offset / CHAR_BIT) + 1] >>
681 			(CHAR_BIT - (offset % CHAR_BIT));
682 	}
683 
684 	return ret >> (CHAR_BIT - len);
685 }
686 
687 static inline uint32_t
read_unaligned_bits(uint8_t * ptr,int len,int offset)688 read_unaligned_bits(uint8_t *ptr, int len, int offset)
689 {
690 	uint32_t ret = 0;
691 
692 	len = RTE_MAX(len, 0);
693 	len = RTE_MIN(len, (int)(sizeof(uint32_t) * CHAR_BIT));
694 
695 	while (len > 0) {
696 		ret <<= CHAR_BIT;
697 
698 		ret |= read_unaligned_byte(ptr, RTE_MIN(len, CHAR_BIT),
699 			offset);
700 		offset += CHAR_BIT;
701 		len -= CHAR_BIT;
702 	}
703 
704 	return ret;
705 }
706 
707 /* returns mask for len bits with given offset inside byte */
708 static inline uint8_t
get_bits_mask(unsigned int len,unsigned int offset)709 get_bits_mask(unsigned int len, unsigned int offset)
710 {
711 	unsigned int last_bit;
712 
713 	offset %= CHAR_BIT;
714 	/* last bit within byte */
715 	last_bit = RTE_MIN((unsigned int)CHAR_BIT, offset + len);
716 
717 	return ((1 << (CHAR_BIT - offset)) - 1) ^
718 		((1 << (CHAR_BIT - last_bit)) - 1);
719 }
720 
721 static inline void
write_unaligned_byte(uint8_t * ptr,unsigned int len,unsigned int offset,uint8_t val)722 write_unaligned_byte(uint8_t *ptr, unsigned int len,
723 	unsigned int offset, uint8_t val)
724 {
725 	uint8_t tmp;
726 
727 	tmp = ptr[offset / CHAR_BIT];
728 	tmp &= ~get_bits_mask(len, offset);
729 	tmp |= ((val << (CHAR_BIT - len)) >> (offset % CHAR_BIT));
730 	ptr[offset / CHAR_BIT] = tmp;
731 	if (((offset + len) / CHAR_BIT) != (offset / CHAR_BIT)) {
732 		int rest_len = (offset + len) % CHAR_BIT;
733 		tmp = ptr[(offset + len) / CHAR_BIT];
734 		tmp &= ~get_bits_mask(rest_len, 0);
735 		tmp |= val << (CHAR_BIT - rest_len);
736 		ptr[(offset + len) / CHAR_BIT] = tmp;
737 	}
738 }
739 
740 static inline void
write_unaligned_bits(uint8_t * ptr,int len,int offset,uint32_t val)741 write_unaligned_bits(uint8_t *ptr, int len, int offset, uint32_t val)
742 {
743 	uint8_t tmp;
744 	unsigned int part_len;
745 
746 	len = RTE_MAX(len, 0);
747 	len = RTE_MIN(len, (int)(sizeof(uint32_t) * CHAR_BIT));
748 
749 	while (len > 0) {
750 		part_len = RTE_MIN(CHAR_BIT, len);
751 		tmp = (uint8_t)val & ((1 << part_len) - 1);
752 		write_unaligned_byte(ptr, part_len,
753 			offset + len - part_len, tmp);
754 		len -= CHAR_BIT;
755 		val >>= CHAR_BIT;
756 	}
757 }
758 
759 int
rte_thash_adjust_tuple(struct rte_thash_ctx * ctx,struct rte_thash_subtuple_helper * h,uint8_t * tuple,unsigned int tuple_len,uint32_t desired_value,unsigned int attempts,rte_thash_check_tuple_t fn,void * userdata)760 rte_thash_adjust_tuple(struct rte_thash_ctx *ctx,
761 	struct rte_thash_subtuple_helper *h,
762 	uint8_t *tuple, unsigned int tuple_len,
763 	uint32_t desired_value,	unsigned int attempts,
764 	rte_thash_check_tuple_t fn, void *userdata)
765 {
766 	uint32_t tmp_tuple[tuple_len / sizeof(uint32_t)];
767 	unsigned int i, j, ret = 0;
768 	uint32_t hash, adj_bits;
769 	const uint8_t *hash_key;
770 	uint32_t tmp;
771 	int offset;
772 	int tmp_len;
773 
774 	if ((ctx == NULL) || (h == NULL) || (tuple == NULL) ||
775 			(tuple_len % sizeof(uint32_t) != 0) || (attempts <= 0))
776 		return -EINVAL;
777 
778 	hash_key = rte_thash_get_key(ctx);
779 
780 	attempts = RTE_MIN(attempts, 1U << (h->tuple_len - ctx->reta_sz_log));
781 
782 	for (i = 0; i < attempts; i++) {
783 		if (ctx->matrices != NULL)
784 			hash = rte_thash_gfni(ctx->matrices, tuple, tuple_len);
785 		else {
786 			for (j = 0; j < (tuple_len / 4); j++)
787 				tmp_tuple[j] =
788 					rte_be_to_cpu_32(
789 						*(uint32_t *)&tuple[j * 4]);
790 
791 			hash = rte_softrss(tmp_tuple, tuple_len / 4, hash_key);
792 		}
793 
794 		adj_bits = rte_thash_get_complement(h, hash, desired_value);
795 
796 		/*
797 		 * Hint: LSB of adj_bits corresponds to
798 		 * offset + len bit of the subtuple
799 		 */
800 		offset =  h->tuple_offset + h->tuple_len - ctx->reta_sz_log;
801 		tmp = read_unaligned_bits(tuple, ctx->reta_sz_log, offset);
802 		tmp ^= adj_bits;
803 		write_unaligned_bits(tuple, ctx->reta_sz_log, offset, tmp);
804 
805 		if (fn != NULL) {
806 			ret = (fn(userdata, tuple)) ? 0 : -EEXIST;
807 			if (ret == 0)
808 				return 0;
809 			else if (i < (attempts - 1)) {
810 				/* increment subtuple part by 1 */
811 				tmp_len = RTE_MIN(sizeof(uint32_t) * CHAR_BIT,
812 					h->tuple_len - ctx->reta_sz_log);
813 				offset -= tmp_len;
814 				tmp = read_unaligned_bits(tuple, tmp_len,
815 					offset);
816 				tmp++;
817 				tmp &= (1 << tmp_len) - 1;
818 				write_unaligned_bits(tuple, tmp_len, offset,
819 					tmp);
820 			}
821 		} else
822 			return 0;
823 	}
824 
825 	return ret;
826 }
827