1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2016 Intel Corporation.
3 * Copyright(c) 2014 6WIND S.A.
4 * All rights reserved.
5 */
6
7 #include <time.h>
8
9 #include <pcap.h>
10
11 #include <rte_cycles.h>
12 #include <ethdev_driver.h>
13 #include <ethdev_vdev.h>
14 #include <rte_kvargs.h>
15 #include <rte_malloc.h>
16 #include <rte_mbuf.h>
17 #include <rte_mbuf_dyn.h>
18 #include <rte_bus_vdev.h>
19 #include <rte_os_shim.h>
20
21 #include "pcap_osdep.h"
22
23 #define RTE_ETH_PCAP_SNAPSHOT_LEN 65535
24 #define RTE_ETH_PCAP_SNAPLEN RTE_ETHER_MAX_JUMBO_FRAME_LEN
25 #define RTE_ETH_PCAP_PROMISC 1
26 #define RTE_ETH_PCAP_TIMEOUT -1
27
28 #define ETH_PCAP_RX_PCAP_ARG "rx_pcap"
29 #define ETH_PCAP_TX_PCAP_ARG "tx_pcap"
30 #define ETH_PCAP_RX_IFACE_ARG "rx_iface"
31 #define ETH_PCAP_RX_IFACE_IN_ARG "rx_iface_in"
32 #define ETH_PCAP_TX_IFACE_ARG "tx_iface"
33 #define ETH_PCAP_IFACE_ARG "iface"
34 #define ETH_PCAP_PHY_MAC_ARG "phy_mac"
35 #define ETH_PCAP_INFINITE_RX_ARG "infinite_rx"
36
37 #define ETH_PCAP_ARG_MAXLEN 64
38
39 #define RTE_PMD_PCAP_MAX_QUEUES 16
40
41 static char errbuf[PCAP_ERRBUF_SIZE];
42 static struct timespec start_time;
43 static uint64_t start_cycles;
44 static uint64_t hz;
45 static uint8_t iface_idx;
46
47 static uint64_t timestamp_rx_dynflag;
48 static int timestamp_dynfield_offset = -1;
49
50 struct queue_stat {
51 volatile unsigned long pkts;
52 volatile unsigned long bytes;
53 volatile unsigned long err_pkts;
54 volatile unsigned long rx_nombuf;
55 };
56
57 struct queue_missed_stat {
58 /* last value retrieved from pcap */
59 unsigned int pcap;
60 /* stores values lost by pcap stop or rollover */
61 unsigned long mnemonic;
62 /* value on last reset */
63 unsigned long reset;
64 };
65
66 struct pcap_rx_queue {
67 uint16_t port_id;
68 uint16_t queue_id;
69 struct rte_mempool *mb_pool;
70 struct queue_stat rx_stat;
71 struct queue_missed_stat missed_stat;
72 char name[PATH_MAX];
73 char type[ETH_PCAP_ARG_MAXLEN];
74
75 /* Contains pre-generated packets to be looped through */
76 struct rte_ring *pkts;
77 };
78
79 struct pcap_tx_queue {
80 uint16_t port_id;
81 uint16_t queue_id;
82 struct queue_stat tx_stat;
83 char name[PATH_MAX];
84 char type[ETH_PCAP_ARG_MAXLEN];
85 };
86
87 struct pmd_internals {
88 struct pcap_rx_queue rx_queue[RTE_PMD_PCAP_MAX_QUEUES];
89 struct pcap_tx_queue tx_queue[RTE_PMD_PCAP_MAX_QUEUES];
90 char devargs[ETH_PCAP_ARG_MAXLEN];
91 struct rte_ether_addr eth_addr;
92 int if_index;
93 int single_iface;
94 int phy_mac;
95 unsigned int infinite_rx;
96 };
97
98 struct pmd_process_private {
99 pcap_t *rx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
100 pcap_t *tx_pcap[RTE_PMD_PCAP_MAX_QUEUES];
101 pcap_dumper_t *tx_dumper[RTE_PMD_PCAP_MAX_QUEUES];
102 };
103
104 struct pmd_devargs {
105 unsigned int num_of_queue;
106 struct devargs_queue {
107 pcap_dumper_t *dumper;
108 pcap_t *pcap;
109 const char *name;
110 const char *type;
111 } queue[RTE_PMD_PCAP_MAX_QUEUES];
112 int phy_mac;
113 };
114
115 struct pmd_devargs_all {
116 struct pmd_devargs rx_queues;
117 struct pmd_devargs tx_queues;
118 int single_iface;
119 unsigned int is_tx_pcap;
120 unsigned int is_tx_iface;
121 unsigned int is_rx_pcap;
122 unsigned int is_rx_iface;
123 unsigned int infinite_rx;
124 };
125
126 static const char *valid_arguments[] = {
127 ETH_PCAP_RX_PCAP_ARG,
128 ETH_PCAP_TX_PCAP_ARG,
129 ETH_PCAP_RX_IFACE_ARG,
130 ETH_PCAP_RX_IFACE_IN_ARG,
131 ETH_PCAP_TX_IFACE_ARG,
132 ETH_PCAP_IFACE_ARG,
133 ETH_PCAP_PHY_MAC_ARG,
134 ETH_PCAP_INFINITE_RX_ARG,
135 NULL
136 };
137
138 static struct rte_eth_link pmd_link = {
139 .link_speed = RTE_ETH_SPEED_NUM_10G,
140 .link_duplex = RTE_ETH_LINK_FULL_DUPLEX,
141 .link_status = RTE_ETH_LINK_DOWN,
142 .link_autoneg = RTE_ETH_LINK_FIXED,
143 };
144
145 RTE_LOG_REGISTER_DEFAULT(eth_pcap_logtype, NOTICE);
146
147 static struct queue_missed_stat*
queue_missed_stat_update(struct rte_eth_dev * dev,unsigned int qid)148 queue_missed_stat_update(struct rte_eth_dev *dev, unsigned int qid)
149 {
150 struct pmd_internals *internals = dev->data->dev_private;
151 struct queue_missed_stat *missed_stat =
152 &internals->rx_queue[qid].missed_stat;
153 const struct pmd_process_private *pp = dev->process_private;
154 pcap_t *pcap = pp->rx_pcap[qid];
155 struct pcap_stat stat;
156
157 if (!pcap || (pcap_stats(pcap, &stat) != 0))
158 return missed_stat;
159
160 /* rollover check - best effort fixup assuming single rollover */
161 if (stat.ps_drop < missed_stat->pcap)
162 missed_stat->mnemonic += UINT_MAX;
163 missed_stat->pcap = stat.ps_drop;
164
165 return missed_stat;
166 }
167
168 static void
queue_missed_stat_on_stop_update(struct rte_eth_dev * dev,unsigned int qid)169 queue_missed_stat_on_stop_update(struct rte_eth_dev *dev, unsigned int qid)
170 {
171 struct queue_missed_stat *missed_stat =
172 queue_missed_stat_update(dev, qid);
173
174 missed_stat->mnemonic += missed_stat->pcap;
175 missed_stat->pcap = 0;
176 }
177
178 static void
queue_missed_stat_reset(struct rte_eth_dev * dev,unsigned int qid)179 queue_missed_stat_reset(struct rte_eth_dev *dev, unsigned int qid)
180 {
181 struct queue_missed_stat *missed_stat =
182 queue_missed_stat_update(dev, qid);
183
184 missed_stat->reset = missed_stat->pcap;
185 missed_stat->mnemonic = 0;
186 }
187
188 static unsigned long
queue_missed_stat_get(struct rte_eth_dev * dev,unsigned int qid)189 queue_missed_stat_get(struct rte_eth_dev *dev, unsigned int qid)
190 {
191 const struct queue_missed_stat *missed_stat =
192 queue_missed_stat_update(dev, qid);
193
194 return missed_stat->pcap + missed_stat->mnemonic - missed_stat->reset;
195 }
196
197 static int
eth_pcap_rx_jumbo(struct rte_mempool * mb_pool,struct rte_mbuf * mbuf,const u_char * data,uint16_t data_len)198 eth_pcap_rx_jumbo(struct rte_mempool *mb_pool, struct rte_mbuf *mbuf,
199 const u_char *data, uint16_t data_len)
200 {
201 /* Copy the first segment. */
202 uint16_t len = rte_pktmbuf_tailroom(mbuf);
203 struct rte_mbuf *m = mbuf;
204
205 rte_memcpy(rte_pktmbuf_append(mbuf, len), data, len);
206 data_len -= len;
207 data += len;
208
209 while (data_len > 0) {
210 /* Allocate next mbuf and point to that. */
211 m->next = rte_pktmbuf_alloc(mb_pool);
212
213 if (unlikely(!m->next))
214 return -1;
215
216 m = m->next;
217
218 /* Headroom is not needed in chained mbufs. */
219 rte_pktmbuf_prepend(m, rte_pktmbuf_headroom(m));
220 m->pkt_len = 0;
221 m->data_len = 0;
222
223 /* Copy next segment. */
224 len = RTE_MIN(rte_pktmbuf_tailroom(m), data_len);
225 rte_memcpy(rte_pktmbuf_append(m, len), data, len);
226
227 mbuf->nb_segs++;
228 data_len -= len;
229 data += len;
230 }
231
232 return mbuf->nb_segs;
233 }
234
235 static uint16_t
eth_pcap_rx_infinite(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)236 eth_pcap_rx_infinite(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
237 {
238 int i;
239 struct pcap_rx_queue *pcap_q = queue;
240 uint32_t rx_bytes = 0;
241
242 if (unlikely(nb_pkts == 0))
243 return 0;
244
245 if (rte_pktmbuf_alloc_bulk(pcap_q->mb_pool, bufs, nb_pkts) != 0)
246 return 0;
247
248 for (i = 0; i < nb_pkts; i++) {
249 struct rte_mbuf *pcap_buf;
250 int err = rte_ring_dequeue(pcap_q->pkts, (void **)&pcap_buf);
251 if (err)
252 return i;
253
254 rte_memcpy(rte_pktmbuf_mtod(bufs[i], void *),
255 rte_pktmbuf_mtod(pcap_buf, void *),
256 pcap_buf->data_len);
257 bufs[i]->data_len = pcap_buf->data_len;
258 bufs[i]->pkt_len = pcap_buf->pkt_len;
259 bufs[i]->port = pcap_q->port_id;
260 rx_bytes += pcap_buf->data_len;
261
262 /* Enqueue packet back on ring to allow infinite rx. */
263 rte_ring_enqueue(pcap_q->pkts, pcap_buf);
264 }
265
266 pcap_q->rx_stat.pkts += i;
267 pcap_q->rx_stat.bytes += rx_bytes;
268
269 return i;
270 }
271
272 static uint16_t
eth_pcap_rx(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)273 eth_pcap_rx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
274 {
275 unsigned int i;
276 struct pcap_pkthdr header;
277 struct pmd_process_private *pp;
278 const u_char *packet;
279 struct rte_mbuf *mbuf;
280 struct pcap_rx_queue *pcap_q = queue;
281 uint16_t num_rx = 0;
282 uint32_t rx_bytes = 0;
283 pcap_t *pcap;
284
285 pp = rte_eth_devices[pcap_q->port_id].process_private;
286 pcap = pp->rx_pcap[pcap_q->queue_id];
287
288 if (unlikely(pcap == NULL || nb_pkts == 0))
289 return 0;
290
291 /* Reads the given number of packets from the pcap file one by one
292 * and copies the packet data into a newly allocated mbuf to return.
293 */
294 for (i = 0; i < nb_pkts; i++) {
295 /* Get the next PCAP packet */
296 packet = pcap_next(pcap, &header);
297 if (unlikely(packet == NULL))
298 break;
299
300 mbuf = rte_pktmbuf_alloc(pcap_q->mb_pool);
301 if (unlikely(mbuf == NULL)) {
302 pcap_q->rx_stat.rx_nombuf++;
303 break;
304 }
305
306 if (header.caplen <= rte_pktmbuf_tailroom(mbuf)) {
307 /* pcap packet will fit in the mbuf, can copy it */
308 rte_memcpy(rte_pktmbuf_mtod(mbuf, void *), packet,
309 header.caplen);
310 mbuf->data_len = (uint16_t)header.caplen;
311 } else {
312 /* Try read jumbo frame into multi mbufs. */
313 if (unlikely(eth_pcap_rx_jumbo(pcap_q->mb_pool,
314 mbuf,
315 packet,
316 header.caplen) == -1)) {
317 pcap_q->rx_stat.err_pkts++;
318 rte_pktmbuf_free(mbuf);
319 break;
320 }
321 }
322
323 mbuf->pkt_len = (uint16_t)header.caplen;
324 *RTE_MBUF_DYNFIELD(mbuf, timestamp_dynfield_offset,
325 rte_mbuf_timestamp_t *) =
326 (uint64_t)header.ts.tv_sec * 1000000 +
327 header.ts.tv_usec;
328 mbuf->ol_flags |= timestamp_rx_dynflag;
329 mbuf->port = pcap_q->port_id;
330 bufs[num_rx] = mbuf;
331 num_rx++;
332 rx_bytes += header.caplen;
333 }
334 pcap_q->rx_stat.pkts += num_rx;
335 pcap_q->rx_stat.bytes += rx_bytes;
336
337 return num_rx;
338 }
339
340 static uint16_t
eth_null_rx(void * queue __rte_unused,struct rte_mbuf ** bufs __rte_unused,uint16_t nb_pkts __rte_unused)341 eth_null_rx(void *queue __rte_unused,
342 struct rte_mbuf **bufs __rte_unused,
343 uint16_t nb_pkts __rte_unused)
344 {
345 return 0;
346 }
347
348 #define NSEC_PER_SEC 1000000000L
349
350 /*
351 * This function stores nanoseconds in `tv_usec` field of `struct timeval`,
352 * because `ts` goes directly to nanosecond-precision dump.
353 */
354 static inline void
calculate_timestamp(struct timeval * ts)355 calculate_timestamp(struct timeval *ts) {
356 uint64_t cycles;
357 struct timespec cur_time;
358
359 cycles = rte_get_timer_cycles() - start_cycles;
360 cur_time.tv_sec = cycles / hz;
361 cur_time.tv_nsec = (cycles % hz) * NSEC_PER_SEC / hz;
362
363 ts->tv_sec = start_time.tv_sec + cur_time.tv_sec;
364 ts->tv_usec = start_time.tv_nsec + cur_time.tv_nsec;
365 if (ts->tv_usec >= NSEC_PER_SEC) {
366 ts->tv_usec -= NSEC_PER_SEC;
367 ts->tv_sec += 1;
368 }
369 }
370
371 /*
372 * Callback to handle writing packets to a pcap file.
373 */
374 static uint16_t
eth_pcap_tx_dumper(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)375 eth_pcap_tx_dumper(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
376 {
377 unsigned int i;
378 struct rte_mbuf *mbuf;
379 struct pmd_process_private *pp;
380 struct pcap_tx_queue *dumper_q = queue;
381 uint16_t num_tx = 0;
382 uint32_t tx_bytes = 0;
383 struct pcap_pkthdr header;
384 pcap_dumper_t *dumper;
385 unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
386 size_t len, caplen;
387
388 pp = rte_eth_devices[dumper_q->port_id].process_private;
389 dumper = pp->tx_dumper[dumper_q->queue_id];
390
391 if (dumper == NULL || nb_pkts == 0)
392 return 0;
393
394 /* writes the nb_pkts packets to the previously opened pcap file
395 * dumper */
396 for (i = 0; i < nb_pkts; i++) {
397 mbuf = bufs[i];
398 len = caplen = rte_pktmbuf_pkt_len(mbuf);
399 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
400 len > sizeof(temp_data))) {
401 caplen = sizeof(temp_data);
402 }
403
404 calculate_timestamp(&header.ts);
405 header.len = len;
406 header.caplen = caplen;
407 /* rte_pktmbuf_read() returns a pointer to the data directly
408 * in the mbuf (when the mbuf is contiguous) or, otherwise,
409 * a pointer to temp_data after copying into it.
410 */
411 pcap_dump((u_char *)dumper, &header,
412 rte_pktmbuf_read(mbuf, 0, caplen, temp_data));
413
414 num_tx++;
415 tx_bytes += caplen;
416 rte_pktmbuf_free(mbuf);
417 }
418
419 /*
420 * Since there's no place to hook a callback when the forwarding
421 * process stops and to make sure the pcap file is actually written,
422 * we flush the pcap dumper within each burst.
423 */
424 pcap_dump_flush(dumper);
425 dumper_q->tx_stat.pkts += num_tx;
426 dumper_q->tx_stat.bytes += tx_bytes;
427 dumper_q->tx_stat.err_pkts += nb_pkts - num_tx;
428
429 return nb_pkts;
430 }
431
432 /*
433 * Callback to handle dropping packets in the infinite rx case.
434 */
435 static uint16_t
eth_tx_drop(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)436 eth_tx_drop(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
437 {
438 unsigned int i;
439 uint32_t tx_bytes = 0;
440 struct pcap_tx_queue *tx_queue = queue;
441
442 if (unlikely(nb_pkts == 0))
443 return 0;
444
445 for (i = 0; i < nb_pkts; i++) {
446 tx_bytes += bufs[i]->pkt_len;
447 rte_pktmbuf_free(bufs[i]);
448 }
449
450 tx_queue->tx_stat.pkts += nb_pkts;
451 tx_queue->tx_stat.bytes += tx_bytes;
452
453 return i;
454 }
455
456 /*
457 * Callback to handle sending packets through a real NIC.
458 */
459 static uint16_t
eth_pcap_tx(void * queue,struct rte_mbuf ** bufs,uint16_t nb_pkts)460 eth_pcap_tx(void *queue, struct rte_mbuf **bufs, uint16_t nb_pkts)
461 {
462 unsigned int i;
463 int ret;
464 struct rte_mbuf *mbuf;
465 struct pmd_process_private *pp;
466 struct pcap_tx_queue *tx_queue = queue;
467 uint16_t num_tx = 0;
468 uint32_t tx_bytes = 0;
469 pcap_t *pcap;
470 unsigned char temp_data[RTE_ETH_PCAP_SNAPLEN];
471 size_t len;
472
473 pp = rte_eth_devices[tx_queue->port_id].process_private;
474 pcap = pp->tx_pcap[tx_queue->queue_id];
475
476 if (unlikely(nb_pkts == 0 || pcap == NULL))
477 return 0;
478
479 for (i = 0; i < nb_pkts; i++) {
480 mbuf = bufs[i];
481 len = rte_pktmbuf_pkt_len(mbuf);
482 if (unlikely(!rte_pktmbuf_is_contiguous(mbuf) &&
483 len > sizeof(temp_data))) {
484 PMD_LOG(ERR,
485 "Dropping multi segment PCAP packet. Size (%zd) > max size (%zd).",
486 len, sizeof(temp_data));
487 rte_pktmbuf_free(mbuf);
488 continue;
489 }
490
491 /* rte_pktmbuf_read() returns a pointer to the data directly
492 * in the mbuf (when the mbuf is contiguous) or, otherwise,
493 * a pointer to temp_data after copying into it.
494 */
495 ret = pcap_sendpacket(pcap,
496 rte_pktmbuf_read(mbuf, 0, len, temp_data), len);
497 if (unlikely(ret != 0))
498 break;
499 num_tx++;
500 tx_bytes += len;
501 rte_pktmbuf_free(mbuf);
502 }
503
504 tx_queue->tx_stat.pkts += num_tx;
505 tx_queue->tx_stat.bytes += tx_bytes;
506 tx_queue->tx_stat.err_pkts += i - num_tx;
507
508 return i;
509 }
510
511 /*
512 * pcap_open_live wrapper function
513 */
514 static inline int
open_iface_live(const char * iface,pcap_t ** pcap)515 open_iface_live(const char *iface, pcap_t **pcap) {
516 *pcap = pcap_open_live(iface, RTE_ETH_PCAP_SNAPLEN,
517 RTE_ETH_PCAP_PROMISC, RTE_ETH_PCAP_TIMEOUT, errbuf);
518
519 if (*pcap == NULL) {
520 PMD_LOG(ERR, "Couldn't open %s: %s", iface, errbuf);
521 return -1;
522 }
523
524 return 0;
525 }
526
527 static int
open_single_iface(const char * iface,pcap_t ** pcap)528 open_single_iface(const char *iface, pcap_t **pcap)
529 {
530 if (open_iface_live(iface, pcap) < 0) {
531 PMD_LOG(ERR, "Couldn't open interface %s", iface);
532 return -1;
533 }
534
535 return 0;
536 }
537
538 static int
open_single_tx_pcap(const char * pcap_filename,pcap_dumper_t ** dumper)539 open_single_tx_pcap(const char *pcap_filename, pcap_dumper_t **dumper)
540 {
541 pcap_t *tx_pcap;
542
543 /*
544 * We need to create a dummy empty pcap_t to use it
545 * with pcap_dump_open(). We create big enough an Ethernet
546 * pcap holder.
547 */
548 tx_pcap = pcap_open_dead_with_tstamp_precision(DLT_EN10MB,
549 RTE_ETH_PCAP_SNAPSHOT_LEN, PCAP_TSTAMP_PRECISION_NANO);
550 if (tx_pcap == NULL) {
551 PMD_LOG(ERR, "Couldn't create dead pcap");
552 return -1;
553 }
554
555 /* The dumper is created using the previous pcap_t reference */
556 *dumper = pcap_dump_open(tx_pcap, pcap_filename);
557 if (*dumper == NULL) {
558 pcap_close(tx_pcap);
559 PMD_LOG(ERR, "Couldn't open %s for writing.",
560 pcap_filename);
561 return -1;
562 }
563
564 pcap_close(tx_pcap);
565 return 0;
566 }
567
568 static int
open_single_rx_pcap(const char * pcap_filename,pcap_t ** pcap)569 open_single_rx_pcap(const char *pcap_filename, pcap_t **pcap)
570 {
571 *pcap = pcap_open_offline(pcap_filename, errbuf);
572 if (*pcap == NULL) {
573 PMD_LOG(ERR, "Couldn't open %s: %s", pcap_filename,
574 errbuf);
575 return -1;
576 }
577
578 return 0;
579 }
580
581 static uint64_t
count_packets_in_pcap(pcap_t ** pcap,struct pcap_rx_queue * pcap_q)582 count_packets_in_pcap(pcap_t **pcap, struct pcap_rx_queue *pcap_q)
583 {
584 const u_char *packet;
585 struct pcap_pkthdr header;
586 uint64_t pcap_pkt_count = 0;
587
588 while ((packet = pcap_next(*pcap, &header)))
589 pcap_pkt_count++;
590
591 /* The pcap is reopened so it can be used as normal later. */
592 pcap_close(*pcap);
593 *pcap = NULL;
594 open_single_rx_pcap(pcap_q->name, pcap);
595
596 return pcap_pkt_count;
597 }
598
599 static int
eth_dev_start(struct rte_eth_dev * dev)600 eth_dev_start(struct rte_eth_dev *dev)
601 {
602 unsigned int i;
603 struct pmd_internals *internals = dev->data->dev_private;
604 struct pmd_process_private *pp = dev->process_private;
605 struct pcap_tx_queue *tx;
606 struct pcap_rx_queue *rx;
607
608 /* Special iface case. Single pcap is open and shared between tx/rx. */
609 if (internals->single_iface) {
610 tx = &internals->tx_queue[0];
611 rx = &internals->rx_queue[0];
612
613 if (!pp->tx_pcap[0] &&
614 strcmp(tx->type, ETH_PCAP_IFACE_ARG) == 0) {
615 if (open_single_iface(tx->name, &pp->tx_pcap[0]) < 0)
616 return -1;
617 pp->rx_pcap[0] = pp->tx_pcap[0];
618 }
619
620 goto status_up;
621 }
622
623 /* If not open already, open tx pcaps/dumpers */
624 for (i = 0; i < dev->data->nb_tx_queues; i++) {
625 tx = &internals->tx_queue[i];
626
627 if (!pp->tx_dumper[i] &&
628 strcmp(tx->type, ETH_PCAP_TX_PCAP_ARG) == 0) {
629 if (open_single_tx_pcap(tx->name,
630 &pp->tx_dumper[i]) < 0)
631 return -1;
632 } else if (!pp->tx_pcap[i] &&
633 strcmp(tx->type, ETH_PCAP_TX_IFACE_ARG) == 0) {
634 if (open_single_iface(tx->name, &pp->tx_pcap[i]) < 0)
635 return -1;
636 }
637 }
638
639 /* If not open already, open rx pcaps */
640 for (i = 0; i < dev->data->nb_rx_queues; i++) {
641 rx = &internals->rx_queue[i];
642
643 if (pp->rx_pcap[i] != NULL)
644 continue;
645
646 if (strcmp(rx->type, ETH_PCAP_RX_PCAP_ARG) == 0) {
647 if (open_single_rx_pcap(rx->name, &pp->rx_pcap[i]) < 0)
648 return -1;
649 } else if (strcmp(rx->type, ETH_PCAP_RX_IFACE_ARG) == 0) {
650 if (open_single_iface(rx->name, &pp->rx_pcap[i]) < 0)
651 return -1;
652 }
653 }
654
655 status_up:
656 for (i = 0; i < dev->data->nb_rx_queues; i++)
657 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
658
659 for (i = 0; i < dev->data->nb_tx_queues; i++)
660 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STARTED;
661
662 dev->data->dev_link.link_status = RTE_ETH_LINK_UP;
663
664 return 0;
665 }
666
667 /*
668 * This function gets called when the current port gets stopped.
669 * Is the only place for us to close all the tx streams dumpers.
670 * If not called the dumpers will be flushed within each tx burst.
671 */
672 static int
eth_dev_stop(struct rte_eth_dev * dev)673 eth_dev_stop(struct rte_eth_dev *dev)
674 {
675 unsigned int i;
676 struct pmd_internals *internals = dev->data->dev_private;
677 struct pmd_process_private *pp = dev->process_private;
678
679 /* Special iface case. Single pcap is open and shared between tx/rx. */
680 if (internals->single_iface) {
681 queue_missed_stat_on_stop_update(dev, 0);
682 if (pp->tx_pcap[0] != NULL) {
683 pcap_close(pp->tx_pcap[0]);
684 pp->tx_pcap[0] = NULL;
685 pp->rx_pcap[0] = NULL;
686 }
687 goto status_down;
688 }
689
690 for (i = 0; i < dev->data->nb_tx_queues; i++) {
691 if (pp->tx_dumper[i] != NULL) {
692 pcap_dump_close(pp->tx_dumper[i]);
693 pp->tx_dumper[i] = NULL;
694 }
695
696 if (pp->tx_pcap[i] != NULL) {
697 pcap_close(pp->tx_pcap[i]);
698 pp->tx_pcap[i] = NULL;
699 }
700 }
701
702 for (i = 0; i < dev->data->nb_rx_queues; i++) {
703 if (pp->rx_pcap[i] != NULL) {
704 queue_missed_stat_on_stop_update(dev, i);
705 pcap_close(pp->rx_pcap[i]);
706 pp->rx_pcap[i] = NULL;
707 }
708 }
709
710 status_down:
711 for (i = 0; i < dev->data->nb_rx_queues; i++)
712 dev->data->rx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
713
714 for (i = 0; i < dev->data->nb_tx_queues; i++)
715 dev->data->tx_queue_state[i] = RTE_ETH_QUEUE_STATE_STOPPED;
716
717 dev->data->dev_link.link_status = RTE_ETH_LINK_DOWN;
718
719 return 0;
720 }
721
722 static int
eth_dev_configure(struct rte_eth_dev * dev __rte_unused)723 eth_dev_configure(struct rte_eth_dev *dev __rte_unused)
724 {
725 return 0;
726 }
727
728 static int
eth_dev_info(struct rte_eth_dev * dev,struct rte_eth_dev_info * dev_info)729 eth_dev_info(struct rte_eth_dev *dev,
730 struct rte_eth_dev_info *dev_info)
731 {
732 struct pmd_internals *internals = dev->data->dev_private;
733
734 dev_info->if_index = internals->if_index;
735 dev_info->max_mac_addrs = 1;
736 dev_info->max_rx_pktlen = (uint32_t) -1;
737 dev_info->max_rx_queues = dev->data->nb_rx_queues;
738 dev_info->max_tx_queues = dev->data->nb_tx_queues;
739 dev_info->min_rx_bufsize = 0;
740
741 return 0;
742 }
743
744 static int
eth_stats_get(struct rte_eth_dev * dev,struct rte_eth_stats * stats)745 eth_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
746 {
747 unsigned int i;
748 unsigned long rx_packets_total = 0, rx_bytes_total = 0;
749 unsigned long rx_missed_total = 0;
750 unsigned long rx_nombuf_total = 0, rx_err_total = 0;
751 unsigned long tx_packets_total = 0, tx_bytes_total = 0;
752 unsigned long tx_packets_err_total = 0;
753 const struct pmd_internals *internal = dev->data->dev_private;
754
755 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
756 i < dev->data->nb_rx_queues; i++) {
757 stats->q_ipackets[i] = internal->rx_queue[i].rx_stat.pkts;
758 stats->q_ibytes[i] = internal->rx_queue[i].rx_stat.bytes;
759 rx_nombuf_total += internal->rx_queue[i].rx_stat.rx_nombuf;
760 rx_err_total += internal->rx_queue[i].rx_stat.err_pkts;
761 rx_packets_total += stats->q_ipackets[i];
762 rx_bytes_total += stats->q_ibytes[i];
763 rx_missed_total += queue_missed_stat_get(dev, i);
764 }
765
766 for (i = 0; i < RTE_ETHDEV_QUEUE_STAT_CNTRS &&
767 i < dev->data->nb_tx_queues; i++) {
768 stats->q_opackets[i] = internal->tx_queue[i].tx_stat.pkts;
769 stats->q_obytes[i] = internal->tx_queue[i].tx_stat.bytes;
770 tx_packets_total += stats->q_opackets[i];
771 tx_bytes_total += stats->q_obytes[i];
772 tx_packets_err_total += internal->tx_queue[i].tx_stat.err_pkts;
773 }
774
775 stats->ipackets = rx_packets_total;
776 stats->ibytes = rx_bytes_total;
777 stats->imissed = rx_missed_total;
778 stats->ierrors = rx_err_total;
779 stats->rx_nombuf = rx_nombuf_total;
780 stats->opackets = tx_packets_total;
781 stats->obytes = tx_bytes_total;
782 stats->oerrors = tx_packets_err_total;
783
784 return 0;
785 }
786
787 static int
eth_stats_reset(struct rte_eth_dev * dev)788 eth_stats_reset(struct rte_eth_dev *dev)
789 {
790 unsigned int i;
791 struct pmd_internals *internal = dev->data->dev_private;
792
793 for (i = 0; i < dev->data->nb_rx_queues; i++) {
794 internal->rx_queue[i].rx_stat.pkts = 0;
795 internal->rx_queue[i].rx_stat.bytes = 0;
796 internal->rx_queue[i].rx_stat.err_pkts = 0;
797 internal->rx_queue[i].rx_stat.rx_nombuf = 0;
798 queue_missed_stat_reset(dev, i);
799 }
800
801 for (i = 0; i < dev->data->nb_tx_queues; i++) {
802 internal->tx_queue[i].tx_stat.pkts = 0;
803 internal->tx_queue[i].tx_stat.bytes = 0;
804 internal->tx_queue[i].tx_stat.err_pkts = 0;
805 }
806
807 return 0;
808 }
809
810 static inline void
infinite_rx_ring_free(struct rte_ring * pkts)811 infinite_rx_ring_free(struct rte_ring *pkts)
812 {
813 struct rte_mbuf *bufs;
814
815 while (!rte_ring_dequeue(pkts, (void **)&bufs))
816 rte_pktmbuf_free(bufs);
817
818 rte_ring_free(pkts);
819 }
820
821 static int
eth_dev_close(struct rte_eth_dev * dev)822 eth_dev_close(struct rte_eth_dev *dev)
823 {
824 unsigned int i;
825 struct pmd_internals *internals = dev->data->dev_private;
826
827 PMD_LOG(INFO, "Closing pcap ethdev on NUMA socket %d",
828 rte_socket_id());
829
830 eth_dev_stop(dev);
831
832 rte_free(dev->process_private);
833
834 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
835 return 0;
836
837 /* Device wide flag, but cleanup must be performed per queue. */
838 if (internals->infinite_rx) {
839 for (i = 0; i < dev->data->nb_rx_queues; i++) {
840 struct pcap_rx_queue *pcap_q = &internals->rx_queue[i];
841
842 /*
843 * 'pcap_q->pkts' can be NULL if 'eth_dev_close()'
844 * called before 'eth_rx_queue_setup()' has been called
845 */
846 if (pcap_q->pkts == NULL)
847 continue;
848
849 infinite_rx_ring_free(pcap_q->pkts);
850 }
851 }
852
853 if (internals->phy_mac == 0)
854 /* not dynamically allocated, must not be freed */
855 dev->data->mac_addrs = NULL;
856
857 return 0;
858 }
859
860 static int
eth_link_update(struct rte_eth_dev * dev __rte_unused,int wait_to_complete __rte_unused)861 eth_link_update(struct rte_eth_dev *dev __rte_unused,
862 int wait_to_complete __rte_unused)
863 {
864 return 0;
865 }
866
867 static int
eth_rx_queue_setup(struct rte_eth_dev * dev,uint16_t rx_queue_id,uint16_t nb_rx_desc __rte_unused,unsigned int socket_id __rte_unused,const struct rte_eth_rxconf * rx_conf __rte_unused,struct rte_mempool * mb_pool)868 eth_rx_queue_setup(struct rte_eth_dev *dev,
869 uint16_t rx_queue_id,
870 uint16_t nb_rx_desc __rte_unused,
871 unsigned int socket_id __rte_unused,
872 const struct rte_eth_rxconf *rx_conf __rte_unused,
873 struct rte_mempool *mb_pool)
874 {
875 struct pmd_internals *internals = dev->data->dev_private;
876 struct pcap_rx_queue *pcap_q = &internals->rx_queue[rx_queue_id];
877
878 pcap_q->mb_pool = mb_pool;
879 pcap_q->port_id = dev->data->port_id;
880 pcap_q->queue_id = rx_queue_id;
881 dev->data->rx_queues[rx_queue_id] = pcap_q;
882
883 if (internals->infinite_rx) {
884 struct pmd_process_private *pp;
885 char ring_name[RTE_RING_NAMESIZE];
886 static uint32_t ring_number;
887 uint64_t pcap_pkt_count = 0;
888 struct rte_mbuf *bufs[1];
889 pcap_t **pcap;
890
891 pp = rte_eth_devices[pcap_q->port_id].process_private;
892 pcap = &pp->rx_pcap[pcap_q->queue_id];
893
894 if (unlikely(*pcap == NULL))
895 return -ENOENT;
896
897 pcap_pkt_count = count_packets_in_pcap(pcap, pcap_q);
898
899 snprintf(ring_name, sizeof(ring_name), "PCAP_RING%" PRIu32,
900 ring_number);
901
902 pcap_q->pkts = rte_ring_create(ring_name,
903 rte_align64pow2(pcap_pkt_count + 1), 0,
904 RING_F_SP_ENQ | RING_F_SC_DEQ);
905 ring_number++;
906 if (!pcap_q->pkts)
907 return -ENOENT;
908
909 /* Fill ring with packets from PCAP file one by one. */
910 while (eth_pcap_rx(pcap_q, bufs, 1)) {
911 /* Check for multiseg mbufs. */
912 if (bufs[0]->nb_segs != 1) {
913 infinite_rx_ring_free(pcap_q->pkts);
914 PMD_LOG(ERR,
915 "Multiseg mbufs are not supported in infinite_rx mode.");
916 return -EINVAL;
917 }
918
919 rte_ring_enqueue_bulk(pcap_q->pkts,
920 (void * const *)bufs, 1, NULL);
921 }
922
923 if (rte_ring_count(pcap_q->pkts) < pcap_pkt_count) {
924 infinite_rx_ring_free(pcap_q->pkts);
925 PMD_LOG(ERR,
926 "Not enough mbufs to accommodate packets in pcap file. "
927 "At least %" PRIu64 " mbufs per queue is required.",
928 pcap_pkt_count);
929 return -EINVAL;
930 }
931
932 /*
933 * Reset the stats for this queue since eth_pcap_rx calls above
934 * didn't result in the application receiving packets.
935 */
936 pcap_q->rx_stat.pkts = 0;
937 pcap_q->rx_stat.bytes = 0;
938 }
939
940 return 0;
941 }
942
943 static int
eth_tx_queue_setup(struct rte_eth_dev * dev,uint16_t tx_queue_id,uint16_t nb_tx_desc __rte_unused,unsigned int socket_id __rte_unused,const struct rte_eth_txconf * tx_conf __rte_unused)944 eth_tx_queue_setup(struct rte_eth_dev *dev,
945 uint16_t tx_queue_id,
946 uint16_t nb_tx_desc __rte_unused,
947 unsigned int socket_id __rte_unused,
948 const struct rte_eth_txconf *tx_conf __rte_unused)
949 {
950 struct pmd_internals *internals = dev->data->dev_private;
951 struct pcap_tx_queue *pcap_q = &internals->tx_queue[tx_queue_id];
952
953 pcap_q->port_id = dev->data->port_id;
954 pcap_q->queue_id = tx_queue_id;
955 dev->data->tx_queues[tx_queue_id] = pcap_q;
956
957 return 0;
958 }
959
960 static int
eth_rx_queue_start(struct rte_eth_dev * dev,uint16_t rx_queue_id)961 eth_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
962 {
963 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
964
965 return 0;
966 }
967
968 static int
eth_tx_queue_start(struct rte_eth_dev * dev,uint16_t tx_queue_id)969 eth_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
970 {
971 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
972
973 return 0;
974 }
975
976 static int
eth_rx_queue_stop(struct rte_eth_dev * dev,uint16_t rx_queue_id)977 eth_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
978 {
979 dev->data->rx_queue_state[rx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
980
981 return 0;
982 }
983
984 static int
eth_tx_queue_stop(struct rte_eth_dev * dev,uint16_t tx_queue_id)985 eth_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
986 {
987 dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
988
989 return 0;
990 }
991
992 static const struct eth_dev_ops ops = {
993 .dev_start = eth_dev_start,
994 .dev_stop = eth_dev_stop,
995 .dev_close = eth_dev_close,
996 .dev_configure = eth_dev_configure,
997 .dev_infos_get = eth_dev_info,
998 .rx_queue_setup = eth_rx_queue_setup,
999 .tx_queue_setup = eth_tx_queue_setup,
1000 .rx_queue_start = eth_rx_queue_start,
1001 .tx_queue_start = eth_tx_queue_start,
1002 .rx_queue_stop = eth_rx_queue_stop,
1003 .tx_queue_stop = eth_tx_queue_stop,
1004 .link_update = eth_link_update,
1005 .stats_get = eth_stats_get,
1006 .stats_reset = eth_stats_reset,
1007 };
1008
1009 static int
add_queue(struct pmd_devargs * pmd,const char * name,const char * type,pcap_t * pcap,pcap_dumper_t * dumper)1010 add_queue(struct pmd_devargs *pmd, const char *name, const char *type,
1011 pcap_t *pcap, pcap_dumper_t *dumper)
1012 {
1013 if (pmd->num_of_queue >= RTE_PMD_PCAP_MAX_QUEUES)
1014 return -1;
1015 if (pcap)
1016 pmd->queue[pmd->num_of_queue].pcap = pcap;
1017 if (dumper)
1018 pmd->queue[pmd->num_of_queue].dumper = dumper;
1019 pmd->queue[pmd->num_of_queue].name = name;
1020 pmd->queue[pmd->num_of_queue].type = type;
1021 pmd->num_of_queue++;
1022 return 0;
1023 }
1024
1025 /*
1026 * Function handler that opens the pcap file for reading a stores a
1027 * reference of it for use it later on.
1028 */
1029 static int
open_rx_pcap(const char * key,const char * value,void * extra_args)1030 open_rx_pcap(const char *key, const char *value, void *extra_args)
1031 {
1032 const char *pcap_filename = value;
1033 struct pmd_devargs *rx = extra_args;
1034 pcap_t *pcap = NULL;
1035
1036 if (open_single_rx_pcap(pcap_filename, &pcap) < 0)
1037 return -1;
1038
1039 if (add_queue(rx, pcap_filename, key, pcap, NULL) < 0) {
1040 pcap_close(pcap);
1041 return -1;
1042 }
1043
1044 return 0;
1045 }
1046
1047 /*
1048 * Opens a pcap file for writing and stores a reference to it
1049 * for use it later on.
1050 */
1051 static int
open_tx_pcap(const char * key,const char * value,void * extra_args)1052 open_tx_pcap(const char *key, const char *value, void *extra_args)
1053 {
1054 const char *pcap_filename = value;
1055 struct pmd_devargs *dumpers = extra_args;
1056 pcap_dumper_t *dumper;
1057
1058 if (open_single_tx_pcap(pcap_filename, &dumper) < 0)
1059 return -1;
1060
1061 if (add_queue(dumpers, pcap_filename, key, NULL, dumper) < 0) {
1062 pcap_dump_close(dumper);
1063 return -1;
1064 }
1065
1066 return 0;
1067 }
1068
1069 /*
1070 * Opens an interface for reading and writing
1071 */
1072 static inline int
open_rx_tx_iface(const char * key,const char * value,void * extra_args)1073 open_rx_tx_iface(const char *key, const char *value, void *extra_args)
1074 {
1075 const char *iface = value;
1076 struct pmd_devargs *tx = extra_args;
1077 pcap_t *pcap = NULL;
1078
1079 if (open_single_iface(iface, &pcap) < 0)
1080 return -1;
1081
1082 tx->queue[0].pcap = pcap;
1083 tx->queue[0].name = iface;
1084 tx->queue[0].type = key;
1085
1086 return 0;
1087 }
1088
1089 static inline int
set_iface_direction(const char * iface,pcap_t * pcap,pcap_direction_t direction)1090 set_iface_direction(const char *iface, pcap_t *pcap,
1091 pcap_direction_t direction)
1092 {
1093 const char *direction_str = (direction == PCAP_D_IN) ? "IN" : "OUT";
1094 if (pcap_setdirection(pcap, direction) < 0) {
1095 PMD_LOG(ERR, "Setting %s pcap direction %s failed - %s\n",
1096 iface, direction_str, pcap_geterr(pcap));
1097 return -1;
1098 }
1099 PMD_LOG(INFO, "Setting %s pcap direction %s\n",
1100 iface, direction_str);
1101 return 0;
1102 }
1103
1104 static inline int
open_iface(const char * key,const char * value,void * extra_args)1105 open_iface(const char *key, const char *value, void *extra_args)
1106 {
1107 const char *iface = value;
1108 struct pmd_devargs *pmd = extra_args;
1109 pcap_t *pcap = NULL;
1110
1111 if (open_single_iface(iface, &pcap) < 0)
1112 return -1;
1113 if (add_queue(pmd, iface, key, pcap, NULL) < 0) {
1114 pcap_close(pcap);
1115 return -1;
1116 }
1117
1118 return 0;
1119 }
1120
1121 /*
1122 * Opens a NIC for reading packets from it
1123 */
1124 static inline int
open_rx_iface(const char * key,const char * value,void * extra_args)1125 open_rx_iface(const char *key, const char *value, void *extra_args)
1126 {
1127 int ret = open_iface(key, value, extra_args);
1128 if (ret < 0)
1129 return ret;
1130 if (strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0) {
1131 struct pmd_devargs *pmd = extra_args;
1132 unsigned int qid = pmd->num_of_queue - 1;
1133
1134 set_iface_direction(pmd->queue[qid].name,
1135 pmd->queue[qid].pcap,
1136 PCAP_D_IN);
1137 }
1138
1139 return 0;
1140 }
1141
1142 static inline int
rx_iface_args_process(const char * key,const char * value,void * extra_args)1143 rx_iface_args_process(const char *key, const char *value, void *extra_args)
1144 {
1145 if (strcmp(key, ETH_PCAP_RX_IFACE_ARG) == 0 ||
1146 strcmp(key, ETH_PCAP_RX_IFACE_IN_ARG) == 0)
1147 return open_rx_iface(key, value, extra_args);
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * Opens a NIC for writing packets to it
1154 */
1155 static int
open_tx_iface(const char * key,const char * value,void * extra_args)1156 open_tx_iface(const char *key, const char *value, void *extra_args)
1157 {
1158 return open_iface(key, value, extra_args);
1159 }
1160
1161 static int
select_phy_mac(const char * key __rte_unused,const char * value,void * extra_args)1162 select_phy_mac(const char *key __rte_unused, const char *value,
1163 void *extra_args)
1164 {
1165 if (extra_args) {
1166 const int phy_mac = atoi(value);
1167 int *enable_phy_mac = extra_args;
1168
1169 if (phy_mac)
1170 *enable_phy_mac = 1;
1171 }
1172 return 0;
1173 }
1174
1175 static int
get_infinite_rx_arg(const char * key __rte_unused,const char * value,void * extra_args)1176 get_infinite_rx_arg(const char *key __rte_unused,
1177 const char *value, void *extra_args)
1178 {
1179 if (extra_args) {
1180 const int infinite_rx = atoi(value);
1181 int *enable_infinite_rx = extra_args;
1182
1183 if (infinite_rx > 0)
1184 *enable_infinite_rx = 1;
1185 }
1186 return 0;
1187 }
1188
1189 static int
pmd_init_internals(struct rte_vdev_device * vdev,const unsigned int nb_rx_queues,const unsigned int nb_tx_queues,struct pmd_internals ** internals,struct rte_eth_dev ** eth_dev)1190 pmd_init_internals(struct rte_vdev_device *vdev,
1191 const unsigned int nb_rx_queues,
1192 const unsigned int nb_tx_queues,
1193 struct pmd_internals **internals,
1194 struct rte_eth_dev **eth_dev)
1195 {
1196 struct rte_eth_dev_data *data;
1197 struct pmd_process_private *pp;
1198 unsigned int numa_node = vdev->device.numa_node;
1199
1200 PMD_LOG(INFO, "Creating pcap-backed ethdev on numa socket %d",
1201 numa_node);
1202
1203 pp = (struct pmd_process_private *)
1204 rte_zmalloc(NULL, sizeof(struct pmd_process_private),
1205 RTE_CACHE_LINE_SIZE);
1206
1207 if (pp == NULL) {
1208 PMD_LOG(ERR,
1209 "Failed to allocate memory for process private");
1210 return -1;
1211 }
1212
1213 /* reserve an ethdev entry */
1214 *eth_dev = rte_eth_vdev_allocate(vdev, sizeof(**internals));
1215 if (!(*eth_dev)) {
1216 rte_free(pp);
1217 return -1;
1218 }
1219 (*eth_dev)->process_private = pp;
1220 /* now put it all together
1221 * - store queue data in internals,
1222 * - store numa_node info in eth_dev
1223 * - point eth_dev_data to internals
1224 * - and point eth_dev structure to new eth_dev_data structure
1225 */
1226 *internals = (*eth_dev)->data->dev_private;
1227 /*
1228 * Interface MAC = 02:70:63:61:70:<iface_idx>
1229 * derived from: 'locally administered':'p':'c':'a':'p':'iface_idx'
1230 * where the middle 4 characters are converted to hex.
1231 */
1232 (*internals)->eth_addr = (struct rte_ether_addr) {
1233 .addr_bytes = { 0x02, 0x70, 0x63, 0x61, 0x70, iface_idx++ }
1234 };
1235 (*internals)->phy_mac = 0;
1236 data = (*eth_dev)->data;
1237 data->nb_rx_queues = (uint16_t)nb_rx_queues;
1238 data->nb_tx_queues = (uint16_t)nb_tx_queues;
1239 data->dev_link = pmd_link;
1240 data->mac_addrs = &(*internals)->eth_addr;
1241 data->promiscuous = 1;
1242 data->all_multicast = 1;
1243 data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
1244
1245 /*
1246 * NOTE: we'll replace the data element, of originally allocated
1247 * eth_dev so the rings are local per-process
1248 */
1249 (*eth_dev)->dev_ops = &ops;
1250
1251 strlcpy((*internals)->devargs, rte_vdev_device_args(vdev),
1252 ETH_PCAP_ARG_MAXLEN);
1253
1254 return 0;
1255 }
1256
1257 static int
eth_pcap_update_mac(const char * if_name,struct rte_eth_dev * eth_dev,const unsigned int numa_node)1258 eth_pcap_update_mac(const char *if_name, struct rte_eth_dev *eth_dev,
1259 const unsigned int numa_node)
1260 {
1261 void *mac_addrs;
1262 struct rte_ether_addr mac;
1263
1264 if (osdep_iface_mac_get(if_name, &mac) < 0)
1265 return -1;
1266
1267 mac_addrs = rte_zmalloc_socket(NULL, RTE_ETHER_ADDR_LEN, 0, numa_node);
1268 if (mac_addrs == NULL)
1269 return -1;
1270
1271 PMD_LOG(INFO, "Setting phy MAC for %s", if_name);
1272 rte_memcpy(mac_addrs, mac.addr_bytes, RTE_ETHER_ADDR_LEN);
1273 eth_dev->data->mac_addrs = mac_addrs;
1274 return 0;
1275 }
1276
1277 static int
eth_from_pcaps_common(struct rte_vdev_device * vdev,struct pmd_devargs_all * devargs_all,struct pmd_internals ** internals,struct rte_eth_dev ** eth_dev)1278 eth_from_pcaps_common(struct rte_vdev_device *vdev,
1279 struct pmd_devargs_all *devargs_all,
1280 struct pmd_internals **internals, struct rte_eth_dev **eth_dev)
1281 {
1282 struct pmd_process_private *pp;
1283 struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1284 struct pmd_devargs *tx_queues = &devargs_all->tx_queues;
1285 const unsigned int nb_rx_queues = rx_queues->num_of_queue;
1286 const unsigned int nb_tx_queues = tx_queues->num_of_queue;
1287 unsigned int i;
1288
1289 if (pmd_init_internals(vdev, nb_rx_queues, nb_tx_queues, internals,
1290 eth_dev) < 0)
1291 return -1;
1292
1293 pp = (*eth_dev)->process_private;
1294 for (i = 0; i < nb_rx_queues; i++) {
1295 struct pcap_rx_queue *rx = &(*internals)->rx_queue[i];
1296 struct devargs_queue *queue = &rx_queues->queue[i];
1297
1298 pp->rx_pcap[i] = queue->pcap;
1299 strlcpy(rx->name, queue->name, sizeof(rx->name));
1300 strlcpy(rx->type, queue->type, sizeof(rx->type));
1301 }
1302
1303 for (i = 0; i < nb_tx_queues; i++) {
1304 struct pcap_tx_queue *tx = &(*internals)->tx_queue[i];
1305 struct devargs_queue *queue = &tx_queues->queue[i];
1306
1307 pp->tx_dumper[i] = queue->dumper;
1308 pp->tx_pcap[i] = queue->pcap;
1309 strlcpy(tx->name, queue->name, sizeof(tx->name));
1310 strlcpy(tx->type, queue->type, sizeof(tx->type));
1311 }
1312
1313 return 0;
1314 }
1315
1316 static int
eth_from_pcaps(struct rte_vdev_device * vdev,struct pmd_devargs_all * devargs_all)1317 eth_from_pcaps(struct rte_vdev_device *vdev,
1318 struct pmd_devargs_all *devargs_all)
1319 {
1320 struct pmd_internals *internals = NULL;
1321 struct rte_eth_dev *eth_dev = NULL;
1322 struct pmd_devargs *rx_queues = &devargs_all->rx_queues;
1323 int single_iface = devargs_all->single_iface;
1324 unsigned int infinite_rx = devargs_all->infinite_rx;
1325 int ret;
1326
1327 ret = eth_from_pcaps_common(vdev, devargs_all, &internals, ð_dev);
1328
1329 if (ret < 0)
1330 return ret;
1331
1332 /* store weather we are using a single interface for rx/tx or not */
1333 internals->single_iface = single_iface;
1334
1335 if (single_iface) {
1336 internals->if_index =
1337 osdep_iface_index_get(rx_queues->queue[0].name);
1338
1339 /* phy_mac arg is applied only only if "iface" devarg is provided */
1340 if (rx_queues->phy_mac) {
1341 if (eth_pcap_update_mac(rx_queues->queue[0].name,
1342 eth_dev, vdev->device.numa_node) == 0)
1343 internals->phy_mac = 1;
1344 }
1345 }
1346
1347 internals->infinite_rx = infinite_rx;
1348 /* Assign rx ops. */
1349 if (infinite_rx)
1350 eth_dev->rx_pkt_burst = eth_pcap_rx_infinite;
1351 else if (devargs_all->is_rx_pcap || devargs_all->is_rx_iface ||
1352 single_iface)
1353 eth_dev->rx_pkt_burst = eth_pcap_rx;
1354 else
1355 eth_dev->rx_pkt_burst = eth_null_rx;
1356
1357 /* Assign tx ops. */
1358 if (devargs_all->is_tx_pcap)
1359 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1360 else if (devargs_all->is_tx_iface || single_iface)
1361 eth_dev->tx_pkt_burst = eth_pcap_tx;
1362 else
1363 eth_dev->tx_pkt_burst = eth_tx_drop;
1364
1365 rte_eth_dev_probing_finish(eth_dev);
1366 return 0;
1367 }
1368
1369 static void
eth_release_pcaps(struct pmd_devargs * pcaps,struct pmd_devargs * dumpers,int single_iface)1370 eth_release_pcaps(struct pmd_devargs *pcaps,
1371 struct pmd_devargs *dumpers,
1372 int single_iface)
1373 {
1374 unsigned int i;
1375
1376 if (single_iface) {
1377 if (pcaps->queue[0].pcap)
1378 pcap_close(pcaps->queue[0].pcap);
1379 return;
1380 }
1381
1382 for (i = 0; i < dumpers->num_of_queue; i++) {
1383 if (dumpers->queue[i].dumper)
1384 pcap_dump_close(dumpers->queue[i].dumper);
1385
1386 if (dumpers->queue[i].pcap)
1387 pcap_close(dumpers->queue[i].pcap);
1388 }
1389
1390 for (i = 0; i < pcaps->num_of_queue; i++) {
1391 if (pcaps->queue[i].pcap)
1392 pcap_close(pcaps->queue[i].pcap);
1393 }
1394 }
1395
1396 static int
pmd_pcap_probe(struct rte_vdev_device * dev)1397 pmd_pcap_probe(struct rte_vdev_device *dev)
1398 {
1399 const char *name;
1400 struct rte_kvargs *kvlist;
1401 struct pmd_devargs pcaps = {0};
1402 struct pmd_devargs dumpers = {0};
1403 struct rte_eth_dev *eth_dev = NULL;
1404 struct pmd_internals *internal;
1405 int ret = 0;
1406
1407 struct pmd_devargs_all devargs_all = {
1408 .single_iface = 0,
1409 .is_tx_pcap = 0,
1410 .is_tx_iface = 0,
1411 .infinite_rx = 0,
1412 };
1413
1414 name = rte_vdev_device_name(dev);
1415 PMD_LOG(INFO, "Initializing pmd_pcap for %s", name);
1416
1417 timespec_get(&start_time, TIME_UTC);
1418 start_cycles = rte_get_timer_cycles();
1419 hz = rte_get_timer_hz();
1420
1421 ret = rte_mbuf_dyn_rx_timestamp_register(×tamp_dynfield_offset,
1422 ×tamp_rx_dynflag);
1423 if (ret != 0) {
1424 PMD_LOG(ERR, "Failed to register Rx timestamp field/flag");
1425 return -1;
1426 }
1427
1428 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1429 eth_dev = rte_eth_dev_attach_secondary(name);
1430 if (!eth_dev) {
1431 PMD_LOG(ERR, "Failed to probe %s", name);
1432 return -1;
1433 }
1434
1435 internal = eth_dev->data->dev_private;
1436
1437 kvlist = rte_kvargs_parse(internal->devargs, valid_arguments);
1438 if (kvlist == NULL)
1439 return -1;
1440 } else {
1441 kvlist = rte_kvargs_parse(rte_vdev_device_args(dev),
1442 valid_arguments);
1443 if (kvlist == NULL)
1444 return -1;
1445 }
1446
1447 /*
1448 * If iface argument is passed we open the NICs and use them for
1449 * reading / writing
1450 */
1451 if (rte_kvargs_count(kvlist, ETH_PCAP_IFACE_ARG) == 1) {
1452
1453 ret = rte_kvargs_process(kvlist, ETH_PCAP_IFACE_ARG,
1454 &open_rx_tx_iface, &pcaps);
1455 if (ret < 0)
1456 goto free_kvlist;
1457
1458 dumpers.queue[0] = pcaps.queue[0];
1459
1460 ret = rte_kvargs_process(kvlist, ETH_PCAP_PHY_MAC_ARG,
1461 &select_phy_mac, &pcaps.phy_mac);
1462 if (ret < 0)
1463 goto free_kvlist;
1464
1465 dumpers.phy_mac = pcaps.phy_mac;
1466
1467 devargs_all.single_iface = 1;
1468 pcaps.num_of_queue = 1;
1469 dumpers.num_of_queue = 1;
1470
1471 goto create_eth;
1472 }
1473
1474 /*
1475 * We check whether we want to open a RX stream from a real NIC, a
1476 * pcap file or open a dummy RX stream
1477 */
1478 devargs_all.is_rx_pcap =
1479 rte_kvargs_count(kvlist, ETH_PCAP_RX_PCAP_ARG) ? 1 : 0;
1480 devargs_all.is_rx_iface =
1481 (rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_ARG) +
1482 rte_kvargs_count(kvlist, ETH_PCAP_RX_IFACE_IN_ARG)) ? 1 : 0;
1483 pcaps.num_of_queue = 0;
1484
1485 devargs_all.is_tx_pcap =
1486 rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) ? 1 : 0;
1487 devargs_all.is_tx_iface =
1488 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG) ? 1 : 0;
1489 dumpers.num_of_queue = 0;
1490
1491 if (devargs_all.is_rx_pcap) {
1492 /*
1493 * We check whether we want to infinitely rx the pcap file.
1494 */
1495 unsigned int infinite_rx_arg_cnt = rte_kvargs_count(kvlist,
1496 ETH_PCAP_INFINITE_RX_ARG);
1497
1498 if (infinite_rx_arg_cnt == 1) {
1499 ret = rte_kvargs_process(kvlist,
1500 ETH_PCAP_INFINITE_RX_ARG,
1501 &get_infinite_rx_arg,
1502 &devargs_all.infinite_rx);
1503 if (ret < 0)
1504 goto free_kvlist;
1505 PMD_LOG(INFO, "infinite_rx has been %s for %s",
1506 devargs_all.infinite_rx ? "enabled" : "disabled",
1507 name);
1508
1509 } else if (infinite_rx_arg_cnt > 1) {
1510 PMD_LOG(WARNING, "infinite_rx has not been enabled since the "
1511 "argument has been provided more than once "
1512 "for %s", name);
1513 }
1514
1515 ret = rte_kvargs_process(kvlist, ETH_PCAP_RX_PCAP_ARG,
1516 &open_rx_pcap, &pcaps);
1517 } else if (devargs_all.is_rx_iface) {
1518 ret = rte_kvargs_process(kvlist, NULL,
1519 &rx_iface_args_process, &pcaps);
1520 } else if (devargs_all.is_tx_iface || devargs_all.is_tx_pcap) {
1521 unsigned int i;
1522
1523 /* Count number of tx queue args passed before dummy rx queue
1524 * creation so a dummy rx queue can be created for each tx queue
1525 */
1526 unsigned int num_tx_queues =
1527 (rte_kvargs_count(kvlist, ETH_PCAP_TX_PCAP_ARG) +
1528 rte_kvargs_count(kvlist, ETH_PCAP_TX_IFACE_ARG));
1529
1530 PMD_LOG(INFO, "Creating null rx queue since no rx queues were provided.");
1531
1532 /* Creating a dummy rx queue for each tx queue passed */
1533 for (i = 0; i < num_tx_queues; i++)
1534 ret = add_queue(&pcaps, "dummy_rx", "rx_null", NULL,
1535 NULL);
1536 } else {
1537 PMD_LOG(ERR, "Error - No rx or tx queues provided");
1538 ret = -ENOENT;
1539 }
1540 if (ret < 0)
1541 goto free_kvlist;
1542
1543 /*
1544 * We check whether we want to open a TX stream to a real NIC,
1545 * a pcap file, or drop packets on tx
1546 */
1547 if (devargs_all.is_tx_pcap) {
1548 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_PCAP_ARG,
1549 &open_tx_pcap, &dumpers);
1550 } else if (devargs_all.is_tx_iface) {
1551 ret = rte_kvargs_process(kvlist, ETH_PCAP_TX_IFACE_ARG,
1552 &open_tx_iface, &dumpers);
1553 } else {
1554 unsigned int i;
1555
1556 PMD_LOG(INFO, "Dropping packets on tx since no tx queues were provided.");
1557
1558 /* Add 1 dummy queue per rxq which counts and drops packets. */
1559 for (i = 0; i < pcaps.num_of_queue; i++)
1560 ret = add_queue(&dumpers, "dummy_tx", "tx_drop", NULL,
1561 NULL);
1562 }
1563
1564 if (ret < 0)
1565 goto free_kvlist;
1566
1567 create_eth:
1568 if (rte_eal_process_type() == RTE_PROC_SECONDARY) {
1569 struct pmd_process_private *pp;
1570 unsigned int i;
1571
1572 internal = eth_dev->data->dev_private;
1573 pp = (struct pmd_process_private *)
1574 rte_zmalloc(NULL,
1575 sizeof(struct pmd_process_private),
1576 RTE_CACHE_LINE_SIZE);
1577
1578 if (pp == NULL) {
1579 PMD_LOG(ERR,
1580 "Failed to allocate memory for process private");
1581 ret = -1;
1582 goto free_kvlist;
1583 }
1584
1585 eth_dev->dev_ops = &ops;
1586 eth_dev->device = &dev->device;
1587
1588 /* setup process private */
1589 for (i = 0; i < pcaps.num_of_queue; i++)
1590 pp->rx_pcap[i] = pcaps.queue[i].pcap;
1591
1592 for (i = 0; i < dumpers.num_of_queue; i++) {
1593 pp->tx_dumper[i] = dumpers.queue[i].dumper;
1594 pp->tx_pcap[i] = dumpers.queue[i].pcap;
1595 }
1596
1597 eth_dev->process_private = pp;
1598 eth_dev->rx_pkt_burst = eth_pcap_rx;
1599 if (devargs_all.is_tx_pcap)
1600 eth_dev->tx_pkt_burst = eth_pcap_tx_dumper;
1601 else
1602 eth_dev->tx_pkt_burst = eth_pcap_tx;
1603
1604 rte_eth_dev_probing_finish(eth_dev);
1605 goto free_kvlist;
1606 }
1607
1608 devargs_all.rx_queues = pcaps;
1609 devargs_all.tx_queues = dumpers;
1610
1611 ret = eth_from_pcaps(dev, &devargs_all);
1612
1613 free_kvlist:
1614 rte_kvargs_free(kvlist);
1615
1616 if (ret < 0)
1617 eth_release_pcaps(&pcaps, &dumpers, devargs_all.single_iface);
1618
1619 return ret;
1620 }
1621
1622 static int
pmd_pcap_remove(struct rte_vdev_device * dev)1623 pmd_pcap_remove(struct rte_vdev_device *dev)
1624 {
1625 struct rte_eth_dev *eth_dev = NULL;
1626
1627 if (!dev)
1628 return -1;
1629
1630 eth_dev = rte_eth_dev_allocated(rte_vdev_device_name(dev));
1631 if (eth_dev == NULL)
1632 return 0; /* port already released */
1633
1634 eth_dev_close(eth_dev);
1635 rte_eth_dev_release_port(eth_dev);
1636
1637 return 0;
1638 }
1639
1640 static struct rte_vdev_driver pmd_pcap_drv = {
1641 .probe = pmd_pcap_probe,
1642 .remove = pmd_pcap_remove,
1643 };
1644
1645 RTE_PMD_REGISTER_VDEV(net_pcap, pmd_pcap_drv);
1646 RTE_PMD_REGISTER_ALIAS(net_pcap, eth_pcap);
1647 RTE_PMD_REGISTER_PARAM_STRING(net_pcap,
1648 ETH_PCAP_RX_PCAP_ARG "=<string> "
1649 ETH_PCAP_TX_PCAP_ARG "=<string> "
1650 ETH_PCAP_RX_IFACE_ARG "=<ifc> "
1651 ETH_PCAP_RX_IFACE_IN_ARG "=<ifc> "
1652 ETH_PCAP_TX_IFACE_ARG "=<ifc> "
1653 ETH_PCAP_IFACE_ARG "=<ifc> "
1654 ETH_PCAP_PHY_MAC_ARG "=<int>"
1655 ETH_PCAP_INFINITE_RX_ARG "=<0|1>");
1656