xref: /dpdk/drivers/net/tap/rte_eth_tap.c (revision 29fd052d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22 
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41 
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47 
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52 
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57 
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61 
62 #define TAP_GSO_MBUFS_PER_CORE	128
63 #define TAP_GSO_MBUF_SEG_SIZE	128
64 #define TAP_GSO_MBUF_CACHE_SIZE	4
65 #define TAP_GSO_MBUFS_NUM \
66 	(TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67 
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70 #define TAP_MP_REQ_START_RXTX "tap_mp_req_start_rxtx"
71 
72 #define TAP_IOV_DEFAULT_MAX 1024
73 
74 #define TAP_RX_OFFLOAD (RTE_ETH_RX_OFFLOAD_SCATTER |	\
75 			RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |	\
76 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM |	\
77 			RTE_ETH_RX_OFFLOAD_TCP_CKSUM)
78 
79 #define TAP_TX_OFFLOAD (RTE_ETH_TX_OFFLOAD_MULTI_SEGS |	\
80 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |	\
81 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |	\
82 			RTE_ETH_TX_OFFLOAD_TCP_CKSUM |	\
83 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
84 
85 static int tap_devices_count;
86 
87 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
88 	"UNKNOWN", "TUN", "TAP"
89 };
90 
91 static const char *valid_arguments[] = {
92 	ETH_TAP_IFACE_ARG,
93 	ETH_TAP_REMOTE_ARG,
94 	ETH_TAP_MAC_ARG,
95 	NULL
96 };
97 
98 static volatile uint32_t tap_trigger;	/* Rx trigger */
99 
100 static struct rte_eth_link pmd_link = {
101 	.link_speed = RTE_ETH_SPEED_NUM_10G,
102 	.link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
103 	.link_status = RTE_ETH_LINK_DOWN,
104 	.link_autoneg = RTE_ETH_LINK_FIXED,
105 };
106 
107 static void
108 tap_trigger_cb(int sig __rte_unused)
109 {
110 	/* Valid trigger values are nonzero */
111 	tap_trigger = (tap_trigger + 1) | 0x80000000;
112 }
113 
114 /* Specifies on what netdevices the ioctl should be applied */
115 enum ioctl_mode {
116 	LOCAL_AND_REMOTE,
117 	LOCAL_ONLY,
118 	REMOTE_ONLY,
119 };
120 
121 /* Message header to synchronize queues via IPC */
122 struct ipc_queues {
123 	char port_name[RTE_DEV_NAME_MAX_LEN];
124 	int rxq_count;
125 	int txq_count;
126 	/*
127 	 * The file descriptors are in the dedicated part
128 	 * of the Unix message to be translated by the kernel.
129 	 */
130 };
131 
132 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
133 
134 /**
135  * Tun/Tap allocation routine
136  *
137  * @param[in] pmd
138  *   Pointer to private structure.
139  *
140  * @param[in] is_keepalive
141  *   Keepalive flag
142  *
143  * @return
144  *   -1 on failure, fd on success
145  */
146 static int
147 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
148 {
149 	struct ifreq ifr;
150 #ifdef IFF_MULTI_QUEUE
151 	unsigned int features;
152 #endif
153 	int fd, signo, flags;
154 
155 	memset(&ifr, 0, sizeof(struct ifreq));
156 
157 	/*
158 	 * Do not set IFF_NO_PI as packet information header will be needed
159 	 * to check if a received packet has been truncated.
160 	 */
161 	ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
162 		IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
163 	strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
164 
165 	fd = open(TUN_TAP_DEV_PATH, O_RDWR);
166 	if (fd < 0) {
167 		TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
168 		goto error;
169 	}
170 
171 #ifdef IFF_MULTI_QUEUE
172 	/* Grab the TUN features to verify we can work multi-queue */
173 	if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
174 		TAP_LOG(ERR, "unable to get TUN/TAP features");
175 		goto error;
176 	}
177 	TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
178 
179 	if (features & IFF_MULTI_QUEUE) {
180 		TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
181 			RTE_PMD_TAP_MAX_QUEUES);
182 		ifr.ifr_flags |= IFF_MULTI_QUEUE;
183 	} else
184 #endif
185 	{
186 		ifr.ifr_flags |= IFF_ONE_QUEUE;
187 		TAP_LOG(DEBUG, "  Single queue only support");
188 	}
189 
190 	/* Set the TUN/TAP configuration and set the name if needed */
191 	if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
192 		TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
193 			ifr.ifr_name, strerror(errno));
194 		goto error;
195 	}
196 
197 	/*
198 	 * Name passed to kernel might be wildcard like dtun%d
199 	 * and need to find the resulting device.
200 	 */
201 	TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
202 	strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
203 
204 	if (is_keepalive) {
205 		/*
206 		 * Detach the TUN/TAP keep-alive queue
207 		 * to avoid traffic through it
208 		 */
209 		ifr.ifr_flags = IFF_DETACH_QUEUE;
210 		if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
211 			TAP_LOG(WARNING,
212 				"Unable to detach keep-alive queue for %s: %s",
213 				ifr.ifr_name, strerror(errno));
214 			goto error;
215 		}
216 	}
217 
218 	flags = fcntl(fd, F_GETFL);
219 	if (flags == -1) {
220 		TAP_LOG(WARNING,
221 			"Unable to get %s current flags\n",
222 			ifr.ifr_name);
223 		goto error;
224 	}
225 
226 	/* Always set the file descriptor to non-blocking */
227 	flags |= O_NONBLOCK;
228 	if (fcntl(fd, F_SETFL, flags) < 0) {
229 		TAP_LOG(WARNING,
230 			"Unable to set %s to nonblocking: %s",
231 			ifr.ifr_name, strerror(errno));
232 		goto error;
233 	}
234 
235 	/* Find a free realtime signal */
236 	for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
237 		struct sigaction sa;
238 
239 		if (sigaction(signo, NULL, &sa) == -1) {
240 			TAP_LOG(WARNING,
241 				"Unable to get current rt-signal %d handler",
242 				signo);
243 			goto error;
244 		}
245 
246 		/* Already have the handler we want on this signal  */
247 		if (sa.sa_handler == tap_trigger_cb)
248 			break;
249 
250 		/* Is handler in use by application */
251 		if (sa.sa_handler != SIG_DFL) {
252 			TAP_LOG(DEBUG,
253 				"Skipping used rt-signal %d", signo);
254 			continue;
255 		}
256 
257 		sa = (struct sigaction) {
258 			.sa_flags = SA_RESTART,
259 			.sa_handler = tap_trigger_cb,
260 		};
261 
262 		if (sigaction(signo, &sa, NULL) == -1) {
263 			TAP_LOG(WARNING,
264 				"Unable to set rt-signal %d handler\n", signo);
265 			goto error;
266 		}
267 
268 		/* Found a good signal to use */
269 		TAP_LOG(DEBUG,
270 			"Using rt-signal %d", signo);
271 		break;
272 	}
273 
274 	if (signo == SIGRTMAX) {
275 		TAP_LOG(WARNING, "All rt-signals are in use\n");
276 
277 		/* Disable trigger globally in case of error */
278 		tap_trigger = 0;
279 		TAP_LOG(NOTICE, "No Rx trigger signal available\n");
280 	} else {
281 		/* Enable signal on file descriptor */
282 		if (fcntl(fd, F_SETSIG, signo) < 0) {
283 			TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
284 				signo, fd, strerror(errno));
285 			goto error;
286 		}
287 		if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
288 			TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
289 				strerror(errno));
290 			goto error;
291 		}
292 
293 		if (fcntl(fd, F_SETOWN, getpid()) < 0) {
294 			TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
295 				strerror(errno));
296 			goto error;
297 		}
298 	}
299 	return fd;
300 
301 error:
302 	if (fd >= 0)
303 		close(fd);
304 	return -1;
305 }
306 
307 static void
308 tap_verify_csum(struct rte_mbuf *mbuf)
309 {
310 	uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
311 	uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
312 	uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
313 	unsigned int l2_len = sizeof(struct rte_ether_hdr);
314 	unsigned int l3_len;
315 	uint16_t cksum = 0;
316 	void *l3_hdr;
317 	void *l4_hdr;
318 	struct rte_udp_hdr *udp_hdr;
319 
320 	if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
321 		l2_len += 4;
322 	else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
323 		l2_len += 8;
324 	/* Don't verify checksum for packets with discontinuous L2 header */
325 	if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
326 		     rte_pktmbuf_data_len(mbuf)))
327 		return;
328 	l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
329 	if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
330 		struct rte_ipv4_hdr *iph = l3_hdr;
331 
332 		l3_len = rte_ipv4_hdr_len(iph);
333 		if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
334 			return;
335 		/* check that the total length reported by header is not
336 		 * greater than the total received size
337 		 */
338 		if (l2_len + rte_be_to_cpu_16(iph->total_length) >
339 				rte_pktmbuf_data_len(mbuf))
340 			return;
341 
342 		cksum = ~rte_raw_cksum(iph, l3_len);
343 		mbuf->ol_flags |= cksum ?
344 			RTE_MBUF_F_RX_IP_CKSUM_BAD :
345 			RTE_MBUF_F_RX_IP_CKSUM_GOOD;
346 	} else if (l3 == RTE_PTYPE_L3_IPV6) {
347 		struct rte_ipv6_hdr *iph = l3_hdr;
348 
349 		l3_len = sizeof(struct rte_ipv6_hdr);
350 		/* check that the total length reported by header is not
351 		 * greater than the total received size
352 		 */
353 		if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
354 				rte_pktmbuf_data_len(mbuf))
355 			return;
356 	} else {
357 		/* - RTE_PTYPE_L3_IPV4_EXT_UNKNOWN cannot happen because
358 		 *   mbuf->packet_type is filled by rte_net_get_ptype() which
359 		 *   never returns this value.
360 		 * - IPv6 extensions are not supported.
361 		 */
362 		return;
363 	}
364 	if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
365 		int cksum_ok;
366 
367 		l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
368 		/* Don't verify checksum for multi-segment packets. */
369 		if (mbuf->nb_segs > 1)
370 			return;
371 		if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
372 			if (l4 == RTE_PTYPE_L4_UDP) {
373 				udp_hdr = (struct rte_udp_hdr *)l4_hdr;
374 				if (udp_hdr->dgram_cksum == 0) {
375 					/*
376 					 * For IPv4, a zero UDP checksum
377 					 * indicates that the sender did not
378 					 * generate one [RFC 768].
379 					 */
380 					mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE;
381 					return;
382 				}
383 			}
384 			cksum_ok = !rte_ipv4_udptcp_cksum_verify(l3_hdr,
385 								 l4_hdr);
386 		} else { /* l3 == RTE_PTYPE_L3_IPV6, checked above */
387 			cksum_ok = !rte_ipv6_udptcp_cksum_verify(l3_hdr,
388 								 l4_hdr);
389 		}
390 		mbuf->ol_flags |= cksum_ok ?
391 			RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
392 	}
393 }
394 
395 static void
396 tap_rxq_pool_free(struct rte_mbuf *pool)
397 {
398 	struct rte_mbuf *mbuf = pool;
399 	uint16_t nb_segs = 1;
400 
401 	if (mbuf == NULL)
402 		return;
403 
404 	while (mbuf->next) {
405 		mbuf = mbuf->next;
406 		nb_segs++;
407 	}
408 	pool->nb_segs = nb_segs;
409 	rte_pktmbuf_free(pool);
410 }
411 
412 /* Callback to handle the rx burst of packets to the correct interface and
413  * file descriptor(s) in a multi-queue setup.
414  */
415 static uint16_t
416 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
417 {
418 	struct rx_queue *rxq = queue;
419 	struct pmd_process_private *process_private;
420 	uint16_t num_rx;
421 	unsigned long num_rx_bytes = 0;
422 	uint32_t trigger = tap_trigger;
423 
424 	if (trigger == rxq->trigger_seen)
425 		return 0;
426 
427 	process_private = rte_eth_devices[rxq->in_port].process_private;
428 	for (num_rx = 0; num_rx < nb_pkts; ) {
429 		struct rte_mbuf *mbuf = rxq->pool;
430 		struct rte_mbuf *seg = NULL;
431 		struct rte_mbuf *new_tail = NULL;
432 		uint16_t data_off = rte_pktmbuf_headroom(mbuf);
433 		int len;
434 
435 		len = readv(process_private->rxq_fds[rxq->queue_id],
436 			*rxq->iovecs,
437 			1 + (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ?
438 			     rxq->nb_rx_desc : 1));
439 		if (len < (int)sizeof(struct tun_pi))
440 			break;
441 
442 		/* Packet couldn't fit in the provided mbuf */
443 		if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
444 			rxq->stats.ierrors++;
445 			continue;
446 		}
447 
448 		len -= sizeof(struct tun_pi);
449 
450 		mbuf->pkt_len = len;
451 		mbuf->port = rxq->in_port;
452 		while (1) {
453 			struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
454 
455 			if (unlikely(!buf)) {
456 				rxq->stats.rx_nombuf++;
457 				/* No new buf has been allocated: do nothing */
458 				if (!new_tail || !seg)
459 					goto end;
460 
461 				seg->next = NULL;
462 				tap_rxq_pool_free(mbuf);
463 
464 				goto end;
465 			}
466 			seg = seg ? seg->next : mbuf;
467 			if (rxq->pool == mbuf)
468 				rxq->pool = buf;
469 			if (new_tail)
470 				new_tail->next = buf;
471 			new_tail = buf;
472 			new_tail->next = seg->next;
473 
474 			/* iovecs[0] is reserved for packet info (pi) */
475 			(*rxq->iovecs)[mbuf->nb_segs].iov_len =
476 				buf->buf_len - data_off;
477 			(*rxq->iovecs)[mbuf->nb_segs].iov_base =
478 				(char *)buf->buf_addr + data_off;
479 
480 			seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
481 			seg->data_off = data_off;
482 
483 			len -= seg->data_len;
484 			if (len <= 0)
485 				break;
486 			mbuf->nb_segs++;
487 			/* First segment has headroom, not the others */
488 			data_off = 0;
489 		}
490 		seg->next = NULL;
491 		mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
492 						      RTE_PTYPE_ALL_MASK);
493 		if (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
494 			tap_verify_csum(mbuf);
495 
496 		/* account for the receive frame */
497 		bufs[num_rx++] = mbuf;
498 		num_rx_bytes += mbuf->pkt_len;
499 	}
500 end:
501 	rxq->stats.ipackets += num_rx;
502 	rxq->stats.ibytes += num_rx_bytes;
503 
504 	if (trigger && num_rx < nb_pkts)
505 		rxq->trigger_seen = trigger;
506 
507 	return num_rx;
508 }
509 
510 /* Finalize l4 checksum calculation */
511 static void
512 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
513 		uint32_t l4_raw_cksum)
514 {
515 	if (l4_cksum) {
516 		uint32_t cksum;
517 
518 		cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
519 		cksum += l4_phdr_cksum;
520 
521 		cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
522 		cksum = (~cksum) & 0xffff;
523 		if (cksum == 0)
524 			cksum = 0xffff;
525 		*l4_cksum = cksum;
526 	}
527 }
528 
529 /* Accumulate L4 raw checksums */
530 static void
531 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
532 			uint32_t *l4_raw_cksum)
533 {
534 	if (l4_cksum == NULL)
535 		return;
536 
537 	*l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
538 }
539 
540 /* L3 and L4 pseudo headers checksum offloads */
541 static void
542 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
543 		unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
544 		uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
545 {
546 	void *l3_hdr = packet + l2_len;
547 
548 	if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
549 		struct rte_ipv4_hdr *iph = l3_hdr;
550 		uint16_t cksum;
551 
552 		iph->hdr_checksum = 0;
553 		cksum = rte_raw_cksum(iph, l3_len);
554 		iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
555 	}
556 	if (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
557 		void *l4_hdr;
558 
559 		l4_hdr = packet + l2_len + l3_len;
560 		if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM)
561 			*l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
562 		else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM)
563 			*l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
564 		else
565 			return;
566 		**l4_cksum = 0;
567 		if (ol_flags & RTE_MBUF_F_TX_IPV4)
568 			*l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
569 		else
570 			*l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
571 		*l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
572 	}
573 }
574 
575 static inline int
576 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
577 			struct rte_mbuf **pmbufs,
578 			uint16_t *num_packets, unsigned long *num_tx_bytes)
579 {
580 	int i;
581 	uint16_t l234_hlen;
582 	struct pmd_process_private *process_private;
583 
584 	process_private = rte_eth_devices[txq->out_port].process_private;
585 
586 	for (i = 0; i < num_mbufs; i++) {
587 		struct rte_mbuf *mbuf = pmbufs[i];
588 		struct iovec iovecs[mbuf->nb_segs + 2];
589 		struct tun_pi pi = { .flags = 0, .proto = 0x00 };
590 		struct rte_mbuf *seg = mbuf;
591 		char m_copy[mbuf->data_len];
592 		int proto;
593 		int n;
594 		int j;
595 		int k; /* current index in iovecs for copying segments */
596 		uint16_t seg_len; /* length of first segment */
597 		uint16_t nb_segs;
598 		uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
599 		uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
600 		uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
601 		uint16_t is_cksum = 0; /* in case cksum should be offloaded */
602 
603 		l4_cksum = NULL;
604 		if (txq->type == ETH_TUNTAP_TYPE_TUN) {
605 			/*
606 			 * TUN and TAP are created with IFF_NO_PI disabled.
607 			 * For TUN PMD this mandatory as fields are used by
608 			 * Kernel tun.c to determine whether its IP or non IP
609 			 * packets.
610 			 *
611 			 * The logic fetches the first byte of data from mbuf
612 			 * then compares whether its v4 or v6. If first byte
613 			 * is 4 or 6, then protocol field is updated.
614 			 */
615 			char *buff_data = rte_pktmbuf_mtod(seg, void *);
616 			proto = (*buff_data & 0xf0);
617 			pi.proto = (proto == 0x40) ?
618 				rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
619 				((proto == 0x60) ?
620 					rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
621 					0x00);
622 		}
623 
624 		k = 0;
625 		iovecs[k].iov_base = &pi;
626 		iovecs[k].iov_len = sizeof(pi);
627 		k++;
628 
629 		nb_segs = mbuf->nb_segs;
630 		if (txq->csum &&
631 		    ((mbuf->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4) ||
632 		      (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM ||
633 		      (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM))) {
634 			is_cksum = 1;
635 
636 			/* Support only packets with at least layer 4
637 			 * header included in the first segment
638 			 */
639 			seg_len = rte_pktmbuf_data_len(mbuf);
640 			l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
641 			if (seg_len < l234_hlen)
642 				return -1;
643 
644 			/* To change checksums, work on a * copy of l2, l3
645 			 * headers + l4 pseudo header
646 			 */
647 			rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
648 					l234_hlen);
649 			tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
650 				       mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
651 				       &l4_cksum, &l4_phdr_cksum,
652 				       &l4_raw_cksum);
653 			iovecs[k].iov_base = m_copy;
654 			iovecs[k].iov_len = l234_hlen;
655 			k++;
656 
657 			/* Update next iovecs[] beyond l2, l3, l4 headers */
658 			if (seg_len > l234_hlen) {
659 				iovecs[k].iov_len = seg_len - l234_hlen;
660 				iovecs[k].iov_base =
661 					rte_pktmbuf_mtod(seg, char *) +
662 						l234_hlen;
663 				tap_tx_l4_add_rcksum(iovecs[k].iov_base,
664 					iovecs[k].iov_len, l4_cksum,
665 					&l4_raw_cksum);
666 				k++;
667 				nb_segs++;
668 			}
669 			seg = seg->next;
670 		}
671 
672 		for (j = k; j <= nb_segs; j++) {
673 			iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
674 			iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
675 			if (is_cksum)
676 				tap_tx_l4_add_rcksum(iovecs[j].iov_base,
677 					iovecs[j].iov_len, l4_cksum,
678 					&l4_raw_cksum);
679 			seg = seg->next;
680 		}
681 
682 		if (is_cksum)
683 			tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
684 
685 		/* copy the tx frame data */
686 		n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
687 		if (n <= 0)
688 			return -1;
689 
690 		(*num_packets)++;
691 		(*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
692 	}
693 	return 0;
694 }
695 
696 /* Callback to handle sending packets from the tap interface
697  */
698 static uint16_t
699 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
700 {
701 	struct tx_queue *txq = queue;
702 	uint16_t num_tx = 0;
703 	uint16_t num_packets = 0;
704 	unsigned long num_tx_bytes = 0;
705 	uint32_t max_size;
706 	int i;
707 
708 	if (unlikely(nb_pkts == 0))
709 		return 0;
710 
711 	struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
712 	max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
713 	for (i = 0; i < nb_pkts; i++) {
714 		struct rte_mbuf *mbuf_in = bufs[num_tx];
715 		struct rte_mbuf **mbuf;
716 		uint16_t num_mbufs = 0;
717 		uint16_t tso_segsz = 0;
718 		int ret;
719 		int num_tso_mbufs;
720 		uint16_t hdrs_len;
721 		uint64_t tso;
722 
723 		tso = mbuf_in->ol_flags & RTE_MBUF_F_TX_TCP_SEG;
724 		if (tso) {
725 			struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
726 
727 			/* TCP segmentation implies TCP checksum offload */
728 			mbuf_in->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
729 
730 			/* gso size is calculated without RTE_ETHER_CRC_LEN */
731 			hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
732 					mbuf_in->l4_len;
733 			tso_segsz = mbuf_in->tso_segsz + hdrs_len;
734 			if (unlikely(tso_segsz == hdrs_len) ||
735 				tso_segsz > *txq->mtu) {
736 				txq->stats.errs++;
737 				break;
738 			}
739 			gso_ctx->gso_size = tso_segsz;
740 			/* 'mbuf_in' packet to segment */
741 			num_tso_mbufs = rte_gso_segment(mbuf_in,
742 				gso_ctx, /* gso control block */
743 				(struct rte_mbuf **)&gso_mbufs, /* out mbufs */
744 				RTE_DIM(gso_mbufs)); /* max tso mbufs */
745 
746 			/* ret contains the number of new created mbufs */
747 			if (num_tso_mbufs < 0)
748 				break;
749 
750 			if (num_tso_mbufs >= 1) {
751 				mbuf = gso_mbufs;
752 				num_mbufs = num_tso_mbufs;
753 			} else {
754 				/* 0 means it can be transmitted directly
755 				 * without gso.
756 				 */
757 				mbuf = &mbuf_in;
758 				num_mbufs = 1;
759 			}
760 		} else {
761 			/* stats.errs will be incremented */
762 			if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
763 				break;
764 
765 			/* ret 0 indicates no new mbufs were created */
766 			num_tso_mbufs = 0;
767 			mbuf = &mbuf_in;
768 			num_mbufs = 1;
769 		}
770 
771 		ret = tap_write_mbufs(txq, num_mbufs, mbuf,
772 				&num_packets, &num_tx_bytes);
773 		if (ret == -1) {
774 			txq->stats.errs++;
775 			/* free tso mbufs */
776 			if (num_tso_mbufs > 0)
777 				rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
778 			break;
779 		}
780 		num_tx++;
781 		/* free original mbuf */
782 		rte_pktmbuf_free(mbuf_in);
783 		/* free tso mbufs */
784 		if (num_tso_mbufs > 0)
785 			rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
786 	}
787 
788 	txq->stats.opackets += num_packets;
789 	txq->stats.errs += nb_pkts - num_tx;
790 	txq->stats.obytes += num_tx_bytes;
791 
792 	return num_tx;
793 }
794 
795 static const char *
796 tap_ioctl_req2str(unsigned long request)
797 {
798 	switch (request) {
799 	case SIOCSIFFLAGS:
800 		return "SIOCSIFFLAGS";
801 	case SIOCGIFFLAGS:
802 		return "SIOCGIFFLAGS";
803 	case SIOCGIFHWADDR:
804 		return "SIOCGIFHWADDR";
805 	case SIOCSIFHWADDR:
806 		return "SIOCSIFHWADDR";
807 	case SIOCSIFMTU:
808 		return "SIOCSIFMTU";
809 	}
810 	return "UNKNOWN";
811 }
812 
813 static int
814 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
815 	  struct ifreq *ifr, int set, enum ioctl_mode mode)
816 {
817 	short req_flags = ifr->ifr_flags;
818 	int remote = pmd->remote_if_index &&
819 		(mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
820 
821 	if (!pmd->remote_if_index && mode == REMOTE_ONLY)
822 		return 0;
823 	/*
824 	 * If there is a remote netdevice, apply ioctl on it, then apply it on
825 	 * the tap netdevice.
826 	 */
827 apply:
828 	if (remote)
829 		strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
830 	else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
831 		strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
832 	switch (request) {
833 	case SIOCSIFFLAGS:
834 		/* fetch current flags to leave other flags untouched */
835 		if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
836 			goto error;
837 		if (set)
838 			ifr->ifr_flags |= req_flags;
839 		else
840 			ifr->ifr_flags &= ~req_flags;
841 		break;
842 	case SIOCGIFFLAGS:
843 	case SIOCGIFHWADDR:
844 	case SIOCSIFHWADDR:
845 	case SIOCSIFMTU:
846 		break;
847 	default:
848 		TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
849 			pmd->name);
850 		return -EINVAL;
851 	}
852 	if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
853 		goto error;
854 	if (remote-- && mode == LOCAL_AND_REMOTE)
855 		goto apply;
856 	return 0;
857 
858 error:
859 	TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
860 		tap_ioctl_req2str(request), strerror(errno), errno);
861 	return -errno;
862 }
863 
864 static int
865 tap_link_set_down(struct rte_eth_dev *dev)
866 {
867 	struct pmd_internals *pmd = dev->data->dev_private;
868 	struct ifreq ifr = { .ifr_flags = IFF_UP };
869 
870 	dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
871 	return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
872 }
873 
874 static int
875 tap_link_set_up(struct rte_eth_dev *dev)
876 {
877 	struct pmd_internals *pmd = dev->data->dev_private;
878 	struct ifreq ifr = { .ifr_flags = IFF_UP };
879 
880 	dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
881 	return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
882 }
883 
884 static int
885 tap_mp_req_on_rxtx(struct rte_eth_dev *dev)
886 {
887 	struct rte_mp_msg msg;
888 	struct ipc_queues *request_param = (struct ipc_queues *)msg.param;
889 	int err;
890 	int fd_iterator = 0;
891 	struct pmd_process_private *process_private = dev->process_private;
892 	int i;
893 
894 	memset(&msg, 0, sizeof(msg));
895 	strlcpy(msg.name, TAP_MP_REQ_START_RXTX, sizeof(msg.name));
896 	strlcpy(request_param->port_name, dev->data->name, sizeof(request_param->port_name));
897 	msg.len_param = sizeof(*request_param);
898 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
899 		msg.fds[fd_iterator++] = process_private->txq_fds[i];
900 		msg.num_fds++;
901 		request_param->txq_count++;
902 	}
903 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
904 		msg.fds[fd_iterator++] = process_private->rxq_fds[i];
905 		msg.num_fds++;
906 		request_param->rxq_count++;
907 	}
908 
909 	err = rte_mp_sendmsg(&msg);
910 	if (err < 0) {
911 		TAP_LOG(ERR, "Failed to send start req to secondary %d",
912 			rte_errno);
913 		return -1;
914 	}
915 
916 	return 0;
917 }
918 
919 static int
920 tap_dev_start(struct rte_eth_dev *dev)
921 {
922 	int err, i;
923 
924 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
925 		tap_mp_req_on_rxtx(dev);
926 
927 	err = tap_intr_handle_set(dev, 1);
928 	if (err)
929 		return err;
930 
931 	err = tap_link_set_up(dev);
932 	if (err)
933 		return err;
934 
935 	for (i = 0; i < dev->data->nb_tx_queues; i++)
936 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
937 	for (i = 0; i < dev->data->nb_rx_queues; i++)
938 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
939 
940 	return err;
941 }
942 
943 static int
944 tap_mp_req_start_rxtx(const struct rte_mp_msg *request, __rte_unused const void *peer)
945 {
946 	struct rte_eth_dev *dev;
947 	const struct ipc_queues *request_param =
948 		(const struct ipc_queues *)request->param;
949 	int fd_iterator;
950 	int queue;
951 	struct pmd_process_private *process_private;
952 
953 	dev = rte_eth_dev_get_by_name(request_param->port_name);
954 	if (!dev) {
955 		TAP_LOG(ERR, "Failed to get dev for %s",
956 			request_param->port_name);
957 		return -1;
958 	}
959 	process_private = dev->process_private;
960 	fd_iterator = 0;
961 	TAP_LOG(DEBUG, "tap_attach rx_q:%d tx_q:%d\n", request_param->rxq_count,
962 		request_param->txq_count);
963 	for (queue = 0; queue < request_param->txq_count; queue++)
964 		process_private->txq_fds[queue] = request->fds[fd_iterator++];
965 	for (queue = 0; queue < request_param->rxq_count; queue++)
966 		process_private->rxq_fds[queue] = request->fds[fd_iterator++];
967 
968 	return 0;
969 }
970 
971 /* This function gets called when the current port gets stopped.
972  */
973 static int
974 tap_dev_stop(struct rte_eth_dev *dev)
975 {
976 	int i;
977 
978 	for (i = 0; i < dev->data->nb_tx_queues; i++)
979 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
980 	for (i = 0; i < dev->data->nb_rx_queues; i++)
981 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
982 
983 	tap_intr_handle_set(dev, 0);
984 	tap_link_set_down(dev);
985 
986 	return 0;
987 }
988 
989 static int
990 tap_dev_configure(struct rte_eth_dev *dev)
991 {
992 	struct pmd_internals *pmd = dev->data->dev_private;
993 
994 	if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
995 		TAP_LOG(ERR,
996 			"%s: number of rx queues %d exceeds max num of queues %d",
997 			dev->device->name,
998 			dev->data->nb_rx_queues,
999 			RTE_PMD_TAP_MAX_QUEUES);
1000 		return -1;
1001 	}
1002 	if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
1003 		TAP_LOG(ERR,
1004 			"%s: number of tx queues %d exceeds max num of queues %d",
1005 			dev->device->name,
1006 			dev->data->nb_tx_queues,
1007 			RTE_PMD_TAP_MAX_QUEUES);
1008 		return -1;
1009 	}
1010 	if (dev->data->nb_rx_queues != dev->data->nb_tx_queues) {
1011 		TAP_LOG(ERR,
1012 			"%s: number of rx queues %d must be equal to number of tx queues %d",
1013 			dev->device->name,
1014 			dev->data->nb_rx_queues,
1015 			dev->data->nb_tx_queues);
1016 		return -1;
1017 	}
1018 
1019 	TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
1020 		dev->device->name, pmd->name, dev->data->nb_tx_queues);
1021 
1022 	TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
1023 		dev->device->name, pmd->name, dev->data->nb_rx_queues);
1024 
1025 	return 0;
1026 }
1027 
1028 static uint32_t
1029 tap_dev_speed_capa(void)
1030 {
1031 	uint32_t speed = pmd_link.link_speed;
1032 	uint32_t capa = 0;
1033 
1034 	if (speed >= RTE_ETH_SPEED_NUM_10M)
1035 		capa |= RTE_ETH_LINK_SPEED_10M;
1036 	if (speed >= RTE_ETH_SPEED_NUM_100M)
1037 		capa |= RTE_ETH_LINK_SPEED_100M;
1038 	if (speed >= RTE_ETH_SPEED_NUM_1G)
1039 		capa |= RTE_ETH_LINK_SPEED_1G;
1040 	if (speed >= RTE_ETH_SPEED_NUM_5G)
1041 		capa |= RTE_ETH_LINK_SPEED_2_5G;
1042 	if (speed >= RTE_ETH_SPEED_NUM_5G)
1043 		capa |= RTE_ETH_LINK_SPEED_5G;
1044 	if (speed >= RTE_ETH_SPEED_NUM_10G)
1045 		capa |= RTE_ETH_LINK_SPEED_10G;
1046 	if (speed >= RTE_ETH_SPEED_NUM_20G)
1047 		capa |= RTE_ETH_LINK_SPEED_20G;
1048 	if (speed >= RTE_ETH_SPEED_NUM_25G)
1049 		capa |= RTE_ETH_LINK_SPEED_25G;
1050 	if (speed >= RTE_ETH_SPEED_NUM_40G)
1051 		capa |= RTE_ETH_LINK_SPEED_40G;
1052 	if (speed >= RTE_ETH_SPEED_NUM_50G)
1053 		capa |= RTE_ETH_LINK_SPEED_50G;
1054 	if (speed >= RTE_ETH_SPEED_NUM_56G)
1055 		capa |= RTE_ETH_LINK_SPEED_56G;
1056 	if (speed >= RTE_ETH_SPEED_NUM_100G)
1057 		capa |= RTE_ETH_LINK_SPEED_100G;
1058 
1059 	return capa;
1060 }
1061 
1062 static int
1063 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1064 {
1065 	struct pmd_internals *internals = dev->data->dev_private;
1066 
1067 	dev_info->if_index = internals->if_index;
1068 	dev_info->max_mac_addrs = 1;
1069 	dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
1070 	dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
1071 	dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
1072 	dev_info->min_rx_bufsize = 0;
1073 	dev_info->speed_capa = tap_dev_speed_capa();
1074 	dev_info->rx_queue_offload_capa = TAP_RX_OFFLOAD;
1075 	dev_info->rx_offload_capa = dev_info->rx_queue_offload_capa;
1076 	dev_info->tx_queue_offload_capa = TAP_TX_OFFLOAD;
1077 	dev_info->tx_offload_capa = dev_info->tx_queue_offload_capa;
1078 	dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
1079 	/*
1080 	 * limitation: TAP supports all of IP, UDP and TCP hash
1081 	 * functions together and not in partial combinations
1082 	 */
1083 	dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
1084 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1085 
1086 	return 0;
1087 }
1088 
1089 static int
1090 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
1091 {
1092 	unsigned int i, imax;
1093 	unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
1094 	unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
1095 	unsigned long rx_nombuf = 0, ierrors = 0;
1096 	const struct pmd_internals *pmd = dev->data->dev_private;
1097 
1098 	/* rx queue statistics */
1099 	imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1100 		dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1101 	for (i = 0; i < imax; i++) {
1102 		tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
1103 		tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
1104 		rx_total += tap_stats->q_ipackets[i];
1105 		rx_bytes_total += tap_stats->q_ibytes[i];
1106 		rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
1107 		ierrors += pmd->rxq[i].stats.ierrors;
1108 	}
1109 
1110 	/* tx queue statistics */
1111 	imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1112 		dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1113 
1114 	for (i = 0; i < imax; i++) {
1115 		tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
1116 		tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1117 		tx_total += tap_stats->q_opackets[i];
1118 		tx_err_total += pmd->txq[i].stats.errs;
1119 		tx_bytes_total += tap_stats->q_obytes[i];
1120 	}
1121 
1122 	tap_stats->ipackets = rx_total;
1123 	tap_stats->ibytes = rx_bytes_total;
1124 	tap_stats->ierrors = ierrors;
1125 	tap_stats->rx_nombuf = rx_nombuf;
1126 	tap_stats->opackets = tx_total;
1127 	tap_stats->oerrors = tx_err_total;
1128 	tap_stats->obytes = tx_bytes_total;
1129 	return 0;
1130 }
1131 
1132 static int
1133 tap_stats_reset(struct rte_eth_dev *dev)
1134 {
1135 	int i;
1136 	struct pmd_internals *pmd = dev->data->dev_private;
1137 
1138 	for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1139 		pmd->rxq[i].stats.ipackets = 0;
1140 		pmd->rxq[i].stats.ibytes = 0;
1141 		pmd->rxq[i].stats.ierrors = 0;
1142 		pmd->rxq[i].stats.rx_nombuf = 0;
1143 
1144 		pmd->txq[i].stats.opackets = 0;
1145 		pmd->txq[i].stats.errs = 0;
1146 		pmd->txq[i].stats.obytes = 0;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int
1153 tap_dev_close(struct rte_eth_dev *dev)
1154 {
1155 	int i;
1156 	struct pmd_internals *internals = dev->data->dev_private;
1157 	struct pmd_process_private *process_private = dev->process_private;
1158 	struct rx_queue *rxq;
1159 
1160 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1161 		rte_free(dev->process_private);
1162 		if (tap_devices_count == 1)
1163 			rte_mp_action_unregister(TAP_MP_REQ_START_RXTX);
1164 		tap_devices_count--;
1165 		return 0;
1166 	}
1167 
1168 	tap_link_set_down(dev);
1169 	if (internals->nlsk_fd != -1) {
1170 		tap_flow_flush(dev, NULL);
1171 		tap_flow_implicit_flush(internals, NULL);
1172 		tap_nl_final(internals->nlsk_fd);
1173 		internals->nlsk_fd = -1;
1174 	}
1175 
1176 	for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1177 		if (process_private->rxq_fds[i] != -1) {
1178 			rxq = &internals->rxq[i];
1179 			close(process_private->rxq_fds[i]);
1180 			process_private->rxq_fds[i] = -1;
1181 			tap_rxq_pool_free(rxq->pool);
1182 			rte_free(rxq->iovecs);
1183 			rxq->pool = NULL;
1184 			rxq->iovecs = NULL;
1185 		}
1186 		if (process_private->txq_fds[i] != -1) {
1187 			close(process_private->txq_fds[i]);
1188 			process_private->txq_fds[i] = -1;
1189 		}
1190 	}
1191 
1192 	if (internals->remote_if_index) {
1193 		/* Restore initial remote state */
1194 		int ret = ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1195 				&internals->remote_initial_flags);
1196 		if (ret)
1197 			TAP_LOG(ERR, "restore remote state failed: %d", ret);
1198 
1199 	}
1200 
1201 	rte_mempool_free(internals->gso_ctx_mp);
1202 	internals->gso_ctx_mp = NULL;
1203 
1204 	if (internals->ka_fd != -1) {
1205 		close(internals->ka_fd);
1206 		internals->ka_fd = -1;
1207 	}
1208 
1209 	/* mac_addrs must not be freed alone because part of dev_private */
1210 	dev->data->mac_addrs = NULL;
1211 
1212 	internals = dev->data->dev_private;
1213 	TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
1214 		tuntap_types[internals->type], rte_socket_id());
1215 
1216 	if (internals->ioctl_sock != -1) {
1217 		close(internals->ioctl_sock);
1218 		internals->ioctl_sock = -1;
1219 	}
1220 	rte_free(dev->process_private);
1221 	if (tap_devices_count == 1)
1222 		rte_mp_action_unregister(TAP_MP_KEY);
1223 	tap_devices_count--;
1224 	/*
1225 	 * Since TUN device has no more opened file descriptors
1226 	 * it will be removed from kernel
1227 	 */
1228 
1229 	return 0;
1230 }
1231 
1232 static void
1233 tap_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1234 {
1235 	struct rx_queue *rxq = dev->data->rx_queues[qid];
1236 	struct pmd_process_private *process_private;
1237 
1238 	if (!rxq)
1239 		return;
1240 	process_private = rte_eth_devices[rxq->in_port].process_private;
1241 	if (process_private->rxq_fds[rxq->queue_id] != -1) {
1242 		close(process_private->rxq_fds[rxq->queue_id]);
1243 		process_private->rxq_fds[rxq->queue_id] = -1;
1244 		tap_rxq_pool_free(rxq->pool);
1245 		rte_free(rxq->iovecs);
1246 		rxq->pool = NULL;
1247 		rxq->iovecs = NULL;
1248 	}
1249 }
1250 
1251 static void
1252 tap_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1253 {
1254 	struct tx_queue *txq = dev->data->tx_queues[qid];
1255 	struct pmd_process_private *process_private;
1256 
1257 	if (!txq)
1258 		return;
1259 	process_private = rte_eth_devices[txq->out_port].process_private;
1260 
1261 	if (process_private->txq_fds[txq->queue_id] != -1) {
1262 		close(process_private->txq_fds[txq->queue_id]);
1263 		process_private->txq_fds[txq->queue_id] = -1;
1264 	}
1265 }
1266 
1267 static int
1268 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1269 {
1270 	struct rte_eth_link *dev_link = &dev->data->dev_link;
1271 	struct pmd_internals *pmd = dev->data->dev_private;
1272 	struct ifreq ifr = { .ifr_flags = 0 };
1273 
1274 	if (pmd->remote_if_index) {
1275 		tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1276 		if (!(ifr.ifr_flags & IFF_UP) ||
1277 		    !(ifr.ifr_flags & IFF_RUNNING)) {
1278 			dev_link->link_status = RTE_ETH_LINK_DOWN;
1279 			return 0;
1280 		}
1281 	}
1282 	tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1283 	dev_link->link_status =
1284 		((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1285 		 RTE_ETH_LINK_UP :
1286 		 RTE_ETH_LINK_DOWN);
1287 	return 0;
1288 }
1289 
1290 static int
1291 tap_promisc_enable(struct rte_eth_dev *dev)
1292 {
1293 	struct pmd_internals *pmd = dev->data->dev_private;
1294 	struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1295 	int ret;
1296 
1297 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1298 	if (ret != 0)
1299 		return ret;
1300 
1301 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1302 		dev->data->promiscuous = 1;
1303 		ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1304 		if (ret != 0) {
1305 			/* Rollback promisc flag */
1306 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1307 			/*
1308 			 * rte_eth_dev_promiscuous_enable() rollback
1309 			 * dev->data->promiscuous in the case of failure.
1310 			 */
1311 			return ret;
1312 		}
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static int
1319 tap_promisc_disable(struct rte_eth_dev *dev)
1320 {
1321 	struct pmd_internals *pmd = dev->data->dev_private;
1322 	struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1323 	int ret;
1324 
1325 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1326 	if (ret != 0)
1327 		return ret;
1328 
1329 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1330 		dev->data->promiscuous = 0;
1331 		ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1332 		if (ret != 0) {
1333 			/* Rollback promisc flag */
1334 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1335 			/*
1336 			 * rte_eth_dev_promiscuous_disable() rollback
1337 			 * dev->data->promiscuous in the case of failure.
1338 			 */
1339 			return ret;
1340 		}
1341 	}
1342 
1343 	return 0;
1344 }
1345 
1346 static int
1347 tap_allmulti_enable(struct rte_eth_dev *dev)
1348 {
1349 	struct pmd_internals *pmd = dev->data->dev_private;
1350 	struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1351 	int ret;
1352 
1353 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1354 	if (ret != 0)
1355 		return ret;
1356 
1357 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1358 		dev->data->all_multicast = 1;
1359 		ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1360 		if (ret != 0) {
1361 			/* Rollback allmulti flag */
1362 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1363 			/*
1364 			 * rte_eth_dev_allmulticast_enable() rollback
1365 			 * dev->data->all_multicast in the case of failure.
1366 			 */
1367 			return ret;
1368 		}
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 static int
1375 tap_allmulti_disable(struct rte_eth_dev *dev)
1376 {
1377 	struct pmd_internals *pmd = dev->data->dev_private;
1378 	struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1379 	int ret;
1380 
1381 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1382 	if (ret != 0)
1383 		return ret;
1384 
1385 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1386 		dev->data->all_multicast = 0;
1387 		ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1388 		if (ret != 0) {
1389 			/* Rollback allmulti flag */
1390 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1391 			/*
1392 			 * rte_eth_dev_allmulticast_disable() rollback
1393 			 * dev->data->all_multicast in the case of failure.
1394 			 */
1395 			return ret;
1396 		}
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static int
1403 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1404 {
1405 	struct pmd_internals *pmd = dev->data->dev_private;
1406 	enum ioctl_mode mode = LOCAL_ONLY;
1407 	struct ifreq ifr;
1408 	int ret;
1409 
1410 	if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1411 		TAP_LOG(ERR, "%s: can't MAC address for TUN",
1412 			dev->device->name);
1413 		return -ENOTSUP;
1414 	}
1415 
1416 	if (rte_is_zero_ether_addr(mac_addr)) {
1417 		TAP_LOG(ERR, "%s: can't set an empty MAC address",
1418 			dev->device->name);
1419 		return -EINVAL;
1420 	}
1421 	/* Check the actual current MAC address on the tap netdevice */
1422 	ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1423 	if (ret < 0)
1424 		return ret;
1425 	if (rte_is_same_ether_addr(
1426 			(struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1427 			mac_addr))
1428 		return 0;
1429 	/* Check the current MAC address on the remote */
1430 	ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1431 	if (ret < 0)
1432 		return ret;
1433 	if (!rte_is_same_ether_addr(
1434 			(struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1435 			mac_addr))
1436 		mode = LOCAL_AND_REMOTE;
1437 	ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1438 	rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1439 	ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1440 	if (ret < 0)
1441 		return ret;
1442 	rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1443 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1444 		/* Replace MAC redirection rule after a MAC change */
1445 		ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1446 		if (ret < 0) {
1447 			TAP_LOG(ERR,
1448 				"%s: Couldn't delete MAC redirection rule",
1449 				dev->device->name);
1450 			return ret;
1451 		}
1452 		ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1453 		if (ret < 0) {
1454 			TAP_LOG(ERR,
1455 				"%s: Couldn't add MAC redirection rule",
1456 				dev->device->name);
1457 			return ret;
1458 		}
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 static int
1465 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1466 {
1467 	uint32_t gso_types;
1468 	char pool_name[64];
1469 	struct pmd_internals *pmd = dev->data->dev_private;
1470 	int ret;
1471 
1472 	/* initialize GSO context */
1473 	gso_types = RTE_ETH_TX_OFFLOAD_TCP_TSO;
1474 	if (!pmd->gso_ctx_mp) {
1475 		/*
1476 		 * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
1477 		 * bytes size per mbuf use this pool for both direct and
1478 		 * indirect mbufs
1479 		 */
1480 		ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
1481 				dev->device->name);
1482 		if (ret < 0 || ret >= (int)sizeof(pool_name)) {
1483 			TAP_LOG(ERR,
1484 				"%s: failed to create mbuf pool name for device %s,"
1485 				"device name too long or output error, ret: %d\n",
1486 				pmd->name, dev->device->name, ret);
1487 			return -ENAMETOOLONG;
1488 		}
1489 		pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
1490 			TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
1491 			RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1492 			SOCKET_ID_ANY);
1493 		if (!pmd->gso_ctx_mp) {
1494 			TAP_LOG(ERR,
1495 				"%s: failed to create mbuf pool for device %s\n",
1496 				pmd->name, dev->device->name);
1497 			return -1;
1498 		}
1499 	}
1500 
1501 	gso_ctx->direct_pool = pmd->gso_ctx_mp;
1502 	gso_ctx->indirect_pool = pmd->gso_ctx_mp;
1503 	gso_ctx->gso_types = gso_types;
1504 	gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1505 	gso_ctx->flag = 0;
1506 
1507 	return 0;
1508 }
1509 
1510 static int
1511 tap_setup_queue(struct rte_eth_dev *dev,
1512 		struct pmd_internals *internals,
1513 		uint16_t qid,
1514 		int is_rx)
1515 {
1516 	int ret;
1517 	int *fd;
1518 	int *other_fd;
1519 	const char *dir;
1520 	struct pmd_internals *pmd = dev->data->dev_private;
1521 	struct pmd_process_private *process_private = dev->process_private;
1522 	struct rx_queue *rx = &internals->rxq[qid];
1523 	struct tx_queue *tx = &internals->txq[qid];
1524 	struct rte_gso_ctx *gso_ctx;
1525 
1526 	if (is_rx) {
1527 		fd = &process_private->rxq_fds[qid];
1528 		other_fd = &process_private->txq_fds[qid];
1529 		dir = "rx";
1530 		gso_ctx = NULL;
1531 	} else {
1532 		fd = &process_private->txq_fds[qid];
1533 		other_fd = &process_private->rxq_fds[qid];
1534 		dir = "tx";
1535 		gso_ctx = &tx->gso_ctx;
1536 	}
1537 	if (*fd != -1) {
1538 		/* fd for this queue already exists */
1539 		TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1540 			pmd->name, *fd, dir, qid);
1541 		gso_ctx = NULL;
1542 	} else if (*other_fd != -1) {
1543 		/* Only other_fd exists. dup it */
1544 		*fd = dup(*other_fd);
1545 		if (*fd < 0) {
1546 			*fd = -1;
1547 			TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1548 			return -1;
1549 		}
1550 		TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1551 			pmd->name, *other_fd, dir, qid, *fd);
1552 	} else {
1553 		/* Both RX and TX fds do not exist (equal -1). Create fd */
1554 		*fd = tun_alloc(pmd, 0);
1555 		if (*fd < 0) {
1556 			*fd = -1; /* restore original value */
1557 			TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1558 			return -1;
1559 		}
1560 		TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1561 			pmd->name, dir, qid, *fd);
1562 	}
1563 
1564 	tx->mtu = &dev->data->mtu;
1565 	rx->rxmode = &dev->data->dev_conf.rxmode;
1566 	if (gso_ctx) {
1567 		ret = tap_gso_ctx_setup(gso_ctx, dev);
1568 		if (ret)
1569 			return -1;
1570 	}
1571 
1572 	tx->type = pmd->type;
1573 
1574 	return *fd;
1575 }
1576 
1577 static int
1578 tap_rx_queue_setup(struct rte_eth_dev *dev,
1579 		   uint16_t rx_queue_id,
1580 		   uint16_t nb_rx_desc,
1581 		   unsigned int socket_id,
1582 		   const struct rte_eth_rxconf *rx_conf __rte_unused,
1583 		   struct rte_mempool *mp)
1584 {
1585 	struct pmd_internals *internals = dev->data->dev_private;
1586 	struct pmd_process_private *process_private = dev->process_private;
1587 	struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1588 	struct rte_mbuf **tmp = &rxq->pool;
1589 	long iov_max = sysconf(_SC_IOV_MAX);
1590 
1591 	if (iov_max <= 0) {
1592 		TAP_LOG(WARNING,
1593 			"_SC_IOV_MAX is not defined. Using %d as default",
1594 			TAP_IOV_DEFAULT_MAX);
1595 		iov_max = TAP_IOV_DEFAULT_MAX;
1596 	}
1597 	uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1598 	struct iovec (*iovecs)[nb_desc + 1];
1599 	int data_off = RTE_PKTMBUF_HEADROOM;
1600 	int ret = 0;
1601 	int fd;
1602 	int i;
1603 
1604 	if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1605 		TAP_LOG(WARNING,
1606 			"nb_rx_queues %d too small or mempool NULL",
1607 			dev->data->nb_rx_queues);
1608 		return -1;
1609 	}
1610 
1611 	rxq->mp = mp;
1612 	rxq->trigger_seen = 1; /* force initial burst */
1613 	rxq->in_port = dev->data->port_id;
1614 	rxq->queue_id = rx_queue_id;
1615 	rxq->nb_rx_desc = nb_desc;
1616 	iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1617 				    socket_id);
1618 	if (!iovecs) {
1619 		TAP_LOG(WARNING,
1620 			"%s: Couldn't allocate %d RX descriptors",
1621 			dev->device->name, nb_desc);
1622 		return -ENOMEM;
1623 	}
1624 	rxq->iovecs = iovecs;
1625 
1626 	dev->data->rx_queues[rx_queue_id] = rxq;
1627 	fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1628 	if (fd == -1) {
1629 		ret = fd;
1630 		goto error;
1631 	}
1632 
1633 	(*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1634 	(*rxq->iovecs)[0].iov_base = &rxq->pi;
1635 
1636 	for (i = 1; i <= nb_desc; i++) {
1637 		*tmp = rte_pktmbuf_alloc(rxq->mp);
1638 		if (!*tmp) {
1639 			TAP_LOG(WARNING,
1640 				"%s: couldn't allocate memory for queue %d",
1641 				dev->device->name, rx_queue_id);
1642 			ret = -ENOMEM;
1643 			goto error;
1644 		}
1645 		(*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1646 		(*rxq->iovecs)[i].iov_base =
1647 			(char *)(*tmp)->buf_addr + data_off;
1648 		data_off = 0;
1649 		tmp = &(*tmp)->next;
1650 	}
1651 
1652 	TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1653 		internals->name, rx_queue_id,
1654 		process_private->rxq_fds[rx_queue_id]);
1655 
1656 	return 0;
1657 
1658 error:
1659 	tap_rxq_pool_free(rxq->pool);
1660 	rxq->pool = NULL;
1661 	rte_free(rxq->iovecs);
1662 	rxq->iovecs = NULL;
1663 	return ret;
1664 }
1665 
1666 static int
1667 tap_tx_queue_setup(struct rte_eth_dev *dev,
1668 		   uint16_t tx_queue_id,
1669 		   uint16_t nb_tx_desc __rte_unused,
1670 		   unsigned int socket_id __rte_unused,
1671 		   const struct rte_eth_txconf *tx_conf)
1672 {
1673 	struct pmd_internals *internals = dev->data->dev_private;
1674 	struct pmd_process_private *process_private = dev->process_private;
1675 	struct tx_queue *txq;
1676 	int ret;
1677 	uint64_t offloads;
1678 
1679 	if (tx_queue_id >= dev->data->nb_tx_queues)
1680 		return -1;
1681 	dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1682 	txq = dev->data->tx_queues[tx_queue_id];
1683 	txq->out_port = dev->data->port_id;
1684 	txq->queue_id = tx_queue_id;
1685 
1686 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1687 	txq->csum = !!(offloads &
1688 			(RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1689 			 RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1690 			 RTE_ETH_TX_OFFLOAD_TCP_CKSUM));
1691 
1692 	ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1693 	if (ret == -1)
1694 		return -1;
1695 	TAP_LOG(DEBUG,
1696 		"  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1697 		internals->name, tx_queue_id,
1698 		process_private->txq_fds[tx_queue_id],
1699 		txq->csum ? "on" : "off");
1700 
1701 	return 0;
1702 }
1703 
1704 static int
1705 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1706 {
1707 	struct pmd_internals *pmd = dev->data->dev_private;
1708 	struct ifreq ifr = { .ifr_mtu = mtu };
1709 
1710 	return tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1711 }
1712 
1713 static int
1714 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1715 		     struct rte_ether_addr *mc_addr_set __rte_unused,
1716 		     uint32_t nb_mc_addr __rte_unused)
1717 {
1718 	/*
1719 	 * Nothing to do actually: the tap has no filtering whatsoever, every
1720 	 * packet is received.
1721 	 */
1722 	return 0;
1723 }
1724 
1725 static int
1726 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1727 {
1728 	struct rte_eth_dev *dev = arg;
1729 	struct pmd_internals *pmd = dev->data->dev_private;
1730 	struct ifinfomsg *info = NLMSG_DATA(nh);
1731 
1732 	if (nh->nlmsg_type != RTM_NEWLINK ||
1733 	    (info->ifi_index != pmd->if_index &&
1734 	     info->ifi_index != pmd->remote_if_index))
1735 		return 0;
1736 	return tap_link_update(dev, 0);
1737 }
1738 
1739 static void
1740 tap_dev_intr_handler(void *cb_arg)
1741 {
1742 	struct rte_eth_dev *dev = cb_arg;
1743 	struct pmd_internals *pmd = dev->data->dev_private;
1744 
1745 	if (rte_intr_fd_get(pmd->intr_handle) >= 0)
1746 		tap_nl_recv(rte_intr_fd_get(pmd->intr_handle),
1747 			    tap_nl_msg_handler, dev);
1748 }
1749 
1750 static int
1751 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1752 {
1753 	struct pmd_internals *pmd = dev->data->dev_private;
1754 	int ret;
1755 
1756 	/* In any case, disable interrupt if the conf is no longer there. */
1757 	if (!dev->data->dev_conf.intr_conf.lsc) {
1758 		if (rte_intr_fd_get(pmd->intr_handle) != -1)
1759 			goto clean;
1760 
1761 		return 0;
1762 	}
1763 	if (set) {
1764 		rte_intr_fd_set(pmd->intr_handle, tap_nl_init(RTMGRP_LINK));
1765 		if (unlikely(rte_intr_fd_get(pmd->intr_handle) == -1))
1766 			return -EBADF;
1767 		return rte_intr_callback_register(
1768 			pmd->intr_handle, tap_dev_intr_handler, dev);
1769 	}
1770 
1771 clean:
1772 	do {
1773 		ret = rte_intr_callback_unregister(pmd->intr_handle,
1774 			tap_dev_intr_handler, dev);
1775 		if (ret >= 0) {
1776 			break;
1777 		} else if (ret == -EAGAIN) {
1778 			rte_delay_ms(100);
1779 		} else {
1780 			TAP_LOG(ERR, "intr callback unregister failed: %d",
1781 				     ret);
1782 			break;
1783 		}
1784 	} while (true);
1785 
1786 	if (rte_intr_fd_get(pmd->intr_handle) >= 0) {
1787 		tap_nl_final(rte_intr_fd_get(pmd->intr_handle));
1788 		rte_intr_fd_set(pmd->intr_handle, -1);
1789 	}
1790 
1791 	return 0;
1792 }
1793 
1794 static int
1795 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1796 {
1797 	int err;
1798 
1799 	err = tap_lsc_intr_handle_set(dev, set);
1800 	if (err < 0) {
1801 		if (!set)
1802 			tap_rx_intr_vec_set(dev, 0);
1803 		return err;
1804 	}
1805 	err = tap_rx_intr_vec_set(dev, set);
1806 	if (err && set)
1807 		tap_lsc_intr_handle_set(dev, 0);
1808 	return err;
1809 }
1810 
1811 static const uint32_t*
1812 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1813 {
1814 	static const uint32_t ptypes[] = {
1815 		RTE_PTYPE_INNER_L2_ETHER,
1816 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
1817 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
1818 		RTE_PTYPE_INNER_L3_IPV4,
1819 		RTE_PTYPE_INNER_L3_IPV4_EXT,
1820 		RTE_PTYPE_INNER_L3_IPV6,
1821 		RTE_PTYPE_INNER_L3_IPV6_EXT,
1822 		RTE_PTYPE_INNER_L4_FRAG,
1823 		RTE_PTYPE_INNER_L4_UDP,
1824 		RTE_PTYPE_INNER_L4_TCP,
1825 		RTE_PTYPE_INNER_L4_SCTP,
1826 		RTE_PTYPE_L2_ETHER,
1827 		RTE_PTYPE_L2_ETHER_VLAN,
1828 		RTE_PTYPE_L2_ETHER_QINQ,
1829 		RTE_PTYPE_L3_IPV4,
1830 		RTE_PTYPE_L3_IPV4_EXT,
1831 		RTE_PTYPE_L3_IPV6_EXT,
1832 		RTE_PTYPE_L3_IPV6,
1833 		RTE_PTYPE_L4_FRAG,
1834 		RTE_PTYPE_L4_UDP,
1835 		RTE_PTYPE_L4_TCP,
1836 		RTE_PTYPE_L4_SCTP,
1837 	};
1838 
1839 	return ptypes;
1840 }
1841 
1842 static int
1843 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1844 		  struct rte_eth_fc_conf *fc_conf)
1845 {
1846 	fc_conf->mode = RTE_ETH_FC_NONE;
1847 	return 0;
1848 }
1849 
1850 static int
1851 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1852 		  struct rte_eth_fc_conf *fc_conf)
1853 {
1854 	if (fc_conf->mode != RTE_ETH_FC_NONE)
1855 		return -ENOTSUP;
1856 	return 0;
1857 }
1858 
1859 /**
1860  * DPDK callback to update the RSS hash configuration.
1861  *
1862  * @param dev
1863  *   Pointer to Ethernet device structure.
1864  * @param[in] rss_conf
1865  *   RSS configuration data.
1866  *
1867  * @return
1868  *   0 on success, a negative errno value otherwise and rte_errno is set.
1869  */
1870 static int
1871 tap_rss_hash_update(struct rte_eth_dev *dev,
1872 		struct rte_eth_rss_conf *rss_conf)
1873 {
1874 	if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1875 		rte_errno = EINVAL;
1876 		return -rte_errno;
1877 	}
1878 	if (rss_conf->rss_key && rss_conf->rss_key_len) {
1879 		/*
1880 		 * Currently TAP RSS key is hard coded
1881 		 * and cannot be updated
1882 		 */
1883 		TAP_LOG(ERR,
1884 			"port %u RSS key cannot be updated",
1885 			dev->data->port_id);
1886 		rte_errno = EINVAL;
1887 		return -rte_errno;
1888 	}
1889 	return 0;
1890 }
1891 
1892 static int
1893 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1894 {
1895 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1896 
1897 	return 0;
1898 }
1899 
1900 static int
1901 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1902 {
1903 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1904 
1905 	return 0;
1906 }
1907 
1908 static int
1909 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1910 {
1911 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1912 
1913 	return 0;
1914 }
1915 
1916 static int
1917 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1918 {
1919 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1920 
1921 	return 0;
1922 }
1923 static const struct eth_dev_ops ops = {
1924 	.dev_start              = tap_dev_start,
1925 	.dev_stop               = tap_dev_stop,
1926 	.dev_close              = tap_dev_close,
1927 	.dev_configure          = tap_dev_configure,
1928 	.dev_infos_get          = tap_dev_info,
1929 	.rx_queue_setup         = tap_rx_queue_setup,
1930 	.tx_queue_setup         = tap_tx_queue_setup,
1931 	.rx_queue_start         = tap_rx_queue_start,
1932 	.tx_queue_start         = tap_tx_queue_start,
1933 	.rx_queue_stop          = tap_rx_queue_stop,
1934 	.tx_queue_stop          = tap_tx_queue_stop,
1935 	.rx_queue_release       = tap_rx_queue_release,
1936 	.tx_queue_release       = tap_tx_queue_release,
1937 	.flow_ctrl_get          = tap_flow_ctrl_get,
1938 	.flow_ctrl_set          = tap_flow_ctrl_set,
1939 	.link_update            = tap_link_update,
1940 	.dev_set_link_up        = tap_link_set_up,
1941 	.dev_set_link_down      = tap_link_set_down,
1942 	.promiscuous_enable     = tap_promisc_enable,
1943 	.promiscuous_disable    = tap_promisc_disable,
1944 	.allmulticast_enable    = tap_allmulti_enable,
1945 	.allmulticast_disable   = tap_allmulti_disable,
1946 	.mac_addr_set           = tap_mac_set,
1947 	.mtu_set                = tap_mtu_set,
1948 	.set_mc_addr_list       = tap_set_mc_addr_list,
1949 	.stats_get              = tap_stats_get,
1950 	.stats_reset            = tap_stats_reset,
1951 	.dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1952 	.rss_hash_update        = tap_rss_hash_update,
1953 	.flow_ops_get           = tap_dev_flow_ops_get,
1954 };
1955 
1956 static int
1957 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1958 		   char *remote_iface, struct rte_ether_addr *mac_addr,
1959 		   enum rte_tuntap_type type)
1960 {
1961 	int numa_node = rte_socket_id();
1962 	struct rte_eth_dev *dev;
1963 	struct pmd_internals *pmd;
1964 	struct pmd_process_private *process_private;
1965 	const char *tuntap_name = tuntap_types[type];
1966 	struct rte_eth_dev_data *data;
1967 	struct ifreq ifr;
1968 	int i;
1969 
1970 	TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1971 
1972 	dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1973 	if (!dev) {
1974 		TAP_LOG(ERR, "%s Unable to allocate device struct",
1975 				tuntap_name);
1976 		goto error_exit_nodev;
1977 	}
1978 
1979 	process_private = (struct pmd_process_private *)
1980 		rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1981 			RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1982 
1983 	if (process_private == NULL) {
1984 		TAP_LOG(ERR, "Failed to alloc memory for process private");
1985 		return -1;
1986 	}
1987 	pmd = dev->data->dev_private;
1988 	dev->process_private = process_private;
1989 	pmd->dev = dev;
1990 	strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1991 	pmd->type = type;
1992 	pmd->ka_fd = -1;
1993 	pmd->nlsk_fd = -1;
1994 	pmd->gso_ctx_mp = NULL;
1995 
1996 	pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1997 	if (pmd->ioctl_sock == -1) {
1998 		TAP_LOG(ERR,
1999 			"%s Unable to get a socket for management: %s",
2000 			tuntap_name, strerror(errno));
2001 		goto error_exit;
2002 	}
2003 
2004 	/* Allocate interrupt instance */
2005 	pmd->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
2006 	if (pmd->intr_handle == NULL) {
2007 		TAP_LOG(ERR, "Failed to allocate intr handle");
2008 		goto error_exit;
2009 	}
2010 
2011 	/* Setup some default values */
2012 	data = dev->data;
2013 	data->dev_private = pmd;
2014 	data->dev_flags = RTE_ETH_DEV_INTR_LSC |
2015 				RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2016 	data->numa_node = numa_node;
2017 
2018 	data->dev_link = pmd_link;
2019 	data->mac_addrs = &pmd->eth_addr;
2020 	/* Set the number of RX and TX queues */
2021 	data->nb_rx_queues = 0;
2022 	data->nb_tx_queues = 0;
2023 
2024 	dev->dev_ops = &ops;
2025 	dev->rx_pkt_burst = pmd_rx_burst;
2026 	dev->tx_pkt_burst = pmd_tx_burst;
2027 
2028 	rte_intr_type_set(pmd->intr_handle, RTE_INTR_HANDLE_EXT);
2029 	rte_intr_fd_set(pmd->intr_handle, -1);
2030 	dev->intr_handle = pmd->intr_handle;
2031 
2032 	/* Presetup the fds to -1 as being not valid */
2033 	for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2034 		process_private->rxq_fds[i] = -1;
2035 		process_private->txq_fds[i] = -1;
2036 	}
2037 
2038 	if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
2039 		if (rte_is_zero_ether_addr(mac_addr))
2040 			rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
2041 		else
2042 			rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
2043 	}
2044 
2045 	/*
2046 	 * Allocate a TUN device keep-alive file descriptor that will only be
2047 	 * closed when the TUN device itself is closed or removed.
2048 	 * This keep-alive file descriptor will guarantee that the TUN device
2049 	 * exists even when all of its queues are closed
2050 	 */
2051 	pmd->ka_fd = tun_alloc(pmd, 1);
2052 	if (pmd->ka_fd == -1) {
2053 		TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
2054 		goto error_exit;
2055 	}
2056 	TAP_LOG(DEBUG, "allocated %s", pmd->name);
2057 
2058 	ifr.ifr_mtu = dev->data->mtu;
2059 	if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
2060 		goto error_exit;
2061 
2062 	if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
2063 		memset(&ifr, 0, sizeof(struct ifreq));
2064 		ifr.ifr_hwaddr.sa_family = AF_LOCAL;
2065 		rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
2066 				RTE_ETHER_ADDR_LEN);
2067 		if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
2068 			goto error_exit;
2069 	}
2070 
2071 	/*
2072 	 * Set up everything related to rte_flow:
2073 	 * - netlink socket
2074 	 * - tap / remote if_index
2075 	 * - mandatory QDISCs
2076 	 * - rte_flow actual/implicit lists
2077 	 * - implicit rules
2078 	 */
2079 	pmd->nlsk_fd = tap_nl_init(0);
2080 	if (pmd->nlsk_fd == -1) {
2081 		TAP_LOG(WARNING, "%s: failed to create netlink socket.",
2082 			pmd->name);
2083 		goto disable_rte_flow;
2084 	}
2085 	pmd->if_index = if_nametoindex(pmd->name);
2086 	if (!pmd->if_index) {
2087 		TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
2088 		goto disable_rte_flow;
2089 	}
2090 	if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
2091 		TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
2092 			pmd->name);
2093 		goto disable_rte_flow;
2094 	}
2095 	if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
2096 		TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2097 			pmd->name);
2098 		goto disable_rte_flow;
2099 	}
2100 	LIST_INIT(&pmd->flows);
2101 
2102 	if (strlen(remote_iface)) {
2103 		pmd->remote_if_index = if_nametoindex(remote_iface);
2104 		if (!pmd->remote_if_index) {
2105 			TAP_LOG(ERR, "%s: failed to get %s if_index.",
2106 				pmd->name, remote_iface);
2107 			goto error_remote;
2108 		}
2109 		strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
2110 
2111 		/* Save state of remote device */
2112 		tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
2113 
2114 		/* Replicate remote MAC address */
2115 		if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
2116 			TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2117 				pmd->name, pmd->remote_iface);
2118 			goto error_remote;
2119 		}
2120 		rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
2121 			   RTE_ETHER_ADDR_LEN);
2122 		/* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
2123 		if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
2124 			TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2125 				pmd->name, remote_iface);
2126 			goto error_remote;
2127 		}
2128 
2129 		/*
2130 		 * Flush usually returns negative value because it tries to
2131 		 * delete every QDISC (and on a running device, one QDISC at
2132 		 * least is needed). Ignore negative return value.
2133 		 */
2134 		qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
2135 		if (qdisc_create_ingress(pmd->nlsk_fd,
2136 					 pmd->remote_if_index) < 0) {
2137 			TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2138 				pmd->remote_iface);
2139 			goto error_remote;
2140 		}
2141 		LIST_INIT(&pmd->implicit_flows);
2142 		if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
2143 		    tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
2144 		    tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
2145 		    tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
2146 			TAP_LOG(ERR,
2147 				"%s: failed to create implicit rules.",
2148 				pmd->name);
2149 			goto error_remote;
2150 		}
2151 	}
2152 
2153 	rte_eth_dev_probing_finish(dev);
2154 	return 0;
2155 
2156 disable_rte_flow:
2157 	TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2158 		strerror(errno), errno);
2159 	if (strlen(remote_iface)) {
2160 		TAP_LOG(ERR, "Remote feature requires flow support.");
2161 		goto error_exit;
2162 	}
2163 	rte_eth_dev_probing_finish(dev);
2164 	return 0;
2165 
2166 error_remote:
2167 	TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2168 		strerror(errno), errno);
2169 	tap_flow_implicit_flush(pmd, NULL);
2170 
2171 error_exit:
2172 	if (pmd->nlsk_fd != -1)
2173 		close(pmd->nlsk_fd);
2174 	if (pmd->ka_fd != -1)
2175 		close(pmd->ka_fd);
2176 	if (pmd->ioctl_sock != -1)
2177 		close(pmd->ioctl_sock);
2178 	/* mac_addrs must not be freed alone because part of dev_private */
2179 	dev->data->mac_addrs = NULL;
2180 	rte_eth_dev_release_port(dev);
2181 	rte_intr_instance_free(pmd->intr_handle);
2182 
2183 error_exit_nodev:
2184 	TAP_LOG(ERR, "%s Unable to initialize %s",
2185 		tuntap_name, rte_vdev_device_name(vdev));
2186 
2187 	return -EINVAL;
2188 }
2189 
2190 /* make sure name is a possible Linux network device name */
2191 static bool
2192 is_valid_iface(const char *name)
2193 {
2194 	if (*name == '\0')
2195 		return false;
2196 
2197 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2198 		return false;
2199 
2200 	while (*name) {
2201 		if (*name == '/' || *name == ':' || isspace(*name))
2202 			return false;
2203 		name++;
2204 	}
2205 	return true;
2206 }
2207 
2208 static int
2209 set_interface_name(const char *key __rte_unused,
2210 		   const char *value,
2211 		   void *extra_args)
2212 {
2213 	char *name = (char *)extra_args;
2214 
2215 	if (value) {
2216 		if (!is_valid_iface(value)) {
2217 			TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2218 				value);
2219 			return -1;
2220 		}
2221 		strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2222 	} else {
2223 		/* use tap%d which causes kernel to choose next available */
2224 		strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2225 	}
2226 	return 0;
2227 }
2228 
2229 static int
2230 set_remote_iface(const char *key __rte_unused,
2231 		 const char *value,
2232 		 void *extra_args)
2233 {
2234 	char *name = (char *)extra_args;
2235 
2236 	if (value) {
2237 		if (!is_valid_iface(value)) {
2238 			TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2239 				value);
2240 			return -1;
2241 		}
2242 		strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static int parse_user_mac(struct rte_ether_addr *user_mac,
2249 		const char *value)
2250 {
2251 	unsigned int index = 0;
2252 	char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2253 
2254 	if (user_mac == NULL || value == NULL)
2255 		return 0;
2256 
2257 	strlcpy(mac_temp, value, sizeof(mac_temp));
2258 	mac_byte = strtok(mac_temp, ":");
2259 
2260 	while ((mac_byte != NULL) &&
2261 			(strlen(mac_byte) <= 2) &&
2262 			(strlen(mac_byte) == strspn(mac_byte,
2263 					ETH_TAP_CMP_MAC_FMT))) {
2264 		user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2265 		mac_byte = strtok(NULL, ":");
2266 	}
2267 
2268 	return index;
2269 }
2270 
2271 static int
2272 set_mac_type(const char *key __rte_unused,
2273 	     const char *value,
2274 	     void *extra_args)
2275 {
2276 	struct rte_ether_addr *user_mac = extra_args;
2277 
2278 	if (!value)
2279 		return 0;
2280 
2281 	if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2282 		static int iface_idx;
2283 
2284 		/* fixed mac = 00:64:74:61:70:<iface_idx> */
2285 		memcpy((char *)user_mac->addr_bytes, "\0dtap",
2286 			RTE_ETHER_ADDR_LEN);
2287 		user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2288 			iface_idx++ + '0';
2289 		goto success;
2290 	}
2291 
2292 	if (parse_user_mac(user_mac, value) != 6)
2293 		goto error;
2294 success:
2295 	TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2296 	return 0;
2297 
2298 error:
2299 	TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2300 		value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2301 	return -1;
2302 }
2303 
2304 /*
2305  * Open a TUN interface device. TUN PMD
2306  * 1) sets tap_type as false
2307  * 2) intakes iface as argument.
2308  * 3) as interface is virtual set speed to 10G
2309  */
2310 static int
2311 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2312 {
2313 	const char *name, *params;
2314 	int ret;
2315 	struct rte_kvargs *kvlist = NULL;
2316 	char tun_name[RTE_ETH_NAME_MAX_LEN];
2317 	char remote_iface[RTE_ETH_NAME_MAX_LEN];
2318 	struct rte_eth_dev *eth_dev;
2319 
2320 	name = rte_vdev_device_name(dev);
2321 	params = rte_vdev_device_args(dev);
2322 	memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2323 
2324 	if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2325 	    strlen(params) == 0) {
2326 		eth_dev = rte_eth_dev_attach_secondary(name);
2327 		if (!eth_dev) {
2328 			TAP_LOG(ERR, "Failed to probe %s", name);
2329 			return -1;
2330 		}
2331 		eth_dev->dev_ops = &ops;
2332 		eth_dev->device = &dev->device;
2333 		rte_eth_dev_probing_finish(eth_dev);
2334 		return 0;
2335 	}
2336 
2337 	/* use tun%d which causes kernel to choose next available */
2338 	strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2339 
2340 	if (params && (params[0] != '\0')) {
2341 		TAP_LOG(DEBUG, "parameters (%s)", params);
2342 
2343 		kvlist = rte_kvargs_parse(params, valid_arguments);
2344 		if (kvlist) {
2345 			if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2346 				ret = rte_kvargs_process(kvlist,
2347 					ETH_TAP_IFACE_ARG,
2348 					&set_interface_name,
2349 					tun_name);
2350 
2351 				if (ret == -1)
2352 					goto leave;
2353 			}
2354 		}
2355 	}
2356 	pmd_link.link_speed = RTE_ETH_SPEED_NUM_10G;
2357 
2358 	TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2359 
2360 	ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2361 				 ETH_TUNTAP_TYPE_TUN);
2362 
2363 leave:
2364 	if (ret == -1) {
2365 		TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2366 			name, tun_name);
2367 	}
2368 	rte_kvargs_free(kvlist);
2369 
2370 	return ret;
2371 }
2372 
2373 /* Request queue file descriptors from secondary to primary. */
2374 static int
2375 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2376 {
2377 	int ret;
2378 	struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2379 	struct rte_mp_msg request, *reply;
2380 	struct rte_mp_reply replies;
2381 	struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2382 	struct ipc_queues *reply_param;
2383 	struct pmd_process_private *process_private = dev->process_private;
2384 	int queue, fd_iterator;
2385 
2386 	/* Prepare the request */
2387 	memset(&request, 0, sizeof(request));
2388 	strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2389 	strlcpy(request_param->port_name, port_name,
2390 		sizeof(request_param->port_name));
2391 	request.len_param = sizeof(*request_param);
2392 	/* Send request and receive reply */
2393 	ret = rte_mp_request_sync(&request, &replies, &timeout);
2394 	if (ret < 0 || replies.nb_received != 1) {
2395 		TAP_LOG(ERR, "Failed to request queues from primary: %d",
2396 			rte_errno);
2397 		return -1;
2398 	}
2399 	reply = &replies.msgs[0];
2400 	reply_param = (struct ipc_queues *)reply->param;
2401 	TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2402 
2403 	/* Attach the queues from received file descriptors */
2404 	if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2405 		TAP_LOG(ERR, "Unexpected number of fds received");
2406 		return -1;
2407 	}
2408 
2409 	dev->data->nb_rx_queues = reply_param->rxq_count;
2410 	dev->data->nb_tx_queues = reply_param->txq_count;
2411 	fd_iterator = 0;
2412 	for (queue = 0; queue < reply_param->rxq_count; queue++)
2413 		process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2414 	for (queue = 0; queue < reply_param->txq_count; queue++)
2415 		process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2416 	free(reply);
2417 	return 0;
2418 }
2419 
2420 /* Send the queue file descriptors from the primary process to secondary. */
2421 static int
2422 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2423 {
2424 	struct rte_eth_dev *dev;
2425 	struct pmd_process_private *process_private;
2426 	struct rte_mp_msg reply;
2427 	const struct ipc_queues *request_param =
2428 		(const struct ipc_queues *)request->param;
2429 	struct ipc_queues *reply_param =
2430 		(struct ipc_queues *)reply.param;
2431 	int queue;
2432 
2433 	/* Get requested port */
2434 	TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2435 	dev = rte_eth_dev_get_by_name(request_param->port_name);
2436 	if (!dev) {
2437 		TAP_LOG(ERR, "Failed to get port id for %s",
2438 			request_param->port_name);
2439 		return -1;
2440 	}
2441 	process_private = dev->process_private;
2442 
2443 	/* Fill file descriptors for all queues */
2444 	reply.num_fds = 0;
2445 	reply_param->rxq_count = 0;
2446 	if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2447 			RTE_MP_MAX_FD_NUM){
2448 		TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2449 		return -1;
2450 	}
2451 
2452 	for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2453 		reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2454 		reply_param->rxq_count++;
2455 	}
2456 	RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2457 
2458 	reply_param->txq_count = 0;
2459 	for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2460 		reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2461 		reply_param->txq_count++;
2462 	}
2463 	RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2464 
2465 	/* Send reply */
2466 	strlcpy(reply.name, request->name, sizeof(reply.name));
2467 	strlcpy(reply_param->port_name, request_param->port_name,
2468 		sizeof(reply_param->port_name));
2469 	reply.len_param = sizeof(*reply_param);
2470 	if (rte_mp_reply(&reply, peer) < 0) {
2471 		TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2472 		return -1;
2473 	}
2474 	return 0;
2475 }
2476 
2477 /* Open a TAP interface device.
2478  */
2479 static int
2480 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2481 {
2482 	const char *name, *params;
2483 	int ret;
2484 	struct rte_kvargs *kvlist = NULL;
2485 	int speed;
2486 	char tap_name[RTE_ETH_NAME_MAX_LEN];
2487 	char remote_iface[RTE_ETH_NAME_MAX_LEN];
2488 	struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2489 	struct rte_eth_dev *eth_dev;
2490 	int tap_devices_count_increased = 0;
2491 
2492 	name = rte_vdev_device_name(dev);
2493 	params = rte_vdev_device_args(dev);
2494 
2495 	if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2496 		eth_dev = rte_eth_dev_attach_secondary(name);
2497 		if (!eth_dev) {
2498 			TAP_LOG(ERR, "Failed to probe %s", name);
2499 			return -1;
2500 		}
2501 		eth_dev->dev_ops = &ops;
2502 		eth_dev->device = &dev->device;
2503 		eth_dev->rx_pkt_burst = pmd_rx_burst;
2504 		eth_dev->tx_pkt_burst = pmd_tx_burst;
2505 		if (!rte_eal_primary_proc_alive(NULL)) {
2506 			TAP_LOG(ERR, "Primary process is missing");
2507 			return -1;
2508 		}
2509 		eth_dev->process_private = (struct pmd_process_private *)
2510 			rte_zmalloc_socket(name,
2511 				sizeof(struct pmd_process_private),
2512 				RTE_CACHE_LINE_SIZE,
2513 				eth_dev->device->numa_node);
2514 		if (eth_dev->process_private == NULL) {
2515 			TAP_LOG(ERR,
2516 				"Failed to alloc memory for process private");
2517 			return -1;
2518 		}
2519 
2520 		ret = tap_mp_attach_queues(name, eth_dev);
2521 		if (ret != 0)
2522 			return -1;
2523 
2524 		if (!tap_devices_count) {
2525 			ret = rte_mp_action_register(TAP_MP_REQ_START_RXTX, tap_mp_req_start_rxtx);
2526 			if (ret < 0 && rte_errno != ENOTSUP) {
2527 				TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2528 					strerror(rte_errno));
2529 				return -1;
2530 			}
2531 		}
2532 		tap_devices_count++;
2533 		rte_eth_dev_probing_finish(eth_dev);
2534 		return 0;
2535 	}
2536 
2537 	speed = RTE_ETH_SPEED_NUM_10G;
2538 
2539 	/* use tap%d which causes kernel to choose next available */
2540 	strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2541 	memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2542 
2543 	if (params && (params[0] != '\0')) {
2544 		TAP_LOG(DEBUG, "parameters (%s)", params);
2545 
2546 		kvlist = rte_kvargs_parse(params, valid_arguments);
2547 		if (kvlist) {
2548 			if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2549 				ret = rte_kvargs_process(kvlist,
2550 							 ETH_TAP_IFACE_ARG,
2551 							 &set_interface_name,
2552 							 tap_name);
2553 				if (ret == -1)
2554 					goto leave;
2555 			}
2556 
2557 			if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2558 				ret = rte_kvargs_process(kvlist,
2559 							 ETH_TAP_REMOTE_ARG,
2560 							 &set_remote_iface,
2561 							 remote_iface);
2562 				if (ret == -1)
2563 					goto leave;
2564 			}
2565 
2566 			if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2567 				ret = rte_kvargs_process(kvlist,
2568 							 ETH_TAP_MAC_ARG,
2569 							 &set_mac_type,
2570 							 &user_mac);
2571 				if (ret == -1)
2572 					goto leave;
2573 			}
2574 		}
2575 	}
2576 	pmd_link.link_speed = speed;
2577 
2578 	TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2579 
2580 	/* Register IPC feed callback */
2581 	if (!tap_devices_count) {
2582 		ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2583 		if (ret < 0 && rte_errno != ENOTSUP) {
2584 			TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2585 				strerror(rte_errno));
2586 			goto leave;
2587 		}
2588 	}
2589 	tap_devices_count++;
2590 	tap_devices_count_increased = 1;
2591 	ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2592 		ETH_TUNTAP_TYPE_TAP);
2593 
2594 leave:
2595 	if (ret == -1) {
2596 		TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2597 			name, tap_name);
2598 		if (tap_devices_count_increased == 1) {
2599 			if (tap_devices_count == 1)
2600 				rte_mp_action_unregister(TAP_MP_KEY);
2601 			tap_devices_count--;
2602 		}
2603 	}
2604 	rte_kvargs_free(kvlist);
2605 
2606 	return ret;
2607 }
2608 
2609 /* detach a TUNTAP device.
2610  */
2611 static int
2612 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2613 {
2614 	struct rte_eth_dev *eth_dev = NULL;
2615 
2616 	/* find the ethdev entry */
2617 	eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2618 	if (!eth_dev)
2619 		return 0;
2620 
2621 	tap_dev_close(eth_dev);
2622 	rte_eth_dev_release_port(eth_dev);
2623 
2624 	return 0;
2625 }
2626 
2627 static struct rte_vdev_driver pmd_tun_drv = {
2628 	.probe = rte_pmd_tun_probe,
2629 	.remove = rte_pmd_tap_remove,
2630 };
2631 
2632 static struct rte_vdev_driver pmd_tap_drv = {
2633 	.probe = rte_pmd_tap_probe,
2634 	.remove = rte_pmd_tap_remove,
2635 };
2636 
2637 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2638 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2639 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2640 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2641 			      ETH_TAP_IFACE_ARG "=<string> ");
2642 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2643 			      ETH_TAP_IFACE_ARG "=<string> "
2644 			      ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2645 			      ETH_TAP_REMOTE_ARG "=<string>");
2646 RTE_LOG_REGISTER_DEFAULT(tap_logtype, NOTICE);
2647