xref: /dpdk/drivers/net/sfc/sfc_ef100_rx.c (revision 7be78d02)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  *
3  * Copyright(c) 2019-2021 Xilinx, Inc.
4  * Copyright(c) 2018-2019 Solarflare Communications Inc.
5  *
6  * This software was jointly developed between OKTET Labs (under contract
7  * for Solarflare) and Solarflare Communications, Inc.
8  */
9 
10 /* EF100 native datapath implementation */
11 
12 #include <stdbool.h>
13 
14 #include <rte_byteorder.h>
15 #include <rte_mbuf_ptype.h>
16 #include <rte_mbuf.h>
17 #include <rte_io.h>
18 
19 #include "efx_types.h"
20 #include "efx_regs_ef100.h"
21 #include "efx.h"
22 
23 #include "sfc.h"
24 #include "sfc_debug.h"
25 #include "sfc_flow_tunnel.h"
26 #include "sfc_tweak.h"
27 #include "sfc_dp_rx.h"
28 #include "sfc_kvargs.h"
29 #include "sfc_ef100.h"
30 #include "sfc_nic_dma_dp.h"
31 
32 
33 #define sfc_ef100_rx_err(_rxq, ...) \
34 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_rxq)->dp.dpq, __VA_ARGS__)
35 
36 #define sfc_ef100_rx_debug(_rxq, ...) \
37 	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_rxq)->dp.dpq, \
38 		   __VA_ARGS__)
39 
40 /**
41  * Maximum number of descriptors/buffers in the Rx ring.
42  * It should guarantee that corresponding event queue never overfill.
43  * EF10 native datapath uses event queue of the same size as Rx queue.
44  * Maximum number of events on datapath can be estimated as number of
45  * Rx queue entries (one event per Rx buffer in the worst case) plus
46  * Rx error and flush events.
47  */
48 #define SFC_EF100_RXQ_LIMIT(_ndesc) \
49 	((_ndesc) - 1 /* head must not step on tail */ - \
50 	 1 /* Rx error */ - 1 /* flush */)
51 
52 /** Invalid user mark value when the mark should be treated as unset */
53 #define SFC_EF100_USER_MARK_INVALID	0
54 
55 struct sfc_ef100_rx_sw_desc {
56 	struct rte_mbuf			*mbuf;
57 };
58 
59 struct sfc_ef100_rxq {
60 	/* Used on data path */
61 	unsigned int			flags;
62 #define SFC_EF100_RXQ_STARTED		0x1
63 #define SFC_EF100_RXQ_NOT_RUNNING	0x2
64 #define SFC_EF100_RXQ_EXCEPTION		0x4
65 #define SFC_EF100_RXQ_RSS_HASH		0x10
66 #define SFC_EF100_RXQ_USER_MARK		0x20
67 #define SFC_EF100_RXQ_FLAG_INTR_EN	0x40
68 #define SFC_EF100_RXQ_INGRESS_MPORT	0x80
69 #define SFC_EF100_RXQ_USER_FLAG		0x100
70 #define SFC_EF100_RXQ_NIC_DMA_MAP	0x200
71 	unsigned int			ptr_mask;
72 	unsigned int			evq_phase_bit_shift;
73 	unsigned int			ready_pkts;
74 	unsigned int			completed;
75 	unsigned int			evq_read_ptr;
76 	unsigned int			evq_read_ptr_primed;
77 	volatile efx_qword_t		*evq_hw_ring;
78 	struct sfc_ef100_rx_sw_desc	*sw_ring;
79 	uint64_t			rearm_data;
80 	uint16_t			buf_size;
81 	uint16_t			prefix_size;
82 	uint32_t			user_mark_mask;
83 
84 	unsigned int			evq_hw_index;
85 	volatile void			*evq_prime;
86 
87 	/* Used on refill */
88 	unsigned int			added;
89 	unsigned int			max_fill_level;
90 	unsigned int			refill_threshold;
91 	struct rte_mempool		*refill_mb_pool;
92 	efx_qword_t			*rxq_hw_ring;
93 	volatile void			*doorbell;
94 
95 	/* Datapath receive queue anchor */
96 	struct sfc_dp_rxq		dp;
97 
98 	const struct sfc_nic_dma_info	*nic_dma_info;
99 };
100 
101 static inline struct sfc_ef100_rxq *
sfc_ef100_rxq_by_dp_rxq(struct sfc_dp_rxq * dp_rxq)102 sfc_ef100_rxq_by_dp_rxq(struct sfc_dp_rxq *dp_rxq)
103 {
104 	return container_of(dp_rxq, struct sfc_ef100_rxq, dp);
105 }
106 
107 static void
sfc_ef100_rx_qprime(struct sfc_ef100_rxq * rxq)108 sfc_ef100_rx_qprime(struct sfc_ef100_rxq *rxq)
109 {
110 	sfc_ef100_evq_prime(rxq->evq_prime, rxq->evq_hw_index,
111 			    rxq->evq_read_ptr & rxq->ptr_mask);
112 	rxq->evq_read_ptr_primed = rxq->evq_read_ptr;
113 }
114 
115 static inline void
sfc_ef100_rx_qpush(struct sfc_ef100_rxq * rxq,unsigned int added)116 sfc_ef100_rx_qpush(struct sfc_ef100_rxq *rxq, unsigned int added)
117 {
118 	efx_dword_t dword;
119 
120 	EFX_POPULATE_DWORD_1(dword, ERF_GZ_RX_RING_PIDX, added & rxq->ptr_mask);
121 
122 	/* DMA sync to device is not required */
123 
124 	/*
125 	 * rte_write32() has rte_io_wmb() which guarantees that the STORE
126 	 * operations (i.e. Rx and event descriptor updates) that precede
127 	 * the rte_io_wmb() call are visible to NIC before the STORE
128 	 * operations that follow it (i.e. doorbell write).
129 	 */
130 	rte_write32(dword.ed_u32[0], rxq->doorbell);
131 	rxq->dp.dpq.dbells++;
132 
133 	sfc_ef100_rx_debug(rxq, "RxQ pushed doorbell at pidx %u (added=%u)",
134 			   EFX_DWORD_FIELD(dword, ERF_GZ_RX_RING_PIDX),
135 			   added);
136 }
137 
138 static void
sfc_ef100_rx_qrefill(struct sfc_ef100_rxq * rxq)139 sfc_ef100_rx_qrefill(struct sfc_ef100_rxq *rxq)
140 {
141 	const unsigned int ptr_mask = rxq->ptr_mask;
142 	unsigned int free_space;
143 	unsigned int bulks;
144 	void *objs[SFC_RX_REFILL_BULK];
145 	unsigned int added = rxq->added;
146 
147 	free_space = rxq->max_fill_level - (added - rxq->completed);
148 
149 	if (free_space < rxq->refill_threshold)
150 		return;
151 
152 	bulks = free_space / RTE_DIM(objs);
153 	/* refill_threshold guarantees that bulks is positive */
154 	SFC_ASSERT(bulks > 0);
155 
156 	do {
157 		unsigned int i;
158 
159 		if (unlikely(rte_mempool_get_bulk(rxq->refill_mb_pool, objs,
160 						  RTE_DIM(objs)) < 0)) {
161 			struct rte_eth_dev_data *dev_data =
162 				rte_eth_devices[rxq->dp.dpq.port_id].data;
163 
164 			/*
165 			 * It is hardly a safe way to increment counter
166 			 * from different contexts, but all PMDs do it.
167 			 */
168 			dev_data->rx_mbuf_alloc_failed += RTE_DIM(objs);
169 			/* Return if we have posted nothing yet */
170 			if (added == rxq->added)
171 				return;
172 			/* Push posted */
173 			break;
174 		}
175 
176 		for (i = 0; i < RTE_DIM(objs); ++i) {
177 			struct rte_mbuf *m = objs[i];
178 			struct sfc_ef100_rx_sw_desc *rxd;
179 			rte_iova_t dma_addr;
180 
181 			__rte_mbuf_raw_sanity_check(m);
182 
183 			dma_addr = rte_mbuf_data_iova_default(m);
184 			if (rxq->flags & SFC_EF100_RXQ_NIC_DMA_MAP) {
185 				dma_addr = sfc_nic_dma_map(rxq->nic_dma_info,
186 						dma_addr,
187 						rte_pktmbuf_data_len(m));
188 				if (unlikely(dma_addr == RTE_BAD_IOVA)) {
189 					sfc_ef100_rx_err(rxq,
190 						"failed to map DMA address on Rx");
191 					/* Just skip buffer and try to continue */
192 					rte_mempool_put(rxq->refill_mb_pool, m);
193 					continue;
194 				}
195 			}
196 
197 			rxd = &rxq->sw_ring[added & ptr_mask];
198 			rxd->mbuf = m;
199 
200 			/*
201 			 * Avoid writing to mbuf. It is cheaper to do it
202 			 * when we receive packet and fill in nearby
203 			 * structure members.
204 			 */
205 
206 			EFX_POPULATE_QWORD_1(rxq->rxq_hw_ring[added & ptr_mask],
207 			    ESF_GZ_RX_BUF_ADDR, dma_addr);
208 			added++;
209 		}
210 	} while (--bulks > 0);
211 
212 	SFC_ASSERT(rxq->added != added);
213 	rxq->added = added;
214 	sfc_ef100_rx_qpush(rxq, added);
215 }
216 
217 static inline uint64_t
sfc_ef100_rx_nt_or_inner_l4_csum(const efx_word_t class)218 sfc_ef100_rx_nt_or_inner_l4_csum(const efx_word_t class)
219 {
220 	return EFX_WORD_FIELD(class,
221 			      ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CSUM) ==
222 		ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
223 		RTE_MBUF_F_RX_L4_CKSUM_GOOD : RTE_MBUF_F_RX_L4_CKSUM_BAD;
224 }
225 
226 static inline uint64_t
sfc_ef100_rx_tun_outer_l4_csum(const efx_word_t class)227 sfc_ef100_rx_tun_outer_l4_csum(const efx_word_t class)
228 {
229 	return EFX_WORD_FIELD(class,
230 			      ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L4_CSUM) ==
231 		ESE_GZ_RH_HCLASS_L4_CSUM_GOOD ?
232 		RTE_MBUF_F_RX_OUTER_L4_CKSUM_GOOD : RTE_MBUF_F_RX_OUTER_L4_CKSUM_BAD;
233 }
234 
235 static uint32_t
sfc_ef100_rx_class_decode(const efx_word_t class,uint64_t * ol_flags)236 sfc_ef100_rx_class_decode(const efx_word_t class, uint64_t *ol_flags)
237 {
238 	uint32_t ptype;
239 	bool no_tunnel = false;
240 
241 	if (unlikely(EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_CLASS) !=
242 		     ESE_GZ_RH_HCLASS_L2_CLASS_E2_0123VLAN))
243 		return 0;
244 
245 	switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_L2_N_VLAN)) {
246 	case 0:
247 		ptype = RTE_PTYPE_L2_ETHER;
248 		break;
249 	case 1:
250 		ptype = RTE_PTYPE_L2_ETHER_VLAN;
251 		break;
252 	default:
253 		ptype = RTE_PTYPE_L2_ETHER_QINQ;
254 		break;
255 	}
256 
257 	switch (EFX_WORD_FIELD(class, ESF_GZ_RX_PREFIX_HCLASS_TUNNEL_CLASS)) {
258 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NONE:
259 		no_tunnel = true;
260 		break;
261 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_VXLAN:
262 		ptype |= RTE_PTYPE_TUNNEL_VXLAN | RTE_PTYPE_L4_UDP;
263 		*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
264 		break;
265 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_NVGRE:
266 		ptype |= RTE_PTYPE_TUNNEL_NVGRE;
267 		break;
268 	case ESE_GZ_RH_HCLASS_TUNNEL_CLASS_GENEVE:
269 		ptype |= RTE_PTYPE_TUNNEL_GENEVE | RTE_PTYPE_L4_UDP;
270 		*ol_flags |= sfc_ef100_rx_tun_outer_l4_csum(class);
271 		break;
272 	default:
273 		/*
274 		 * Driver does not know the tunnel, but it is
275 		 * still a tunnel and NT_OR_INNER refer to inner
276 		 * frame.
277 		 */
278 		no_tunnel = false;
279 	}
280 
281 	if (no_tunnel) {
282 		bool l4_valid = true;
283 
284 		switch (EFX_WORD_FIELD(class,
285 			ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
286 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
287 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
288 			*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
289 			break;
290 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
291 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
292 			*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
293 			break;
294 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
295 			ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
296 			break;
297 		default:
298 			l4_valid = false;
299 		}
300 
301 		if (l4_valid) {
302 			switch (EFX_WORD_FIELD(class,
303 				ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
304 			case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
305 				ptype |= RTE_PTYPE_L4_TCP;
306 				*ol_flags |=
307 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
308 				break;
309 			case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
310 				ptype |= RTE_PTYPE_L4_UDP;
311 				*ol_flags |=
312 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
313 				break;
314 			case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
315 				ptype |= RTE_PTYPE_L4_FRAG;
316 				break;
317 			}
318 		}
319 	} else {
320 		bool l4_valid = true;
321 
322 		switch (EFX_WORD_FIELD(class,
323 			ESF_GZ_RX_PREFIX_HCLASS_TUN_OUTER_L3_CLASS)) {
324 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
325 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
326 			break;
327 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
328 			ptype |= RTE_PTYPE_L3_IPV4_EXT_UNKNOWN;
329 			*ol_flags |= RTE_MBUF_F_RX_OUTER_IP_CKSUM_BAD;
330 			break;
331 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
332 			ptype |= RTE_PTYPE_L3_IPV6_EXT_UNKNOWN;
333 			break;
334 		}
335 
336 		switch (EFX_WORD_FIELD(class,
337 			ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L3_CLASS)) {
338 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4GOOD:
339 			ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
340 			*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_GOOD;
341 			break;
342 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP4BAD:
343 			ptype |= RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN;
344 			*ol_flags |= RTE_MBUF_F_RX_IP_CKSUM_BAD;
345 			break;
346 		case ESE_GZ_RH_HCLASS_L3_CLASS_IP6:
347 			ptype |= RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN;
348 			break;
349 		default:
350 			l4_valid = false;
351 			break;
352 		}
353 
354 		if (l4_valid) {
355 			switch (EFX_WORD_FIELD(class,
356 				ESF_GZ_RX_PREFIX_HCLASS_NT_OR_INNER_L4_CLASS)) {
357 			case ESE_GZ_RH_HCLASS_L4_CLASS_TCP:
358 				ptype |= RTE_PTYPE_INNER_L4_TCP;
359 				*ol_flags |=
360 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
361 				break;
362 			case ESE_GZ_RH_HCLASS_L4_CLASS_UDP:
363 				ptype |= RTE_PTYPE_INNER_L4_UDP;
364 				*ol_flags |=
365 					sfc_ef100_rx_nt_or_inner_l4_csum(class);
366 				break;
367 			case ESE_GZ_RH_HCLASS_L4_CLASS_FRAG:
368 				ptype |= RTE_PTYPE_INNER_L4_FRAG;
369 				break;
370 			}
371 		}
372 	}
373 
374 	return ptype;
375 }
376 
377 /*
378  * Below function relies on the following fields in Rx prefix.
379  * Some fields are mandatory, some fields are optional.
380  * See sfc_ef100_rx_qstart() below.
381  */
382 static const efx_rx_prefix_layout_t sfc_ef100_rx_prefix_layout = {
383 	.erpl_fields	= {
384 #define	SFC_EF100_RX_PREFIX_FIELD(_name, _big_endian) \
385 	EFX_RX_PREFIX_FIELD(_name, ESF_GZ_RX_PREFIX_ ## _name, _big_endian)
386 
387 		SFC_EF100_RX_PREFIX_FIELD(LENGTH, B_FALSE),
388 		SFC_EF100_RX_PREFIX_FIELD(RSS_HASH_VALID, B_FALSE),
389 		SFC_EF100_RX_PREFIX_FIELD(CLASS, B_FALSE),
390 		EFX_RX_PREFIX_FIELD(INGRESS_MPORT,
391 				    ESF_GZ_RX_PREFIX_INGRESS_MPORT, B_FALSE),
392 		SFC_EF100_RX_PREFIX_FIELD(RSS_HASH, B_FALSE),
393 		SFC_EF100_RX_PREFIX_FIELD(USER_FLAG, B_FALSE),
394 		SFC_EF100_RX_PREFIX_FIELD(USER_MARK, B_FALSE),
395 
396 #undef	SFC_EF100_RX_PREFIX_FIELD
397 	}
398 };
399 
400 static bool
sfc_ef100_rx_prefix_to_offloads(const struct sfc_ef100_rxq * rxq,const efx_xword_t * rx_prefix,struct rte_mbuf * m)401 sfc_ef100_rx_prefix_to_offloads(const struct sfc_ef100_rxq *rxq,
402 				const efx_xword_t *rx_prefix,
403 				struct rte_mbuf *m)
404 {
405 	const efx_word_t *class;
406 	uint64_t ol_flags = 0;
407 
408 	RTE_BUILD_BUG_ON(EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
409 	RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) % CHAR_BIT != 0);
410 	RTE_BUILD_BUG_ON(EFX_WIDTH(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT !=
411 			 sizeof(*class));
412 	class = (const efx_word_t *)((const uint8_t *)rx_prefix +
413 		EFX_LOW_BIT(ESF_GZ_RX_PREFIX_CLASS) / CHAR_BIT);
414 	if (unlikely(EFX_WORD_FIELD(*class,
415 				    ESF_GZ_RX_PREFIX_HCLASS_L2_STATUS) !=
416 		     ESE_GZ_RH_HCLASS_L2_STATUS_OK))
417 		return false;
418 
419 	m->packet_type = sfc_ef100_rx_class_decode(*class, &ol_flags);
420 
421 	if ((rxq->flags & SFC_EF100_RXQ_RSS_HASH) &&
422 	    EFX_TEST_XWORD_BIT(rx_prefix[0],
423 			       ESF_GZ_RX_PREFIX_RSS_HASH_VALID_LBN)) {
424 		ol_flags |= RTE_MBUF_F_RX_RSS_HASH;
425 		/* EFX_XWORD_FIELD converts little-endian to CPU */
426 		m->hash.rss = EFX_XWORD_FIELD(rx_prefix[0],
427 					      ESF_GZ_RX_PREFIX_RSS_HASH);
428 	}
429 
430 	if (rxq->flags & SFC_EF100_RXQ_USER_FLAG) {
431 		uint32_t user_flag;
432 
433 		user_flag = EFX_XWORD_FIELD(rx_prefix[0],
434 					    ESF_GZ_RX_PREFIX_USER_FLAG);
435 		if (user_flag != 0)
436 			ol_flags |= RTE_MBUF_F_RX_FDIR;
437 	}
438 
439 	if (rxq->flags & SFC_EF100_RXQ_USER_MARK) {
440 		uint8_t tunnel_mark;
441 		uint32_t user_mark;
442 		uint32_t mark;
443 
444 		/* EFX_XWORD_FIELD converts little-endian to CPU */
445 		mark = EFX_XWORD_FIELD(rx_prefix[0],
446 				       ESF_GZ_RX_PREFIX_USER_MARK);
447 
448 		user_mark = mark & rxq->user_mark_mask;
449 		if (user_mark != SFC_EF100_USER_MARK_INVALID) {
450 			ol_flags |= RTE_MBUF_F_RX_FDIR | RTE_MBUF_F_RX_FDIR_ID;
451 			m->hash.fdir.hi = user_mark;
452 		}
453 
454 		tunnel_mark = SFC_FT_GET_TUNNEL_MARK(mark);
455 		if (tunnel_mark != SFC_FT_TUNNEL_MARK_INVALID) {
456 			sfc_ft_id_t ft_id;
457 
458 			ft_id = SFC_FT_TUNNEL_MARK_TO_ID(tunnel_mark);
459 
460 			ol_flags |= sfc_dp_ft_id_valid;
461 			*RTE_MBUF_DYNFIELD(m, sfc_dp_ft_id_offset,
462 					   sfc_ft_id_t *) = ft_id;
463 		}
464 	}
465 
466 	if (rxq->flags & SFC_EF100_RXQ_INGRESS_MPORT) {
467 		ol_flags |= sfc_dp_mport_override;
468 		*RTE_MBUF_DYNFIELD(m,
469 			sfc_dp_mport_offset,
470 			typeof(&((efx_mport_id_t *)0)->id)) =
471 				EFX_XWORD_FIELD(rx_prefix[0],
472 						ESF_GZ_RX_PREFIX_INGRESS_MPORT);
473 	}
474 
475 	m->ol_flags = ol_flags;
476 	return true;
477 }
478 
479 static const uint8_t *
sfc_ef100_rx_pkt_prefix(const struct rte_mbuf * m)480 sfc_ef100_rx_pkt_prefix(const struct rte_mbuf *m)
481 {
482 	return (const uint8_t *)m->buf_addr + RTE_PKTMBUF_HEADROOM;
483 }
484 
485 static struct rte_mbuf *
sfc_ef100_rx_next_mbuf(struct sfc_ef100_rxq * rxq)486 sfc_ef100_rx_next_mbuf(struct sfc_ef100_rxq *rxq)
487 {
488 	struct rte_mbuf *m;
489 	unsigned int id;
490 
491 	/* mbuf associated with current Rx descriptor */
492 	m = rxq->sw_ring[rxq->completed++ & rxq->ptr_mask].mbuf;
493 
494 	/* completed is already moved to the next one */
495 	if (unlikely(rxq->completed == rxq->added))
496 		goto done;
497 
498 	/*
499 	 * Prefetch Rx prefix of the next packet.
500 	 * Current packet is scattered and the next mbuf is its fragment
501 	 * it simply prefetches some data - no harm since packet rate
502 	 * should not be high if scatter is used.
503 	 */
504 	id = rxq->completed & rxq->ptr_mask;
505 	rte_prefetch0(sfc_ef100_rx_pkt_prefix(rxq->sw_ring[id].mbuf));
506 
507 	if (unlikely(rxq->completed + 1 == rxq->added))
508 		goto done;
509 
510 	/*
511 	 * Prefetch mbuf control structure of the next after next Rx
512 	 * descriptor.
513 	 */
514 	id = (id == rxq->ptr_mask) ? 0 : (id + 1);
515 	rte_mbuf_prefetch_part1(rxq->sw_ring[id].mbuf);
516 
517 	/*
518 	 * If the next time we'll need SW Rx descriptor from the next
519 	 * cache line, try to make sure that we have it in cache.
520 	 */
521 	if ((id & 0x7) == 0x7)
522 		rte_prefetch0(&rxq->sw_ring[(id + 1) & rxq->ptr_mask]);
523 
524 done:
525 	return m;
526 }
527 
528 static struct rte_mbuf **
sfc_ef100_rx_process_ready_pkts(struct sfc_ef100_rxq * rxq,struct rte_mbuf ** rx_pkts,struct rte_mbuf ** const rx_pkts_end)529 sfc_ef100_rx_process_ready_pkts(struct sfc_ef100_rxq *rxq,
530 				struct rte_mbuf **rx_pkts,
531 				struct rte_mbuf ** const rx_pkts_end)
532 {
533 	while (rxq->ready_pkts > 0 && rx_pkts != rx_pkts_end) {
534 		struct rte_mbuf *pkt;
535 		struct rte_mbuf *lastseg;
536 		const efx_xword_t *rx_prefix;
537 		uint16_t pkt_len;
538 		uint16_t seg_len;
539 		bool deliver;
540 
541 		rxq->ready_pkts--;
542 
543 		pkt = sfc_ef100_rx_next_mbuf(rxq);
544 		__rte_mbuf_raw_sanity_check(pkt);
545 
546 		RTE_BUILD_BUG_ON(sizeof(pkt->rearm_data[0]) !=
547 				 sizeof(rxq->rearm_data));
548 		pkt->rearm_data[0] = rxq->rearm_data;
549 
550 		/* data_off already moved past Rx prefix */
551 		rx_prefix = (const efx_xword_t *)sfc_ef100_rx_pkt_prefix(pkt);
552 
553 		pkt_len = EFX_XWORD_FIELD(rx_prefix[0],
554 					  ESF_GZ_RX_PREFIX_LENGTH);
555 		SFC_ASSERT(pkt_len > 0);
556 		rte_pktmbuf_pkt_len(pkt) = pkt_len;
557 
558 		seg_len = RTE_MIN(pkt_len, rxq->buf_size - rxq->prefix_size);
559 		rte_pktmbuf_data_len(pkt) = seg_len;
560 
561 		deliver = sfc_ef100_rx_prefix_to_offloads(rxq, rx_prefix, pkt);
562 
563 		lastseg = pkt;
564 		while ((pkt_len -= seg_len) > 0) {
565 			struct rte_mbuf *seg;
566 
567 			seg = sfc_ef100_rx_next_mbuf(rxq);
568 			__rte_mbuf_raw_sanity_check(seg);
569 
570 			seg->data_off = RTE_PKTMBUF_HEADROOM;
571 
572 			seg_len = RTE_MIN(pkt_len, rxq->buf_size);
573 			rte_pktmbuf_data_len(seg) = seg_len;
574 			rte_pktmbuf_pkt_len(seg) = seg_len;
575 
576 			pkt->nb_segs++;
577 			lastseg->next = seg;
578 			lastseg = seg;
579 		}
580 
581 		if (likely(deliver)) {
582 			*rx_pkts++ = pkt;
583 			sfc_pkts_bytes_add(&rxq->dp.dpq.stats, 1,
584 					   rte_pktmbuf_pkt_len(pkt));
585 		} else {
586 			rte_pktmbuf_free(pkt);
587 		}
588 	}
589 
590 	return rx_pkts;
591 }
592 
593 static bool
sfc_ef100_rx_get_event(struct sfc_ef100_rxq * rxq,efx_qword_t * ev)594 sfc_ef100_rx_get_event(struct sfc_ef100_rxq *rxq, efx_qword_t *ev)
595 {
596 	*ev = rxq->evq_hw_ring[rxq->evq_read_ptr & rxq->ptr_mask];
597 
598 	if (!sfc_ef100_ev_present(ev,
599 			(rxq->evq_read_ptr >> rxq->evq_phase_bit_shift) & 1))
600 		return false;
601 
602 	if (unlikely(!sfc_ef100_ev_type_is(ev, ESE_GZ_EF100_EV_RX_PKTS))) {
603 		/*
604 		 * Do not move read_ptr to keep the event for exception
605 		 * handling by the control path.
606 		 */
607 		rxq->flags |= SFC_EF100_RXQ_EXCEPTION;
608 		sfc_ef100_rx_err(rxq,
609 			"RxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
610 			rxq->evq_read_ptr, rxq->evq_read_ptr & rxq->ptr_mask,
611 			EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
612 			EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
613 		return false;
614 	}
615 
616 	sfc_ef100_rx_debug(rxq, "RxQ got event %08x:%08x at %u (%#x)",
617 			   EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
618 			   EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
619 			   rxq->evq_read_ptr,
620 			   rxq->evq_read_ptr & rxq->ptr_mask);
621 
622 	rxq->evq_read_ptr++;
623 	return true;
624 }
625 
626 static uint16_t
sfc_ef100_recv_pkts(void * rx_queue,struct rte_mbuf ** rx_pkts,uint16_t nb_pkts)627 sfc_ef100_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
628 {
629 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(rx_queue);
630 	struct rte_mbuf ** const rx_pkts_end = &rx_pkts[nb_pkts];
631 	efx_qword_t rx_ev;
632 
633 	rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts, rx_pkts_end);
634 
635 	if (unlikely(rxq->flags &
636 		     (SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION)))
637 		goto done;
638 
639 	while (rx_pkts != rx_pkts_end && sfc_ef100_rx_get_event(rxq, &rx_ev)) {
640 		rxq->ready_pkts =
641 			EFX_QWORD_FIELD(rx_ev, ESF_GZ_EV_RXPKTS_NUM_PKT);
642 		rx_pkts = sfc_ef100_rx_process_ready_pkts(rxq, rx_pkts,
643 							  rx_pkts_end);
644 	}
645 
646 	/* It is not a problem if we refill in the case of exception */
647 	sfc_ef100_rx_qrefill(rxq);
648 
649 	if ((rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN) &&
650 	    rxq->evq_read_ptr_primed != rxq->evq_read_ptr)
651 		sfc_ef100_rx_qprime(rxq);
652 
653 done:
654 	return nb_pkts - (rx_pkts_end - rx_pkts);
655 }
656 
657 static const uint32_t *
sfc_ef100_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)658 sfc_ef100_supported_ptypes_get(__rte_unused uint32_t tunnel_encaps)
659 {
660 	static const uint32_t ef100_native_ptypes[] = {
661 		RTE_PTYPE_L2_ETHER,
662 		RTE_PTYPE_L2_ETHER_VLAN,
663 		RTE_PTYPE_L2_ETHER_QINQ,
664 		RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
665 		RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
666 		RTE_PTYPE_L4_TCP,
667 		RTE_PTYPE_L4_UDP,
668 		RTE_PTYPE_L4_FRAG,
669 		RTE_PTYPE_TUNNEL_VXLAN,
670 		RTE_PTYPE_TUNNEL_NVGRE,
671 		RTE_PTYPE_TUNNEL_GENEVE,
672 		RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
673 		RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
674 		RTE_PTYPE_INNER_L4_TCP,
675 		RTE_PTYPE_INNER_L4_UDP,
676 		RTE_PTYPE_INNER_L4_FRAG,
677 		RTE_PTYPE_UNKNOWN
678 	};
679 
680 	return ef100_native_ptypes;
681 }
682 
683 static sfc_dp_rx_qdesc_npending_t sfc_ef100_rx_qdesc_npending;
684 static unsigned int
sfc_ef100_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq * dp_rxq)685 sfc_ef100_rx_qdesc_npending(__rte_unused struct sfc_dp_rxq *dp_rxq)
686 {
687 	return 0;
688 }
689 
690 static sfc_dp_rx_qdesc_status_t sfc_ef100_rx_qdesc_status;
691 static int
sfc_ef100_rx_qdesc_status(__rte_unused struct sfc_dp_rxq * dp_rxq,__rte_unused uint16_t offset)692 sfc_ef100_rx_qdesc_status(__rte_unused struct sfc_dp_rxq *dp_rxq,
693 			  __rte_unused uint16_t offset)
694 {
695 	return -ENOTSUP;
696 }
697 
698 
699 static sfc_dp_rx_get_dev_info_t sfc_ef100_rx_get_dev_info;
700 static void
sfc_ef100_rx_get_dev_info(struct rte_eth_dev_info * dev_info)701 sfc_ef100_rx_get_dev_info(struct rte_eth_dev_info *dev_info)
702 {
703 	/*
704 	 * Number of descriptors just defines maximum number of pushed
705 	 * descriptors (fill level).
706 	 */
707 	dev_info->rx_desc_lim.nb_min = SFC_RX_REFILL_BULK;
708 	dev_info->rx_desc_lim.nb_align = SFC_RX_REFILL_BULK;
709 }
710 
711 
712 static sfc_dp_rx_qsize_up_rings_t sfc_ef100_rx_qsize_up_rings;
713 static int
sfc_ef100_rx_qsize_up_rings(uint16_t nb_rx_desc,struct sfc_dp_rx_hw_limits * limits,__rte_unused struct rte_mempool * mb_pool,unsigned int * rxq_entries,unsigned int * evq_entries,unsigned int * rxq_max_fill_level)714 sfc_ef100_rx_qsize_up_rings(uint16_t nb_rx_desc,
715 			   struct sfc_dp_rx_hw_limits *limits,
716 			   __rte_unused struct rte_mempool *mb_pool,
717 			   unsigned int *rxq_entries,
718 			   unsigned int *evq_entries,
719 			   unsigned int *rxq_max_fill_level)
720 {
721 	/*
722 	 * rte_ethdev API guarantees that the number meets min, max and
723 	 * alignment requirements.
724 	 */
725 	if (nb_rx_desc <= limits->rxq_min_entries)
726 		*rxq_entries = limits->rxq_min_entries;
727 	else
728 		*rxq_entries = rte_align32pow2(nb_rx_desc);
729 
730 	*evq_entries = *rxq_entries;
731 
732 	*rxq_max_fill_level = RTE_MIN(nb_rx_desc,
733 				      SFC_EF100_RXQ_LIMIT(*evq_entries));
734 	return 0;
735 }
736 
737 
738 static uint64_t
sfc_ef100_mk_mbuf_rearm_data(uint16_t port_id,uint16_t prefix_size)739 sfc_ef100_mk_mbuf_rearm_data(uint16_t port_id, uint16_t prefix_size)
740 {
741 	struct rte_mbuf m;
742 
743 	memset(&m, 0, sizeof(m));
744 
745 	rte_mbuf_refcnt_set(&m, 1);
746 	m.data_off = RTE_PKTMBUF_HEADROOM + prefix_size;
747 	m.nb_segs = 1;
748 	m.port = port_id;
749 
750 	/* rearm_data covers structure members filled in above */
751 	rte_compiler_barrier();
752 	RTE_BUILD_BUG_ON(sizeof(m.rearm_data[0]) != sizeof(uint64_t));
753 	return m.rearm_data[0];
754 }
755 
756 static sfc_dp_rx_qcreate_t sfc_ef100_rx_qcreate;
757 static int
sfc_ef100_rx_qcreate(uint16_t port_id,uint16_t queue_id,const struct rte_pci_addr * pci_addr,int socket_id,const struct sfc_dp_rx_qcreate_info * info,struct sfc_dp_rxq ** dp_rxqp)758 sfc_ef100_rx_qcreate(uint16_t port_id, uint16_t queue_id,
759 		    const struct rte_pci_addr *pci_addr, int socket_id,
760 		    const struct sfc_dp_rx_qcreate_info *info,
761 		    struct sfc_dp_rxq **dp_rxqp)
762 {
763 	struct sfc_ef100_rxq *rxq;
764 	int rc;
765 
766 	rc = EINVAL;
767 	if (info->rxq_entries != info->evq_entries)
768 		goto fail_rxq_args;
769 
770 	rc = ENOMEM;
771 	rxq = rte_zmalloc_socket("sfc-ef100-rxq", sizeof(*rxq),
772 				 RTE_CACHE_LINE_SIZE, socket_id);
773 	if (rxq == NULL)
774 		goto fail_rxq_alloc;
775 
776 	sfc_dp_queue_init(&rxq->dp.dpq, port_id, queue_id, pci_addr);
777 
778 	rc = ENOMEM;
779 	rxq->sw_ring = rte_calloc_socket("sfc-ef100-rxq-sw_ring",
780 					 info->rxq_entries,
781 					 sizeof(*rxq->sw_ring),
782 					 RTE_CACHE_LINE_SIZE, socket_id);
783 	if (rxq->sw_ring == NULL)
784 		goto fail_desc_alloc;
785 
786 	rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
787 	rxq->ptr_mask = info->rxq_entries - 1;
788 	rxq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
789 	rxq->evq_hw_ring = info->evq_hw_ring;
790 	rxq->max_fill_level = info->max_fill_level;
791 	rxq->refill_threshold = info->refill_threshold;
792 	rxq->prefix_size = info->prefix_size;
793 
794 	SFC_ASSERT(info->user_mark_mask != 0);
795 	rxq->user_mark_mask = info->user_mark_mask;
796 
797 	rxq->buf_size = info->buf_size;
798 	rxq->refill_mb_pool = info->refill_mb_pool;
799 	rxq->rxq_hw_ring = info->rxq_hw_ring;
800 	rxq->doorbell = (volatile uint8_t *)info->mem_bar +
801 			ER_GZ_RX_RING_DOORBELL_OFST +
802 			(info->hw_index << info->vi_window_shift);
803 
804 	rxq->evq_hw_index = info->evq_hw_index;
805 	rxq->evq_prime = (volatile uint8_t *)info->mem_bar +
806 			 info->fcw_offset +
807 			 ER_GZ_EVQ_INT_PRIME_OFST;
808 
809 	rxq->nic_dma_info = info->nic_dma_info;
810 	if (rxq->nic_dma_info->nb_regions > 0)
811 		rxq->flags |= SFC_EF100_RXQ_NIC_DMA_MAP;
812 
813 	sfc_ef100_rx_debug(rxq, "RxQ doorbell is %p", rxq->doorbell);
814 
815 	*dp_rxqp = &rxq->dp;
816 	return 0;
817 
818 fail_desc_alloc:
819 	rte_free(rxq);
820 
821 fail_rxq_alloc:
822 fail_rxq_args:
823 	return rc;
824 }
825 
826 static sfc_dp_rx_qdestroy_t sfc_ef100_rx_qdestroy;
827 static void
sfc_ef100_rx_qdestroy(struct sfc_dp_rxq * dp_rxq)828 sfc_ef100_rx_qdestroy(struct sfc_dp_rxq *dp_rxq)
829 {
830 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
831 
832 	rte_free(rxq->sw_ring);
833 	rte_free(rxq);
834 }
835 
836 static sfc_dp_rx_qstart_t sfc_ef100_rx_qstart;
837 static int
sfc_ef100_rx_qstart(struct sfc_dp_rxq * dp_rxq,unsigned int evq_read_ptr,const efx_rx_prefix_layout_t * pinfo)838 sfc_ef100_rx_qstart(struct sfc_dp_rxq *dp_rxq, unsigned int evq_read_ptr,
839 		    const efx_rx_prefix_layout_t *pinfo)
840 {
841 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
842 	uint32_t unsup_rx_prefix_fields;
843 
844 	SFC_ASSERT(rxq->completed == 0);
845 	SFC_ASSERT(rxq->added == 0);
846 
847 	/* Prefix must fit into reserved Rx buffer space */
848 	if (pinfo->erpl_length > rxq->prefix_size)
849 		return ENOTSUP;
850 
851 	unsup_rx_prefix_fields =
852 		efx_rx_prefix_layout_check(pinfo, &sfc_ef100_rx_prefix_layout);
853 
854 	/* LENGTH and CLASS fields must always be present */
855 	if ((unsup_rx_prefix_fields &
856 	     ((1U << EFX_RX_PREFIX_FIELD_LENGTH) |
857 	      (1U << EFX_RX_PREFIX_FIELD_CLASS))) != 0)
858 		return ENOTSUP;
859 
860 	if ((unsup_rx_prefix_fields &
861 	     ((1U << EFX_RX_PREFIX_FIELD_RSS_HASH_VALID) |
862 	      (1U << EFX_RX_PREFIX_FIELD_RSS_HASH))) == 0)
863 		rxq->flags |= SFC_EF100_RXQ_RSS_HASH;
864 	else
865 		rxq->flags &= ~SFC_EF100_RXQ_RSS_HASH;
866 
867 	if ((unsup_rx_prefix_fields &
868 	     (1U << EFX_RX_PREFIX_FIELD_USER_FLAG)) == 0)
869 		rxq->flags |= SFC_EF100_RXQ_USER_FLAG;
870 	else
871 		rxq->flags &= ~SFC_EF100_RXQ_USER_FLAG;
872 
873 	if ((unsup_rx_prefix_fields &
874 	     (1U << EFX_RX_PREFIX_FIELD_USER_MARK)) == 0)
875 		rxq->flags |= SFC_EF100_RXQ_USER_MARK;
876 	else
877 		rxq->flags &= ~SFC_EF100_RXQ_USER_MARK;
878 
879 	if ((unsup_rx_prefix_fields &
880 	     (1U << EFX_RX_PREFIX_FIELD_INGRESS_MPORT)) == 0)
881 		rxq->flags |= SFC_EF100_RXQ_INGRESS_MPORT;
882 	else
883 		rxq->flags &= ~SFC_EF100_RXQ_INGRESS_MPORT;
884 
885 	rxq->prefix_size = pinfo->erpl_length;
886 	rxq->rearm_data = sfc_ef100_mk_mbuf_rearm_data(rxq->dp.dpq.port_id,
887 						       rxq->prefix_size);
888 
889 	sfc_ef100_rx_qrefill(rxq);
890 
891 	rxq->evq_read_ptr = evq_read_ptr;
892 
893 	rxq->flags |= SFC_EF100_RXQ_STARTED;
894 	rxq->flags &= ~(SFC_EF100_RXQ_NOT_RUNNING | SFC_EF100_RXQ_EXCEPTION);
895 
896 	if (rxq->flags & SFC_EF100_RXQ_FLAG_INTR_EN)
897 		sfc_ef100_rx_qprime(rxq);
898 
899 	return 0;
900 }
901 
902 static sfc_dp_rx_qstop_t sfc_ef100_rx_qstop;
903 static void
sfc_ef100_rx_qstop(struct sfc_dp_rxq * dp_rxq,unsigned int * evq_read_ptr)904 sfc_ef100_rx_qstop(struct sfc_dp_rxq *dp_rxq, unsigned int *evq_read_ptr)
905 {
906 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
907 
908 	rxq->flags |= SFC_EF100_RXQ_NOT_RUNNING;
909 
910 	*evq_read_ptr = rxq->evq_read_ptr;
911 }
912 
913 static sfc_dp_rx_qrx_ev_t sfc_ef100_rx_qrx_ev;
914 static bool
sfc_ef100_rx_qrx_ev(struct sfc_dp_rxq * dp_rxq,__rte_unused unsigned int id)915 sfc_ef100_rx_qrx_ev(struct sfc_dp_rxq *dp_rxq, __rte_unused unsigned int id)
916 {
917 	__rte_unused struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
918 
919 	SFC_ASSERT(rxq->flags & SFC_EF100_RXQ_NOT_RUNNING);
920 
921 	/*
922 	 * It is safe to ignore Rx event since we free all mbufs on
923 	 * queue purge anyway.
924 	 */
925 
926 	return false;
927 }
928 
929 static sfc_dp_rx_qpurge_t sfc_ef100_rx_qpurge;
930 static void
sfc_ef100_rx_qpurge(struct sfc_dp_rxq * dp_rxq)931 sfc_ef100_rx_qpurge(struct sfc_dp_rxq *dp_rxq)
932 {
933 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
934 	unsigned int i;
935 	struct sfc_ef100_rx_sw_desc *rxd;
936 
937 	for (i = rxq->completed; i != rxq->added; ++i) {
938 		rxd = &rxq->sw_ring[i & rxq->ptr_mask];
939 		rte_mbuf_raw_free(rxd->mbuf);
940 		rxd->mbuf = NULL;
941 	}
942 
943 	rxq->completed = rxq->added = 0;
944 	rxq->ready_pkts = 0;
945 
946 	rxq->flags &= ~SFC_EF100_RXQ_STARTED;
947 }
948 
949 static sfc_dp_rx_intr_enable_t sfc_ef100_rx_intr_enable;
950 static int
sfc_ef100_rx_intr_enable(struct sfc_dp_rxq * dp_rxq)951 sfc_ef100_rx_intr_enable(struct sfc_dp_rxq *dp_rxq)
952 {
953 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
954 
955 	rxq->flags |= SFC_EF100_RXQ_FLAG_INTR_EN;
956 	if (rxq->flags & SFC_EF100_RXQ_STARTED)
957 		sfc_ef100_rx_qprime(rxq);
958 	return 0;
959 }
960 
961 static sfc_dp_rx_intr_disable_t sfc_ef100_rx_intr_disable;
962 static int
sfc_ef100_rx_intr_disable(struct sfc_dp_rxq * dp_rxq)963 sfc_ef100_rx_intr_disable(struct sfc_dp_rxq *dp_rxq)
964 {
965 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
966 
967 	/* Cannot disarm, just disable rearm */
968 	rxq->flags &= ~SFC_EF100_RXQ_FLAG_INTR_EN;
969 	return 0;
970 }
971 
972 static sfc_dp_rx_get_pushed_t sfc_ef100_rx_get_pushed;
973 static unsigned int
sfc_ef100_rx_get_pushed(struct sfc_dp_rxq * dp_rxq)974 sfc_ef100_rx_get_pushed(struct sfc_dp_rxq *dp_rxq)
975 {
976 	struct sfc_ef100_rxq *rxq = sfc_ef100_rxq_by_dp_rxq(dp_rxq);
977 
978 	/*
979 	 * The datapath keeps track only of added descriptors, since
980 	 * the number of pushed descriptors always equals the number
981 	 * of added descriptors due to enforced alignment.
982 	 */
983 	return rxq->added;
984 }
985 
986 struct sfc_dp_rx sfc_ef100_rx = {
987 	.dp = {
988 		.name		= SFC_KVARG_DATAPATH_EF100,
989 		.type		= SFC_DP_RX,
990 		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF100,
991 	},
992 	.features		= SFC_DP_RX_FEAT_MULTI_PROCESS |
993 				  SFC_DP_RX_FEAT_FLOW_FLAG |
994 				  SFC_DP_RX_FEAT_FLOW_MARK |
995 				  SFC_DP_RX_FEAT_INTR |
996 				  SFC_DP_RX_FEAT_STATS,
997 	.dev_offload_capa	= 0,
998 	.queue_offload_capa	= RTE_ETH_RX_OFFLOAD_CHECKSUM |
999 				  RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
1000 				  RTE_ETH_RX_OFFLOAD_OUTER_UDP_CKSUM |
1001 				  RTE_ETH_RX_OFFLOAD_SCATTER |
1002 				  RTE_ETH_RX_OFFLOAD_RSS_HASH,
1003 	.get_dev_info		= sfc_ef100_rx_get_dev_info,
1004 	.qsize_up_rings		= sfc_ef100_rx_qsize_up_rings,
1005 	.qcreate		= sfc_ef100_rx_qcreate,
1006 	.qdestroy		= sfc_ef100_rx_qdestroy,
1007 	.qstart			= sfc_ef100_rx_qstart,
1008 	.qstop			= sfc_ef100_rx_qstop,
1009 	.qrx_ev			= sfc_ef100_rx_qrx_ev,
1010 	.qpurge			= sfc_ef100_rx_qpurge,
1011 	.supported_ptypes_get	= sfc_ef100_supported_ptypes_get,
1012 	.qdesc_npending		= sfc_ef100_rx_qdesc_npending,
1013 	.qdesc_status		= sfc_ef100_rx_qdesc_status,
1014 	.intr_enable		= sfc_ef100_rx_intr_enable,
1015 	.intr_disable		= sfc_ef100_rx_intr_disable,
1016 	.get_pushed		= sfc_ef100_rx_get_pushed,
1017 	.pkt_burst		= sfc_ef100_recv_pkts,
1018 };
1019