xref: /dpdk/drivers/net/tap/rte_eth_tap.c (revision 0809d870)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_atomic.h>
6 #include <rte_branch_prediction.h>
7 #include <rte_byteorder.h>
8 #include <rte_common.h>
9 #include <rte_mbuf.h>
10 #include <ethdev_driver.h>
11 #include <ethdev_vdev.h>
12 #include <rte_malloc.h>
13 #include <rte_bus_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_net.h>
16 #include <rte_debug.h>
17 #include <rte_ip.h>
18 #include <rte_string_fns.h>
19 #include <rte_ethdev.h>
20 #include <rte_errno.h>
21 #include <rte_cycles.h>
22 
23 #include <sys/types.h>
24 #include <sys/stat.h>
25 #include <sys/socket.h>
26 #include <sys/ioctl.h>
27 #include <sys/utsname.h>
28 #include <sys/mman.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdbool.h>
32 #include <stdint.h>
33 #include <sys/uio.h>
34 #include <unistd.h>
35 #include <arpa/inet.h>
36 #include <net/if.h>
37 #include <linux/if_tun.h>
38 #include <linux/if_ether.h>
39 #include <fcntl.h>
40 #include <ctype.h>
41 
42 #include <tap_rss.h>
43 #include <rte_eth_tap.h>
44 #include <tap_flow.h>
45 #include <tap_netlink.h>
46 #include <tap_tcmsgs.h>
47 
48 /* Linux based path to the TUN device */
49 #define TUN_TAP_DEV_PATH        "/dev/net/tun"
50 #define DEFAULT_TAP_NAME        "dtap"
51 #define DEFAULT_TUN_NAME        "dtun"
52 
53 #define ETH_TAP_IFACE_ARG       "iface"
54 #define ETH_TAP_REMOTE_ARG      "remote"
55 #define ETH_TAP_MAC_ARG         "mac"
56 #define ETH_TAP_MAC_FIXED       "fixed"
57 
58 #define ETH_TAP_USR_MAC_FMT     "xx:xx:xx:xx:xx:xx"
59 #define ETH_TAP_CMP_MAC_FMT     "0123456789ABCDEFabcdef"
60 #define ETH_TAP_MAC_ARG_FMT     ETH_TAP_MAC_FIXED "|" ETH_TAP_USR_MAC_FMT
61 
62 #define TAP_GSO_MBUFS_PER_CORE	128
63 #define TAP_GSO_MBUF_SEG_SIZE	128
64 #define TAP_GSO_MBUF_CACHE_SIZE	4
65 #define TAP_GSO_MBUFS_NUM \
66 	(TAP_GSO_MBUFS_PER_CORE * TAP_GSO_MBUF_CACHE_SIZE)
67 
68 /* IPC key for queue fds sync */
69 #define TAP_MP_KEY "tap_mp_sync_queues"
70 #define TAP_MP_REQ_START_RXTX "tap_mp_req_start_rxtx"
71 
72 #define TAP_IOV_DEFAULT_MAX 1024
73 
74 #define TAP_RX_OFFLOAD (RTE_ETH_RX_OFFLOAD_SCATTER |	\
75 			RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |	\
76 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM |	\
77 			RTE_ETH_RX_OFFLOAD_TCP_CKSUM)
78 
79 #define TAP_TX_OFFLOAD (RTE_ETH_TX_OFFLOAD_MULTI_SEGS |	\
80 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |	\
81 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |	\
82 			RTE_ETH_TX_OFFLOAD_TCP_CKSUM |	\
83 			RTE_ETH_TX_OFFLOAD_TCP_TSO)
84 
85 static int tap_devices_count;
86 
87 static const char *tuntap_types[ETH_TUNTAP_TYPE_MAX] = {
88 	"UNKNOWN", "TUN", "TAP"
89 };
90 
91 static const char *valid_arguments[] = {
92 	ETH_TAP_IFACE_ARG,
93 	ETH_TAP_REMOTE_ARG,
94 	ETH_TAP_MAC_ARG,
95 	NULL
96 };
97 
98 static volatile uint32_t tap_trigger;	/* Rx trigger */
99 
100 static struct rte_eth_link pmd_link = {
101 	.link_speed = RTE_ETH_SPEED_NUM_10G,
102 	.link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
103 	.link_status = RTE_ETH_LINK_DOWN,
104 	.link_autoneg = RTE_ETH_LINK_FIXED,
105 };
106 
107 static void
tap_trigger_cb(int sig __rte_unused)108 tap_trigger_cb(int sig __rte_unused)
109 {
110 	/* Valid trigger values are nonzero */
111 	tap_trigger = (tap_trigger + 1) | 0x80000000;
112 }
113 
114 /* Specifies on what netdevices the ioctl should be applied */
115 enum ioctl_mode {
116 	LOCAL_AND_REMOTE,
117 	LOCAL_ONLY,
118 	REMOTE_ONLY,
119 };
120 
121 /* Message header to synchronize queues via IPC */
122 struct ipc_queues {
123 	char port_name[RTE_DEV_NAME_MAX_LEN];
124 	int rxq_count;
125 	int txq_count;
126 	/*
127 	 * The file descriptors are in the dedicated part
128 	 * of the Unix message to be translated by the kernel.
129 	 */
130 };
131 
132 static int tap_intr_handle_set(struct rte_eth_dev *dev, int set);
133 
134 /**
135  * Tun/Tap allocation routine
136  *
137  * @param[in] pmd
138  *   Pointer to private structure.
139  *
140  * @param[in] is_keepalive
141  *   Keepalive flag
142  *
143  * @return
144  *   -1 on failure, fd on success
145  */
146 static int
tun_alloc(struct pmd_internals * pmd,int is_keepalive)147 tun_alloc(struct pmd_internals *pmd, int is_keepalive)
148 {
149 	struct ifreq ifr;
150 #ifdef IFF_MULTI_QUEUE
151 	unsigned int features;
152 #endif
153 	int fd, signo, flags;
154 
155 	memset(&ifr, 0, sizeof(struct ifreq));
156 
157 	/*
158 	 * Do not set IFF_NO_PI as packet information header will be needed
159 	 * to check if a received packet has been truncated.
160 	 */
161 	ifr.ifr_flags = (pmd->type == ETH_TUNTAP_TYPE_TAP) ?
162 		IFF_TAP : IFF_TUN | IFF_POINTOPOINT;
163 	strlcpy(ifr.ifr_name, pmd->name, IFNAMSIZ);
164 
165 	fd = open(TUN_TAP_DEV_PATH, O_RDWR);
166 	if (fd < 0) {
167 		TAP_LOG(ERR, "Unable to open %s interface", TUN_TAP_DEV_PATH);
168 		goto error;
169 	}
170 
171 #ifdef IFF_MULTI_QUEUE
172 	/* Grab the TUN features to verify we can work multi-queue */
173 	if (ioctl(fd, TUNGETFEATURES, &features) < 0) {
174 		TAP_LOG(ERR, "unable to get TUN/TAP features");
175 		goto error;
176 	}
177 	TAP_LOG(DEBUG, "%s Features %08x", TUN_TAP_DEV_PATH, features);
178 
179 	if (features & IFF_MULTI_QUEUE) {
180 		TAP_LOG(DEBUG, "  Multi-queue support for %d queues",
181 			RTE_PMD_TAP_MAX_QUEUES);
182 		ifr.ifr_flags |= IFF_MULTI_QUEUE;
183 	} else
184 #endif
185 	{
186 		ifr.ifr_flags |= IFF_ONE_QUEUE;
187 		TAP_LOG(DEBUG, "  Single queue only support");
188 	}
189 
190 	/* Set the TUN/TAP configuration and set the name if needed */
191 	if (ioctl(fd, TUNSETIFF, (void *)&ifr) < 0) {
192 		TAP_LOG(WARNING, "Unable to set TUNSETIFF for %s: %s",
193 			ifr.ifr_name, strerror(errno));
194 		goto error;
195 	}
196 
197 	/*
198 	 * Name passed to kernel might be wildcard like dtun%d
199 	 * and need to find the resulting device.
200 	 */
201 	TAP_LOG(DEBUG, "Device name is '%s'", ifr.ifr_name);
202 	strlcpy(pmd->name, ifr.ifr_name, RTE_ETH_NAME_MAX_LEN);
203 
204 	if (is_keepalive) {
205 		/*
206 		 * Detach the TUN/TAP keep-alive queue
207 		 * to avoid traffic through it
208 		 */
209 		ifr.ifr_flags = IFF_DETACH_QUEUE;
210 		if (ioctl(fd, TUNSETQUEUE, (void *)&ifr) < 0) {
211 			TAP_LOG(WARNING,
212 				"Unable to detach keep-alive queue for %s: %s",
213 				ifr.ifr_name, strerror(errno));
214 			goto error;
215 		}
216 	}
217 
218 	flags = fcntl(fd, F_GETFL);
219 	if (flags == -1) {
220 		TAP_LOG(WARNING,
221 			"Unable to get %s current flags\n",
222 			ifr.ifr_name);
223 		goto error;
224 	}
225 
226 	/* Always set the file descriptor to non-blocking */
227 	flags |= O_NONBLOCK;
228 	if (fcntl(fd, F_SETFL, flags) < 0) {
229 		TAP_LOG(WARNING,
230 			"Unable to set %s to nonblocking: %s",
231 			ifr.ifr_name, strerror(errno));
232 		goto error;
233 	}
234 
235 	/* Find a free realtime signal */
236 	for (signo = SIGRTMIN + 1; signo < SIGRTMAX; signo++) {
237 		struct sigaction sa;
238 
239 		if (sigaction(signo, NULL, &sa) == -1) {
240 			TAP_LOG(WARNING,
241 				"Unable to get current rt-signal %d handler",
242 				signo);
243 			goto error;
244 		}
245 
246 		/* Already have the handler we want on this signal  */
247 		if (sa.sa_handler == tap_trigger_cb)
248 			break;
249 
250 		/* Is handler in use by application */
251 		if (sa.sa_handler != SIG_DFL) {
252 			TAP_LOG(DEBUG,
253 				"Skipping used rt-signal %d", signo);
254 			continue;
255 		}
256 
257 		sa = (struct sigaction) {
258 			.sa_flags = SA_RESTART,
259 			.sa_handler = tap_trigger_cb,
260 		};
261 
262 		if (sigaction(signo, &sa, NULL) == -1) {
263 			TAP_LOG(WARNING,
264 				"Unable to set rt-signal %d handler\n", signo);
265 			goto error;
266 		}
267 
268 		/* Found a good signal to use */
269 		TAP_LOG(DEBUG,
270 			"Using rt-signal %d", signo);
271 		break;
272 	}
273 
274 	if (signo == SIGRTMAX) {
275 		TAP_LOG(WARNING, "All rt-signals are in use\n");
276 
277 		/* Disable trigger globally in case of error */
278 		tap_trigger = 0;
279 		TAP_LOG(NOTICE, "No Rx trigger signal available\n");
280 	} else {
281 		/* Enable signal on file descriptor */
282 		if (fcntl(fd, F_SETSIG, signo) < 0) {
283 			TAP_LOG(WARNING, "Unable to set signo %d for fd %d: %s",
284 				signo, fd, strerror(errno));
285 			goto error;
286 		}
287 		if (fcntl(fd, F_SETFL, flags | O_ASYNC) < 0) {
288 			TAP_LOG(WARNING, "Unable to set fcntl flags: %s",
289 				strerror(errno));
290 			goto error;
291 		}
292 
293 		if (fcntl(fd, F_SETOWN, getpid()) < 0) {
294 			TAP_LOG(WARNING, "Unable to set fcntl owner: %s",
295 				strerror(errno));
296 			goto error;
297 		}
298 	}
299 	return fd;
300 
301 error:
302 	if (fd >= 0)
303 		close(fd);
304 	return -1;
305 }
306 
307 static void
tap_verify_csum(struct rte_mbuf * mbuf)308 tap_verify_csum(struct rte_mbuf *mbuf)
309 {
310 	uint32_t l2 = mbuf->packet_type & RTE_PTYPE_L2_MASK;
311 	uint32_t l3 = mbuf->packet_type & RTE_PTYPE_L3_MASK;
312 	uint32_t l4 = mbuf->packet_type & RTE_PTYPE_L4_MASK;
313 	unsigned int l2_len = sizeof(struct rte_ether_hdr);
314 	unsigned int l3_len;
315 	uint16_t cksum = 0;
316 	void *l3_hdr;
317 	void *l4_hdr;
318 	struct rte_udp_hdr *udp_hdr;
319 
320 	if (l2 == RTE_PTYPE_L2_ETHER_VLAN)
321 		l2_len += 4;
322 	else if (l2 == RTE_PTYPE_L2_ETHER_QINQ)
323 		l2_len += 8;
324 	/* Don't verify checksum for packets with discontinuous L2 header */
325 	if (unlikely(l2_len + sizeof(struct rte_ipv4_hdr) >
326 		     rte_pktmbuf_data_len(mbuf)))
327 		return;
328 	l3_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len);
329 	if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
330 		struct rte_ipv4_hdr *iph = l3_hdr;
331 
332 		l3_len = rte_ipv4_hdr_len(iph);
333 		if (unlikely(l2_len + l3_len > rte_pktmbuf_data_len(mbuf)))
334 			return;
335 		/* check that the total length reported by header is not
336 		 * greater than the total received size
337 		 */
338 		if (l2_len + rte_be_to_cpu_16(iph->total_length) >
339 				rte_pktmbuf_data_len(mbuf))
340 			return;
341 
342 		cksum = ~rte_raw_cksum(iph, l3_len);
343 		mbuf->ol_flags |= cksum ?
344 			RTE_MBUF_F_RX_IP_CKSUM_BAD :
345 			RTE_MBUF_F_RX_IP_CKSUM_GOOD;
346 	} else if (l3 == RTE_PTYPE_L3_IPV6) {
347 		struct rte_ipv6_hdr *iph = l3_hdr;
348 
349 		l3_len = sizeof(struct rte_ipv6_hdr);
350 		/* check that the total length reported by header is not
351 		 * greater than the total received size
352 		 */
353 		if (l2_len + l3_len + rte_be_to_cpu_16(iph->payload_len) >
354 				rte_pktmbuf_data_len(mbuf))
355 			return;
356 	} else {
357 		/* - RTE_PTYPE_L3_IPV4_EXT_UNKNOWN cannot happen because
358 		 *   mbuf->packet_type is filled by rte_net_get_ptype() which
359 		 *   never returns this value.
360 		 * - IPv6 extensions are not supported.
361 		 */
362 		return;
363 	}
364 	if (l4 == RTE_PTYPE_L4_UDP || l4 == RTE_PTYPE_L4_TCP) {
365 		int cksum_ok;
366 
367 		l4_hdr = rte_pktmbuf_mtod_offset(mbuf, void *, l2_len + l3_len);
368 		/* Don't verify checksum for multi-segment packets. */
369 		if (mbuf->nb_segs > 1)
370 			return;
371 		if (l3 == RTE_PTYPE_L3_IPV4 || l3 == RTE_PTYPE_L3_IPV4_EXT) {
372 			if (l4 == RTE_PTYPE_L4_UDP) {
373 				udp_hdr = (struct rte_udp_hdr *)l4_hdr;
374 				if (udp_hdr->dgram_cksum == 0) {
375 					/*
376 					 * For IPv4, a zero UDP checksum
377 					 * indicates that the sender did not
378 					 * generate one [RFC 768].
379 					 */
380 					mbuf->ol_flags |= RTE_MBUF_F_RX_L4_CKSUM_NONE;
381 					return;
382 				}
383 			}
384 			cksum_ok = !rte_ipv4_udptcp_cksum_verify(l3_hdr,
385 								 l4_hdr);
386 		} else { /* l3 == RTE_PTYPE_L3_IPV6, checked above */
387 			cksum_ok = !rte_ipv6_udptcp_cksum_verify(l3_hdr,
388 								 l4_hdr);
389 		}
390 		mbuf->ol_flags |= cksum_ok ?
391 			RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
392 	}
393 }
394 
395 static void
tap_rxq_pool_free(struct rte_mbuf * pool)396 tap_rxq_pool_free(struct rte_mbuf *pool)
397 {
398 	struct rte_mbuf *mbuf = pool;
399 	uint16_t nb_segs = 1;
400 
401 	if (mbuf == NULL)
402 		return;
403 
404 	while (mbuf->next) {
405 		mbuf = mbuf->next;
406 		nb_segs++;
407 	}
408 	pool->nb_segs = nb_segs;
409 	rte_pktmbuf_free(pool);
410 }
411 
412 /* Callback to handle the rx burst of packets to the correct interface and
413  * file descriptor(s) in a multi-queue setup.
414  */
415 static uint16_t
pmd_rx_burst(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)416 pmd_rx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
417 {
418 	struct rx_queue *rxq = queue;
419 	struct pmd_process_private *process_private;
420 	uint16_t num_rx;
421 	unsigned long num_rx_bytes = 0;
422 	uint32_t trigger = tap_trigger;
423 
424 	if (trigger == rxq->trigger_seen)
425 		return 0;
426 
427 	process_private = rte_eth_devices[rxq->in_port].process_private;
428 	for (num_rx = 0; num_rx < nb_pkts; ) {
429 		struct rte_mbuf *mbuf = rxq->pool;
430 		struct rte_mbuf *seg = NULL;
431 		struct rte_mbuf *new_tail = NULL;
432 		uint16_t data_off = rte_pktmbuf_headroom(mbuf);
433 		int len;
434 
435 		len = readv(process_private->rxq_fds[rxq->queue_id],
436 			*rxq->iovecs,
437 			1 + (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_SCATTER ?
438 			     rxq->nb_rx_desc : 1));
439 		if (len < (int)sizeof(struct tun_pi))
440 			break;
441 
442 		/* Packet couldn't fit in the provided mbuf */
443 		if (unlikely(rxq->pi.flags & TUN_PKT_STRIP)) {
444 			rxq->stats.ierrors++;
445 			continue;
446 		}
447 
448 		len -= sizeof(struct tun_pi);
449 
450 		mbuf->pkt_len = len;
451 		mbuf->port = rxq->in_port;
452 		while (1) {
453 			struct rte_mbuf *buf = rte_pktmbuf_alloc(rxq->mp);
454 
455 			if (unlikely(!buf)) {
456 				rxq->stats.rx_nombuf++;
457 				/* No new buf has been allocated: do nothing */
458 				if (!new_tail || !seg)
459 					goto end;
460 
461 				seg->next = NULL;
462 				tap_rxq_pool_free(mbuf);
463 
464 				goto end;
465 			}
466 			seg = seg ? seg->next : mbuf;
467 			if (rxq->pool == mbuf)
468 				rxq->pool = buf;
469 			if (new_tail)
470 				new_tail->next = buf;
471 			new_tail = buf;
472 			new_tail->next = seg->next;
473 
474 			/* iovecs[0] is reserved for packet info (pi) */
475 			(*rxq->iovecs)[mbuf->nb_segs].iov_len =
476 				buf->buf_len - data_off;
477 			(*rxq->iovecs)[mbuf->nb_segs].iov_base =
478 				(char *)buf->buf_addr + data_off;
479 
480 			seg->data_len = RTE_MIN(seg->buf_len - data_off, len);
481 			seg->data_off = data_off;
482 
483 			len -= seg->data_len;
484 			if (len <= 0)
485 				break;
486 			mbuf->nb_segs++;
487 			/* First segment has headroom, not the others */
488 			data_off = 0;
489 		}
490 		seg->next = NULL;
491 		mbuf->packet_type = rte_net_get_ptype(mbuf, NULL,
492 						      RTE_PTYPE_ALL_MASK);
493 		if (rxq->rxmode->offloads & RTE_ETH_RX_OFFLOAD_CHECKSUM)
494 			tap_verify_csum(mbuf);
495 
496 		/* account for the receive frame */
497 		bufs[num_rx++] = mbuf;
498 		num_rx_bytes += mbuf->pkt_len;
499 	}
500 end:
501 	rxq->stats.ipackets += num_rx;
502 	rxq->stats.ibytes += num_rx_bytes;
503 
504 	if (trigger && num_rx < nb_pkts)
505 		rxq->trigger_seen = trigger;
506 
507 	return num_rx;
508 }
509 
510 /* Finalize l4 checksum calculation */
511 static void
tap_tx_l4_cksum(uint16_t * l4_cksum,uint16_t l4_phdr_cksum,uint32_t l4_raw_cksum)512 tap_tx_l4_cksum(uint16_t *l4_cksum, uint16_t l4_phdr_cksum,
513 		uint32_t l4_raw_cksum)
514 {
515 	if (l4_cksum) {
516 		uint32_t cksum;
517 
518 		cksum = __rte_raw_cksum_reduce(l4_raw_cksum);
519 		cksum += l4_phdr_cksum;
520 
521 		cksum = ((cksum & 0xffff0000) >> 16) + (cksum & 0xffff);
522 		cksum = (~cksum) & 0xffff;
523 		if (cksum == 0)
524 			cksum = 0xffff;
525 		*l4_cksum = cksum;
526 	}
527 }
528 
529 /* Accumulate L4 raw checksums */
530 static void
tap_tx_l4_add_rcksum(char * l4_data,unsigned int l4_len,uint16_t * l4_cksum,uint32_t * l4_raw_cksum)531 tap_tx_l4_add_rcksum(char *l4_data, unsigned int l4_len, uint16_t *l4_cksum,
532 			uint32_t *l4_raw_cksum)
533 {
534 	if (l4_cksum == NULL)
535 		return;
536 
537 	*l4_raw_cksum = __rte_raw_cksum(l4_data, l4_len, *l4_raw_cksum);
538 }
539 
540 /* L3 and L4 pseudo headers checksum offloads */
541 static void
tap_tx_l3_cksum(char * packet,uint64_t ol_flags,unsigned int l2_len,unsigned int l3_len,unsigned int l4_len,uint16_t ** l4_cksum,uint16_t * l4_phdr_cksum,uint32_t * l4_raw_cksum)542 tap_tx_l3_cksum(char *packet, uint64_t ol_flags, unsigned int l2_len,
543 		unsigned int l3_len, unsigned int l4_len, uint16_t **l4_cksum,
544 		uint16_t *l4_phdr_cksum, uint32_t *l4_raw_cksum)
545 {
546 	void *l3_hdr = packet + l2_len;
547 
548 	if (ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4)) {
549 		struct rte_ipv4_hdr *iph = l3_hdr;
550 		uint16_t cksum;
551 
552 		iph->hdr_checksum = 0;
553 		cksum = rte_raw_cksum(iph, l3_len);
554 		iph->hdr_checksum = (cksum == 0xffff) ? cksum : ~cksum;
555 	}
556 	if (ol_flags & RTE_MBUF_F_TX_L4_MASK) {
557 		void *l4_hdr;
558 
559 		l4_hdr = packet + l2_len + l3_len;
560 		if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM)
561 			*l4_cksum = &((struct rte_udp_hdr *)l4_hdr)->dgram_cksum;
562 		else if ((ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM)
563 			*l4_cksum = &((struct rte_tcp_hdr *)l4_hdr)->cksum;
564 		else
565 			return;
566 		**l4_cksum = 0;
567 		if (ol_flags & RTE_MBUF_F_TX_IPV4)
568 			*l4_phdr_cksum = rte_ipv4_phdr_cksum(l3_hdr, 0);
569 		else
570 			*l4_phdr_cksum = rte_ipv6_phdr_cksum(l3_hdr, 0);
571 		*l4_raw_cksum = __rte_raw_cksum(l4_hdr, l4_len, 0);
572 	}
573 }
574 
575 static inline int
tap_write_mbufs(struct tx_queue * txq,uint16_t num_mbufs,struct rte_mbuf ** pmbufs,uint16_t * num_packets,unsigned long * num_tx_bytes)576 tap_write_mbufs(struct tx_queue *txq, uint16_t num_mbufs,
577 			struct rte_mbuf **pmbufs,
578 			uint16_t *num_packets, unsigned long *num_tx_bytes)
579 {
580 	int i;
581 	uint16_t l234_hlen;
582 	struct pmd_process_private *process_private;
583 
584 	process_private = rte_eth_devices[txq->out_port].process_private;
585 
586 	for (i = 0; i < num_mbufs; i++) {
587 		struct rte_mbuf *mbuf = pmbufs[i];
588 		struct iovec iovecs[mbuf->nb_segs + 2];
589 		struct tun_pi pi = { .flags = 0, .proto = 0x00 };
590 		struct rte_mbuf *seg = mbuf;
591 		char m_copy[mbuf->data_len];
592 		int proto;
593 		int n;
594 		int j;
595 		int k; /* current index in iovecs for copying segments */
596 		uint16_t seg_len; /* length of first segment */
597 		uint16_t nb_segs;
598 		uint16_t *l4_cksum; /* l4 checksum (pseudo header + payload) */
599 		uint32_t l4_raw_cksum = 0; /* TCP/UDP payload raw checksum */
600 		uint16_t l4_phdr_cksum = 0; /* TCP/UDP pseudo header checksum */
601 		uint16_t is_cksum = 0; /* in case cksum should be offloaded */
602 
603 		l4_cksum = NULL;
604 		if (txq->type == ETH_TUNTAP_TYPE_TUN) {
605 			/*
606 			 * TUN and TAP are created with IFF_NO_PI disabled.
607 			 * For TUN PMD this mandatory as fields are used by
608 			 * Kernel tun.c to determine whether its IP or non IP
609 			 * packets.
610 			 *
611 			 * The logic fetches the first byte of data from mbuf
612 			 * then compares whether its v4 or v6. If first byte
613 			 * is 4 or 6, then protocol field is updated.
614 			 */
615 			char *buff_data = rte_pktmbuf_mtod(seg, void *);
616 			proto = (*buff_data & 0xf0);
617 			pi.proto = (proto == 0x40) ?
618 				rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4) :
619 				((proto == 0x60) ?
620 					rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6) :
621 					0x00);
622 		}
623 
624 		k = 0;
625 		iovecs[k].iov_base = &pi;
626 		iovecs[k].iov_len = sizeof(pi);
627 		k++;
628 
629 		nb_segs = mbuf->nb_segs;
630 		if (txq->csum &&
631 		    ((mbuf->ol_flags & (RTE_MBUF_F_TX_IP_CKSUM | RTE_MBUF_F_TX_IPV4) ||
632 		      (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_UDP_CKSUM ||
633 		      (mbuf->ol_flags & RTE_MBUF_F_TX_L4_MASK) == RTE_MBUF_F_TX_TCP_CKSUM))) {
634 			is_cksum = 1;
635 
636 			/* Support only packets with at least layer 4
637 			 * header included in the first segment
638 			 */
639 			seg_len = rte_pktmbuf_data_len(mbuf);
640 			l234_hlen = mbuf->l2_len + mbuf->l3_len + mbuf->l4_len;
641 			if (seg_len < l234_hlen)
642 				return -1;
643 
644 			/* To change checksums, work on a * copy of l2, l3
645 			 * headers + l4 pseudo header
646 			 */
647 			rte_memcpy(m_copy, rte_pktmbuf_mtod(mbuf, void *),
648 					l234_hlen);
649 			tap_tx_l3_cksum(m_copy, mbuf->ol_flags,
650 				       mbuf->l2_len, mbuf->l3_len, mbuf->l4_len,
651 				       &l4_cksum, &l4_phdr_cksum,
652 				       &l4_raw_cksum);
653 			iovecs[k].iov_base = m_copy;
654 			iovecs[k].iov_len = l234_hlen;
655 			k++;
656 
657 			/* Update next iovecs[] beyond l2, l3, l4 headers */
658 			if (seg_len > l234_hlen) {
659 				iovecs[k].iov_len = seg_len - l234_hlen;
660 				iovecs[k].iov_base =
661 					rte_pktmbuf_mtod(seg, char *) +
662 						l234_hlen;
663 				tap_tx_l4_add_rcksum(iovecs[k].iov_base,
664 					iovecs[k].iov_len, l4_cksum,
665 					&l4_raw_cksum);
666 				k++;
667 				nb_segs++;
668 			}
669 			seg = seg->next;
670 		}
671 
672 		for (j = k; j <= nb_segs; j++) {
673 			iovecs[j].iov_len = rte_pktmbuf_data_len(seg);
674 			iovecs[j].iov_base = rte_pktmbuf_mtod(seg, void *);
675 			if (is_cksum)
676 				tap_tx_l4_add_rcksum(iovecs[j].iov_base,
677 					iovecs[j].iov_len, l4_cksum,
678 					&l4_raw_cksum);
679 			seg = seg->next;
680 		}
681 
682 		if (is_cksum)
683 			tap_tx_l4_cksum(l4_cksum, l4_phdr_cksum, l4_raw_cksum);
684 
685 		/* copy the tx frame data */
686 		n = writev(process_private->txq_fds[txq->queue_id], iovecs, j);
687 		if (n <= 0)
688 			return -1;
689 
690 		(*num_packets)++;
691 		(*num_tx_bytes) += rte_pktmbuf_pkt_len(mbuf);
692 	}
693 	return 0;
694 }
695 
696 /* Callback to handle sending packets from the tap interface
697  */
698 static uint16_t
pmd_tx_burst(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)699 pmd_tx_burst(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
700 {
701 	struct tx_queue *txq = queue;
702 	uint16_t num_tx = 0;
703 	uint16_t num_packets = 0;
704 	unsigned long num_tx_bytes = 0;
705 	uint32_t max_size;
706 	int i;
707 
708 	if (unlikely(nb_pkts == 0))
709 		return 0;
710 
711 	struct rte_mbuf *gso_mbufs[MAX_GSO_MBUFS];
712 	max_size = *txq->mtu + (RTE_ETHER_HDR_LEN + RTE_ETHER_CRC_LEN + 4);
713 	for (i = 0; i < nb_pkts; i++) {
714 		struct rte_mbuf *mbuf_in = bufs[num_tx];
715 		struct rte_mbuf **mbuf;
716 		uint16_t num_mbufs = 0;
717 		uint16_t tso_segsz = 0;
718 		int ret;
719 		int num_tso_mbufs;
720 		uint16_t hdrs_len;
721 		uint64_t tso;
722 
723 		tso = mbuf_in->ol_flags & RTE_MBUF_F_TX_TCP_SEG;
724 		if (tso) {
725 			struct rte_gso_ctx *gso_ctx = &txq->gso_ctx;
726 
727 			/* TCP segmentation implies TCP checksum offload */
728 			mbuf_in->ol_flags |= RTE_MBUF_F_TX_TCP_CKSUM;
729 
730 			/* gso size is calculated without RTE_ETHER_CRC_LEN */
731 			hdrs_len = mbuf_in->l2_len + mbuf_in->l3_len +
732 					mbuf_in->l4_len;
733 			tso_segsz = mbuf_in->tso_segsz + hdrs_len;
734 			if (unlikely(tso_segsz == hdrs_len) ||
735 				tso_segsz > *txq->mtu) {
736 				txq->stats.errs++;
737 				break;
738 			}
739 			gso_ctx->gso_size = tso_segsz;
740 			/* 'mbuf_in' packet to segment */
741 			num_tso_mbufs = rte_gso_segment(mbuf_in,
742 				gso_ctx, /* gso control block */
743 				(struct rte_mbuf **)&gso_mbufs, /* out mbufs */
744 				RTE_DIM(gso_mbufs)); /* max tso mbufs */
745 
746 			/* ret contains the number of new created mbufs */
747 			if (num_tso_mbufs < 0)
748 				break;
749 
750 			if (num_tso_mbufs >= 1) {
751 				mbuf = gso_mbufs;
752 				num_mbufs = num_tso_mbufs;
753 			} else {
754 				/* 0 means it can be transmitted directly
755 				 * without gso.
756 				 */
757 				mbuf = &mbuf_in;
758 				num_mbufs = 1;
759 			}
760 		} else {
761 			/* stats.errs will be incremented */
762 			if (rte_pktmbuf_pkt_len(mbuf_in) > max_size)
763 				break;
764 
765 			/* ret 0 indicates no new mbufs were created */
766 			num_tso_mbufs = 0;
767 			mbuf = &mbuf_in;
768 			num_mbufs = 1;
769 		}
770 
771 		ret = tap_write_mbufs(txq, num_mbufs, mbuf,
772 				&num_packets, &num_tx_bytes);
773 		if (ret == -1) {
774 			txq->stats.errs++;
775 			/* free tso mbufs */
776 			if (num_tso_mbufs > 0)
777 				rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
778 			break;
779 		}
780 		num_tx++;
781 		/* free original mbuf */
782 		rte_pktmbuf_free(mbuf_in);
783 		/* free tso mbufs */
784 		if (num_tso_mbufs > 0)
785 			rte_pktmbuf_free_bulk(mbuf, num_tso_mbufs);
786 	}
787 
788 	txq->stats.opackets += num_packets;
789 	txq->stats.errs += nb_pkts - num_tx;
790 	txq->stats.obytes += num_tx_bytes;
791 
792 	return num_tx;
793 }
794 
795 static const char *
tap_ioctl_req2str(unsigned long request)796 tap_ioctl_req2str(unsigned long request)
797 {
798 	switch (request) {
799 	case SIOCSIFFLAGS:
800 		return "SIOCSIFFLAGS";
801 	case SIOCGIFFLAGS:
802 		return "SIOCGIFFLAGS";
803 	case SIOCGIFHWADDR:
804 		return "SIOCGIFHWADDR";
805 	case SIOCSIFHWADDR:
806 		return "SIOCSIFHWADDR";
807 	case SIOCSIFMTU:
808 		return "SIOCSIFMTU";
809 	}
810 	return "UNKNOWN";
811 }
812 
813 static int
tap_ioctl(struct pmd_internals * pmd,unsigned long request,struct ifreq * ifr,int set,enum ioctl_mode mode)814 tap_ioctl(struct pmd_internals *pmd, unsigned long request,
815 	  struct ifreq *ifr, int set, enum ioctl_mode mode)
816 {
817 	short req_flags = ifr->ifr_flags;
818 	int remote = pmd->remote_if_index &&
819 		(mode == REMOTE_ONLY || mode == LOCAL_AND_REMOTE);
820 
821 	if (!pmd->remote_if_index && mode == REMOTE_ONLY)
822 		return 0;
823 	/*
824 	 * If there is a remote netdevice, apply ioctl on it, then apply it on
825 	 * the tap netdevice.
826 	 */
827 apply:
828 	if (remote)
829 		strlcpy(ifr->ifr_name, pmd->remote_iface, IFNAMSIZ);
830 	else if (mode == LOCAL_ONLY || mode == LOCAL_AND_REMOTE)
831 		strlcpy(ifr->ifr_name, pmd->name, IFNAMSIZ);
832 	switch (request) {
833 	case SIOCSIFFLAGS:
834 		/* fetch current flags to leave other flags untouched */
835 		if (ioctl(pmd->ioctl_sock, SIOCGIFFLAGS, ifr) < 0)
836 			goto error;
837 		if (set)
838 			ifr->ifr_flags |= req_flags;
839 		else
840 			ifr->ifr_flags &= ~req_flags;
841 		break;
842 	case SIOCGIFFLAGS:
843 	case SIOCGIFHWADDR:
844 	case SIOCSIFHWADDR:
845 	case SIOCSIFMTU:
846 		break;
847 	default:
848 		TAP_LOG(WARNING, "%s: ioctl() called with wrong arg",
849 			pmd->name);
850 		return -EINVAL;
851 	}
852 	if (ioctl(pmd->ioctl_sock, request, ifr) < 0)
853 		goto error;
854 	if (remote-- && mode == LOCAL_AND_REMOTE)
855 		goto apply;
856 	return 0;
857 
858 error:
859 	TAP_LOG(DEBUG, "%s(%s) failed: %s(%d)", ifr->ifr_name,
860 		tap_ioctl_req2str(request), strerror(errno), errno);
861 	return -errno;
862 }
863 
864 static int
tap_link_set_down(struct rte_eth_dev * dev)865 tap_link_set_down(struct rte_eth_dev *dev)
866 {
867 	struct pmd_internals *pmd = dev->data->dev_private;
868 	struct ifreq ifr = { .ifr_flags = IFF_UP };
869 
870 	dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
871 	return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_ONLY);
872 }
873 
874 static int
tap_link_set_up(struct rte_eth_dev * dev)875 tap_link_set_up(struct rte_eth_dev *dev)
876 {
877 	struct pmd_internals *pmd = dev->data->dev_private;
878 	struct ifreq ifr = { .ifr_flags = IFF_UP };
879 
880 	dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
881 	return tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
882 }
883 
884 static int
tap_mp_req_on_rxtx(struct rte_eth_dev * dev)885 tap_mp_req_on_rxtx(struct rte_eth_dev *dev)
886 {
887 	struct rte_mp_msg msg;
888 	struct ipc_queues *request_param = (struct ipc_queues *)msg.param;
889 	int err;
890 	int fd_iterator = 0;
891 	struct pmd_process_private *process_private = dev->process_private;
892 	int i;
893 
894 	memset(&msg, 0, sizeof(msg));
895 	strlcpy(msg.name, TAP_MP_REQ_START_RXTX, sizeof(msg.name));
896 	strlcpy(request_param->port_name, dev->data->name, sizeof(request_param->port_name));
897 	msg.len_param = sizeof(*request_param);
898 	for (i = 0; i < dev->data->nb_tx_queues; i++) {
899 		msg.fds[fd_iterator++] = process_private->txq_fds[i];
900 		msg.num_fds++;
901 		request_param->txq_count++;
902 	}
903 	for (i = 0; i < dev->data->nb_rx_queues; i++) {
904 		msg.fds[fd_iterator++] = process_private->rxq_fds[i];
905 		msg.num_fds++;
906 		request_param->rxq_count++;
907 	}
908 
909 	err = rte_mp_sendmsg(&msg);
910 	if (err < 0) {
911 		TAP_LOG(ERR, "Failed to send start req to secondary %d",
912 			rte_errno);
913 		return -1;
914 	}
915 
916 	return 0;
917 }
918 
919 static int
tap_dev_start(struct rte_eth_dev * dev)920 tap_dev_start(struct rte_eth_dev *dev)
921 {
922 	int err, i;
923 
924 	if (rte_eal_process_type() == RTE_PROC_PRIMARY)
925 		tap_mp_req_on_rxtx(dev);
926 
927 	err = tap_intr_handle_set(dev, 1);
928 	if (err)
929 		return err;
930 
931 	err = tap_link_set_up(dev);
932 	if (err)
933 		return err;
934 
935 	for (i = 0; i < dev->data->nb_tx_queues; i++)
936 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
937 	for (i = 0; i < dev->data->nb_rx_queues; i++)
938 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
939 
940 	return err;
941 }
942 
943 static int
tap_mp_req_start_rxtx(const struct rte_mp_msg * request,__rte_unused const void * peer)944 tap_mp_req_start_rxtx(const struct rte_mp_msg *request, __rte_unused const void *peer)
945 {
946 	struct rte_eth_dev *dev;
947 	const struct ipc_queues *request_param =
948 		(const struct ipc_queues *)request->param;
949 	int fd_iterator;
950 	int queue;
951 	struct pmd_process_private *process_private;
952 
953 	dev = rte_eth_dev_get_by_name(request_param->port_name);
954 	if (!dev) {
955 		TAP_LOG(ERR, "Failed to get dev for %s",
956 			request_param->port_name);
957 		return -1;
958 	}
959 	process_private = dev->process_private;
960 	fd_iterator = 0;
961 	TAP_LOG(DEBUG, "tap_attach rx_q:%d tx_q:%d\n", request_param->rxq_count,
962 		request_param->txq_count);
963 	for (queue = 0; queue < request_param->txq_count; queue++)
964 		process_private->txq_fds[queue] = request->fds[fd_iterator++];
965 	for (queue = 0; queue < request_param->rxq_count; queue++)
966 		process_private->rxq_fds[queue] = request->fds[fd_iterator++];
967 
968 	return 0;
969 }
970 
971 /* This function gets called when the current port gets stopped.
972  */
973 static int
tap_dev_stop(struct rte_eth_dev * dev)974 tap_dev_stop(struct rte_eth_dev *dev)
975 {
976 	int i;
977 
978 	for (i = 0; i < dev->data->nb_tx_queues; i++)
979 		dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
980 	for (i = 0; i < dev->data->nb_rx_queues; i++)
981 		dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
982 
983 	tap_intr_handle_set(dev, 0);
984 	tap_link_set_down(dev);
985 
986 	return 0;
987 }
988 
989 static int
tap_dev_configure(struct rte_eth_dev * dev)990 tap_dev_configure(struct rte_eth_dev *dev)
991 {
992 	struct pmd_internals *pmd = dev->data->dev_private;
993 
994 	if (dev->data->nb_rx_queues > RTE_PMD_TAP_MAX_QUEUES) {
995 		TAP_LOG(ERR,
996 			"%s: number of rx queues %d exceeds max num of queues %d",
997 			dev->device->name,
998 			dev->data->nb_rx_queues,
999 			RTE_PMD_TAP_MAX_QUEUES);
1000 		return -1;
1001 	}
1002 	if (dev->data->nb_tx_queues > RTE_PMD_TAP_MAX_QUEUES) {
1003 		TAP_LOG(ERR,
1004 			"%s: number of tx queues %d exceeds max num of queues %d",
1005 			dev->device->name,
1006 			dev->data->nb_tx_queues,
1007 			RTE_PMD_TAP_MAX_QUEUES);
1008 		return -1;
1009 	}
1010 	if (dev->data->nb_rx_queues != dev->data->nb_tx_queues) {
1011 		TAP_LOG(ERR,
1012 			"%s: number of rx queues %d must be equal to number of tx queues %d",
1013 			dev->device->name,
1014 			dev->data->nb_rx_queues,
1015 			dev->data->nb_tx_queues);
1016 		return -1;
1017 	}
1018 
1019 	TAP_LOG(INFO, "%s: %s: TX configured queues number: %u",
1020 		dev->device->name, pmd->name, dev->data->nb_tx_queues);
1021 
1022 	TAP_LOG(INFO, "%s: %s: RX configured queues number: %u",
1023 		dev->device->name, pmd->name, dev->data->nb_rx_queues);
1024 
1025 	return 0;
1026 }
1027 
1028 static uint32_t
tap_dev_speed_capa(void)1029 tap_dev_speed_capa(void)
1030 {
1031 	uint32_t speed = pmd_link.link_speed;
1032 	uint32_t capa = 0;
1033 
1034 	if (speed >= RTE_ETH_SPEED_NUM_10M)
1035 		capa |= RTE_ETH_LINK_SPEED_10M;
1036 	if (speed >= RTE_ETH_SPEED_NUM_100M)
1037 		capa |= RTE_ETH_LINK_SPEED_100M;
1038 	if (speed >= RTE_ETH_SPEED_NUM_1G)
1039 		capa |= RTE_ETH_LINK_SPEED_1G;
1040 	if (speed >= RTE_ETH_SPEED_NUM_5G)
1041 		capa |= RTE_ETH_LINK_SPEED_2_5G;
1042 	if (speed >= RTE_ETH_SPEED_NUM_5G)
1043 		capa |= RTE_ETH_LINK_SPEED_5G;
1044 	if (speed >= RTE_ETH_SPEED_NUM_10G)
1045 		capa |= RTE_ETH_LINK_SPEED_10G;
1046 	if (speed >= RTE_ETH_SPEED_NUM_20G)
1047 		capa |= RTE_ETH_LINK_SPEED_20G;
1048 	if (speed >= RTE_ETH_SPEED_NUM_25G)
1049 		capa |= RTE_ETH_LINK_SPEED_25G;
1050 	if (speed >= RTE_ETH_SPEED_NUM_40G)
1051 		capa |= RTE_ETH_LINK_SPEED_40G;
1052 	if (speed >= RTE_ETH_SPEED_NUM_50G)
1053 		capa |= RTE_ETH_LINK_SPEED_50G;
1054 	if (speed >= RTE_ETH_SPEED_NUM_56G)
1055 		capa |= RTE_ETH_LINK_SPEED_56G;
1056 	if (speed >= RTE_ETH_SPEED_NUM_100G)
1057 		capa |= RTE_ETH_LINK_SPEED_100G;
1058 
1059 	return capa;
1060 }
1061 
1062 static int
tap_dev_info(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)1063 tap_dev_info(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
1064 {
1065 	struct pmd_internals *internals = dev->data->dev_private;
1066 
1067 	dev_info->if_index = internals->if_index;
1068 	dev_info->max_mac_addrs = 1;
1069 	dev_info->max_rx_pktlen = (uint32_t)RTE_ETHER_MAX_VLAN_FRAME_LEN;
1070 	dev_info->max_rx_queues = RTE_PMD_TAP_MAX_QUEUES;
1071 	dev_info->max_tx_queues = RTE_PMD_TAP_MAX_QUEUES;
1072 	dev_info->min_rx_bufsize = 0;
1073 	dev_info->speed_capa = tap_dev_speed_capa();
1074 	dev_info->rx_queue_offload_capa = TAP_RX_OFFLOAD;
1075 	dev_info->rx_offload_capa = dev_info->rx_queue_offload_capa;
1076 	dev_info->tx_queue_offload_capa = TAP_TX_OFFLOAD;
1077 	dev_info->tx_offload_capa = dev_info->tx_queue_offload_capa;
1078 	dev_info->hash_key_size = TAP_RSS_HASH_KEY_SIZE;
1079 	/*
1080 	 * limitation: TAP supports all of IP, UDP and TCP hash
1081 	 * functions together and not in partial combinations
1082 	 */
1083 	dev_info->flow_type_rss_offloads = ~TAP_RSS_HF_MASK;
1084 	dev_info->dev_capa &= ~RTE_ETH_DEV_CAPA_FLOW_RULE_KEEP;
1085 
1086 	return 0;
1087 }
1088 
1089 static int
tap_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * tap_stats)1090 tap_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *tap_stats)
1091 {
1092 	unsigned int i, imax;
1093 	unsigned long rx_total = 0, tx_total = 0, tx_err_total = 0;
1094 	unsigned long rx_bytes_total = 0, tx_bytes_total = 0;
1095 	unsigned long rx_nombuf = 0, ierrors = 0;
1096 	const struct pmd_internals *pmd = dev->data->dev_private;
1097 
1098 	/* rx queue statistics */
1099 	imax = (dev->data->nb_rx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1100 		dev->data->nb_rx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1101 	for (i = 0; i < imax; i++) {
1102 		tap_stats->q_ipackets[i] = pmd->rxq[i].stats.ipackets;
1103 		tap_stats->q_ibytes[i] = pmd->rxq[i].stats.ibytes;
1104 		rx_total += tap_stats->q_ipackets[i];
1105 		rx_bytes_total += tap_stats->q_ibytes[i];
1106 		rx_nombuf += pmd->rxq[i].stats.rx_nombuf;
1107 		ierrors += pmd->rxq[i].stats.ierrors;
1108 	}
1109 
1110 	/* tx queue statistics */
1111 	imax = (dev->data->nb_tx_queues < RTE_ETHDEV_QUEUE_STAT_CNTRS) ?
1112 		dev->data->nb_tx_queues : RTE_ETHDEV_QUEUE_STAT_CNTRS;
1113 
1114 	for (i = 0; i < imax; i++) {
1115 		tap_stats->q_opackets[i] = pmd->txq[i].stats.opackets;
1116 		tap_stats->q_obytes[i] = pmd->txq[i].stats.obytes;
1117 		tx_total += tap_stats->q_opackets[i];
1118 		tx_err_total += pmd->txq[i].stats.errs;
1119 		tx_bytes_total += tap_stats->q_obytes[i];
1120 	}
1121 
1122 	tap_stats->ipackets = rx_total;
1123 	tap_stats->ibytes = rx_bytes_total;
1124 	tap_stats->ierrors = ierrors;
1125 	tap_stats->rx_nombuf = rx_nombuf;
1126 	tap_stats->opackets = tx_total;
1127 	tap_stats->oerrors = tx_err_total;
1128 	tap_stats->obytes = tx_bytes_total;
1129 	return 0;
1130 }
1131 
1132 static int
tap_stats_reset(struct rte_eth_dev * dev)1133 tap_stats_reset(struct rte_eth_dev *dev)
1134 {
1135 	int i;
1136 	struct pmd_internals *pmd = dev->data->dev_private;
1137 
1138 	for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1139 		pmd->rxq[i].stats.ipackets = 0;
1140 		pmd->rxq[i].stats.ibytes = 0;
1141 		pmd->rxq[i].stats.ierrors = 0;
1142 		pmd->rxq[i].stats.rx_nombuf = 0;
1143 
1144 		pmd->txq[i].stats.opackets = 0;
1145 		pmd->txq[i].stats.errs = 0;
1146 		pmd->txq[i].stats.obytes = 0;
1147 	}
1148 
1149 	return 0;
1150 }
1151 
1152 static int
tap_dev_close(struct rte_eth_dev * dev)1153 tap_dev_close(struct rte_eth_dev *dev)
1154 {
1155 	int i;
1156 	struct pmd_internals *internals = dev->data->dev_private;
1157 	struct pmd_process_private *process_private = dev->process_private;
1158 	struct rx_queue *rxq;
1159 
1160 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
1161 		rte_free(dev->process_private);
1162 		if (tap_devices_count == 1)
1163 			rte_mp_action_unregister(TAP_MP_REQ_START_RXTX);
1164 		tap_devices_count--;
1165 		return 0;
1166 	}
1167 
1168 	tap_link_set_down(dev);
1169 	if (internals->nlsk_fd != -1) {
1170 		tap_flow_flush(dev, NULL);
1171 		tap_flow_implicit_flush(internals, NULL);
1172 		tap_nl_final(internals->nlsk_fd);
1173 		internals->nlsk_fd = -1;
1174 	}
1175 
1176 	for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
1177 		if (process_private->rxq_fds[i] != -1) {
1178 			rxq = &internals->rxq[i];
1179 			close(process_private->rxq_fds[i]);
1180 			process_private->rxq_fds[i] = -1;
1181 			tap_rxq_pool_free(rxq->pool);
1182 			rte_free(rxq->iovecs);
1183 			rxq->pool = NULL;
1184 			rxq->iovecs = NULL;
1185 		}
1186 		if (process_private->txq_fds[i] != -1) {
1187 			close(process_private->txq_fds[i]);
1188 			process_private->txq_fds[i] = -1;
1189 		}
1190 	}
1191 
1192 	if (internals->remote_if_index) {
1193 		/* Restore initial remote state */
1194 		int ret = ioctl(internals->ioctl_sock, SIOCSIFFLAGS,
1195 				&internals->remote_initial_flags);
1196 		if (ret)
1197 			TAP_LOG(ERR, "restore remote state failed: %d", ret);
1198 
1199 	}
1200 
1201 	rte_mempool_free(internals->gso_ctx_mp);
1202 	internals->gso_ctx_mp = NULL;
1203 
1204 	if (internals->ka_fd != -1) {
1205 		close(internals->ka_fd);
1206 		internals->ka_fd = -1;
1207 	}
1208 
1209 	/* mac_addrs must not be freed alone because part of dev_private */
1210 	dev->data->mac_addrs = NULL;
1211 
1212 	internals = dev->data->dev_private;
1213 	TAP_LOG(DEBUG, "Closing %s Ethernet device on numa %u",
1214 		tuntap_types[internals->type], rte_socket_id());
1215 
1216 	rte_intr_instance_free(internals->intr_handle);
1217 
1218 	if (internals->ioctl_sock != -1) {
1219 		close(internals->ioctl_sock);
1220 		internals->ioctl_sock = -1;
1221 	}
1222 	rte_free(dev->process_private);
1223 	if (tap_devices_count == 1)
1224 		rte_mp_action_unregister(TAP_MP_KEY);
1225 	tap_devices_count--;
1226 	/*
1227 	 * Since TUN device has no more opened file descriptors
1228 	 * it will be removed from kernel
1229 	 */
1230 
1231 	return 0;
1232 }
1233 
1234 static void
tap_rx_queue_release(struct rte_eth_dev * dev,uint16_t qid)1235 tap_rx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1236 {
1237 	struct rx_queue *rxq = dev->data->rx_queues[qid];
1238 	struct pmd_process_private *process_private;
1239 
1240 	if (!rxq)
1241 		return;
1242 	process_private = rte_eth_devices[rxq->in_port].process_private;
1243 	if (process_private->rxq_fds[rxq->queue_id] != -1) {
1244 		close(process_private->rxq_fds[rxq->queue_id]);
1245 		process_private->rxq_fds[rxq->queue_id] = -1;
1246 		tap_rxq_pool_free(rxq->pool);
1247 		rte_free(rxq->iovecs);
1248 		rxq->pool = NULL;
1249 		rxq->iovecs = NULL;
1250 	}
1251 }
1252 
1253 static void
tap_tx_queue_release(struct rte_eth_dev * dev,uint16_t qid)1254 tap_tx_queue_release(struct rte_eth_dev *dev, uint16_t qid)
1255 {
1256 	struct tx_queue *txq = dev->data->tx_queues[qid];
1257 	struct pmd_process_private *process_private;
1258 
1259 	if (!txq)
1260 		return;
1261 	process_private = rte_eth_devices[txq->out_port].process_private;
1262 
1263 	if (process_private->txq_fds[txq->queue_id] != -1) {
1264 		close(process_private->txq_fds[txq->queue_id]);
1265 		process_private->txq_fds[txq->queue_id] = -1;
1266 	}
1267 }
1268 
1269 static int
tap_link_update(struct rte_eth_dev * dev,int wait_to_complete __rte_unused)1270 tap_link_update(struct rte_eth_dev *dev, int wait_to_complete __rte_unused)
1271 {
1272 	struct rte_eth_link *dev_link = &dev->data->dev_link;
1273 	struct pmd_internals *pmd = dev->data->dev_private;
1274 	struct ifreq ifr = { .ifr_flags = 0 };
1275 
1276 	if (pmd->remote_if_index) {
1277 		tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, REMOTE_ONLY);
1278 		if (!(ifr.ifr_flags & IFF_UP) ||
1279 		    !(ifr.ifr_flags & IFF_RUNNING)) {
1280 			dev_link->link_status = RTE_ETH_LINK_DOWN;
1281 			return 0;
1282 		}
1283 	}
1284 	tap_ioctl(pmd, SIOCGIFFLAGS, &ifr, 0, LOCAL_ONLY);
1285 	dev_link->link_status =
1286 		((ifr.ifr_flags & IFF_UP) && (ifr.ifr_flags & IFF_RUNNING) ?
1287 		 RTE_ETH_LINK_UP :
1288 		 RTE_ETH_LINK_DOWN);
1289 	return 0;
1290 }
1291 
1292 static int
tap_promisc_enable(struct rte_eth_dev * dev)1293 tap_promisc_enable(struct rte_eth_dev *dev)
1294 {
1295 	struct pmd_internals *pmd = dev->data->dev_private;
1296 	struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1297 	int ret;
1298 
1299 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1300 	if (ret != 0)
1301 		return ret;
1302 
1303 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1304 		dev->data->promiscuous = 1;
1305 		ret = tap_flow_implicit_create(pmd, TAP_REMOTE_PROMISC);
1306 		if (ret != 0) {
1307 			/* Rollback promisc flag */
1308 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1309 			/*
1310 			 * rte_eth_dev_promiscuous_enable() rollback
1311 			 * dev->data->promiscuous in the case of failure.
1312 			 */
1313 			return ret;
1314 		}
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static int
tap_promisc_disable(struct rte_eth_dev * dev)1321 tap_promisc_disable(struct rte_eth_dev *dev)
1322 {
1323 	struct pmd_internals *pmd = dev->data->dev_private;
1324 	struct ifreq ifr = { .ifr_flags = IFF_PROMISC };
1325 	int ret;
1326 
1327 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1328 	if (ret != 0)
1329 		return ret;
1330 
1331 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1332 		dev->data->promiscuous = 0;
1333 		ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_PROMISC);
1334 		if (ret != 0) {
1335 			/* Rollback promisc flag */
1336 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1337 			/*
1338 			 * rte_eth_dev_promiscuous_disable() rollback
1339 			 * dev->data->promiscuous in the case of failure.
1340 			 */
1341 			return ret;
1342 		}
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 static int
tap_allmulti_enable(struct rte_eth_dev * dev)1349 tap_allmulti_enable(struct rte_eth_dev *dev)
1350 {
1351 	struct pmd_internals *pmd = dev->data->dev_private;
1352 	struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1353 	int ret;
1354 
1355 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1356 	if (ret != 0)
1357 		return ret;
1358 
1359 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1360 		dev->data->all_multicast = 1;
1361 		ret = tap_flow_implicit_create(pmd, TAP_REMOTE_ALLMULTI);
1362 		if (ret != 0) {
1363 			/* Rollback allmulti flag */
1364 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1365 			/*
1366 			 * rte_eth_dev_allmulticast_enable() rollback
1367 			 * dev->data->all_multicast in the case of failure.
1368 			 */
1369 			return ret;
1370 		}
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static int
tap_allmulti_disable(struct rte_eth_dev * dev)1377 tap_allmulti_disable(struct rte_eth_dev *dev)
1378 {
1379 	struct pmd_internals *pmd = dev->data->dev_private;
1380 	struct ifreq ifr = { .ifr_flags = IFF_ALLMULTI };
1381 	int ret;
1382 
1383 	ret = tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 0, LOCAL_AND_REMOTE);
1384 	if (ret != 0)
1385 		return ret;
1386 
1387 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1388 		dev->data->all_multicast = 0;
1389 		ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_ALLMULTI);
1390 		if (ret != 0) {
1391 			/* Rollback allmulti flag */
1392 			tap_ioctl(pmd, SIOCSIFFLAGS, &ifr, 1, LOCAL_AND_REMOTE);
1393 			/*
1394 			 * rte_eth_dev_allmulticast_disable() rollback
1395 			 * dev->data->all_multicast in the case of failure.
1396 			 */
1397 			return ret;
1398 		}
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int
tap_mac_set(struct rte_eth_dev * dev,struct rte_ether_addr * mac_addr)1405 tap_mac_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr)
1406 {
1407 	struct pmd_internals *pmd = dev->data->dev_private;
1408 	enum ioctl_mode mode = LOCAL_ONLY;
1409 	struct ifreq ifr;
1410 	int ret;
1411 
1412 	if (pmd->type == ETH_TUNTAP_TYPE_TUN) {
1413 		TAP_LOG(ERR, "%s: can't MAC address for TUN",
1414 			dev->device->name);
1415 		return -ENOTSUP;
1416 	}
1417 
1418 	if (rte_is_zero_ether_addr(mac_addr)) {
1419 		TAP_LOG(ERR, "%s: can't set an empty MAC address",
1420 			dev->device->name);
1421 		return -EINVAL;
1422 	}
1423 	/* Check the actual current MAC address on the tap netdevice */
1424 	ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, LOCAL_ONLY);
1425 	if (ret < 0)
1426 		return ret;
1427 	if (rte_is_same_ether_addr(
1428 			(struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1429 			mac_addr))
1430 		return 0;
1431 	/* Check the current MAC address on the remote */
1432 	ret = tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY);
1433 	if (ret < 0)
1434 		return ret;
1435 	if (!rte_is_same_ether_addr(
1436 			(struct rte_ether_addr *)&ifr.ifr_hwaddr.sa_data,
1437 			mac_addr))
1438 		mode = LOCAL_AND_REMOTE;
1439 	ifr.ifr_hwaddr.sa_family = AF_LOCAL;
1440 	rte_memcpy(ifr.ifr_hwaddr.sa_data, mac_addr, RTE_ETHER_ADDR_LEN);
1441 	ret = tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 1, mode);
1442 	if (ret < 0)
1443 		return ret;
1444 	rte_memcpy(&pmd->eth_addr, mac_addr, RTE_ETHER_ADDR_LEN);
1445 	if (pmd->remote_if_index && !pmd->flow_isolate) {
1446 		/* Replace MAC redirection rule after a MAC change */
1447 		ret = tap_flow_implicit_destroy(pmd, TAP_REMOTE_LOCAL_MAC);
1448 		if (ret < 0) {
1449 			TAP_LOG(ERR,
1450 				"%s: Couldn't delete MAC redirection rule",
1451 				dev->device->name);
1452 			return ret;
1453 		}
1454 		ret = tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC);
1455 		if (ret < 0) {
1456 			TAP_LOG(ERR,
1457 				"%s: Couldn't add MAC redirection rule",
1458 				dev->device->name);
1459 			return ret;
1460 		}
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int
tap_gso_ctx_setup(struct rte_gso_ctx * gso_ctx,struct rte_eth_dev * dev)1467 tap_gso_ctx_setup(struct rte_gso_ctx *gso_ctx, struct rte_eth_dev *dev)
1468 {
1469 	uint32_t gso_types;
1470 	char pool_name[64];
1471 	struct pmd_internals *pmd = dev->data->dev_private;
1472 	int ret;
1473 
1474 	/* initialize GSO context */
1475 	gso_types = RTE_ETH_TX_OFFLOAD_TCP_TSO;
1476 	if (!pmd->gso_ctx_mp) {
1477 		/*
1478 		 * Create private mbuf pool with TAP_GSO_MBUF_SEG_SIZE
1479 		 * bytes size per mbuf use this pool for both direct and
1480 		 * indirect mbufs
1481 		 */
1482 		ret = snprintf(pool_name, sizeof(pool_name), "mp_%s",
1483 				dev->device->name);
1484 		if (ret < 0 || ret >= (int)sizeof(pool_name)) {
1485 			TAP_LOG(ERR,
1486 				"%s: failed to create mbuf pool name for device %s,"
1487 				"device name too long or output error, ret: %d\n",
1488 				pmd->name, dev->device->name, ret);
1489 			return -ENAMETOOLONG;
1490 		}
1491 		pmd->gso_ctx_mp = rte_pktmbuf_pool_create(pool_name,
1492 			TAP_GSO_MBUFS_NUM, TAP_GSO_MBUF_CACHE_SIZE, 0,
1493 			RTE_PKTMBUF_HEADROOM + TAP_GSO_MBUF_SEG_SIZE,
1494 			SOCKET_ID_ANY);
1495 		if (!pmd->gso_ctx_mp) {
1496 			TAP_LOG(ERR,
1497 				"%s: failed to create mbuf pool for device %s\n",
1498 				pmd->name, dev->device->name);
1499 			return -1;
1500 		}
1501 	}
1502 
1503 	gso_ctx->direct_pool = pmd->gso_ctx_mp;
1504 	gso_ctx->indirect_pool = pmd->gso_ctx_mp;
1505 	gso_ctx->gso_types = gso_types;
1506 	gso_ctx->gso_size = 0; /* gso_size is set in tx_burst() per packet */
1507 	gso_ctx->flag = 0;
1508 
1509 	return 0;
1510 }
1511 
1512 static int
tap_setup_queue(struct rte_eth_dev * dev,struct pmd_internals * internals,uint16_t qid,int is_rx)1513 tap_setup_queue(struct rte_eth_dev *dev,
1514 		struct pmd_internals *internals,
1515 		uint16_t qid,
1516 		int is_rx)
1517 {
1518 	int ret;
1519 	int *fd;
1520 	int *other_fd;
1521 	const char *dir;
1522 	struct pmd_internals *pmd = dev->data->dev_private;
1523 	struct pmd_process_private *process_private = dev->process_private;
1524 	struct rx_queue *rx = &internals->rxq[qid];
1525 	struct tx_queue *tx = &internals->txq[qid];
1526 	struct rte_gso_ctx *gso_ctx;
1527 
1528 	if (is_rx) {
1529 		fd = &process_private->rxq_fds[qid];
1530 		other_fd = &process_private->txq_fds[qid];
1531 		dir = "rx";
1532 		gso_ctx = NULL;
1533 	} else {
1534 		fd = &process_private->txq_fds[qid];
1535 		other_fd = &process_private->rxq_fds[qid];
1536 		dir = "tx";
1537 		gso_ctx = &tx->gso_ctx;
1538 	}
1539 	if (*fd != -1) {
1540 		/* fd for this queue already exists */
1541 		TAP_LOG(DEBUG, "%s: fd %d for %s queue qid %d exists",
1542 			pmd->name, *fd, dir, qid);
1543 		gso_ctx = NULL;
1544 	} else if (*other_fd != -1) {
1545 		/* Only other_fd exists. dup it */
1546 		*fd = dup(*other_fd);
1547 		if (*fd < 0) {
1548 			*fd = -1;
1549 			TAP_LOG(ERR, "%s: dup() failed.", pmd->name);
1550 			return -1;
1551 		}
1552 		TAP_LOG(DEBUG, "%s: dup fd %d for %s queue qid %d (%d)",
1553 			pmd->name, *other_fd, dir, qid, *fd);
1554 	} else {
1555 		/* Both RX and TX fds do not exist (equal -1). Create fd */
1556 		*fd = tun_alloc(pmd, 0);
1557 		if (*fd < 0) {
1558 			*fd = -1; /* restore original value */
1559 			TAP_LOG(ERR, "%s: tun_alloc() failed.", pmd->name);
1560 			return -1;
1561 		}
1562 		TAP_LOG(DEBUG, "%s: add %s queue for qid %d fd %d",
1563 			pmd->name, dir, qid, *fd);
1564 	}
1565 
1566 	tx->mtu = &dev->data->mtu;
1567 	rx->rxmode = &dev->data->dev_conf.rxmode;
1568 	if (gso_ctx) {
1569 		ret = tap_gso_ctx_setup(gso_ctx, dev);
1570 		if (ret)
1571 			return -1;
1572 	}
1573 
1574 	tx->type = pmd->type;
1575 
1576 	return *fd;
1577 }
1578 
1579 static int
tap_rx_queue_setup(struct rte_eth_dev * dev,uint16_t rx_queue_id,uint16_t nb_rx_desc,unsigned int socket_id,const struct rte_eth_rxconf * rx_conf __rte_unused,struct rte_mempool * mp)1580 tap_rx_queue_setup(struct rte_eth_dev *dev,
1581 		   uint16_t rx_queue_id,
1582 		   uint16_t nb_rx_desc,
1583 		   unsigned int socket_id,
1584 		   const struct rte_eth_rxconf *rx_conf __rte_unused,
1585 		   struct rte_mempool *mp)
1586 {
1587 	struct pmd_internals *internals = dev->data->dev_private;
1588 	struct pmd_process_private *process_private = dev->process_private;
1589 	struct rx_queue *rxq = &internals->rxq[rx_queue_id];
1590 	struct rte_mbuf **tmp = &rxq->pool;
1591 	long iov_max = sysconf(_SC_IOV_MAX);
1592 
1593 	if (iov_max <= 0) {
1594 		TAP_LOG(WARNING,
1595 			"_SC_IOV_MAX is not defined. Using %d as default",
1596 			TAP_IOV_DEFAULT_MAX);
1597 		iov_max = TAP_IOV_DEFAULT_MAX;
1598 	}
1599 	uint16_t nb_desc = RTE_MIN(nb_rx_desc, iov_max - 1);
1600 	struct iovec (*iovecs)[nb_desc + 1];
1601 	int data_off = RTE_PKTMBUF_HEADROOM;
1602 	int ret = 0;
1603 	int fd;
1604 	int i;
1605 
1606 	if (rx_queue_id >= dev->data->nb_rx_queues || !mp) {
1607 		TAP_LOG(WARNING,
1608 			"nb_rx_queues %d too small or mempool NULL",
1609 			dev->data->nb_rx_queues);
1610 		return -1;
1611 	}
1612 
1613 	rxq->mp = mp;
1614 	rxq->trigger_seen = 1; /* force initial burst */
1615 	rxq->in_port = dev->data->port_id;
1616 	rxq->queue_id = rx_queue_id;
1617 	rxq->nb_rx_desc = nb_desc;
1618 	iovecs = rte_zmalloc_socket(dev->device->name, sizeof(*iovecs), 0,
1619 				    socket_id);
1620 	if (!iovecs) {
1621 		TAP_LOG(WARNING,
1622 			"%s: Couldn't allocate %d RX descriptors",
1623 			dev->device->name, nb_desc);
1624 		return -ENOMEM;
1625 	}
1626 	rxq->iovecs = iovecs;
1627 
1628 	dev->data->rx_queues[rx_queue_id] = rxq;
1629 	fd = tap_setup_queue(dev, internals, rx_queue_id, 1);
1630 	if (fd == -1) {
1631 		ret = fd;
1632 		goto error;
1633 	}
1634 
1635 	(*rxq->iovecs)[0].iov_len = sizeof(struct tun_pi);
1636 	(*rxq->iovecs)[0].iov_base = &rxq->pi;
1637 
1638 	for (i = 1; i <= nb_desc; i++) {
1639 		*tmp = rte_pktmbuf_alloc(rxq->mp);
1640 		if (!*tmp) {
1641 			TAP_LOG(WARNING,
1642 				"%s: couldn't allocate memory for queue %d",
1643 				dev->device->name, rx_queue_id);
1644 			ret = -ENOMEM;
1645 			goto error;
1646 		}
1647 		(*rxq->iovecs)[i].iov_len = (*tmp)->buf_len - data_off;
1648 		(*rxq->iovecs)[i].iov_base =
1649 			(char *)(*tmp)->buf_addr + data_off;
1650 		data_off = 0;
1651 		tmp = &(*tmp)->next;
1652 	}
1653 
1654 	TAP_LOG(DEBUG, "  RX TUNTAP device name %s, qid %d on fd %d",
1655 		internals->name, rx_queue_id,
1656 		process_private->rxq_fds[rx_queue_id]);
1657 
1658 	return 0;
1659 
1660 error:
1661 	tap_rxq_pool_free(rxq->pool);
1662 	rxq->pool = NULL;
1663 	rte_free(rxq->iovecs);
1664 	rxq->iovecs = NULL;
1665 	return ret;
1666 }
1667 
1668 static int
tap_tx_queue_setup(struct rte_eth_dev * dev,uint16_t tx_queue_id,uint16_t nb_tx_desc __rte_unused,unsigned int socket_id __rte_unused,const struct rte_eth_txconf * tx_conf)1669 tap_tx_queue_setup(struct rte_eth_dev *dev,
1670 		   uint16_t tx_queue_id,
1671 		   uint16_t nb_tx_desc __rte_unused,
1672 		   unsigned int socket_id __rte_unused,
1673 		   const struct rte_eth_txconf *tx_conf)
1674 {
1675 	struct pmd_internals *internals = dev->data->dev_private;
1676 	struct pmd_process_private *process_private = dev->process_private;
1677 	struct tx_queue *txq;
1678 	int ret;
1679 	uint64_t offloads;
1680 
1681 	if (tx_queue_id >= dev->data->nb_tx_queues)
1682 		return -1;
1683 	dev->data->tx_queues[tx_queue_id] = &internals->txq[tx_queue_id];
1684 	txq = dev->data->tx_queues[tx_queue_id];
1685 	txq->out_port = dev->data->port_id;
1686 	txq->queue_id = tx_queue_id;
1687 
1688 	offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
1689 	txq->csum = !!(offloads &
1690 			(RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
1691 			 RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
1692 			 RTE_ETH_TX_OFFLOAD_TCP_CKSUM));
1693 
1694 	ret = tap_setup_queue(dev, internals, tx_queue_id, 0);
1695 	if (ret == -1)
1696 		return -1;
1697 	TAP_LOG(DEBUG,
1698 		"  TX TUNTAP device name %s, qid %d on fd %d csum %s",
1699 		internals->name, tx_queue_id,
1700 		process_private->txq_fds[tx_queue_id],
1701 		txq->csum ? "on" : "off");
1702 
1703 	return 0;
1704 }
1705 
1706 static int
tap_mtu_set(struct rte_eth_dev * dev,uint16_t mtu)1707 tap_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
1708 {
1709 	struct pmd_internals *pmd = dev->data->dev_private;
1710 	struct ifreq ifr = { .ifr_mtu = mtu };
1711 
1712 	return tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE);
1713 }
1714 
1715 static int
tap_set_mc_addr_list(struct rte_eth_dev * dev __rte_unused,struct rte_ether_addr * mc_addr_set __rte_unused,uint32_t nb_mc_addr __rte_unused)1716 tap_set_mc_addr_list(struct rte_eth_dev *dev __rte_unused,
1717 		     struct rte_ether_addr *mc_addr_set __rte_unused,
1718 		     uint32_t nb_mc_addr __rte_unused)
1719 {
1720 	/*
1721 	 * Nothing to do actually: the tap has no filtering whatsoever, every
1722 	 * packet is received.
1723 	 */
1724 	return 0;
1725 }
1726 
1727 static int
tap_nl_msg_handler(struct nlmsghdr * nh,void * arg)1728 tap_nl_msg_handler(struct nlmsghdr *nh, void *arg)
1729 {
1730 	struct rte_eth_dev *dev = arg;
1731 	struct pmd_internals *pmd = dev->data->dev_private;
1732 	struct ifinfomsg *info = NLMSG_DATA(nh);
1733 
1734 	if (nh->nlmsg_type != RTM_NEWLINK ||
1735 	    (info->ifi_index != pmd->if_index &&
1736 	     info->ifi_index != pmd->remote_if_index))
1737 		return 0;
1738 	return tap_link_update(dev, 0);
1739 }
1740 
1741 static void
tap_dev_intr_handler(void * cb_arg)1742 tap_dev_intr_handler(void *cb_arg)
1743 {
1744 	struct rte_eth_dev *dev = cb_arg;
1745 	struct pmd_internals *pmd = dev->data->dev_private;
1746 
1747 	if (rte_intr_fd_get(pmd->intr_handle) >= 0)
1748 		tap_nl_recv(rte_intr_fd_get(pmd->intr_handle),
1749 			    tap_nl_msg_handler, dev);
1750 }
1751 
1752 static int
tap_lsc_intr_handle_set(struct rte_eth_dev * dev,int set)1753 tap_lsc_intr_handle_set(struct rte_eth_dev *dev, int set)
1754 {
1755 	struct pmd_internals *pmd = dev->data->dev_private;
1756 	int ret;
1757 
1758 	/* In any case, disable interrupt if the conf is no longer there. */
1759 	if (!dev->data->dev_conf.intr_conf.lsc) {
1760 		if (rte_intr_fd_get(pmd->intr_handle) != -1)
1761 			goto clean;
1762 
1763 		return 0;
1764 	}
1765 	if (set) {
1766 		rte_intr_fd_set(pmd->intr_handle, tap_nl_init(RTMGRP_LINK));
1767 		if (unlikely(rte_intr_fd_get(pmd->intr_handle) == -1))
1768 			return -EBADF;
1769 		return rte_intr_callback_register(
1770 			pmd->intr_handle, tap_dev_intr_handler, dev);
1771 	}
1772 
1773 clean:
1774 	do {
1775 		ret = rte_intr_callback_unregister(pmd->intr_handle,
1776 			tap_dev_intr_handler, dev);
1777 		if (ret >= 0) {
1778 			break;
1779 		} else if (ret == -EAGAIN) {
1780 			rte_delay_ms(100);
1781 		} else {
1782 			TAP_LOG(ERR, "intr callback unregister failed: %d",
1783 				     ret);
1784 			break;
1785 		}
1786 	} while (true);
1787 
1788 	if (rte_intr_fd_get(pmd->intr_handle) >= 0) {
1789 		tap_nl_final(rte_intr_fd_get(pmd->intr_handle));
1790 		rte_intr_fd_set(pmd->intr_handle, -1);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static int
tap_intr_handle_set(struct rte_eth_dev * dev,int set)1797 tap_intr_handle_set(struct rte_eth_dev *dev, int set)
1798 {
1799 	int err;
1800 
1801 	err = tap_lsc_intr_handle_set(dev, set);
1802 	if (err < 0) {
1803 		if (!set)
1804 			tap_rx_intr_vec_set(dev, 0);
1805 		return err;
1806 	}
1807 	err = tap_rx_intr_vec_set(dev, set);
1808 	if (err && set)
1809 		tap_lsc_intr_handle_set(dev, 0);
1810 	return err;
1811 }
1812 
1813 static const uint32_t*
tap_dev_supported_ptypes_get(struct rte_eth_dev * dev __rte_unused)1814 tap_dev_supported_ptypes_get(struct rte_eth_dev *dev __rte_unused)
1815 {
1816 	static const uint32_t ptypes[] = {
1817 		RTE_PTYPE_INNER_L2_ETHER,
1818 		RTE_PTYPE_INNER_L2_ETHER_VLAN,
1819 		RTE_PTYPE_INNER_L2_ETHER_QINQ,
1820 		RTE_PTYPE_INNER_L3_IPV4,
1821 		RTE_PTYPE_INNER_L3_IPV4_EXT,
1822 		RTE_PTYPE_INNER_L3_IPV6,
1823 		RTE_PTYPE_INNER_L3_IPV6_EXT,
1824 		RTE_PTYPE_INNER_L4_FRAG,
1825 		RTE_PTYPE_INNER_L4_UDP,
1826 		RTE_PTYPE_INNER_L4_TCP,
1827 		RTE_PTYPE_INNER_L4_SCTP,
1828 		RTE_PTYPE_L2_ETHER,
1829 		RTE_PTYPE_L2_ETHER_VLAN,
1830 		RTE_PTYPE_L2_ETHER_QINQ,
1831 		RTE_PTYPE_L3_IPV4,
1832 		RTE_PTYPE_L3_IPV4_EXT,
1833 		RTE_PTYPE_L3_IPV6_EXT,
1834 		RTE_PTYPE_L3_IPV6,
1835 		RTE_PTYPE_L4_FRAG,
1836 		RTE_PTYPE_L4_UDP,
1837 		RTE_PTYPE_L4_TCP,
1838 		RTE_PTYPE_L4_SCTP,
1839 	};
1840 
1841 	return ptypes;
1842 }
1843 
1844 static int
tap_flow_ctrl_get(struct rte_eth_dev * dev __rte_unused,struct rte_eth_fc_conf * fc_conf)1845 tap_flow_ctrl_get(struct rte_eth_dev *dev __rte_unused,
1846 		  struct rte_eth_fc_conf *fc_conf)
1847 {
1848 	fc_conf->mode = RTE_ETH_FC_NONE;
1849 	return 0;
1850 }
1851 
1852 static int
tap_flow_ctrl_set(struct rte_eth_dev * dev __rte_unused,struct rte_eth_fc_conf * fc_conf)1853 tap_flow_ctrl_set(struct rte_eth_dev *dev __rte_unused,
1854 		  struct rte_eth_fc_conf *fc_conf)
1855 {
1856 	if (fc_conf->mode != RTE_ETH_FC_NONE)
1857 		return -ENOTSUP;
1858 	return 0;
1859 }
1860 
1861 /**
1862  * DPDK callback to update the RSS hash configuration.
1863  *
1864  * @param dev
1865  *   Pointer to Ethernet device structure.
1866  * @param[in] rss_conf
1867  *   RSS configuration data.
1868  *
1869  * @return
1870  *   0 on success, a negative errno value otherwise and rte_errno is set.
1871  */
1872 static int
tap_rss_hash_update(struct rte_eth_dev * dev,struct rte_eth_rss_conf * rss_conf)1873 tap_rss_hash_update(struct rte_eth_dev *dev,
1874 		struct rte_eth_rss_conf *rss_conf)
1875 {
1876 	if (rss_conf->rss_hf & TAP_RSS_HF_MASK) {
1877 		rte_errno = EINVAL;
1878 		return -rte_errno;
1879 	}
1880 	if (rss_conf->rss_key && rss_conf->rss_key_len) {
1881 		/*
1882 		 * Currently TAP RSS key is hard coded
1883 		 * and cannot be updated
1884 		 */
1885 		TAP_LOG(ERR,
1886 			"port %u RSS key cannot be updated",
1887 			dev->data->port_id);
1888 		rte_errno = EINVAL;
1889 		return -rte_errno;
1890 	}
1891 	return 0;
1892 }
1893 
1894 static int
tap_rx_queue_start(struct rte_eth_dev * dev,uint16_t rx_queue_id)1895 tap_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1896 {
1897 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1898 
1899 	return 0;
1900 }
1901 
1902 static int
tap_tx_queue_start(struct rte_eth_dev * dev,uint16_t tx_queue_id)1903 tap_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1904 {
1905 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
1906 
1907 	return 0;
1908 }
1909 
1910 static int
tap_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rx_queue_id)1911 tap_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
1912 {
1913 	dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1914 
1915 	return 0;
1916 }
1917 
1918 static int
tap_tx_queue_stop(struct rte_eth_dev * dev,uint16_t tx_queue_id)1919 tap_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
1920 {
1921 	dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
1922 
1923 	return 0;
1924 }
1925 static const struct eth_dev_ops ops = {
1926 	.dev_start              = tap_dev_start,
1927 	.dev_stop               = tap_dev_stop,
1928 	.dev_close              = tap_dev_close,
1929 	.dev_configure          = tap_dev_configure,
1930 	.dev_infos_get          = tap_dev_info,
1931 	.rx_queue_setup         = tap_rx_queue_setup,
1932 	.tx_queue_setup         = tap_tx_queue_setup,
1933 	.rx_queue_start         = tap_rx_queue_start,
1934 	.tx_queue_start         = tap_tx_queue_start,
1935 	.rx_queue_stop          = tap_rx_queue_stop,
1936 	.tx_queue_stop          = tap_tx_queue_stop,
1937 	.rx_queue_release       = tap_rx_queue_release,
1938 	.tx_queue_release       = tap_tx_queue_release,
1939 	.flow_ctrl_get          = tap_flow_ctrl_get,
1940 	.flow_ctrl_set          = tap_flow_ctrl_set,
1941 	.link_update            = tap_link_update,
1942 	.dev_set_link_up        = tap_link_set_up,
1943 	.dev_set_link_down      = tap_link_set_down,
1944 	.promiscuous_enable     = tap_promisc_enable,
1945 	.promiscuous_disable    = tap_promisc_disable,
1946 	.allmulticast_enable    = tap_allmulti_enable,
1947 	.allmulticast_disable   = tap_allmulti_disable,
1948 	.mac_addr_set           = tap_mac_set,
1949 	.mtu_set                = tap_mtu_set,
1950 	.set_mc_addr_list       = tap_set_mc_addr_list,
1951 	.stats_get              = tap_stats_get,
1952 	.stats_reset            = tap_stats_reset,
1953 	.dev_supported_ptypes_get = tap_dev_supported_ptypes_get,
1954 	.rss_hash_update        = tap_rss_hash_update,
1955 	.flow_ops_get           = tap_dev_flow_ops_get,
1956 };
1957 
1958 static int
eth_dev_tap_create(struct rte_vdev_device * vdev,const char * tap_name,char * remote_iface,struct rte_ether_addr * mac_addr,enum rte_tuntap_type type)1959 eth_dev_tap_create(struct rte_vdev_device *vdev, const char *tap_name,
1960 		   char *remote_iface, struct rte_ether_addr *mac_addr,
1961 		   enum rte_tuntap_type type)
1962 {
1963 	int numa_node = rte_socket_id();
1964 	struct rte_eth_dev *dev;
1965 	struct pmd_internals *pmd;
1966 	struct pmd_process_private *process_private;
1967 	const char *tuntap_name = tuntap_types[type];
1968 	struct rte_eth_dev_data *data;
1969 	struct ifreq ifr;
1970 	int i;
1971 
1972 	TAP_LOG(DEBUG, "%s device on numa %u", tuntap_name, rte_socket_id());
1973 
1974 	dev = rte_eth_vdev_allocate(vdev, sizeof(*pmd));
1975 	if (!dev) {
1976 		TAP_LOG(ERR, "%s Unable to allocate device struct",
1977 				tuntap_name);
1978 		goto error_exit_nodev;
1979 	}
1980 
1981 	process_private = (struct pmd_process_private *)
1982 		rte_zmalloc_socket(tap_name, sizeof(struct pmd_process_private),
1983 			RTE_CACHE_LINE_SIZE, dev->device->numa_node);
1984 
1985 	if (process_private == NULL) {
1986 		TAP_LOG(ERR, "Failed to alloc memory for process private");
1987 		return -1;
1988 	}
1989 	pmd = dev->data->dev_private;
1990 	dev->process_private = process_private;
1991 	pmd->dev = dev;
1992 	strlcpy(pmd->name, tap_name, sizeof(pmd->name));
1993 	pmd->type = type;
1994 	pmd->ka_fd = -1;
1995 	pmd->nlsk_fd = -1;
1996 	pmd->gso_ctx_mp = NULL;
1997 
1998 	pmd->ioctl_sock = socket(AF_INET, SOCK_DGRAM, 0);
1999 	if (pmd->ioctl_sock == -1) {
2000 		TAP_LOG(ERR,
2001 			"%s Unable to get a socket for management: %s",
2002 			tuntap_name, strerror(errno));
2003 		goto error_exit;
2004 	}
2005 
2006 	/* Allocate interrupt instance */
2007 	pmd->intr_handle = rte_intr_instance_alloc(RTE_INTR_INSTANCE_F_SHARED);
2008 	if (pmd->intr_handle == NULL) {
2009 		TAP_LOG(ERR, "Failed to allocate intr handle");
2010 		goto error_exit;
2011 	}
2012 
2013 	/* Setup some default values */
2014 	data = dev->data;
2015 	data->dev_private = pmd;
2016 	data->dev_flags = RTE_ETH_DEV_INTR_LSC |
2017 				RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2018 	data->numa_node = numa_node;
2019 
2020 	data->dev_link = pmd_link;
2021 	data->mac_addrs = &pmd->eth_addr;
2022 	/* Set the number of RX and TX queues */
2023 	data->nb_rx_queues = 0;
2024 	data->nb_tx_queues = 0;
2025 
2026 	dev->dev_ops = &ops;
2027 	dev->rx_pkt_burst = pmd_rx_burst;
2028 	dev->tx_pkt_burst = pmd_tx_burst;
2029 
2030 	rte_intr_type_set(pmd->intr_handle, RTE_INTR_HANDLE_EXT);
2031 	rte_intr_fd_set(pmd->intr_handle, -1);
2032 	dev->intr_handle = pmd->intr_handle;
2033 
2034 	/* Presetup the fds to -1 as being not valid */
2035 	for (i = 0; i < RTE_PMD_TAP_MAX_QUEUES; i++) {
2036 		process_private->rxq_fds[i] = -1;
2037 		process_private->txq_fds[i] = -1;
2038 	}
2039 
2040 	if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
2041 		if (rte_is_zero_ether_addr(mac_addr))
2042 			rte_eth_random_addr((uint8_t *)&pmd->eth_addr);
2043 		else
2044 			rte_memcpy(&pmd->eth_addr, mac_addr, sizeof(*mac_addr));
2045 	}
2046 
2047 	/*
2048 	 * Allocate a TUN device keep-alive file descriptor that will only be
2049 	 * closed when the TUN device itself is closed or removed.
2050 	 * This keep-alive file descriptor will guarantee that the TUN device
2051 	 * exists even when all of its queues are closed
2052 	 */
2053 	pmd->ka_fd = tun_alloc(pmd, 1);
2054 	if (pmd->ka_fd == -1) {
2055 		TAP_LOG(ERR, "Unable to create %s interface", tuntap_name);
2056 		goto error_exit;
2057 	}
2058 	TAP_LOG(DEBUG, "allocated %s", pmd->name);
2059 
2060 	ifr.ifr_mtu = dev->data->mtu;
2061 	if (tap_ioctl(pmd, SIOCSIFMTU, &ifr, 1, LOCAL_AND_REMOTE) < 0)
2062 		goto error_exit;
2063 
2064 	if (pmd->type == ETH_TUNTAP_TYPE_TAP) {
2065 		memset(&ifr, 0, sizeof(struct ifreq));
2066 		ifr.ifr_hwaddr.sa_family = AF_LOCAL;
2067 		rte_memcpy(ifr.ifr_hwaddr.sa_data, &pmd->eth_addr,
2068 				RTE_ETHER_ADDR_LEN);
2069 		if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0)
2070 			goto error_exit;
2071 	}
2072 
2073 	/*
2074 	 * Set up everything related to rte_flow:
2075 	 * - netlink socket
2076 	 * - tap / remote if_index
2077 	 * - mandatory QDISCs
2078 	 * - rte_flow actual/implicit lists
2079 	 * - implicit rules
2080 	 */
2081 	pmd->nlsk_fd = tap_nl_init(0);
2082 	if (pmd->nlsk_fd == -1) {
2083 		TAP_LOG(WARNING, "%s: failed to create netlink socket.",
2084 			pmd->name);
2085 		goto disable_rte_flow;
2086 	}
2087 	pmd->if_index = if_nametoindex(pmd->name);
2088 	if (!pmd->if_index) {
2089 		TAP_LOG(ERR, "%s: failed to get if_index.", pmd->name);
2090 		goto disable_rte_flow;
2091 	}
2092 	if (qdisc_create_multiq(pmd->nlsk_fd, pmd->if_index) < 0) {
2093 		TAP_LOG(ERR, "%s: failed to create multiq qdisc.",
2094 			pmd->name);
2095 		goto disable_rte_flow;
2096 	}
2097 	if (qdisc_create_ingress(pmd->nlsk_fd, pmd->if_index) < 0) {
2098 		TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2099 			pmd->name);
2100 		goto disable_rte_flow;
2101 	}
2102 	LIST_INIT(&pmd->flows);
2103 
2104 	if (strlen(remote_iface)) {
2105 		pmd->remote_if_index = if_nametoindex(remote_iface);
2106 		if (!pmd->remote_if_index) {
2107 			TAP_LOG(ERR, "%s: failed to get %s if_index.",
2108 				pmd->name, remote_iface);
2109 			goto error_remote;
2110 		}
2111 		strlcpy(pmd->remote_iface, remote_iface, RTE_ETH_NAME_MAX_LEN);
2112 
2113 		/* Save state of remote device */
2114 		tap_ioctl(pmd, SIOCGIFFLAGS, &pmd->remote_initial_flags, 0, REMOTE_ONLY);
2115 
2116 		/* Replicate remote MAC address */
2117 		if (tap_ioctl(pmd, SIOCGIFHWADDR, &ifr, 0, REMOTE_ONLY) < 0) {
2118 			TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2119 				pmd->name, pmd->remote_iface);
2120 			goto error_remote;
2121 		}
2122 		rte_memcpy(&pmd->eth_addr, ifr.ifr_hwaddr.sa_data,
2123 			   RTE_ETHER_ADDR_LEN);
2124 		/* The desired MAC is already in ifreq after SIOCGIFHWADDR. */
2125 		if (tap_ioctl(pmd, SIOCSIFHWADDR, &ifr, 0, LOCAL_ONLY) < 0) {
2126 			TAP_LOG(ERR, "%s: failed to get %s MAC address.",
2127 				pmd->name, remote_iface);
2128 			goto error_remote;
2129 		}
2130 
2131 		/*
2132 		 * Flush usually returns negative value because it tries to
2133 		 * delete every QDISC (and on a running device, one QDISC at
2134 		 * least is needed). Ignore negative return value.
2135 		 */
2136 		qdisc_flush(pmd->nlsk_fd, pmd->remote_if_index);
2137 		if (qdisc_create_ingress(pmd->nlsk_fd,
2138 					 pmd->remote_if_index) < 0) {
2139 			TAP_LOG(ERR, "%s: failed to create ingress qdisc.",
2140 				pmd->remote_iface);
2141 			goto error_remote;
2142 		}
2143 		LIST_INIT(&pmd->implicit_flows);
2144 		if (tap_flow_implicit_create(pmd, TAP_REMOTE_TX) < 0 ||
2145 		    tap_flow_implicit_create(pmd, TAP_REMOTE_LOCAL_MAC) < 0 ||
2146 		    tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCAST) < 0 ||
2147 		    tap_flow_implicit_create(pmd, TAP_REMOTE_BROADCASTV6) < 0) {
2148 			TAP_LOG(ERR,
2149 				"%s: failed to create implicit rules.",
2150 				pmd->name);
2151 			goto error_remote;
2152 		}
2153 	}
2154 
2155 	rte_eth_dev_probing_finish(dev);
2156 	return 0;
2157 
2158 disable_rte_flow:
2159 	TAP_LOG(ERR, " Disabling rte flow support: %s(%d)",
2160 		strerror(errno), errno);
2161 	if (strlen(remote_iface)) {
2162 		TAP_LOG(ERR, "Remote feature requires flow support.");
2163 		goto error_exit;
2164 	}
2165 	rte_eth_dev_probing_finish(dev);
2166 	return 0;
2167 
2168 error_remote:
2169 	TAP_LOG(ERR, " Can't set up remote feature: %s(%d)",
2170 		strerror(errno), errno);
2171 	tap_flow_implicit_flush(pmd, NULL);
2172 
2173 error_exit:
2174 	if (pmd->nlsk_fd != -1)
2175 		close(pmd->nlsk_fd);
2176 	if (pmd->ka_fd != -1)
2177 		close(pmd->ka_fd);
2178 	if (pmd->ioctl_sock != -1)
2179 		close(pmd->ioctl_sock);
2180 	/* mac_addrs must not be freed alone because part of dev_private */
2181 	dev->data->mac_addrs = NULL;
2182 	rte_eth_dev_release_port(dev);
2183 	rte_intr_instance_free(pmd->intr_handle);
2184 
2185 error_exit_nodev:
2186 	TAP_LOG(ERR, "%s Unable to initialize %s",
2187 		tuntap_name, rte_vdev_device_name(vdev));
2188 
2189 	return -EINVAL;
2190 }
2191 
2192 /* make sure name is a possible Linux network device name */
2193 static bool
is_valid_iface(const char * name)2194 is_valid_iface(const char *name)
2195 {
2196 	if (*name == '\0')
2197 		return false;
2198 
2199 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
2200 		return false;
2201 
2202 	while (*name) {
2203 		if (*name == '/' || *name == ':' || isspace(*name))
2204 			return false;
2205 		name++;
2206 	}
2207 	return true;
2208 }
2209 
2210 static int
set_interface_name(const char * key __rte_unused,const char * value,void * extra_args)2211 set_interface_name(const char *key __rte_unused,
2212 		   const char *value,
2213 		   void *extra_args)
2214 {
2215 	char *name = (char *)extra_args;
2216 
2217 	if (value) {
2218 		if (!is_valid_iface(value)) {
2219 			TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2220 				value);
2221 			return -1;
2222 		}
2223 		strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2224 	} else {
2225 		/* use tap%d which causes kernel to choose next available */
2226 		strlcpy(name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2227 	}
2228 	return 0;
2229 }
2230 
2231 static int
set_remote_iface(const char * key __rte_unused,const char * value,void * extra_args)2232 set_remote_iface(const char *key __rte_unused,
2233 		 const char *value,
2234 		 void *extra_args)
2235 {
2236 	char *name = (char *)extra_args;
2237 
2238 	if (value) {
2239 		if (!is_valid_iface(value)) {
2240 			TAP_LOG(ERR, "TAP invalid remote interface name (%s)",
2241 				value);
2242 			return -1;
2243 		}
2244 		strlcpy(name, value, RTE_ETH_NAME_MAX_LEN);
2245 	}
2246 
2247 	return 0;
2248 }
2249 
parse_user_mac(struct rte_ether_addr * user_mac,const char * value)2250 static int parse_user_mac(struct rte_ether_addr *user_mac,
2251 		const char *value)
2252 {
2253 	unsigned int index = 0;
2254 	char mac_temp[strlen(ETH_TAP_USR_MAC_FMT) + 1], *mac_byte = NULL;
2255 
2256 	if (user_mac == NULL || value == NULL)
2257 		return 0;
2258 
2259 	strlcpy(mac_temp, value, sizeof(mac_temp));
2260 	mac_byte = strtok(mac_temp, ":");
2261 
2262 	while ((mac_byte != NULL) &&
2263 			(strlen(mac_byte) <= 2) &&
2264 			(strlen(mac_byte) == strspn(mac_byte,
2265 					ETH_TAP_CMP_MAC_FMT))) {
2266 		user_mac->addr_bytes[index++] = strtoul(mac_byte, NULL, 16);
2267 		mac_byte = strtok(NULL, ":");
2268 	}
2269 
2270 	return index;
2271 }
2272 
2273 static int
set_mac_type(const char * key __rte_unused,const char * value,void * extra_args)2274 set_mac_type(const char *key __rte_unused,
2275 	     const char *value,
2276 	     void *extra_args)
2277 {
2278 	struct rte_ether_addr *user_mac = extra_args;
2279 
2280 	if (!value)
2281 		return 0;
2282 
2283 	if (!strncasecmp(ETH_TAP_MAC_FIXED, value, strlen(ETH_TAP_MAC_FIXED))) {
2284 		static int iface_idx;
2285 
2286 		/* fixed mac = 00:64:74:61:70:<iface_idx> */
2287 		memcpy((char *)user_mac->addr_bytes, "\0dtap",
2288 			RTE_ETHER_ADDR_LEN);
2289 		user_mac->addr_bytes[RTE_ETHER_ADDR_LEN - 1] =
2290 			iface_idx++ + '0';
2291 		goto success;
2292 	}
2293 
2294 	if (parse_user_mac(user_mac, value) != 6)
2295 		goto error;
2296 success:
2297 	TAP_LOG(DEBUG, "TAP user MAC param (%s)", value);
2298 	return 0;
2299 
2300 error:
2301 	TAP_LOG(ERR, "TAP user MAC (%s) is not in format (%s|%s)",
2302 		value, ETH_TAP_MAC_FIXED, ETH_TAP_USR_MAC_FMT);
2303 	return -1;
2304 }
2305 
2306 /*
2307  * Open a TUN interface device. TUN PMD
2308  * 1) sets tap_type as false
2309  * 2) intakes iface as argument.
2310  * 3) as interface is virtual set speed to 10G
2311  */
2312 static int
rte_pmd_tun_probe(struct rte_vdev_device * dev)2313 rte_pmd_tun_probe(struct rte_vdev_device *dev)
2314 {
2315 	const char *name, *params;
2316 	int ret;
2317 	struct rte_kvargs *kvlist = NULL;
2318 	char tun_name[RTE_ETH_NAME_MAX_LEN];
2319 	char remote_iface[RTE_ETH_NAME_MAX_LEN];
2320 	struct rte_eth_dev *eth_dev;
2321 
2322 	name = rte_vdev_device_name(dev);
2323 	params = rte_vdev_device_args(dev);
2324 	memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2325 
2326 	if (rte_eal_process_type() == RTE_PROC_SECONDARY &&
2327 	    strlen(params) == 0) {
2328 		eth_dev = rte_eth_dev_attach_secondary(name);
2329 		if (!eth_dev) {
2330 			TAP_LOG(ERR, "Failed to probe %s", name);
2331 			return -1;
2332 		}
2333 		eth_dev->dev_ops = &ops;
2334 		eth_dev->device = &dev->device;
2335 		rte_eth_dev_probing_finish(eth_dev);
2336 		return 0;
2337 	}
2338 
2339 	/* use tun%d which causes kernel to choose next available */
2340 	strlcpy(tun_name, DEFAULT_TUN_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2341 
2342 	if (params && (params[0] != '\0')) {
2343 		TAP_LOG(DEBUG, "parameters (%s)", params);
2344 
2345 		kvlist = rte_kvargs_parse(params, valid_arguments);
2346 		if (kvlist) {
2347 			if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2348 				ret = rte_kvargs_process(kvlist,
2349 					ETH_TAP_IFACE_ARG,
2350 					&set_interface_name,
2351 					tun_name);
2352 
2353 				if (ret == -1)
2354 					goto leave;
2355 			}
2356 		}
2357 	}
2358 	pmd_link.link_speed = RTE_ETH_SPEED_NUM_10G;
2359 
2360 	TAP_LOG(DEBUG, "Initializing pmd_tun for %s", name);
2361 
2362 	ret = eth_dev_tap_create(dev, tun_name, remote_iface, 0,
2363 				 ETH_TUNTAP_TYPE_TUN);
2364 
2365 leave:
2366 	if (ret == -1) {
2367 		TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2368 			name, tun_name);
2369 	}
2370 	rte_kvargs_free(kvlist);
2371 
2372 	return ret;
2373 }
2374 
2375 /* Request queue file descriptors from secondary to primary. */
2376 static int
tap_mp_attach_queues(const char * port_name,struct rte_eth_dev * dev)2377 tap_mp_attach_queues(const char *port_name, struct rte_eth_dev *dev)
2378 {
2379 	int ret;
2380 	struct timespec timeout = {.tv_sec = 1, .tv_nsec = 0};
2381 	struct rte_mp_msg request, *reply;
2382 	struct rte_mp_reply replies;
2383 	struct ipc_queues *request_param = (struct ipc_queues *)request.param;
2384 	struct ipc_queues *reply_param;
2385 	struct pmd_process_private *process_private = dev->process_private;
2386 	int queue, fd_iterator;
2387 
2388 	/* Prepare the request */
2389 	memset(&request, 0, sizeof(request));
2390 	strlcpy(request.name, TAP_MP_KEY, sizeof(request.name));
2391 	strlcpy(request_param->port_name, port_name,
2392 		sizeof(request_param->port_name));
2393 	request.len_param = sizeof(*request_param);
2394 	/* Send request and receive reply */
2395 	ret = rte_mp_request_sync(&request, &replies, &timeout);
2396 	if (ret < 0 || replies.nb_received != 1) {
2397 		TAP_LOG(ERR, "Failed to request queues from primary: %d",
2398 			rte_errno);
2399 		return -1;
2400 	}
2401 	reply = &replies.msgs[0];
2402 	reply_param = (struct ipc_queues *)reply->param;
2403 	TAP_LOG(DEBUG, "Received IPC reply for %s", reply_param->port_name);
2404 
2405 	/* Attach the queues from received file descriptors */
2406 	if (reply_param->rxq_count + reply_param->txq_count != reply->num_fds) {
2407 		TAP_LOG(ERR, "Unexpected number of fds received");
2408 		return -1;
2409 	}
2410 
2411 	dev->data->nb_rx_queues = reply_param->rxq_count;
2412 	dev->data->nb_tx_queues = reply_param->txq_count;
2413 	fd_iterator = 0;
2414 	for (queue = 0; queue < reply_param->rxq_count; queue++)
2415 		process_private->rxq_fds[queue] = reply->fds[fd_iterator++];
2416 	for (queue = 0; queue < reply_param->txq_count; queue++)
2417 		process_private->txq_fds[queue] = reply->fds[fd_iterator++];
2418 	free(reply);
2419 	return 0;
2420 }
2421 
2422 /* Send the queue file descriptors from the primary process to secondary. */
2423 static int
tap_mp_sync_queues(const struct rte_mp_msg * request,const void * peer)2424 tap_mp_sync_queues(const struct rte_mp_msg *request, const void *peer)
2425 {
2426 	struct rte_eth_dev *dev;
2427 	struct pmd_process_private *process_private;
2428 	struct rte_mp_msg reply;
2429 	const struct ipc_queues *request_param =
2430 		(const struct ipc_queues *)request->param;
2431 	struct ipc_queues *reply_param =
2432 		(struct ipc_queues *)reply.param;
2433 	int queue;
2434 
2435 	/* Get requested port */
2436 	TAP_LOG(DEBUG, "Received IPC request for %s", request_param->port_name);
2437 	dev = rte_eth_dev_get_by_name(request_param->port_name);
2438 	if (!dev) {
2439 		TAP_LOG(ERR, "Failed to get port id for %s",
2440 			request_param->port_name);
2441 		return -1;
2442 	}
2443 	process_private = dev->process_private;
2444 
2445 	/* Fill file descriptors for all queues */
2446 	reply.num_fds = 0;
2447 	reply_param->rxq_count = 0;
2448 	if (dev->data->nb_rx_queues + dev->data->nb_tx_queues >
2449 			RTE_MP_MAX_FD_NUM){
2450 		TAP_LOG(ERR, "Number of rx/tx queues exceeds max number of fds");
2451 		return -1;
2452 	}
2453 
2454 	for (queue = 0; queue < dev->data->nb_rx_queues; queue++) {
2455 		reply.fds[reply.num_fds++] = process_private->rxq_fds[queue];
2456 		reply_param->rxq_count++;
2457 	}
2458 	RTE_ASSERT(reply_param->rxq_count == dev->data->nb_rx_queues);
2459 
2460 	reply_param->txq_count = 0;
2461 	for (queue = 0; queue < dev->data->nb_tx_queues; queue++) {
2462 		reply.fds[reply.num_fds++] = process_private->txq_fds[queue];
2463 		reply_param->txq_count++;
2464 	}
2465 	RTE_ASSERT(reply_param->txq_count == dev->data->nb_tx_queues);
2466 
2467 	/* Send reply */
2468 	strlcpy(reply.name, request->name, sizeof(reply.name));
2469 	strlcpy(reply_param->port_name, request_param->port_name,
2470 		sizeof(reply_param->port_name));
2471 	reply.len_param = sizeof(*reply_param);
2472 	if (rte_mp_reply(&reply, peer) < 0) {
2473 		TAP_LOG(ERR, "Failed to reply an IPC request to sync queues");
2474 		return -1;
2475 	}
2476 	return 0;
2477 }
2478 
2479 /* Open a TAP interface device.
2480  */
2481 static int
rte_pmd_tap_probe(struct rte_vdev_device * dev)2482 rte_pmd_tap_probe(struct rte_vdev_device *dev)
2483 {
2484 	const char *name, *params;
2485 	int ret;
2486 	struct rte_kvargs *kvlist = NULL;
2487 	int speed;
2488 	char tap_name[RTE_ETH_NAME_MAX_LEN];
2489 	char remote_iface[RTE_ETH_NAME_MAX_LEN];
2490 	struct rte_ether_addr user_mac = { .addr_bytes = {0} };
2491 	struct rte_eth_dev *eth_dev;
2492 	int tap_devices_count_increased = 0;
2493 
2494 	name = rte_vdev_device_name(dev);
2495 	params = rte_vdev_device_args(dev);
2496 
2497 	if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
2498 		eth_dev = rte_eth_dev_attach_secondary(name);
2499 		if (!eth_dev) {
2500 			TAP_LOG(ERR, "Failed to probe %s", name);
2501 			return -1;
2502 		}
2503 		eth_dev->dev_ops = &ops;
2504 		eth_dev->device = &dev->device;
2505 		eth_dev->rx_pkt_burst = pmd_rx_burst;
2506 		eth_dev->tx_pkt_burst = pmd_tx_burst;
2507 		if (!rte_eal_primary_proc_alive(NULL)) {
2508 			TAP_LOG(ERR, "Primary process is missing");
2509 			return -1;
2510 		}
2511 		eth_dev->process_private = (struct pmd_process_private *)
2512 			rte_zmalloc_socket(name,
2513 				sizeof(struct pmd_process_private),
2514 				RTE_CACHE_LINE_SIZE,
2515 				eth_dev->device->numa_node);
2516 		if (eth_dev->process_private == NULL) {
2517 			TAP_LOG(ERR,
2518 				"Failed to alloc memory for process private");
2519 			return -1;
2520 		}
2521 
2522 		ret = tap_mp_attach_queues(name, eth_dev);
2523 		if (ret != 0)
2524 			return -1;
2525 
2526 		if (!tap_devices_count) {
2527 			ret = rte_mp_action_register(TAP_MP_REQ_START_RXTX, tap_mp_req_start_rxtx);
2528 			if (ret < 0 && rte_errno != ENOTSUP) {
2529 				TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2530 					strerror(rte_errno));
2531 				return -1;
2532 			}
2533 		}
2534 		tap_devices_count++;
2535 		rte_eth_dev_probing_finish(eth_dev);
2536 		return 0;
2537 	}
2538 
2539 	speed = RTE_ETH_SPEED_NUM_10G;
2540 
2541 	/* use tap%d which causes kernel to choose next available */
2542 	strlcpy(tap_name, DEFAULT_TAP_NAME "%d", RTE_ETH_NAME_MAX_LEN);
2543 	memset(remote_iface, 0, RTE_ETH_NAME_MAX_LEN);
2544 
2545 	if (params && (params[0] != '\0')) {
2546 		TAP_LOG(DEBUG, "parameters (%s)", params);
2547 
2548 		kvlist = rte_kvargs_parse(params, valid_arguments);
2549 		if (kvlist) {
2550 			if (rte_kvargs_count(kvlist, ETH_TAP_IFACE_ARG) == 1) {
2551 				ret = rte_kvargs_process(kvlist,
2552 							 ETH_TAP_IFACE_ARG,
2553 							 &set_interface_name,
2554 							 tap_name);
2555 				if (ret == -1)
2556 					goto leave;
2557 			}
2558 
2559 			if (rte_kvargs_count(kvlist, ETH_TAP_REMOTE_ARG) == 1) {
2560 				ret = rte_kvargs_process(kvlist,
2561 							 ETH_TAP_REMOTE_ARG,
2562 							 &set_remote_iface,
2563 							 remote_iface);
2564 				if (ret == -1)
2565 					goto leave;
2566 			}
2567 
2568 			if (rte_kvargs_count(kvlist, ETH_TAP_MAC_ARG) == 1) {
2569 				ret = rte_kvargs_process(kvlist,
2570 							 ETH_TAP_MAC_ARG,
2571 							 &set_mac_type,
2572 							 &user_mac);
2573 				if (ret == -1)
2574 					goto leave;
2575 			}
2576 		}
2577 	}
2578 	pmd_link.link_speed = speed;
2579 
2580 	TAP_LOG(DEBUG, "Initializing pmd_tap for %s", name);
2581 
2582 	/* Register IPC feed callback */
2583 	if (!tap_devices_count) {
2584 		ret = rte_mp_action_register(TAP_MP_KEY, tap_mp_sync_queues);
2585 		if (ret < 0 && rte_errno != ENOTSUP) {
2586 			TAP_LOG(ERR, "tap: Failed to register IPC callback: %s",
2587 				strerror(rte_errno));
2588 			goto leave;
2589 		}
2590 	}
2591 	tap_devices_count++;
2592 	tap_devices_count_increased = 1;
2593 	ret = eth_dev_tap_create(dev, tap_name, remote_iface, &user_mac,
2594 		ETH_TUNTAP_TYPE_TAP);
2595 
2596 leave:
2597 	if (ret == -1) {
2598 		TAP_LOG(ERR, "Failed to create pmd for %s as %s",
2599 			name, tap_name);
2600 		if (tap_devices_count_increased == 1) {
2601 			if (tap_devices_count == 1)
2602 				rte_mp_action_unregister(TAP_MP_KEY);
2603 			tap_devices_count--;
2604 		}
2605 	}
2606 	rte_kvargs_free(kvlist);
2607 
2608 	return ret;
2609 }
2610 
2611 /* detach a TUNTAP device.
2612  */
2613 static int
rte_pmd_tap_remove(struct rte_vdev_device * dev)2614 rte_pmd_tap_remove(struct rte_vdev_device *dev)
2615 {
2616 	struct rte_eth_dev *eth_dev = NULL;
2617 
2618 	/* find the ethdev entry */
2619 	eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
2620 	if (!eth_dev)
2621 		return 0;
2622 
2623 	tap_dev_close(eth_dev);
2624 	rte_eth_dev_release_port(eth_dev);
2625 
2626 	return 0;
2627 }
2628 
2629 static struct rte_vdev_driver pmd_tun_drv = {
2630 	.probe = rte_pmd_tun_probe,
2631 	.remove = rte_pmd_tap_remove,
2632 };
2633 
2634 static struct rte_vdev_driver pmd_tap_drv = {
2635 	.probe = rte_pmd_tap_probe,
2636 	.remove = rte_pmd_tap_remove,
2637 };
2638 
2639 RTE_PMD_REGISTER_VDEV(net_tap, pmd_tap_drv);
2640 RTE_PMD_REGISTER_VDEV(net_tun, pmd_tun_drv);
2641 RTE_PMD_REGISTER_ALIAS(net_tap, eth_tap);
2642 RTE_PMD_REGISTER_PARAM_STRING(net_tun,
2643 			      ETH_TAP_IFACE_ARG "=<string> ");
2644 RTE_PMD_REGISTER_PARAM_STRING(net_tap,
2645 			      ETH_TAP_IFACE_ARG "=<string> "
2646 			      ETH_TAP_MAC_ARG "=" ETH_TAP_MAC_ARG_FMT " "
2647 			      ETH_TAP_REMOTE_ARG "=<string>");
2648 RTE_LOG_REGISTER_DEFAULT(tap_logtype, NOTICE);
2649