xref: /dpdk/drivers/net/ice/ice_ethdev.c (revision bb9cd910)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2018 Intel Corporation
3  */
4 
5 #include <rte_string_fns.h>
6 #include <ethdev_pci.h>
7 
8 #include <stdio.h>
9 #include <sys/types.h>
10 #include <sys/stat.h>
11 #include <unistd.h>
12 
13 #include <rte_tailq.h>
14 
15 #include "eal_firmware.h"
16 
17 #include "base/ice_sched.h"
18 #include "base/ice_flow.h"
19 #include "base/ice_dcb.h"
20 #include "base/ice_common.h"
21 #include "base/ice_ptp_hw.h"
22 
23 #include "rte_pmd_ice.h"
24 #include "ice_ethdev.h"
25 #include "ice_rxtx.h"
26 #include "ice_generic_flow.h"
27 
28 /* devargs */
29 #define ICE_SAFE_MODE_SUPPORT_ARG "safe-mode-support"
30 #define ICE_PIPELINE_MODE_SUPPORT_ARG  "pipeline-mode-support"
31 #define ICE_PROTO_XTR_ARG         "proto_xtr"
32 #define ICE_HW_DEBUG_MASK_ARG     "hw_debug_mask"
33 #define ICE_ONE_PPS_OUT_ARG       "pps_out"
34 #define ICE_RX_LOW_LATENCY_ARG    "rx_low_latency"
35 
36 #define ICE_CYCLECOUNTER_MASK  0xffffffffffffffffULL
37 
38 uint64_t ice_timestamp_dynflag;
39 int ice_timestamp_dynfield_offset = -1;
40 
41 static const char * const ice_valid_args[] = {
42 	ICE_SAFE_MODE_SUPPORT_ARG,
43 	ICE_PIPELINE_MODE_SUPPORT_ARG,
44 	ICE_PROTO_XTR_ARG,
45 	ICE_HW_DEBUG_MASK_ARG,
46 	ICE_ONE_PPS_OUT_ARG,
47 	ICE_RX_LOW_LATENCY_ARG,
48 	NULL
49 };
50 
51 #define PPS_OUT_DELAY_NS  1
52 
53 static const struct rte_mbuf_dynfield ice_proto_xtr_metadata_param = {
54 	.name = "intel_pmd_dynfield_proto_xtr_metadata",
55 	.size = sizeof(uint32_t),
56 	.align = __alignof__(uint32_t),
57 	.flags = 0,
58 };
59 
60 struct proto_xtr_ol_flag {
61 	const struct rte_mbuf_dynflag param;
62 	uint64_t *ol_flag;
63 	bool required;
64 };
65 
66 static bool ice_proto_xtr_hw_support[PROTO_XTR_MAX];
67 
68 static struct proto_xtr_ol_flag ice_proto_xtr_ol_flag_params[] = {
69 	[PROTO_XTR_VLAN] = {
70 		.param = { .name = "intel_pmd_dynflag_proto_xtr_vlan" },
71 		.ol_flag = &rte_net_ice_dynflag_proto_xtr_vlan_mask },
72 	[PROTO_XTR_IPV4] = {
73 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv4" },
74 		.ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv4_mask },
75 	[PROTO_XTR_IPV6] = {
76 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6" },
77 		.ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv6_mask },
78 	[PROTO_XTR_IPV6_FLOW] = {
79 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ipv6_flow" },
80 		.ol_flag = &rte_net_ice_dynflag_proto_xtr_ipv6_flow_mask },
81 	[PROTO_XTR_TCP] = {
82 		.param = { .name = "intel_pmd_dynflag_proto_xtr_tcp" },
83 		.ol_flag = &rte_net_ice_dynflag_proto_xtr_tcp_mask },
84 	[PROTO_XTR_IP_OFFSET] = {
85 		.param = { .name = "intel_pmd_dynflag_proto_xtr_ip_offset" },
86 		.ol_flag = &rte_net_ice_dynflag_proto_xtr_ip_offset_mask },
87 };
88 
89 #define ICE_OS_DEFAULT_PKG_NAME		"ICE OS Default Package"
90 #define ICE_COMMS_PKG_NAME			"ICE COMMS Package"
91 #define ICE_MAX_RES_DESC_NUM        1024
92 
93 static int ice_dev_configure(struct rte_eth_dev *dev);
94 static int ice_dev_start(struct rte_eth_dev *dev);
95 static int ice_dev_stop(struct rte_eth_dev *dev);
96 static int ice_dev_close(struct rte_eth_dev *dev);
97 static int ice_dev_reset(struct rte_eth_dev *dev);
98 static int ice_dev_info_get(struct rte_eth_dev *dev,
99 			    struct rte_eth_dev_info *dev_info);
100 static int ice_link_update(struct rte_eth_dev *dev,
101 			   int wait_to_complete);
102 static int ice_dev_set_link_up(struct rte_eth_dev *dev);
103 static int ice_dev_set_link_down(struct rte_eth_dev *dev);
104 
105 static int ice_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
106 static int ice_vlan_offload_set(struct rte_eth_dev *dev, int mask);
107 static int ice_rss_reta_update(struct rte_eth_dev *dev,
108 			       struct rte_eth_rss_reta_entry64 *reta_conf,
109 			       uint16_t reta_size);
110 static int ice_rss_reta_query(struct rte_eth_dev *dev,
111 			      struct rte_eth_rss_reta_entry64 *reta_conf,
112 			      uint16_t reta_size);
113 static int ice_rss_hash_update(struct rte_eth_dev *dev,
114 			       struct rte_eth_rss_conf *rss_conf);
115 static int ice_rss_hash_conf_get(struct rte_eth_dev *dev,
116 				 struct rte_eth_rss_conf *rss_conf);
117 static int ice_promisc_enable(struct rte_eth_dev *dev);
118 static int ice_promisc_disable(struct rte_eth_dev *dev);
119 static int ice_allmulti_enable(struct rte_eth_dev *dev);
120 static int ice_allmulti_disable(struct rte_eth_dev *dev);
121 static int ice_vlan_filter_set(struct rte_eth_dev *dev,
122 			       uint16_t vlan_id,
123 			       int on);
124 static int ice_macaddr_set(struct rte_eth_dev *dev,
125 			   struct rte_ether_addr *mac_addr);
126 static int ice_macaddr_add(struct rte_eth_dev *dev,
127 			   struct rte_ether_addr *mac_addr,
128 			   __rte_unused uint32_t index,
129 			   uint32_t pool);
130 static void ice_macaddr_remove(struct rte_eth_dev *dev, uint32_t index);
131 static int ice_rx_queue_intr_enable(struct rte_eth_dev *dev,
132 				    uint16_t queue_id);
133 static int ice_rx_queue_intr_disable(struct rte_eth_dev *dev,
134 				     uint16_t queue_id);
135 static int ice_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
136 			      size_t fw_size);
137 static int ice_vlan_pvid_set(struct rte_eth_dev *dev,
138 			     uint16_t pvid, int on);
139 static int ice_get_eeprom_length(struct rte_eth_dev *dev);
140 static int ice_get_eeprom(struct rte_eth_dev *dev,
141 			  struct rte_dev_eeprom_info *eeprom);
142 static int ice_stats_get(struct rte_eth_dev *dev,
143 			 struct rte_eth_stats *stats);
144 static int ice_stats_reset(struct rte_eth_dev *dev);
145 static int ice_xstats_get(struct rte_eth_dev *dev,
146 			  struct rte_eth_xstat *xstats, unsigned int n);
147 static int ice_xstats_get_names(struct rte_eth_dev *dev,
148 				struct rte_eth_xstat_name *xstats_names,
149 				unsigned int limit);
150 static int ice_dev_flow_ops_get(struct rte_eth_dev *dev,
151 				const struct rte_flow_ops **ops);
152 static int ice_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
153 			struct rte_eth_udp_tunnel *udp_tunnel);
154 static int ice_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
155 			struct rte_eth_udp_tunnel *udp_tunnel);
156 static int ice_timesync_enable(struct rte_eth_dev *dev);
157 static int ice_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
158 					  struct timespec *timestamp,
159 					  uint32_t flags);
160 static int ice_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
161 					  struct timespec *timestamp);
162 static int ice_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
163 static int ice_timesync_read_time(struct rte_eth_dev *dev,
164 				  struct timespec *timestamp);
165 static int ice_timesync_write_time(struct rte_eth_dev *dev,
166 				   const struct timespec *timestamp);
167 static int ice_timesync_disable(struct rte_eth_dev *dev);
168 
169 static const struct rte_pci_id pci_id_ice_map[] = {
170 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_BACKPLANE) },
171 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_SFP) },
172 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_10G_BASE_T) },
173 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_1GBE) },
174 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823L_QSFP) },
175 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_BACKPLANE) },
176 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_QSFP) },
177 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810C_SFP) },
178 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_BACKPLANE) },
179 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_QSFP) },
180 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E810_XXV_SFP) },
181 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_BACKPLANE) },
182 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_QSFP) },
183 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_SFP) },
184 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_10G_BASE_T) },
185 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E823C_SGMII) },
186 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_BACKPLANE) },
187 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_QSFP) },
188 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_SFP) },
189 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_10G_BASE_T) },
190 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822C_SGMII) },
191 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_BACKPLANE) },
192 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_SFP) },
193 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_10G_BASE_T) },
194 	{ RTE_PCI_DEVICE(ICE_INTEL_VENDOR_ID, ICE_DEV_ID_E822L_SGMII) },
195 	{ .vendor_id = 0, /* sentinel */ },
196 };
197 
198 static const struct eth_dev_ops ice_eth_dev_ops = {
199 	.dev_configure                = ice_dev_configure,
200 	.dev_start                    = ice_dev_start,
201 	.dev_stop                     = ice_dev_stop,
202 	.dev_close                    = ice_dev_close,
203 	.dev_reset                    = ice_dev_reset,
204 	.dev_set_link_up              = ice_dev_set_link_up,
205 	.dev_set_link_down            = ice_dev_set_link_down,
206 	.rx_queue_start               = ice_rx_queue_start,
207 	.rx_queue_stop                = ice_rx_queue_stop,
208 	.tx_queue_start               = ice_tx_queue_start,
209 	.tx_queue_stop                = ice_tx_queue_stop,
210 	.rx_queue_setup               = ice_rx_queue_setup,
211 	.rx_queue_release             = ice_dev_rx_queue_release,
212 	.tx_queue_setup               = ice_tx_queue_setup,
213 	.tx_queue_release             = ice_dev_tx_queue_release,
214 	.dev_infos_get                = ice_dev_info_get,
215 	.dev_supported_ptypes_get     = ice_dev_supported_ptypes_get,
216 	.link_update                  = ice_link_update,
217 	.mtu_set                      = ice_mtu_set,
218 	.mac_addr_set                 = ice_macaddr_set,
219 	.mac_addr_add                 = ice_macaddr_add,
220 	.mac_addr_remove              = ice_macaddr_remove,
221 	.vlan_filter_set              = ice_vlan_filter_set,
222 	.vlan_offload_set             = ice_vlan_offload_set,
223 	.reta_update                  = ice_rss_reta_update,
224 	.reta_query                   = ice_rss_reta_query,
225 	.rss_hash_update              = ice_rss_hash_update,
226 	.rss_hash_conf_get            = ice_rss_hash_conf_get,
227 	.promiscuous_enable           = ice_promisc_enable,
228 	.promiscuous_disable          = ice_promisc_disable,
229 	.allmulticast_enable          = ice_allmulti_enable,
230 	.allmulticast_disable         = ice_allmulti_disable,
231 	.rx_queue_intr_enable         = ice_rx_queue_intr_enable,
232 	.rx_queue_intr_disable        = ice_rx_queue_intr_disable,
233 	.fw_version_get               = ice_fw_version_get,
234 	.vlan_pvid_set                = ice_vlan_pvid_set,
235 	.rxq_info_get                 = ice_rxq_info_get,
236 	.txq_info_get                 = ice_txq_info_get,
237 	.rx_burst_mode_get            = ice_rx_burst_mode_get,
238 	.tx_burst_mode_get            = ice_tx_burst_mode_get,
239 	.get_eeprom_length            = ice_get_eeprom_length,
240 	.get_eeprom                   = ice_get_eeprom,
241 	.stats_get                    = ice_stats_get,
242 	.stats_reset                  = ice_stats_reset,
243 	.xstats_get                   = ice_xstats_get,
244 	.xstats_get_names             = ice_xstats_get_names,
245 	.xstats_reset                 = ice_stats_reset,
246 	.flow_ops_get                 = ice_dev_flow_ops_get,
247 	.udp_tunnel_port_add          = ice_dev_udp_tunnel_port_add,
248 	.udp_tunnel_port_del          = ice_dev_udp_tunnel_port_del,
249 	.tx_done_cleanup              = ice_tx_done_cleanup,
250 	.get_monitor_addr             = ice_get_monitor_addr,
251 	.timesync_enable              = ice_timesync_enable,
252 	.timesync_read_rx_timestamp   = ice_timesync_read_rx_timestamp,
253 	.timesync_read_tx_timestamp   = ice_timesync_read_tx_timestamp,
254 	.timesync_adjust_time         = ice_timesync_adjust_time,
255 	.timesync_read_time           = ice_timesync_read_time,
256 	.timesync_write_time          = ice_timesync_write_time,
257 	.timesync_disable             = ice_timesync_disable,
258 };
259 
260 /* store statistics names and its offset in stats structure */
261 struct ice_xstats_name_off {
262 	char name[RTE_ETH_XSTATS_NAME_SIZE];
263 	unsigned int offset;
264 };
265 
266 static const struct ice_xstats_name_off ice_stats_strings[] = {
267 	{"rx_unicast_packets", offsetof(struct ice_eth_stats, rx_unicast)},
268 	{"rx_multicast_packets", offsetof(struct ice_eth_stats, rx_multicast)},
269 	{"rx_broadcast_packets", offsetof(struct ice_eth_stats, rx_broadcast)},
270 	{"rx_dropped_packets", offsetof(struct ice_eth_stats, rx_discards)},
271 	{"rx_unknown_protocol_packets", offsetof(struct ice_eth_stats,
272 		rx_unknown_protocol)},
273 	{"tx_unicast_packets", offsetof(struct ice_eth_stats, tx_unicast)},
274 	{"tx_multicast_packets", offsetof(struct ice_eth_stats, tx_multicast)},
275 	{"tx_broadcast_packets", offsetof(struct ice_eth_stats, tx_broadcast)},
276 	{"tx_dropped_packets", offsetof(struct ice_eth_stats, tx_discards)},
277 };
278 
279 #define ICE_NB_ETH_XSTATS (sizeof(ice_stats_strings) / \
280 		sizeof(ice_stats_strings[0]))
281 
282 static const struct ice_xstats_name_off ice_hw_port_strings[] = {
283 	{"tx_link_down_dropped", offsetof(struct ice_hw_port_stats,
284 		tx_dropped_link_down)},
285 	{"rx_crc_errors", offsetof(struct ice_hw_port_stats, crc_errors)},
286 	{"rx_illegal_byte_errors", offsetof(struct ice_hw_port_stats,
287 		illegal_bytes)},
288 	{"rx_error_bytes", offsetof(struct ice_hw_port_stats, error_bytes)},
289 	{"mac_local_errors", offsetof(struct ice_hw_port_stats,
290 		mac_local_faults)},
291 	{"mac_remote_errors", offsetof(struct ice_hw_port_stats,
292 		mac_remote_faults)},
293 	{"rx_len_errors", offsetof(struct ice_hw_port_stats,
294 		rx_len_errors)},
295 	{"tx_xon_packets", offsetof(struct ice_hw_port_stats, link_xon_tx)},
296 	{"rx_xon_packets", offsetof(struct ice_hw_port_stats, link_xon_rx)},
297 	{"tx_xoff_packets", offsetof(struct ice_hw_port_stats, link_xoff_tx)},
298 	{"rx_xoff_packets", offsetof(struct ice_hw_port_stats, link_xoff_rx)},
299 	{"rx_size_64_packets", offsetof(struct ice_hw_port_stats, rx_size_64)},
300 	{"rx_size_65_to_127_packets", offsetof(struct ice_hw_port_stats,
301 		rx_size_127)},
302 	{"rx_size_128_to_255_packets", offsetof(struct ice_hw_port_stats,
303 		rx_size_255)},
304 	{"rx_size_256_to_511_packets", offsetof(struct ice_hw_port_stats,
305 		rx_size_511)},
306 	{"rx_size_512_to_1023_packets", offsetof(struct ice_hw_port_stats,
307 		rx_size_1023)},
308 	{"rx_size_1024_to_1522_packets", offsetof(struct ice_hw_port_stats,
309 		rx_size_1522)},
310 	{"rx_size_1523_to_max_packets", offsetof(struct ice_hw_port_stats,
311 		rx_size_big)},
312 	{"rx_undersized_errors", offsetof(struct ice_hw_port_stats,
313 		rx_undersize)},
314 	{"rx_oversize_errors", offsetof(struct ice_hw_port_stats,
315 		rx_oversize)},
316 	{"rx_mac_short_pkt_dropped", offsetof(struct ice_hw_port_stats,
317 		mac_short_pkt_dropped)},
318 	{"rx_fragmented_errors", offsetof(struct ice_hw_port_stats,
319 		rx_fragments)},
320 	{"rx_jabber_errors", offsetof(struct ice_hw_port_stats, rx_jabber)},
321 	{"tx_size_64_packets", offsetof(struct ice_hw_port_stats, tx_size_64)},
322 	{"tx_size_65_to_127_packets", offsetof(struct ice_hw_port_stats,
323 		tx_size_127)},
324 	{"tx_size_128_to_255_packets", offsetof(struct ice_hw_port_stats,
325 		tx_size_255)},
326 	{"tx_size_256_to_511_packets", offsetof(struct ice_hw_port_stats,
327 		tx_size_511)},
328 	{"tx_size_512_to_1023_packets", offsetof(struct ice_hw_port_stats,
329 		tx_size_1023)},
330 	{"tx_size_1024_to_1522_packets", offsetof(struct ice_hw_port_stats,
331 		tx_size_1522)},
332 	{"tx_size_1523_to_max_packets", offsetof(struct ice_hw_port_stats,
333 		tx_size_big)},
334 };
335 
336 #define ICE_NB_HW_PORT_XSTATS (sizeof(ice_hw_port_strings) / \
337 		sizeof(ice_hw_port_strings[0]))
338 
339 static void
340 ice_init_controlq_parameter(struct ice_hw *hw)
341 {
342 	/* fields for adminq */
343 	hw->adminq.num_rq_entries = ICE_ADMINQ_LEN;
344 	hw->adminq.num_sq_entries = ICE_ADMINQ_LEN;
345 	hw->adminq.rq_buf_size = ICE_ADMINQ_BUF_SZ;
346 	hw->adminq.sq_buf_size = ICE_ADMINQ_BUF_SZ;
347 
348 	/* fields for mailboxq, DPDK used as PF host */
349 	hw->mailboxq.num_rq_entries = ICE_MAILBOXQ_LEN;
350 	hw->mailboxq.num_sq_entries = ICE_MAILBOXQ_LEN;
351 	hw->mailboxq.rq_buf_size = ICE_MAILBOXQ_BUF_SZ;
352 	hw->mailboxq.sq_buf_size = ICE_MAILBOXQ_BUF_SZ;
353 
354 	/* fields for sideband queue */
355 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
356 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
357 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
358 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
359 
360 }
361 
362 static int
363 lookup_proto_xtr_type(const char *xtr_name)
364 {
365 	static struct {
366 		const char *name;
367 		enum proto_xtr_type type;
368 	} xtr_type_map[] = {
369 		{ "vlan",      PROTO_XTR_VLAN      },
370 		{ "ipv4",      PROTO_XTR_IPV4      },
371 		{ "ipv6",      PROTO_XTR_IPV6      },
372 		{ "ipv6_flow", PROTO_XTR_IPV6_FLOW },
373 		{ "tcp",       PROTO_XTR_TCP       },
374 		{ "ip_offset", PROTO_XTR_IP_OFFSET },
375 	};
376 	uint32_t i;
377 
378 	for (i = 0; i < RTE_DIM(xtr_type_map); i++) {
379 		if (strcmp(xtr_name, xtr_type_map[i].name) == 0)
380 			return xtr_type_map[i].type;
381 	}
382 
383 	return -1;
384 }
385 
386 /*
387  * Parse elem, the elem could be single number/range or '(' ')' group
388  * 1) A single number elem, it's just a simple digit. e.g. 9
389  * 2) A single range elem, two digits with a '-' between. e.g. 2-6
390  * 3) A group elem, combines multiple 1) or 2) with '( )'. e.g (0,2-4,6)
391  *    Within group elem, '-' used for a range separator;
392  *                       ',' used for a single number.
393  */
394 static int
395 parse_queue_set(const char *input, int xtr_type, struct ice_devargs *devargs)
396 {
397 	const char *str = input;
398 	char *end = NULL;
399 	uint32_t min, max;
400 	uint32_t idx;
401 
402 	while (isblank(*str))
403 		str++;
404 
405 	if (!isdigit(*str) && *str != '(')
406 		return -1;
407 
408 	/* process single number or single range of number */
409 	if (*str != '(') {
410 		errno = 0;
411 		idx = strtoul(str, &end, 10);
412 		if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM)
413 			return -1;
414 
415 		while (isblank(*end))
416 			end++;
417 
418 		min = idx;
419 		max = idx;
420 
421 		/* process single <number>-<number> */
422 		if (*end == '-') {
423 			end++;
424 			while (isblank(*end))
425 				end++;
426 			if (!isdigit(*end))
427 				return -1;
428 
429 			errno = 0;
430 			idx = strtoul(end, &end, 10);
431 			if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM)
432 				return -1;
433 
434 			max = idx;
435 			while (isblank(*end))
436 				end++;
437 		}
438 
439 		if (*end != ':')
440 			return -1;
441 
442 		for (idx = RTE_MIN(min, max);
443 		     idx <= RTE_MAX(min, max); idx++)
444 			devargs->proto_xtr[idx] = xtr_type;
445 
446 		return 0;
447 	}
448 
449 	/* process set within bracket */
450 	str++;
451 	while (isblank(*str))
452 		str++;
453 	if (*str == '\0')
454 		return -1;
455 
456 	min = ICE_MAX_QUEUE_NUM;
457 	do {
458 		/* go ahead to the first digit */
459 		while (isblank(*str))
460 			str++;
461 		if (!isdigit(*str))
462 			return -1;
463 
464 		/* get the digit value */
465 		errno = 0;
466 		idx = strtoul(str, &end, 10);
467 		if (errno || end == NULL || idx >= ICE_MAX_QUEUE_NUM)
468 			return -1;
469 
470 		/* go ahead to separator '-',',' and ')' */
471 		while (isblank(*end))
472 			end++;
473 		if (*end == '-') {
474 			if (min == ICE_MAX_QUEUE_NUM)
475 				min = idx;
476 			else /* avoid continuous '-' */
477 				return -1;
478 		} else if (*end == ',' || *end == ')') {
479 			max = idx;
480 			if (min == ICE_MAX_QUEUE_NUM)
481 				min = idx;
482 
483 			for (idx = RTE_MIN(min, max);
484 			     idx <= RTE_MAX(min, max); idx++)
485 				devargs->proto_xtr[idx] = xtr_type;
486 
487 			min = ICE_MAX_QUEUE_NUM;
488 		} else {
489 			return -1;
490 		}
491 
492 		str = end + 1;
493 	} while (*end != ')' && *end != '\0');
494 
495 	return 0;
496 }
497 
498 static int
499 parse_queue_proto_xtr(const char *queues, struct ice_devargs *devargs)
500 {
501 	const char *queue_start;
502 	uint32_t idx;
503 	int xtr_type;
504 	char xtr_name[32];
505 
506 	while (isblank(*queues))
507 		queues++;
508 
509 	if (*queues != '[') {
510 		xtr_type = lookup_proto_xtr_type(queues);
511 		if (xtr_type < 0)
512 			return -1;
513 
514 		devargs->proto_xtr_dflt = xtr_type;
515 
516 		return 0;
517 	}
518 
519 	queues++;
520 	do {
521 		while (isblank(*queues))
522 			queues++;
523 		if (*queues == '\0')
524 			return -1;
525 
526 		queue_start = queues;
527 
528 		/* go across a complete bracket */
529 		if (*queue_start == '(') {
530 			queues += strcspn(queues, ")");
531 			if (*queues != ')')
532 				return -1;
533 		}
534 
535 		/* scan the separator ':' */
536 		queues += strcspn(queues, ":");
537 		if (*queues++ != ':')
538 			return -1;
539 		while (isblank(*queues))
540 			queues++;
541 
542 		for (idx = 0; ; idx++) {
543 			if (isblank(queues[idx]) ||
544 			    queues[idx] == ',' ||
545 			    queues[idx] == ']' ||
546 			    queues[idx] == '\0')
547 				break;
548 
549 			if (idx > sizeof(xtr_name) - 2)
550 				return -1;
551 
552 			xtr_name[idx] = queues[idx];
553 		}
554 		xtr_name[idx] = '\0';
555 		xtr_type = lookup_proto_xtr_type(xtr_name);
556 		if (xtr_type < 0)
557 			return -1;
558 
559 		queues += idx;
560 
561 		while (isblank(*queues) || *queues == ',' || *queues == ']')
562 			queues++;
563 
564 		if (parse_queue_set(queue_start, xtr_type, devargs) < 0)
565 			return -1;
566 	} while (*queues != '\0');
567 
568 	return 0;
569 }
570 
571 static int
572 handle_proto_xtr_arg(__rte_unused const char *key, const char *value,
573 		     void *extra_args)
574 {
575 	struct ice_devargs *devargs = extra_args;
576 
577 	if (value == NULL || extra_args == NULL)
578 		return -EINVAL;
579 
580 	if (parse_queue_proto_xtr(value, devargs) < 0) {
581 		PMD_DRV_LOG(ERR,
582 			    "The protocol extraction parameter is wrong : '%s'",
583 			    value);
584 		return -1;
585 	}
586 
587 	return 0;
588 }
589 
590 static void
591 ice_check_proto_xtr_support(struct ice_hw *hw)
592 {
593 #define FLX_REG(val, fld, idx) \
594 	(((val) & GLFLXP_RXDID_FLX_WRD_##idx##_##fld##_M) >> \
595 	 GLFLXP_RXDID_FLX_WRD_##idx##_##fld##_S)
596 	static struct {
597 		uint32_t rxdid;
598 		uint8_t opcode;
599 		uint8_t protid_0;
600 		uint8_t protid_1;
601 	} xtr_sets[] = {
602 		[PROTO_XTR_VLAN] = { ICE_RXDID_COMMS_AUX_VLAN,
603 				     ICE_RX_OPC_EXTRACT,
604 				     ICE_PROT_EVLAN_O, ICE_PROT_VLAN_O},
605 		[PROTO_XTR_IPV4] = { ICE_RXDID_COMMS_AUX_IPV4,
606 				     ICE_RX_OPC_EXTRACT,
607 				     ICE_PROT_IPV4_OF_OR_S,
608 				     ICE_PROT_IPV4_OF_OR_S },
609 		[PROTO_XTR_IPV6] = { ICE_RXDID_COMMS_AUX_IPV6,
610 				     ICE_RX_OPC_EXTRACT,
611 				     ICE_PROT_IPV6_OF_OR_S,
612 				     ICE_PROT_IPV6_OF_OR_S },
613 		[PROTO_XTR_IPV6_FLOW] = { ICE_RXDID_COMMS_AUX_IPV6_FLOW,
614 					  ICE_RX_OPC_EXTRACT,
615 					  ICE_PROT_IPV6_OF_OR_S,
616 					  ICE_PROT_IPV6_OF_OR_S },
617 		[PROTO_XTR_TCP] = { ICE_RXDID_COMMS_AUX_TCP,
618 				    ICE_RX_OPC_EXTRACT,
619 				    ICE_PROT_TCP_IL, ICE_PROT_ID_INVAL },
620 		[PROTO_XTR_IP_OFFSET] = { ICE_RXDID_COMMS_AUX_IP_OFFSET,
621 					  ICE_RX_OPC_PROTID,
622 					  ICE_PROT_IPV4_OF_OR_S,
623 					  ICE_PROT_IPV6_OF_OR_S },
624 	};
625 	uint32_t i;
626 
627 	for (i = 0; i < RTE_DIM(xtr_sets); i++) {
628 		uint32_t rxdid = xtr_sets[i].rxdid;
629 		uint32_t v;
630 
631 		if (xtr_sets[i].protid_0 != ICE_PROT_ID_INVAL) {
632 			v = ICE_READ_REG(hw, GLFLXP_RXDID_FLX_WRD_4(rxdid));
633 
634 			if (FLX_REG(v, PROT_MDID, 4) == xtr_sets[i].protid_0 &&
635 			    FLX_REG(v, RXDID_OPCODE, 4) == xtr_sets[i].opcode)
636 				ice_proto_xtr_hw_support[i] = true;
637 		}
638 
639 		if (xtr_sets[i].protid_1 != ICE_PROT_ID_INVAL) {
640 			v = ICE_READ_REG(hw, GLFLXP_RXDID_FLX_WRD_5(rxdid));
641 
642 			if (FLX_REG(v, PROT_MDID, 5) == xtr_sets[i].protid_1 &&
643 			    FLX_REG(v, RXDID_OPCODE, 5) == xtr_sets[i].opcode)
644 				ice_proto_xtr_hw_support[i] = true;
645 		}
646 	}
647 }
648 
649 static int
650 ice_res_pool_init(struct ice_res_pool_info *pool, uint32_t base,
651 		  uint32_t num)
652 {
653 	struct pool_entry *entry;
654 
655 	if (!pool || !num)
656 		return -EINVAL;
657 
658 	entry = rte_zmalloc(NULL, sizeof(*entry), 0);
659 	if (!entry) {
660 		PMD_INIT_LOG(ERR,
661 			     "Failed to allocate memory for resource pool");
662 		return -ENOMEM;
663 	}
664 
665 	/* queue heap initialize */
666 	pool->num_free = num;
667 	pool->num_alloc = 0;
668 	pool->base = base;
669 	LIST_INIT(&pool->alloc_list);
670 	LIST_INIT(&pool->free_list);
671 
672 	/* Initialize element  */
673 	entry->base = 0;
674 	entry->len = num;
675 
676 	LIST_INSERT_HEAD(&pool->free_list, entry, next);
677 	return 0;
678 }
679 
680 static int
681 ice_res_pool_alloc(struct ice_res_pool_info *pool,
682 		   uint16_t num)
683 {
684 	struct pool_entry *entry, *valid_entry;
685 
686 	if (!pool || !num) {
687 		PMD_INIT_LOG(ERR, "Invalid parameter");
688 		return -EINVAL;
689 	}
690 
691 	if (pool->num_free < num) {
692 		PMD_INIT_LOG(ERR, "No resource. ask:%u, available:%u",
693 			     num, pool->num_free);
694 		return -ENOMEM;
695 	}
696 
697 	valid_entry = NULL;
698 	/* Lookup  in free list and find most fit one */
699 	LIST_FOREACH(entry, &pool->free_list, next) {
700 		if (entry->len >= num) {
701 			/* Find best one */
702 			if (entry->len == num) {
703 				valid_entry = entry;
704 				break;
705 			}
706 			if (!valid_entry ||
707 			    valid_entry->len > entry->len)
708 				valid_entry = entry;
709 		}
710 	}
711 
712 	/* Not find one to satisfy the request, return */
713 	if (!valid_entry) {
714 		PMD_INIT_LOG(ERR, "No valid entry found");
715 		return -ENOMEM;
716 	}
717 	/**
718 	 * The entry have equal queue number as requested,
719 	 * remove it from alloc_list.
720 	 */
721 	if (valid_entry->len == num) {
722 		LIST_REMOVE(valid_entry, next);
723 	} else {
724 		/**
725 		 * The entry have more numbers than requested,
726 		 * create a new entry for alloc_list and minus its
727 		 * queue base and number in free_list.
728 		 */
729 		entry = rte_zmalloc(NULL, sizeof(*entry), 0);
730 		if (!entry) {
731 			PMD_INIT_LOG(ERR,
732 				     "Failed to allocate memory for "
733 				     "resource pool");
734 			return -ENOMEM;
735 		}
736 		entry->base = valid_entry->base;
737 		entry->len = num;
738 		valid_entry->base += num;
739 		valid_entry->len -= num;
740 		valid_entry = entry;
741 	}
742 
743 	/* Insert it into alloc list, not sorted */
744 	LIST_INSERT_HEAD(&pool->alloc_list, valid_entry, next);
745 
746 	pool->num_free -= valid_entry->len;
747 	pool->num_alloc += valid_entry->len;
748 
749 	return valid_entry->base + pool->base;
750 }
751 
752 static void
753 ice_res_pool_destroy(struct ice_res_pool_info *pool)
754 {
755 	struct pool_entry *entry, *next_entry;
756 
757 	if (!pool)
758 		return;
759 
760 	for (entry = LIST_FIRST(&pool->alloc_list);
761 	     entry && (next_entry = LIST_NEXT(entry, next), 1);
762 	     entry = next_entry) {
763 		LIST_REMOVE(entry, next);
764 		rte_free(entry);
765 	}
766 
767 	for (entry = LIST_FIRST(&pool->free_list);
768 	     entry && (next_entry = LIST_NEXT(entry, next), 1);
769 	     entry = next_entry) {
770 		LIST_REMOVE(entry, next);
771 		rte_free(entry);
772 	}
773 
774 	pool->num_free = 0;
775 	pool->num_alloc = 0;
776 	pool->base = 0;
777 	LIST_INIT(&pool->alloc_list);
778 	LIST_INIT(&pool->free_list);
779 }
780 
781 static void
782 ice_vsi_config_default_rss(struct ice_aqc_vsi_props *info)
783 {
784 	/* Set VSI LUT selection */
785 	info->q_opt_rss = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI &
786 			  ICE_AQ_VSI_Q_OPT_RSS_LUT_M;
787 	/* Set Hash scheme */
788 	info->q_opt_rss |= ICE_AQ_VSI_Q_OPT_RSS_TPLZ &
789 			   ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
790 	/* enable TC */
791 	info->q_opt_tc = ICE_AQ_VSI_Q_OPT_TC_OVR_M;
792 }
793 
794 static enum ice_status
795 ice_vsi_config_tc_queue_mapping(struct ice_vsi *vsi,
796 				struct ice_aqc_vsi_props *info,
797 				uint8_t enabled_tcmap)
798 {
799 	uint16_t bsf, qp_idx;
800 
801 	/* default tc 0 now. Multi-TC supporting need to be done later.
802 	 * Configure TC and queue mapping parameters, for enabled TC,
803 	 * allocate qpnum_per_tc queues to this traffic.
804 	 */
805 	if (enabled_tcmap != 0x01) {
806 		PMD_INIT_LOG(ERR, "only TC0 is supported");
807 		return -ENOTSUP;
808 	}
809 
810 	vsi->nb_qps = RTE_MIN(vsi->nb_qps, ICE_MAX_Q_PER_TC);
811 	bsf = rte_bsf32(vsi->nb_qps);
812 	/* Adjust the queue number to actual queues that can be applied */
813 	vsi->nb_qps = 0x1 << bsf;
814 
815 	qp_idx = 0;
816 	/* Set tc and queue mapping with VSI */
817 	info->tc_mapping[0] = rte_cpu_to_le_16((qp_idx <<
818 						ICE_AQ_VSI_TC_Q_OFFSET_S) |
819 					       (bsf << ICE_AQ_VSI_TC_Q_NUM_S));
820 
821 	/* Associate queue number with VSI */
822 	info->mapping_flags |= rte_cpu_to_le_16(ICE_AQ_VSI_Q_MAP_CONTIG);
823 	info->q_mapping[0] = rte_cpu_to_le_16(vsi->base_queue);
824 	info->q_mapping[1] = rte_cpu_to_le_16(vsi->nb_qps);
825 	info->valid_sections |=
826 		rte_cpu_to_le_16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
827 	/* Set the info.ingress_table and info.egress_table
828 	 * for UP translate table. Now just set it to 1:1 map by default
829 	 * -- 0b 111 110 101 100 011 010 001 000 == 0xFAC688
830 	 */
831 #define ICE_TC_QUEUE_TABLE_DFLT 0x00FAC688
832 	info->ingress_table  = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT);
833 	info->egress_table   = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT);
834 	info->outer_up_table = rte_cpu_to_le_32(ICE_TC_QUEUE_TABLE_DFLT);
835 	return 0;
836 }
837 
838 static int
839 ice_init_mac_address(struct rte_eth_dev *dev)
840 {
841 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
842 
843 	if (!rte_is_unicast_ether_addr
844 		((struct rte_ether_addr *)hw->port_info[0].mac.lan_addr)) {
845 		PMD_INIT_LOG(ERR, "Invalid MAC address");
846 		return -EINVAL;
847 	}
848 
849 	rte_ether_addr_copy(
850 		(struct rte_ether_addr *)hw->port_info[0].mac.lan_addr,
851 		(struct rte_ether_addr *)hw->port_info[0].mac.perm_addr);
852 
853 	dev->data->mac_addrs =
854 		rte_zmalloc(NULL, sizeof(struct rte_ether_addr) * ICE_NUM_MACADDR_MAX, 0);
855 	if (!dev->data->mac_addrs) {
856 		PMD_INIT_LOG(ERR,
857 			     "Failed to allocate memory to store mac address");
858 		return -ENOMEM;
859 	}
860 	/* store it to dev data */
861 	rte_ether_addr_copy(
862 		(struct rte_ether_addr *)hw->port_info[0].mac.perm_addr,
863 		&dev->data->mac_addrs[0]);
864 	return 0;
865 }
866 
867 /* Find out specific MAC filter */
868 static struct ice_mac_filter *
869 ice_find_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *macaddr)
870 {
871 	struct ice_mac_filter *f;
872 
873 	TAILQ_FOREACH(f, &vsi->mac_list, next) {
874 		if (rte_is_same_ether_addr(macaddr, &f->mac_info.mac_addr))
875 			return f;
876 	}
877 
878 	return NULL;
879 }
880 
881 static int
882 ice_add_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *mac_addr)
883 {
884 	struct ice_fltr_list_entry *m_list_itr = NULL;
885 	struct ice_mac_filter *f;
886 	struct LIST_HEAD_TYPE list_head;
887 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
888 	int ret = 0;
889 
890 	/* If it's added and configured, return */
891 	f = ice_find_mac_filter(vsi, mac_addr);
892 	if (f) {
893 		PMD_DRV_LOG(INFO, "This MAC filter already exists.");
894 		return 0;
895 	}
896 
897 	INIT_LIST_HEAD(&list_head);
898 
899 	m_list_itr = (struct ice_fltr_list_entry *)
900 		ice_malloc(hw, sizeof(*m_list_itr));
901 	if (!m_list_itr) {
902 		ret = -ENOMEM;
903 		goto DONE;
904 	}
905 	ice_memcpy(m_list_itr->fltr_info.l_data.mac.mac_addr,
906 		   mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
907 	m_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
908 	m_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
909 	m_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
910 	m_list_itr->fltr_info.flag = ICE_FLTR_TX;
911 	m_list_itr->fltr_info.vsi_handle = vsi->idx;
912 
913 	LIST_ADD(&m_list_itr->list_entry, &list_head);
914 
915 	/* Add the mac */
916 	ret = ice_add_mac(hw, &list_head);
917 	if (ret != ICE_SUCCESS) {
918 		PMD_DRV_LOG(ERR, "Failed to add MAC filter");
919 		ret = -EINVAL;
920 		goto DONE;
921 	}
922 	/* Add the mac addr into mac list */
923 	f = rte_zmalloc(NULL, sizeof(*f), 0);
924 	if (!f) {
925 		PMD_DRV_LOG(ERR, "failed to allocate memory");
926 		ret = -ENOMEM;
927 		goto DONE;
928 	}
929 	rte_ether_addr_copy(mac_addr, &f->mac_info.mac_addr);
930 	TAILQ_INSERT_TAIL(&vsi->mac_list, f, next);
931 	vsi->mac_num++;
932 
933 	ret = 0;
934 
935 DONE:
936 	rte_free(m_list_itr);
937 	return ret;
938 }
939 
940 static int
941 ice_remove_mac_filter(struct ice_vsi *vsi, struct rte_ether_addr *mac_addr)
942 {
943 	struct ice_fltr_list_entry *m_list_itr = NULL;
944 	struct ice_mac_filter *f;
945 	struct LIST_HEAD_TYPE list_head;
946 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
947 	int ret = 0;
948 
949 	/* Can't find it, return an error */
950 	f = ice_find_mac_filter(vsi, mac_addr);
951 	if (!f)
952 		return -EINVAL;
953 
954 	INIT_LIST_HEAD(&list_head);
955 
956 	m_list_itr = (struct ice_fltr_list_entry *)
957 		ice_malloc(hw, sizeof(*m_list_itr));
958 	if (!m_list_itr) {
959 		ret = -ENOMEM;
960 		goto DONE;
961 	}
962 	ice_memcpy(m_list_itr->fltr_info.l_data.mac.mac_addr,
963 		   mac_addr, ETH_ALEN, ICE_NONDMA_TO_NONDMA);
964 	m_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
965 	m_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
966 	m_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
967 	m_list_itr->fltr_info.flag = ICE_FLTR_TX;
968 	m_list_itr->fltr_info.vsi_handle = vsi->idx;
969 
970 	LIST_ADD(&m_list_itr->list_entry, &list_head);
971 
972 	/* remove the mac filter */
973 	ret = ice_remove_mac(hw, &list_head);
974 	if (ret != ICE_SUCCESS) {
975 		PMD_DRV_LOG(ERR, "Failed to remove MAC filter");
976 		ret = -EINVAL;
977 		goto DONE;
978 	}
979 
980 	/* Remove the mac addr from mac list */
981 	TAILQ_REMOVE(&vsi->mac_list, f, next);
982 	rte_free(f);
983 	vsi->mac_num--;
984 
985 	ret = 0;
986 DONE:
987 	rte_free(m_list_itr);
988 	return ret;
989 }
990 
991 /* Find out specific VLAN filter */
992 static struct ice_vlan_filter *
993 ice_find_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan)
994 {
995 	struct ice_vlan_filter *f;
996 
997 	TAILQ_FOREACH(f, &vsi->vlan_list, next) {
998 		if (vlan->tpid == f->vlan_info.vlan.tpid &&
999 		    vlan->vid == f->vlan_info.vlan.vid)
1000 			return f;
1001 	}
1002 
1003 	return NULL;
1004 }
1005 
1006 static int
1007 ice_add_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan)
1008 {
1009 	struct ice_fltr_list_entry *v_list_itr = NULL;
1010 	struct ice_vlan_filter *f;
1011 	struct LIST_HEAD_TYPE list_head;
1012 	struct ice_hw *hw;
1013 	int ret = 0;
1014 
1015 	if (!vsi || vlan->vid > RTE_ETHER_MAX_VLAN_ID)
1016 		return -EINVAL;
1017 
1018 	hw = ICE_VSI_TO_HW(vsi);
1019 
1020 	/* If it's added and configured, return. */
1021 	f = ice_find_vlan_filter(vsi, vlan);
1022 	if (f) {
1023 		PMD_DRV_LOG(INFO, "This VLAN filter already exists.");
1024 		return 0;
1025 	}
1026 
1027 	if (!vsi->vlan_anti_spoof_on && !vsi->vlan_filter_on)
1028 		return 0;
1029 
1030 	INIT_LIST_HEAD(&list_head);
1031 
1032 	v_list_itr = (struct ice_fltr_list_entry *)
1033 		      ice_malloc(hw, sizeof(*v_list_itr));
1034 	if (!v_list_itr) {
1035 		ret = -ENOMEM;
1036 		goto DONE;
1037 	}
1038 	v_list_itr->fltr_info.l_data.vlan.vlan_id = vlan->vid;
1039 	v_list_itr->fltr_info.l_data.vlan.tpid = vlan->tpid;
1040 	v_list_itr->fltr_info.l_data.vlan.tpid_valid = true;
1041 	v_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
1042 	v_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1043 	v_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1044 	v_list_itr->fltr_info.flag = ICE_FLTR_TX;
1045 	v_list_itr->fltr_info.vsi_handle = vsi->idx;
1046 
1047 	LIST_ADD(&v_list_itr->list_entry, &list_head);
1048 
1049 	/* Add the vlan */
1050 	ret = ice_add_vlan(hw, &list_head);
1051 	if (ret != ICE_SUCCESS) {
1052 		PMD_DRV_LOG(ERR, "Failed to add VLAN filter");
1053 		ret = -EINVAL;
1054 		goto DONE;
1055 	}
1056 
1057 	/* Add vlan into vlan list */
1058 	f = rte_zmalloc(NULL, sizeof(*f), 0);
1059 	if (!f) {
1060 		PMD_DRV_LOG(ERR, "failed to allocate memory");
1061 		ret = -ENOMEM;
1062 		goto DONE;
1063 	}
1064 	f->vlan_info.vlan.tpid = vlan->tpid;
1065 	f->vlan_info.vlan.vid = vlan->vid;
1066 	TAILQ_INSERT_TAIL(&vsi->vlan_list, f, next);
1067 	vsi->vlan_num++;
1068 
1069 	ret = 0;
1070 
1071 DONE:
1072 	rte_free(v_list_itr);
1073 	return ret;
1074 }
1075 
1076 static int
1077 ice_remove_vlan_filter(struct ice_vsi *vsi, struct ice_vlan *vlan)
1078 {
1079 	struct ice_fltr_list_entry *v_list_itr = NULL;
1080 	struct ice_vlan_filter *f;
1081 	struct LIST_HEAD_TYPE list_head;
1082 	struct ice_hw *hw;
1083 	int ret = 0;
1084 
1085 	if (!vsi || vlan->vid > RTE_ETHER_MAX_VLAN_ID)
1086 		return -EINVAL;
1087 
1088 	hw = ICE_VSI_TO_HW(vsi);
1089 
1090 	/* Can't find it, return an error */
1091 	f = ice_find_vlan_filter(vsi, vlan);
1092 	if (!f)
1093 		return -EINVAL;
1094 
1095 	INIT_LIST_HEAD(&list_head);
1096 
1097 	v_list_itr = (struct ice_fltr_list_entry *)
1098 		      ice_malloc(hw, sizeof(*v_list_itr));
1099 	if (!v_list_itr) {
1100 		ret = -ENOMEM;
1101 		goto DONE;
1102 	}
1103 
1104 	v_list_itr->fltr_info.l_data.vlan.vlan_id = vlan->vid;
1105 	v_list_itr->fltr_info.l_data.vlan.tpid = vlan->tpid;
1106 	v_list_itr->fltr_info.l_data.vlan.tpid_valid = true;
1107 	v_list_itr->fltr_info.src_id = ICE_SRC_ID_VSI;
1108 	v_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1109 	v_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1110 	v_list_itr->fltr_info.flag = ICE_FLTR_TX;
1111 	v_list_itr->fltr_info.vsi_handle = vsi->idx;
1112 
1113 	LIST_ADD(&v_list_itr->list_entry, &list_head);
1114 
1115 	/* remove the vlan filter */
1116 	ret = ice_remove_vlan(hw, &list_head);
1117 	if (ret != ICE_SUCCESS) {
1118 		PMD_DRV_LOG(ERR, "Failed to remove VLAN filter");
1119 		ret = -EINVAL;
1120 		goto DONE;
1121 	}
1122 
1123 	/* Remove the vlan id from vlan list */
1124 	TAILQ_REMOVE(&vsi->vlan_list, f, next);
1125 	rte_free(f);
1126 	vsi->vlan_num--;
1127 
1128 	ret = 0;
1129 DONE:
1130 	rte_free(v_list_itr);
1131 	return ret;
1132 }
1133 
1134 static int
1135 ice_remove_all_mac_vlan_filters(struct ice_vsi *vsi)
1136 {
1137 	struct ice_mac_filter *m_f;
1138 	struct ice_vlan_filter *v_f;
1139 	void *temp;
1140 	int ret = 0;
1141 
1142 	if (!vsi || !vsi->mac_num)
1143 		return -EINVAL;
1144 
1145 	RTE_TAILQ_FOREACH_SAFE(m_f, &vsi->mac_list, next, temp) {
1146 		ret = ice_remove_mac_filter(vsi, &m_f->mac_info.mac_addr);
1147 		if (ret != ICE_SUCCESS) {
1148 			ret = -EINVAL;
1149 			goto DONE;
1150 		}
1151 	}
1152 
1153 	if (vsi->vlan_num == 0)
1154 		return 0;
1155 
1156 	RTE_TAILQ_FOREACH_SAFE(v_f, &vsi->vlan_list, next, temp) {
1157 		ret = ice_remove_vlan_filter(vsi, &v_f->vlan_info.vlan);
1158 		if (ret != ICE_SUCCESS) {
1159 			ret = -EINVAL;
1160 			goto DONE;
1161 		}
1162 	}
1163 
1164 DONE:
1165 	return ret;
1166 }
1167 
1168 /* Enable IRQ0 */
1169 static void
1170 ice_pf_enable_irq0(struct ice_hw *hw)
1171 {
1172 	/* reset the registers */
1173 	ICE_WRITE_REG(hw, PFINT_OICR_ENA, 0);
1174 	ICE_READ_REG(hw, PFINT_OICR);
1175 
1176 #ifdef ICE_LSE_SPT
1177 	ICE_WRITE_REG(hw, PFINT_OICR_ENA,
1178 		      (uint32_t)(PFINT_OICR_ENA_INT_ENA_M &
1179 				 (~PFINT_OICR_LINK_STAT_CHANGE_M)));
1180 
1181 	ICE_WRITE_REG(hw, PFINT_OICR_CTL,
1182 		      (0 & PFINT_OICR_CTL_MSIX_INDX_M) |
1183 		      ((0 << PFINT_OICR_CTL_ITR_INDX_S) &
1184 		       PFINT_OICR_CTL_ITR_INDX_M) |
1185 		      PFINT_OICR_CTL_CAUSE_ENA_M);
1186 
1187 	ICE_WRITE_REG(hw, PFINT_FW_CTL,
1188 		      (0 & PFINT_FW_CTL_MSIX_INDX_M) |
1189 		      ((0 << PFINT_FW_CTL_ITR_INDX_S) &
1190 		       PFINT_FW_CTL_ITR_INDX_M) |
1191 		      PFINT_FW_CTL_CAUSE_ENA_M);
1192 #else
1193 	ICE_WRITE_REG(hw, PFINT_OICR_ENA, PFINT_OICR_ENA_INT_ENA_M);
1194 #endif
1195 
1196 	ICE_WRITE_REG(hw, GLINT_DYN_CTL(0),
1197 		      GLINT_DYN_CTL_INTENA_M |
1198 		      GLINT_DYN_CTL_CLEARPBA_M |
1199 		      GLINT_DYN_CTL_ITR_INDX_M);
1200 
1201 	ice_flush(hw);
1202 }
1203 
1204 /* Disable IRQ0 */
1205 static void
1206 ice_pf_disable_irq0(struct ice_hw *hw)
1207 {
1208 	/* Disable all interrupt types */
1209 	ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_WB_ON_ITR_M);
1210 	ice_flush(hw);
1211 }
1212 
1213 #ifdef ICE_LSE_SPT
1214 static void
1215 ice_handle_aq_msg(struct rte_eth_dev *dev)
1216 {
1217 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1218 	struct ice_ctl_q_info *cq = &hw->adminq;
1219 	struct ice_rq_event_info event;
1220 	uint16_t pending, opcode;
1221 	int ret;
1222 
1223 	event.buf_len = ICE_AQ_MAX_BUF_LEN;
1224 	event.msg_buf = rte_zmalloc(NULL, event.buf_len, 0);
1225 	if (!event.msg_buf) {
1226 		PMD_DRV_LOG(ERR, "Failed to allocate mem");
1227 		return;
1228 	}
1229 
1230 	pending = 1;
1231 	while (pending) {
1232 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1233 
1234 		if (ret != ICE_SUCCESS) {
1235 			PMD_DRV_LOG(INFO,
1236 				    "Failed to read msg from AdminQ, "
1237 				    "adminq_err: %u",
1238 				    hw->adminq.sq_last_status);
1239 			break;
1240 		}
1241 		opcode = rte_le_to_cpu_16(event.desc.opcode);
1242 
1243 		switch (opcode) {
1244 		case ice_aqc_opc_get_link_status:
1245 			ret = ice_link_update(dev, 0);
1246 			if (!ret)
1247 				rte_eth_dev_callback_process
1248 					(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1249 			break;
1250 		default:
1251 			PMD_DRV_LOG(DEBUG, "Request %u is not supported yet",
1252 				    opcode);
1253 			break;
1254 		}
1255 	}
1256 	rte_free(event.msg_buf);
1257 }
1258 #endif
1259 
1260 /**
1261  * Interrupt handler triggered by NIC for handling
1262  * specific interrupt.
1263  *
1264  * @param handle
1265  *  Pointer to interrupt handle.
1266  * @param param
1267  *  The address of parameter (struct rte_eth_dev *) regsitered before.
1268  *
1269  * @return
1270  *  void
1271  */
1272 static void
1273 ice_interrupt_handler(void *param)
1274 {
1275 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
1276 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1277 	uint32_t oicr;
1278 	uint32_t reg;
1279 	uint8_t pf_num;
1280 	uint8_t event;
1281 	uint16_t queue;
1282 	int ret;
1283 #ifdef ICE_LSE_SPT
1284 	uint32_t int_fw_ctl;
1285 #endif
1286 
1287 	/* Disable interrupt */
1288 	ice_pf_disable_irq0(hw);
1289 
1290 	/* read out interrupt causes */
1291 	oicr = ICE_READ_REG(hw, PFINT_OICR);
1292 #ifdef ICE_LSE_SPT
1293 	int_fw_ctl = ICE_READ_REG(hw, PFINT_FW_CTL);
1294 #endif
1295 
1296 	/* No interrupt event indicated */
1297 	if (!(oicr & PFINT_OICR_INTEVENT_M)) {
1298 		PMD_DRV_LOG(INFO, "No interrupt event");
1299 		goto done;
1300 	}
1301 
1302 #ifdef ICE_LSE_SPT
1303 	if (int_fw_ctl & PFINT_FW_CTL_INTEVENT_M) {
1304 		PMD_DRV_LOG(INFO, "FW_CTL: link state change event");
1305 		ice_handle_aq_msg(dev);
1306 	}
1307 #else
1308 	if (oicr & PFINT_OICR_LINK_STAT_CHANGE_M) {
1309 		PMD_DRV_LOG(INFO, "OICR: link state change event");
1310 		ret = ice_link_update(dev, 0);
1311 		if (!ret)
1312 			rte_eth_dev_callback_process
1313 				(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
1314 	}
1315 #endif
1316 
1317 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
1318 		PMD_DRV_LOG(WARNING, "OICR: MDD event");
1319 		reg = ICE_READ_REG(hw, GL_MDET_TX_PQM);
1320 		if (reg & GL_MDET_TX_PQM_VALID_M) {
1321 			pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1322 				 GL_MDET_TX_PQM_PF_NUM_S;
1323 			event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1324 				GL_MDET_TX_PQM_MAL_TYPE_S;
1325 			queue = (reg & GL_MDET_TX_PQM_QNUM_M) >>
1326 				GL_MDET_TX_PQM_QNUM_S;
1327 
1328 			PMD_DRV_LOG(WARNING, "Malicious Driver Detection event "
1329 				    "%d by PQM on TX queue %d PF# %d",
1330 				    event, queue, pf_num);
1331 		}
1332 
1333 		reg = ICE_READ_REG(hw, GL_MDET_TX_TCLAN);
1334 		if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1335 			pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1336 				 GL_MDET_TX_TCLAN_PF_NUM_S;
1337 			event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1338 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1339 			queue = (reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1340 				GL_MDET_TX_TCLAN_QNUM_S;
1341 
1342 			PMD_DRV_LOG(WARNING, "Malicious Driver Detection event "
1343 				    "%d by TCLAN on TX queue %d PF# %d",
1344 				    event, queue, pf_num);
1345 		}
1346 	}
1347 done:
1348 	/* Enable interrupt */
1349 	ice_pf_enable_irq0(hw);
1350 	rte_intr_ack(dev->intr_handle);
1351 }
1352 
1353 static void
1354 ice_init_proto_xtr(struct rte_eth_dev *dev)
1355 {
1356 	struct ice_adapter *ad =
1357 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1358 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1359 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
1360 	const struct proto_xtr_ol_flag *ol_flag;
1361 	bool proto_xtr_enable = false;
1362 	int offset;
1363 	uint16_t i;
1364 
1365 	pf->proto_xtr = rte_zmalloc(NULL, pf->lan_nb_qps, 0);
1366 	if (unlikely(pf->proto_xtr == NULL)) {
1367 		PMD_DRV_LOG(ERR, "No memory for setting up protocol extraction table");
1368 		return;
1369 	}
1370 
1371 	for (i = 0; i < pf->lan_nb_qps; i++) {
1372 		pf->proto_xtr[i] = ad->devargs.proto_xtr[i] != PROTO_XTR_NONE ?
1373 				   ad->devargs.proto_xtr[i] :
1374 				   ad->devargs.proto_xtr_dflt;
1375 
1376 		if (pf->proto_xtr[i] != PROTO_XTR_NONE) {
1377 			uint8_t type = pf->proto_xtr[i];
1378 
1379 			ice_proto_xtr_ol_flag_params[type].required = true;
1380 			proto_xtr_enable = true;
1381 		}
1382 	}
1383 
1384 	if (likely(!proto_xtr_enable))
1385 		return;
1386 
1387 	ice_check_proto_xtr_support(hw);
1388 
1389 	offset = rte_mbuf_dynfield_register(&ice_proto_xtr_metadata_param);
1390 	if (unlikely(offset == -1)) {
1391 		PMD_DRV_LOG(ERR,
1392 			    "Protocol extraction metadata is disabled in mbuf with error %d",
1393 			    -rte_errno);
1394 		return;
1395 	}
1396 
1397 	PMD_DRV_LOG(DEBUG,
1398 		    "Protocol extraction metadata offset in mbuf is : %d",
1399 		    offset);
1400 	rte_net_ice_dynfield_proto_xtr_metadata_offs = offset;
1401 
1402 	for (i = 0; i < RTE_DIM(ice_proto_xtr_ol_flag_params); i++) {
1403 		ol_flag = &ice_proto_xtr_ol_flag_params[i];
1404 
1405 		if (!ol_flag->required)
1406 			continue;
1407 
1408 		if (!ice_proto_xtr_hw_support[i]) {
1409 			PMD_DRV_LOG(ERR,
1410 				    "Protocol extraction type %u is not supported in hardware",
1411 				    i);
1412 			rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
1413 			break;
1414 		}
1415 
1416 		offset = rte_mbuf_dynflag_register(&ol_flag->param);
1417 		if (unlikely(offset == -1)) {
1418 			PMD_DRV_LOG(ERR,
1419 				    "Protocol extraction offload '%s' failed to register with error %d",
1420 				    ol_flag->param.name, -rte_errno);
1421 
1422 			rte_net_ice_dynfield_proto_xtr_metadata_offs = -1;
1423 			break;
1424 		}
1425 
1426 		PMD_DRV_LOG(DEBUG,
1427 			    "Protocol extraction offload '%s' offset in mbuf is : %d",
1428 			    ol_flag->param.name, offset);
1429 		*ol_flag->ol_flag = 1ULL << offset;
1430 	}
1431 }
1432 
1433 /*  Initialize SW parameters of PF */
1434 static int
1435 ice_pf_sw_init(struct rte_eth_dev *dev)
1436 {
1437 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
1438 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
1439 
1440 	pf->lan_nb_qp_max =
1441 		(uint16_t)RTE_MIN(hw->func_caps.common_cap.num_txq,
1442 				  hw->func_caps.common_cap.num_rxq);
1443 
1444 	pf->lan_nb_qps = pf->lan_nb_qp_max;
1445 
1446 	ice_init_proto_xtr(dev);
1447 
1448 	if (hw->func_caps.fd_fltr_guar > 0 ||
1449 	    hw->func_caps.fd_fltr_best_effort > 0) {
1450 		pf->flags |= ICE_FLAG_FDIR;
1451 		pf->fdir_nb_qps = ICE_DEFAULT_QP_NUM_FDIR;
1452 		pf->lan_nb_qps = pf->lan_nb_qp_max - pf->fdir_nb_qps;
1453 	} else {
1454 		pf->fdir_nb_qps = 0;
1455 	}
1456 	pf->fdir_qp_offset = 0;
1457 
1458 	return 0;
1459 }
1460 
1461 struct ice_vsi *
1462 ice_setup_vsi(struct ice_pf *pf, enum ice_vsi_type type)
1463 {
1464 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
1465 	struct ice_vsi *vsi = NULL;
1466 	struct ice_vsi_ctx vsi_ctx;
1467 	int ret;
1468 	struct rte_ether_addr broadcast = {
1469 		.addr_bytes = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff} };
1470 	struct rte_ether_addr mac_addr;
1471 	uint16_t max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1472 	uint8_t tc_bitmap = 0x1;
1473 	uint16_t cfg;
1474 
1475 	/* hw->num_lports = 1 in NIC mode */
1476 	vsi = rte_zmalloc(NULL, sizeof(struct ice_vsi), 0);
1477 	if (!vsi)
1478 		return NULL;
1479 
1480 	vsi->idx = pf->next_vsi_idx;
1481 	pf->next_vsi_idx++;
1482 	vsi->type = type;
1483 	vsi->adapter = ICE_PF_TO_ADAPTER(pf);
1484 	vsi->max_macaddrs = ICE_NUM_MACADDR_MAX;
1485 	vsi->vlan_anti_spoof_on = 0;
1486 	vsi->vlan_filter_on = 1;
1487 	TAILQ_INIT(&vsi->mac_list);
1488 	TAILQ_INIT(&vsi->vlan_list);
1489 
1490 	/* Be sync with RTE_ETH_RSS_RETA_SIZE_x maximum value definition */
1491 	pf->hash_lut_size = hw->func_caps.common_cap.rss_table_size >
1492 			RTE_ETH_RSS_RETA_SIZE_512 ? RTE_ETH_RSS_RETA_SIZE_512 :
1493 			hw->func_caps.common_cap.rss_table_size;
1494 	pf->flags |= ICE_FLAG_RSS_AQ_CAPABLE;
1495 
1496 	memset(&vsi_ctx, 0, sizeof(vsi_ctx));
1497 	switch (type) {
1498 	case ICE_VSI_PF:
1499 		vsi->nb_qps = pf->lan_nb_qps;
1500 		vsi->base_queue = 1;
1501 		ice_vsi_config_default_rss(&vsi_ctx.info);
1502 		vsi_ctx.alloc_from_pool = true;
1503 		vsi_ctx.flags = ICE_AQ_VSI_TYPE_PF;
1504 		/* switch_id is queried by get_switch_config aq, which is done
1505 		 * by ice_init_hw
1506 		 */
1507 		vsi_ctx.info.sw_id = hw->port_info->sw_id;
1508 		vsi_ctx.info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
1509 		/* Allow all untagged or tagged packets */
1510 		vsi_ctx.info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL;
1511 		vsi_ctx.info.inner_vlan_flags |= ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
1512 		vsi_ctx.info.q_opt_rss = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF |
1513 					 ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1514 		if (ice_is_dvm_ena(hw)) {
1515 			vsi_ctx.info.outer_vlan_flags =
1516 				(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL <<
1517 				 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_S) &
1518 				ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M;
1519 			vsi_ctx.info.outer_vlan_flags |=
1520 				(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
1521 				 ICE_AQ_VSI_OUTER_TAG_TYPE_S) &
1522 				ICE_AQ_VSI_OUTER_TAG_TYPE_M;
1523 		}
1524 
1525 		/* FDIR */
1526 		cfg = ICE_AQ_VSI_PROP_SECURITY_VALID |
1527 			ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1528 		vsi_ctx.info.valid_sections |= rte_cpu_to_le_16(cfg);
1529 		cfg = ICE_AQ_VSI_FD_ENABLE;
1530 		vsi_ctx.info.fd_options = rte_cpu_to_le_16(cfg);
1531 		vsi_ctx.info.max_fd_fltr_dedicated =
1532 			rte_cpu_to_le_16(hw->func_caps.fd_fltr_guar);
1533 		vsi_ctx.info.max_fd_fltr_shared =
1534 			rte_cpu_to_le_16(hw->func_caps.fd_fltr_best_effort);
1535 
1536 		/* Enable VLAN/UP trip */
1537 		ret = ice_vsi_config_tc_queue_mapping(vsi,
1538 						      &vsi_ctx.info,
1539 						      ICE_DEFAULT_TCMAP);
1540 		if (ret) {
1541 			PMD_INIT_LOG(ERR,
1542 				     "tc queue mapping with vsi failed, "
1543 				     "err = %d",
1544 				     ret);
1545 			goto fail_mem;
1546 		}
1547 
1548 		break;
1549 	case ICE_VSI_CTRL:
1550 		vsi->nb_qps = pf->fdir_nb_qps;
1551 		vsi->base_queue = ICE_FDIR_QUEUE_ID;
1552 		vsi_ctx.alloc_from_pool = true;
1553 		vsi_ctx.flags = ICE_AQ_VSI_TYPE_PF;
1554 
1555 		cfg = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1556 		vsi_ctx.info.valid_sections |= rte_cpu_to_le_16(cfg);
1557 		cfg = ICE_AQ_VSI_FD_PROG_ENABLE;
1558 		vsi_ctx.info.fd_options = rte_cpu_to_le_16(cfg);
1559 		vsi_ctx.info.sw_id = hw->port_info->sw_id;
1560 		vsi_ctx.info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
1561 		ret = ice_vsi_config_tc_queue_mapping(vsi,
1562 						      &vsi_ctx.info,
1563 						      ICE_DEFAULT_TCMAP);
1564 		if (ret) {
1565 			PMD_INIT_LOG(ERR,
1566 				     "tc queue mapping with vsi failed, "
1567 				     "err = %d",
1568 				     ret);
1569 			goto fail_mem;
1570 		}
1571 		break;
1572 	default:
1573 		/* for other types of VSI */
1574 		PMD_INIT_LOG(ERR, "other types of VSI not supported");
1575 		goto fail_mem;
1576 	}
1577 
1578 	/* VF has MSIX interrupt in VF range, don't allocate here */
1579 	if (type == ICE_VSI_PF) {
1580 		ret = ice_res_pool_alloc(&pf->msix_pool,
1581 					 RTE_MIN(vsi->nb_qps,
1582 						 RTE_MAX_RXTX_INTR_VEC_ID));
1583 		if (ret < 0) {
1584 			PMD_INIT_LOG(ERR, "VSI MAIN %d get heap failed %d",
1585 				     vsi->vsi_id, ret);
1586 		}
1587 		vsi->msix_intr = ret;
1588 		vsi->nb_msix = RTE_MIN(vsi->nb_qps, RTE_MAX_RXTX_INTR_VEC_ID);
1589 	} else if (type == ICE_VSI_CTRL) {
1590 		ret = ice_res_pool_alloc(&pf->msix_pool, 1);
1591 		if (ret < 0) {
1592 			PMD_DRV_LOG(ERR, "VSI %d get heap failed %d",
1593 				    vsi->vsi_id, ret);
1594 		}
1595 		vsi->msix_intr = ret;
1596 		vsi->nb_msix = 1;
1597 	} else {
1598 		vsi->msix_intr = 0;
1599 		vsi->nb_msix = 0;
1600 	}
1601 	ret = ice_add_vsi(hw, vsi->idx, &vsi_ctx, NULL);
1602 	if (ret != ICE_SUCCESS) {
1603 		PMD_INIT_LOG(ERR, "add vsi failed, err = %d", ret);
1604 		goto fail_mem;
1605 	}
1606 	/* store vsi information is SW structure */
1607 	vsi->vsi_id = vsi_ctx.vsi_num;
1608 	vsi->info = vsi_ctx.info;
1609 	pf->vsis_allocated = vsi_ctx.vsis_allocd;
1610 	pf->vsis_unallocated = vsi_ctx.vsis_unallocated;
1611 
1612 	if (type == ICE_VSI_PF) {
1613 		/* MAC configuration */
1614 		rte_ether_addr_copy((struct rte_ether_addr *)
1615 					hw->port_info->mac.perm_addr,
1616 				    &pf->dev_addr);
1617 
1618 		rte_ether_addr_copy(&pf->dev_addr, &mac_addr);
1619 		ret = ice_add_mac_filter(vsi, &mac_addr);
1620 		if (ret != ICE_SUCCESS)
1621 			PMD_INIT_LOG(ERR, "Failed to add dflt MAC filter");
1622 
1623 		rte_ether_addr_copy(&broadcast, &mac_addr);
1624 		ret = ice_add_mac_filter(vsi, &mac_addr);
1625 		if (ret != ICE_SUCCESS)
1626 			PMD_INIT_LOG(ERR, "Failed to add MAC filter");
1627 	}
1628 
1629 	/* At the beginning, only TC0. */
1630 	/* What we need here is the maximam number of the TX queues.
1631 	 * Currently vsi->nb_qps means it.
1632 	 * Correct it if any change.
1633 	 */
1634 	max_txqs[0] = vsi->nb_qps;
1635 	ret = ice_cfg_vsi_lan(hw->port_info, vsi->idx,
1636 			      tc_bitmap, max_txqs);
1637 	if (ret != ICE_SUCCESS)
1638 		PMD_INIT_LOG(ERR, "Failed to config vsi sched");
1639 
1640 	return vsi;
1641 fail_mem:
1642 	rte_free(vsi);
1643 	pf->next_vsi_idx--;
1644 	return NULL;
1645 }
1646 
1647 static int
1648 ice_send_driver_ver(struct ice_hw *hw)
1649 {
1650 	struct ice_driver_ver dv;
1651 
1652 	/* we don't have driver version use 0 for dummy */
1653 	dv.major_ver = 0;
1654 	dv.minor_ver = 0;
1655 	dv.build_ver = 0;
1656 	dv.subbuild_ver = 0;
1657 	strncpy((char *)dv.driver_string, "dpdk", sizeof(dv.driver_string));
1658 
1659 	return ice_aq_send_driver_ver(hw, &dv, NULL);
1660 }
1661 
1662 static int
1663 ice_pf_setup(struct ice_pf *pf)
1664 {
1665 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
1666 	struct ice_vsi *vsi;
1667 	uint16_t unused;
1668 
1669 	/* Clear all stats counters */
1670 	pf->offset_loaded = false;
1671 	memset(&pf->stats, 0, sizeof(struct ice_hw_port_stats));
1672 	memset(&pf->stats_offset, 0, sizeof(struct ice_hw_port_stats));
1673 	memset(&pf->internal_stats, 0, sizeof(struct ice_eth_stats));
1674 	memset(&pf->internal_stats_offset, 0, sizeof(struct ice_eth_stats));
1675 
1676 	/* force guaranteed filter pool for PF */
1677 	ice_alloc_fd_guar_item(hw, &unused,
1678 			       hw->func_caps.fd_fltr_guar);
1679 	/* force shared filter pool for PF */
1680 	ice_alloc_fd_shrd_item(hw, &unused,
1681 			       hw->func_caps.fd_fltr_best_effort);
1682 
1683 	vsi = ice_setup_vsi(pf, ICE_VSI_PF);
1684 	if (!vsi) {
1685 		PMD_INIT_LOG(ERR, "Failed to add vsi for PF");
1686 		return -EINVAL;
1687 	}
1688 
1689 	pf->main_vsi = vsi;
1690 
1691 	return 0;
1692 }
1693 
1694 static enum ice_pkg_type
1695 ice_load_pkg_type(struct ice_hw *hw)
1696 {
1697 	enum ice_pkg_type package_type;
1698 
1699 	/* store the activated package type (OS default or Comms) */
1700 	if (!strncmp((char *)hw->active_pkg_name, ICE_OS_DEFAULT_PKG_NAME,
1701 		ICE_PKG_NAME_SIZE))
1702 		package_type = ICE_PKG_TYPE_OS_DEFAULT;
1703 	else if (!strncmp((char *)hw->active_pkg_name, ICE_COMMS_PKG_NAME,
1704 		ICE_PKG_NAME_SIZE))
1705 		package_type = ICE_PKG_TYPE_COMMS;
1706 	else
1707 		package_type = ICE_PKG_TYPE_UNKNOWN;
1708 
1709 	PMD_INIT_LOG(NOTICE, "Active package is: %d.%d.%d.%d, %s (%s VLAN mode)",
1710 		hw->active_pkg_ver.major, hw->active_pkg_ver.minor,
1711 		hw->active_pkg_ver.update, hw->active_pkg_ver.draft,
1712 		hw->active_pkg_name,
1713 		ice_is_dvm_ena(hw) ? "double" : "single");
1714 
1715 	return package_type;
1716 }
1717 
1718 int ice_load_pkg(struct ice_adapter *adapter, bool use_dsn, uint64_t dsn)
1719 {
1720 	struct ice_hw *hw = &adapter->hw;
1721 	char pkg_file[ICE_MAX_PKG_FILENAME_SIZE];
1722 	char opt_ddp_filename[ICE_MAX_PKG_FILENAME_SIZE];
1723 	void *buf;
1724 	size_t bufsz;
1725 	int err;
1726 
1727 	if (!use_dsn)
1728 		goto no_dsn;
1729 
1730 	memset(opt_ddp_filename, 0, ICE_MAX_PKG_FILENAME_SIZE);
1731 	snprintf(opt_ddp_filename, ICE_MAX_PKG_FILENAME_SIZE,
1732 		"ice-%016" PRIx64 ".pkg", dsn);
1733 	strncpy(pkg_file, ICE_PKG_FILE_SEARCH_PATH_UPDATES,
1734 		ICE_MAX_PKG_FILENAME_SIZE);
1735 	strcat(pkg_file, opt_ddp_filename);
1736 	if (rte_firmware_read(pkg_file, &buf, &bufsz) == 0)
1737 		goto load_fw;
1738 
1739 	strncpy(pkg_file, ICE_PKG_FILE_SEARCH_PATH_DEFAULT,
1740 		ICE_MAX_PKG_FILENAME_SIZE);
1741 	strcat(pkg_file, opt_ddp_filename);
1742 	if (rte_firmware_read(pkg_file, &buf, &bufsz) == 0)
1743 		goto load_fw;
1744 
1745 no_dsn:
1746 	strncpy(pkg_file, ICE_PKG_FILE_UPDATES, ICE_MAX_PKG_FILENAME_SIZE);
1747 	if (rte_firmware_read(pkg_file, &buf, &bufsz) == 0)
1748 		goto load_fw;
1749 
1750 	strncpy(pkg_file, ICE_PKG_FILE_DEFAULT, ICE_MAX_PKG_FILENAME_SIZE);
1751 	if (rte_firmware_read(pkg_file, &buf, &bufsz) < 0) {
1752 		PMD_INIT_LOG(ERR, "failed to search file path\n");
1753 		return -1;
1754 	}
1755 
1756 load_fw:
1757 	PMD_INIT_LOG(DEBUG, "DDP package name: %s", pkg_file);
1758 
1759 	err = ice_copy_and_init_pkg(hw, buf, bufsz);
1760 	if (err) {
1761 		PMD_INIT_LOG(ERR, "ice_copy_and_init_hw failed: %d\n", err);
1762 		goto out;
1763 	}
1764 
1765 	/* store the loaded pkg type info */
1766 	adapter->active_pkg_type = ice_load_pkg_type(hw);
1767 
1768 out:
1769 	free(buf);
1770 	return err;
1771 }
1772 
1773 static void
1774 ice_base_queue_get(struct ice_pf *pf)
1775 {
1776 	uint32_t reg;
1777 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
1778 
1779 	reg = ICE_READ_REG(hw, PFLAN_RX_QALLOC);
1780 	if (reg & PFLAN_RX_QALLOC_VALID_M) {
1781 		pf->base_queue = reg & PFLAN_RX_QALLOC_FIRSTQ_M;
1782 	} else {
1783 		PMD_INIT_LOG(WARNING, "Failed to get Rx base queue"
1784 					" index");
1785 	}
1786 }
1787 
1788 static int
1789 parse_bool(const char *key, const char *value, void *args)
1790 {
1791 	int *i = (int *)args;
1792 	char *end;
1793 	int num;
1794 
1795 	num = strtoul(value, &end, 10);
1796 
1797 	if (num != 0 && num != 1) {
1798 		PMD_DRV_LOG(WARNING, "invalid value:\"%s\" for key:\"%s\", "
1799 			"value must be 0 or 1",
1800 			value, key);
1801 		return -1;
1802 	}
1803 
1804 	*i = num;
1805 	return 0;
1806 }
1807 
1808 static int
1809 parse_u64(const char *key, const char *value, void *args)
1810 {
1811 	u64 *num = (u64 *)args;
1812 	u64 tmp;
1813 
1814 	errno = 0;
1815 	tmp = strtoull(value, NULL, 16);
1816 	if (errno) {
1817 		PMD_DRV_LOG(WARNING, "%s: \"%s\" is not a valid u64",
1818 			    key, value);
1819 		return -1;
1820 	}
1821 
1822 	*num = tmp;
1823 
1824 	return 0;
1825 }
1826 
1827 static int
1828 lookup_pps_type(const char *pps_name)
1829 {
1830 	static struct {
1831 		const char *name;
1832 		enum pps_type type;
1833 	} pps_type_map[] = {
1834 		{ "pin",  PPS_PIN  },
1835 	};
1836 
1837 	uint32_t i;
1838 
1839 	for (i = 0; i < RTE_DIM(pps_type_map); i++) {
1840 		if (strcmp(pps_name, pps_type_map[i].name) == 0)
1841 			return pps_type_map[i].type;
1842 	}
1843 
1844 	return -1;
1845 }
1846 
1847 static int
1848 parse_pin_set(const char *input, int pps_type, struct ice_devargs *devargs)
1849 {
1850 	const char *str = input;
1851 	char *end = NULL;
1852 	uint32_t idx;
1853 
1854 	while (isblank(*str))
1855 		str++;
1856 
1857 	if (!isdigit(*str))
1858 		return -1;
1859 
1860 	if (pps_type == PPS_PIN) {
1861 		idx = strtoul(str, &end, 10);
1862 		if (end == NULL || idx >= ICE_MAX_PIN_NUM)
1863 			return -1;
1864 		while (isblank(*end))
1865 			end++;
1866 		if (*end != ']')
1867 			return -1;
1868 
1869 		devargs->pin_idx = idx;
1870 		devargs->pps_out_ena = 1;
1871 
1872 		return 0;
1873 	}
1874 
1875 	return -1;
1876 }
1877 
1878 static int
1879 parse_pps_out_parameter(const char *pins, struct ice_devargs *devargs)
1880 {
1881 	const char *pin_start;
1882 	uint32_t idx;
1883 	int pps_type;
1884 	char pps_name[32];
1885 
1886 	while (isblank(*pins))
1887 		pins++;
1888 
1889 	pins++;
1890 	while (isblank(*pins))
1891 		pins++;
1892 	if (*pins == '\0')
1893 		return -1;
1894 
1895 	for (idx = 0; ; idx++) {
1896 		if (isblank(pins[idx]) ||
1897 		    pins[idx] == ':' ||
1898 		    pins[idx] == '\0')
1899 			break;
1900 
1901 		pps_name[idx] = pins[idx];
1902 	}
1903 	pps_name[idx] = '\0';
1904 	pps_type = lookup_pps_type(pps_name);
1905 	if (pps_type < 0)
1906 		return -1;
1907 
1908 	pins += idx;
1909 
1910 	pins += strcspn(pins, ":");
1911 	if (*pins++ != ':')
1912 		return -1;
1913 	while (isblank(*pins))
1914 		pins++;
1915 
1916 	pin_start = pins;
1917 
1918 	while (isblank(*pins))
1919 		pins++;
1920 
1921 	if (parse_pin_set(pin_start, pps_type, devargs) < 0)
1922 		return -1;
1923 
1924 	return 0;
1925 }
1926 
1927 static int
1928 handle_pps_out_arg(__rte_unused const char *key, const char *value,
1929 		   void *extra_args)
1930 {
1931 	struct ice_devargs *devargs = extra_args;
1932 
1933 	if (value == NULL || extra_args == NULL)
1934 		return -EINVAL;
1935 
1936 	if (parse_pps_out_parameter(value, devargs) < 0) {
1937 		PMD_DRV_LOG(ERR,
1938 			    "The GPIO pin parameter is wrong : '%s'",
1939 			    value);
1940 		return -1;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static int ice_parse_devargs(struct rte_eth_dev *dev)
1947 {
1948 	struct ice_adapter *ad =
1949 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
1950 	struct rte_devargs *devargs = dev->device->devargs;
1951 	struct rte_kvargs *kvlist;
1952 	int ret;
1953 
1954 	if (devargs == NULL)
1955 		return 0;
1956 
1957 	kvlist = rte_kvargs_parse(devargs->args, ice_valid_args);
1958 	if (kvlist == NULL) {
1959 		PMD_INIT_LOG(ERR, "Invalid kvargs key\n");
1960 		return -EINVAL;
1961 	}
1962 
1963 	ad->devargs.proto_xtr_dflt = PROTO_XTR_NONE;
1964 	memset(ad->devargs.proto_xtr, PROTO_XTR_NONE,
1965 	       sizeof(ad->devargs.proto_xtr));
1966 
1967 	ret = rte_kvargs_process(kvlist, ICE_PROTO_XTR_ARG,
1968 				 &handle_proto_xtr_arg, &ad->devargs);
1969 	if (ret)
1970 		goto bail;
1971 
1972 	ret = rte_kvargs_process(kvlist, ICE_SAFE_MODE_SUPPORT_ARG,
1973 				 &parse_bool, &ad->devargs.safe_mode_support);
1974 	if (ret)
1975 		goto bail;
1976 
1977 	ret = rte_kvargs_process(kvlist, ICE_PIPELINE_MODE_SUPPORT_ARG,
1978 				 &parse_bool, &ad->devargs.pipe_mode_support);
1979 	if (ret)
1980 		goto bail;
1981 
1982 	ret = rte_kvargs_process(kvlist, ICE_HW_DEBUG_MASK_ARG,
1983 				 &parse_u64, &ad->hw.debug_mask);
1984 	if (ret)
1985 		goto bail;
1986 
1987 	ret = rte_kvargs_process(kvlist, ICE_ONE_PPS_OUT_ARG,
1988 				 &handle_pps_out_arg, &ad->devargs);
1989 	if (ret)
1990 		goto bail;
1991 
1992 	ret = rte_kvargs_process(kvlist, ICE_RX_LOW_LATENCY_ARG,
1993 				 &parse_bool, &ad->devargs.rx_low_latency);
1994 
1995 bail:
1996 	rte_kvargs_free(kvlist);
1997 	return ret;
1998 }
1999 
2000 /* Forward LLDP packets to default VSI by set switch rules */
2001 static int
2002 ice_vsi_config_sw_lldp(struct ice_vsi *vsi,  bool on)
2003 {
2004 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2005 	struct ice_fltr_list_entry *s_list_itr = NULL;
2006 	struct LIST_HEAD_TYPE list_head;
2007 	int ret = 0;
2008 
2009 	INIT_LIST_HEAD(&list_head);
2010 
2011 	s_list_itr = (struct ice_fltr_list_entry *)
2012 			ice_malloc(hw, sizeof(*s_list_itr));
2013 	if (!s_list_itr)
2014 		return -ENOMEM;
2015 	s_list_itr->fltr_info.lkup_type = ICE_SW_LKUP_ETHERTYPE;
2016 	s_list_itr->fltr_info.vsi_handle = vsi->idx;
2017 	s_list_itr->fltr_info.l_data.ethertype_mac.ethertype =
2018 			RTE_ETHER_TYPE_LLDP;
2019 	s_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2020 	s_list_itr->fltr_info.flag = ICE_FLTR_RX;
2021 	s_list_itr->fltr_info.src_id = ICE_SRC_ID_LPORT;
2022 	LIST_ADD(&s_list_itr->list_entry, &list_head);
2023 	if (on)
2024 		ret = ice_add_eth_mac(hw, &list_head);
2025 	else
2026 		ret = ice_remove_eth_mac(hw, &list_head);
2027 
2028 	rte_free(s_list_itr);
2029 	return ret;
2030 }
2031 
2032 static enum ice_status
2033 ice_get_hw_res(struct ice_hw *hw, uint16_t res_type,
2034 		uint16_t num, uint16_t desc_id,
2035 		uint16_t *prof_buf, uint16_t *num_prof)
2036 {
2037 	struct ice_aqc_res_elem *resp_buf;
2038 	int ret;
2039 	uint16_t buf_len;
2040 	bool res_shared = 1;
2041 	struct ice_aq_desc aq_desc;
2042 	struct ice_sq_cd *cd = NULL;
2043 	struct ice_aqc_get_allocd_res_desc *cmd =
2044 			&aq_desc.params.get_res_desc;
2045 
2046 	buf_len = sizeof(*resp_buf) * num;
2047 	resp_buf = ice_malloc(hw, buf_len);
2048 	if (!resp_buf)
2049 		return -ENOMEM;
2050 
2051 	ice_fill_dflt_direct_cmd_desc(&aq_desc,
2052 			ice_aqc_opc_get_allocd_res_desc);
2053 
2054 	cmd->ops.cmd.res = CPU_TO_LE16(((res_type << ICE_AQC_RES_TYPE_S) &
2055 				ICE_AQC_RES_TYPE_M) | (res_shared ?
2056 				ICE_AQC_RES_TYPE_FLAG_SHARED : 0));
2057 	cmd->ops.cmd.first_desc = CPU_TO_LE16(desc_id);
2058 
2059 	ret = ice_aq_send_cmd(hw, &aq_desc, resp_buf, buf_len, cd);
2060 	if (!ret)
2061 		*num_prof = LE16_TO_CPU(cmd->ops.resp.num_desc);
2062 	else
2063 		goto exit;
2064 
2065 	ice_memcpy(prof_buf, resp_buf, sizeof(*resp_buf) *
2066 			(*num_prof), ICE_NONDMA_TO_NONDMA);
2067 
2068 exit:
2069 	rte_free(resp_buf);
2070 	return ret;
2071 }
2072 static int
2073 ice_cleanup_resource(struct ice_hw *hw, uint16_t res_type)
2074 {
2075 	int ret;
2076 	uint16_t prof_id;
2077 	uint16_t prof_buf[ICE_MAX_RES_DESC_NUM];
2078 	uint16_t first_desc = 1;
2079 	uint16_t num_prof = 0;
2080 
2081 	ret = ice_get_hw_res(hw, res_type, ICE_MAX_RES_DESC_NUM,
2082 			first_desc, prof_buf, &num_prof);
2083 	if (ret) {
2084 		PMD_INIT_LOG(ERR, "Failed to get fxp resource");
2085 		return ret;
2086 	}
2087 
2088 	for (prof_id = 0; prof_id < num_prof; prof_id++) {
2089 		ret = ice_free_hw_res(hw, res_type, 1, &prof_buf[prof_id]);
2090 		if (ret) {
2091 			PMD_INIT_LOG(ERR, "Failed to free fxp resource");
2092 			return ret;
2093 		}
2094 	}
2095 	return 0;
2096 }
2097 
2098 static int
2099 ice_reset_fxp_resource(struct ice_hw *hw)
2100 {
2101 	int ret;
2102 
2103 	ret = ice_cleanup_resource(hw, ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID);
2104 	if (ret) {
2105 		PMD_INIT_LOG(ERR, "Failed to clearup fdir resource");
2106 		return ret;
2107 	}
2108 
2109 	ret = ice_cleanup_resource(hw, ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID);
2110 	if (ret) {
2111 		PMD_INIT_LOG(ERR, "Failed to clearup rss resource");
2112 		return ret;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 static void
2119 ice_rss_ctx_init(struct ice_pf *pf)
2120 {
2121 	memset(&pf->hash_ctx, 0, sizeof(pf->hash_ctx));
2122 }
2123 
2124 static uint64_t
2125 ice_get_supported_rxdid(struct ice_hw *hw)
2126 {
2127 	uint64_t supported_rxdid = 0; /* bitmap for supported RXDID */
2128 	uint32_t regval;
2129 	int i;
2130 
2131 	supported_rxdid |= BIT(ICE_RXDID_LEGACY_1);
2132 
2133 	for (i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
2134 		regval = ICE_READ_REG(hw, GLFLXP_RXDID_FLAGS(i, 0));
2135 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
2136 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
2137 			supported_rxdid |= BIT(i);
2138 	}
2139 	return supported_rxdid;
2140 }
2141 
2142 static int
2143 ice_dev_init(struct rte_eth_dev *dev)
2144 {
2145 	struct rte_pci_device *pci_dev;
2146 	struct rte_intr_handle *intr_handle;
2147 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2148 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2149 	struct ice_adapter *ad =
2150 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2151 	struct ice_vsi *vsi;
2152 	int ret;
2153 #ifndef RTE_EXEC_ENV_WINDOWS
2154 	off_t pos;
2155 	uint32_t dsn_low, dsn_high;
2156 	uint64_t dsn;
2157 	bool use_dsn;
2158 #endif
2159 
2160 	dev->dev_ops = &ice_eth_dev_ops;
2161 	dev->rx_queue_count = ice_rx_queue_count;
2162 	dev->rx_descriptor_status = ice_rx_descriptor_status;
2163 	dev->tx_descriptor_status = ice_tx_descriptor_status;
2164 	dev->rx_pkt_burst = ice_recv_pkts;
2165 	dev->tx_pkt_burst = ice_xmit_pkts;
2166 	dev->tx_pkt_prepare = ice_prep_pkts;
2167 
2168 	/* for secondary processes, we don't initialise any further as primary
2169 	 * has already done this work.
2170 	 */
2171 	if (rte_eal_process_type() != RTE_PROC_PRIMARY) {
2172 		ice_set_rx_function(dev);
2173 		ice_set_tx_function(dev);
2174 		return 0;
2175 	}
2176 
2177 	dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
2178 
2179 	ice_set_default_ptype_table(dev);
2180 	pci_dev = RTE_DEV_TO_PCI(dev->device);
2181 	intr_handle = pci_dev->intr_handle;
2182 
2183 	pf->adapter = ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2184 	pf->dev_data = dev->data;
2185 	hw->back = pf->adapter;
2186 	hw->hw_addr = (uint8_t *)pci_dev->mem_resource[0].addr;
2187 	hw->vendor_id = pci_dev->id.vendor_id;
2188 	hw->device_id = pci_dev->id.device_id;
2189 	hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
2190 	hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
2191 	hw->bus.device = pci_dev->addr.devid;
2192 	hw->bus.func = pci_dev->addr.function;
2193 
2194 	ret = ice_parse_devargs(dev);
2195 	if (ret) {
2196 		PMD_INIT_LOG(ERR, "Failed to parse devargs");
2197 		return -EINVAL;
2198 	}
2199 
2200 	ice_init_controlq_parameter(hw);
2201 
2202 	ret = ice_init_hw(hw);
2203 	if (ret) {
2204 		PMD_INIT_LOG(ERR, "Failed to initialize HW");
2205 		return -EINVAL;
2206 	}
2207 
2208 #ifndef RTE_EXEC_ENV_WINDOWS
2209 	use_dsn = false;
2210 	dsn = 0;
2211 	pos = rte_pci_find_ext_capability(pci_dev, RTE_PCI_EXT_CAP_ID_DSN);
2212 	if (pos) {
2213 		if (rte_pci_read_config(pci_dev, &dsn_low, 4, pos + 4) < 0 ||
2214 				rte_pci_read_config(pci_dev, &dsn_high, 4, pos + 8) < 0) {
2215 			PMD_INIT_LOG(ERR, "Failed to read pci config space\n");
2216 		} else {
2217 			use_dsn = true;
2218 			dsn = (uint64_t)dsn_high << 32 | dsn_low;
2219 		}
2220 	} else {
2221 		PMD_INIT_LOG(ERR, "Failed to read device serial number\n");
2222 	}
2223 
2224 	ret = ice_load_pkg(pf->adapter, use_dsn, dsn);
2225 	if (ret == 0) {
2226 		ret = ice_init_hw_tbls(hw);
2227 		if (ret) {
2228 			PMD_INIT_LOG(ERR, "ice_init_hw_tbls failed: %d\n", ret);
2229 			rte_free(hw->pkg_copy);
2230 		}
2231 	}
2232 
2233 	if (ret) {
2234 		if (ad->devargs.safe_mode_support == 0) {
2235 			PMD_INIT_LOG(ERR, "Failed to load the DDP package,"
2236 					"Use safe-mode-support=1 to enter Safe Mode");
2237 			goto err_init_fw;
2238 		}
2239 
2240 		PMD_INIT_LOG(WARNING, "Failed to load the DDP package,"
2241 					"Entering Safe Mode");
2242 		ad->is_safe_mode = 1;
2243 	}
2244 #endif
2245 
2246 	PMD_INIT_LOG(INFO, "FW %d.%d.%05d API %d.%d",
2247 		     hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
2248 		     hw->api_maj_ver, hw->api_min_ver);
2249 
2250 	ice_pf_sw_init(dev);
2251 	ret = ice_init_mac_address(dev);
2252 	if (ret) {
2253 		PMD_INIT_LOG(ERR, "Failed to initialize mac address");
2254 		goto err_init_mac;
2255 	}
2256 
2257 	ret = ice_res_pool_init(&pf->msix_pool, 1,
2258 				hw->func_caps.common_cap.num_msix_vectors - 1);
2259 	if (ret) {
2260 		PMD_INIT_LOG(ERR, "Failed to init MSIX pool");
2261 		goto err_msix_pool_init;
2262 	}
2263 
2264 	ret = ice_pf_setup(pf);
2265 	if (ret) {
2266 		PMD_INIT_LOG(ERR, "Failed to setup PF");
2267 		goto err_pf_setup;
2268 	}
2269 
2270 	ret = ice_send_driver_ver(hw);
2271 	if (ret) {
2272 		PMD_INIT_LOG(ERR, "Failed to send driver version");
2273 		goto err_pf_setup;
2274 	}
2275 
2276 	vsi = pf->main_vsi;
2277 
2278 	ret = ice_aq_stop_lldp(hw, true, false, NULL);
2279 	if (ret != ICE_SUCCESS)
2280 		PMD_INIT_LOG(DEBUG, "lldp has already stopped\n");
2281 	ret = ice_init_dcb(hw, true);
2282 	if (ret != ICE_SUCCESS)
2283 		PMD_INIT_LOG(DEBUG, "Failed to init DCB\n");
2284 	/* Forward LLDP packets to default VSI */
2285 	ret = ice_vsi_config_sw_lldp(vsi, true);
2286 	if (ret != ICE_SUCCESS)
2287 		PMD_INIT_LOG(DEBUG, "Failed to cfg lldp\n");
2288 	/* register callback func to eal lib */
2289 	rte_intr_callback_register(intr_handle,
2290 				   ice_interrupt_handler, dev);
2291 
2292 	ice_pf_enable_irq0(hw);
2293 
2294 	/* enable uio intr after callback register */
2295 	rte_intr_enable(intr_handle);
2296 
2297 	/* get base queue pairs index  in the device */
2298 	ice_base_queue_get(pf);
2299 
2300 	/* Initialize RSS context for gtpu_eh */
2301 	ice_rss_ctx_init(pf);
2302 
2303 	if (!ad->is_safe_mode) {
2304 		ret = ice_flow_init(ad);
2305 		if (ret) {
2306 			PMD_INIT_LOG(ERR, "Failed to initialize flow");
2307 			goto err_flow_init;
2308 		}
2309 	}
2310 
2311 	ret = ice_reset_fxp_resource(hw);
2312 	if (ret) {
2313 		PMD_INIT_LOG(ERR, "Failed to reset fxp resource");
2314 		goto err_flow_init;
2315 	}
2316 
2317 	pf->supported_rxdid = ice_get_supported_rxdid(hw);
2318 
2319 	return 0;
2320 
2321 err_flow_init:
2322 	ice_flow_uninit(ad);
2323 	rte_intr_disable(intr_handle);
2324 	ice_pf_disable_irq0(hw);
2325 	rte_intr_callback_unregister(intr_handle,
2326 				     ice_interrupt_handler, dev);
2327 err_pf_setup:
2328 	ice_res_pool_destroy(&pf->msix_pool);
2329 err_msix_pool_init:
2330 	rte_free(dev->data->mac_addrs);
2331 	dev->data->mac_addrs = NULL;
2332 err_init_mac:
2333 	rte_free(pf->proto_xtr);
2334 #ifndef RTE_EXEC_ENV_WINDOWS
2335 err_init_fw:
2336 #endif
2337 	ice_deinit_hw(hw);
2338 
2339 	return ret;
2340 }
2341 
2342 int
2343 ice_release_vsi(struct ice_vsi *vsi)
2344 {
2345 	struct ice_hw *hw;
2346 	struct ice_vsi_ctx vsi_ctx;
2347 	enum ice_status ret;
2348 	int error = 0;
2349 
2350 	if (!vsi)
2351 		return error;
2352 
2353 	hw = ICE_VSI_TO_HW(vsi);
2354 
2355 	ice_remove_all_mac_vlan_filters(vsi);
2356 
2357 	memset(&vsi_ctx, 0, sizeof(vsi_ctx));
2358 
2359 	vsi_ctx.vsi_num = vsi->vsi_id;
2360 	vsi_ctx.info = vsi->info;
2361 	ret = ice_free_vsi(hw, vsi->idx, &vsi_ctx, false, NULL);
2362 	if (ret != ICE_SUCCESS) {
2363 		PMD_INIT_LOG(ERR, "Failed to free vsi by aq, %u", vsi->vsi_id);
2364 		error = -1;
2365 	}
2366 
2367 	rte_free(vsi->rss_lut);
2368 	rte_free(vsi->rss_key);
2369 	rte_free(vsi);
2370 	return error;
2371 }
2372 
2373 void
2374 ice_vsi_disable_queues_intr(struct ice_vsi *vsi)
2375 {
2376 	struct rte_eth_dev *dev = &rte_eth_devices[vsi->adapter->pf.dev_data->port_id];
2377 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
2378 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
2379 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
2380 	uint16_t msix_intr, i;
2381 
2382 	/* disable interrupt and also clear all the exist config */
2383 	for (i = 0; i < vsi->nb_qps; i++) {
2384 		ICE_WRITE_REG(hw, QINT_TQCTL(vsi->base_queue + i), 0);
2385 		ICE_WRITE_REG(hw, QINT_RQCTL(vsi->base_queue + i), 0);
2386 		rte_wmb();
2387 	}
2388 
2389 	if (rte_intr_allow_others(intr_handle))
2390 		/* vfio-pci */
2391 		for (i = 0; i < vsi->nb_msix; i++) {
2392 			msix_intr = vsi->msix_intr + i;
2393 			ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr),
2394 				      GLINT_DYN_CTL_WB_ON_ITR_M);
2395 		}
2396 	else
2397 		/* igb_uio */
2398 		ICE_WRITE_REG(hw, GLINT_DYN_CTL(0), GLINT_DYN_CTL_WB_ON_ITR_M);
2399 }
2400 
2401 static int
2402 ice_dev_stop(struct rte_eth_dev *dev)
2403 {
2404 	struct rte_eth_dev_data *data = dev->data;
2405 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2406 	struct ice_vsi *main_vsi = pf->main_vsi;
2407 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
2408 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
2409 	uint16_t i;
2410 
2411 	/* avoid stopping again */
2412 	if (pf->adapter_stopped)
2413 		return 0;
2414 
2415 	/* stop and clear all Rx queues */
2416 	for (i = 0; i < data->nb_rx_queues; i++)
2417 		ice_rx_queue_stop(dev, i);
2418 
2419 	/* stop and clear all Tx queues */
2420 	for (i = 0; i < data->nb_tx_queues; i++)
2421 		ice_tx_queue_stop(dev, i);
2422 
2423 	/* disable all queue interrupts */
2424 	ice_vsi_disable_queues_intr(main_vsi);
2425 
2426 	if (pf->init_link_up)
2427 		ice_dev_set_link_up(dev);
2428 	else
2429 		ice_dev_set_link_down(dev);
2430 
2431 	/* Clean datapath event and queue/vec mapping */
2432 	rte_intr_efd_disable(intr_handle);
2433 	rte_intr_vec_list_free(intr_handle);
2434 
2435 	pf->adapter_stopped = true;
2436 	dev->data->dev_started = 0;
2437 
2438 	return 0;
2439 }
2440 
2441 static int
2442 ice_dev_close(struct rte_eth_dev *dev)
2443 {
2444 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
2445 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2446 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2447 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
2448 	struct ice_adapter *ad =
2449 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
2450 	int ret;
2451 	uint32_t val;
2452 	uint8_t timer = hw->func_caps.ts_func_info.tmr_index_owned;
2453 	uint32_t pin_idx = ad->devargs.pin_idx;
2454 
2455 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
2456 		return 0;
2457 
2458 	/* Since stop will make link down, then the link event will be
2459 	 * triggered, disable the irq firstly to avoid the port_infoe etc
2460 	 * resources deallocation causing the interrupt service thread
2461 	 * crash.
2462 	 */
2463 	ice_pf_disable_irq0(hw);
2464 
2465 	ret = ice_dev_stop(dev);
2466 
2467 	if (!ad->is_safe_mode)
2468 		ice_flow_uninit(ad);
2469 
2470 	/* release all queue resource */
2471 	ice_free_queues(dev);
2472 
2473 	ice_res_pool_destroy(&pf->msix_pool);
2474 	ice_release_vsi(pf->main_vsi);
2475 	ice_sched_cleanup_all(hw);
2476 	ice_free_hw_tbls(hw);
2477 	rte_free(hw->port_info);
2478 	hw->port_info = NULL;
2479 	ice_shutdown_all_ctrlq(hw);
2480 	rte_free(pf->proto_xtr);
2481 	pf->proto_xtr = NULL;
2482 
2483 	if (ad->devargs.pps_out_ena) {
2484 		ICE_WRITE_REG(hw, GLTSYN_AUX_OUT(pin_idx, timer), 0);
2485 		ICE_WRITE_REG(hw, GLTSYN_CLKO(pin_idx, timer), 0);
2486 		ICE_WRITE_REG(hw, GLTSYN_TGT_L(pin_idx, timer), 0);
2487 		ICE_WRITE_REG(hw, GLTSYN_TGT_H(pin_idx, timer), 0);
2488 
2489 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
2490 		ICE_WRITE_REG(hw, GLGEN_GPIO_CTL(pin_idx), val);
2491 	}
2492 
2493 	/* disable uio intr before callback unregister */
2494 	rte_intr_disable(intr_handle);
2495 
2496 	/* unregister callback func from eal lib */
2497 	rte_intr_callback_unregister(intr_handle,
2498 				     ice_interrupt_handler, dev);
2499 
2500 	return ret;
2501 }
2502 
2503 static int
2504 ice_dev_uninit(struct rte_eth_dev *dev)
2505 {
2506 	ice_dev_close(dev);
2507 
2508 	return 0;
2509 }
2510 
2511 static bool
2512 is_hash_cfg_valid(struct ice_rss_hash_cfg *cfg)
2513 {
2514 	return (cfg->hash_flds != 0 && cfg->addl_hdrs != 0) ? true : false;
2515 }
2516 
2517 static void
2518 hash_cfg_reset(struct ice_rss_hash_cfg *cfg)
2519 {
2520 	cfg->hash_flds = 0;
2521 	cfg->addl_hdrs = 0;
2522 	cfg->symm = 0;
2523 	cfg->hdr_type = ICE_RSS_OUTER_HEADERS;
2524 }
2525 
2526 static int
2527 ice_hash_moveout(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
2528 {
2529 	enum ice_status status = ICE_SUCCESS;
2530 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
2531 	struct ice_vsi *vsi = pf->main_vsi;
2532 
2533 	if (!is_hash_cfg_valid(cfg))
2534 		return -ENOENT;
2535 
2536 	status = ice_rem_rss_cfg(hw, vsi->idx, cfg);
2537 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
2538 		PMD_DRV_LOG(ERR,
2539 			    "ice_rem_rss_cfg failed for VSI:%d, error:%d\n",
2540 			    vsi->idx, status);
2541 		return -EBUSY;
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static int
2548 ice_hash_moveback(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
2549 {
2550 	enum ice_status status = ICE_SUCCESS;
2551 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
2552 	struct ice_vsi *vsi = pf->main_vsi;
2553 
2554 	if (!is_hash_cfg_valid(cfg))
2555 		return -ENOENT;
2556 
2557 	status = ice_add_rss_cfg(hw, vsi->idx, cfg);
2558 	if (status) {
2559 		PMD_DRV_LOG(ERR,
2560 			    "ice_add_rss_cfg failed for VSI:%d, error:%d\n",
2561 			    vsi->idx, status);
2562 		return -EBUSY;
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 static int
2569 ice_hash_remove(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
2570 {
2571 	int ret;
2572 
2573 	ret = ice_hash_moveout(pf, cfg);
2574 	if (ret && (ret != -ENOENT))
2575 		return ret;
2576 
2577 	hash_cfg_reset(cfg);
2578 
2579 	return 0;
2580 }
2581 
2582 static int
2583 ice_add_rss_cfg_pre_gtpu(struct ice_pf *pf, struct ice_hash_gtpu_ctx *ctx,
2584 			 u8 ctx_idx)
2585 {
2586 	int ret;
2587 
2588 	switch (ctx_idx) {
2589 	case ICE_HASH_GTPU_CTX_EH_IP:
2590 		ret = ice_hash_remove(pf,
2591 				      &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
2592 		if (ret && (ret != -ENOENT))
2593 			return ret;
2594 
2595 		ret = ice_hash_remove(pf,
2596 				      &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
2597 		if (ret && (ret != -ENOENT))
2598 			return ret;
2599 
2600 		ret = ice_hash_remove(pf,
2601 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
2602 		if (ret && (ret != -ENOENT))
2603 			return ret;
2604 
2605 		ret = ice_hash_remove(pf,
2606 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
2607 		if (ret && (ret != -ENOENT))
2608 			return ret;
2609 
2610 		ret = ice_hash_remove(pf,
2611 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
2612 		if (ret && (ret != -ENOENT))
2613 			return ret;
2614 
2615 		ret = ice_hash_remove(pf,
2616 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
2617 		if (ret && (ret != -ENOENT))
2618 			return ret;
2619 
2620 		ret = ice_hash_remove(pf,
2621 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
2622 		if (ret && (ret != -ENOENT))
2623 			return ret;
2624 
2625 		ret = ice_hash_remove(pf,
2626 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
2627 		if (ret && (ret != -ENOENT))
2628 			return ret;
2629 
2630 		break;
2631 	case ICE_HASH_GTPU_CTX_EH_IP_UDP:
2632 		ret = ice_hash_remove(pf,
2633 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
2634 		if (ret && (ret != -ENOENT))
2635 			return ret;
2636 
2637 		ret = ice_hash_remove(pf,
2638 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
2639 		if (ret && (ret != -ENOENT))
2640 			return ret;
2641 
2642 		ret = ice_hash_moveout(pf,
2643 				       &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
2644 		if (ret && (ret != -ENOENT))
2645 			return ret;
2646 
2647 		ret = ice_hash_moveout(pf,
2648 				       &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
2649 		if (ret && (ret != -ENOENT))
2650 			return ret;
2651 
2652 		ret = ice_hash_moveout(pf,
2653 				       &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
2654 		if (ret && (ret != -ENOENT))
2655 			return ret;
2656 
2657 		ret = ice_hash_moveout(pf,
2658 				       &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
2659 		if (ret && (ret != -ENOENT))
2660 			return ret;
2661 
2662 		break;
2663 	case ICE_HASH_GTPU_CTX_EH_IP_TCP:
2664 		ret = ice_hash_remove(pf,
2665 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
2666 		if (ret && (ret != -ENOENT))
2667 			return ret;
2668 
2669 		ret = ice_hash_remove(pf,
2670 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
2671 		if (ret && (ret != -ENOENT))
2672 			return ret;
2673 
2674 		ret = ice_hash_moveout(pf,
2675 				       &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
2676 		if (ret && (ret != -ENOENT))
2677 			return ret;
2678 
2679 		ret = ice_hash_moveout(pf,
2680 				       &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
2681 		if (ret && (ret != -ENOENT))
2682 			return ret;
2683 
2684 		ret = ice_hash_moveout(pf,
2685 				       &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
2686 		if (ret && (ret != -ENOENT))
2687 			return ret;
2688 
2689 		ret = ice_hash_moveout(pf,
2690 				       &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
2691 		if (ret && (ret != -ENOENT))
2692 			return ret;
2693 
2694 		break;
2695 	case ICE_HASH_GTPU_CTX_UP_IP:
2696 		ret = ice_hash_remove(pf,
2697 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
2698 		if (ret && (ret != -ENOENT))
2699 			return ret;
2700 
2701 		ret = ice_hash_remove(pf,
2702 				      &ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
2703 		if (ret && (ret != -ENOENT))
2704 			return ret;
2705 
2706 		ret = ice_hash_moveout(pf,
2707 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
2708 		if (ret && (ret != -ENOENT))
2709 			return ret;
2710 
2711 		ret = ice_hash_moveout(pf,
2712 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
2713 		if (ret && (ret != -ENOENT))
2714 			return ret;
2715 
2716 		ret = ice_hash_moveout(pf,
2717 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
2718 		if (ret && (ret != -ENOENT))
2719 			return ret;
2720 
2721 		break;
2722 	case ICE_HASH_GTPU_CTX_UP_IP_UDP:
2723 	case ICE_HASH_GTPU_CTX_UP_IP_TCP:
2724 		ret = ice_hash_moveout(pf,
2725 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
2726 		if (ret && (ret != -ENOENT))
2727 			return ret;
2728 
2729 		ret = ice_hash_moveout(pf,
2730 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
2731 		if (ret && (ret != -ENOENT))
2732 			return ret;
2733 
2734 		ret = ice_hash_moveout(pf,
2735 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
2736 		if (ret && (ret != -ENOENT))
2737 			return ret;
2738 
2739 		break;
2740 	case ICE_HASH_GTPU_CTX_DW_IP:
2741 		ret = ice_hash_remove(pf,
2742 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
2743 		if (ret && (ret != -ENOENT))
2744 			return ret;
2745 
2746 		ret = ice_hash_remove(pf,
2747 				      &ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
2748 		if (ret && (ret != -ENOENT))
2749 			return ret;
2750 
2751 		ret = ice_hash_moveout(pf,
2752 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
2753 		if (ret && (ret != -ENOENT))
2754 			return ret;
2755 
2756 		ret = ice_hash_moveout(pf,
2757 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
2758 		if (ret && (ret != -ENOENT))
2759 			return ret;
2760 
2761 		ret = ice_hash_moveout(pf,
2762 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
2763 		if (ret && (ret != -ENOENT))
2764 			return ret;
2765 
2766 		break;
2767 	case ICE_HASH_GTPU_CTX_DW_IP_UDP:
2768 	case ICE_HASH_GTPU_CTX_DW_IP_TCP:
2769 		ret = ice_hash_moveout(pf,
2770 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
2771 		if (ret && (ret != -ENOENT))
2772 			return ret;
2773 
2774 		ret = ice_hash_moveout(pf,
2775 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
2776 		if (ret && (ret != -ENOENT))
2777 			return ret;
2778 
2779 		ret = ice_hash_moveout(pf,
2780 				       &ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
2781 		if (ret && (ret != -ENOENT))
2782 			return ret;
2783 
2784 		break;
2785 	default:
2786 		break;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 static u8 calc_gtpu_ctx_idx(uint32_t hdr)
2793 {
2794 	u8 eh_idx, ip_idx;
2795 
2796 	if (hdr & ICE_FLOW_SEG_HDR_GTPU_EH)
2797 		eh_idx = 0;
2798 	else if (hdr & ICE_FLOW_SEG_HDR_GTPU_UP)
2799 		eh_idx = 1;
2800 	else if (hdr & ICE_FLOW_SEG_HDR_GTPU_DWN)
2801 		eh_idx = 2;
2802 	else
2803 		return ICE_HASH_GTPU_CTX_MAX;
2804 
2805 	ip_idx = 0;
2806 	if (hdr & ICE_FLOW_SEG_HDR_UDP)
2807 		ip_idx = 1;
2808 	else if (hdr & ICE_FLOW_SEG_HDR_TCP)
2809 		ip_idx = 2;
2810 
2811 	if (hdr & (ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV6))
2812 		return eh_idx * 3 + ip_idx;
2813 	else
2814 		return ICE_HASH_GTPU_CTX_MAX;
2815 }
2816 
2817 static int
2818 ice_add_rss_cfg_pre(struct ice_pf *pf, uint32_t hdr)
2819 {
2820 	u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(hdr);
2821 
2822 	if (hdr & ICE_FLOW_SEG_HDR_IPV4)
2823 		return ice_add_rss_cfg_pre_gtpu(pf, &pf->hash_ctx.gtpu4,
2824 						gtpu_ctx_idx);
2825 	else if (hdr & ICE_FLOW_SEG_HDR_IPV6)
2826 		return ice_add_rss_cfg_pre_gtpu(pf, &pf->hash_ctx.gtpu6,
2827 						gtpu_ctx_idx);
2828 
2829 	return 0;
2830 }
2831 
2832 static int
2833 ice_add_rss_cfg_post_gtpu(struct ice_pf *pf, struct ice_hash_gtpu_ctx *ctx,
2834 			  u8 ctx_idx, struct ice_rss_hash_cfg *cfg)
2835 {
2836 	int ret;
2837 
2838 	if (ctx_idx < ICE_HASH_GTPU_CTX_MAX)
2839 		ctx->ctx[ctx_idx] = *cfg;
2840 
2841 	switch (ctx_idx) {
2842 	case ICE_HASH_GTPU_CTX_EH_IP:
2843 		break;
2844 	case ICE_HASH_GTPU_CTX_EH_IP_UDP:
2845 		ret = ice_hash_moveback(pf,
2846 					&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
2847 		if (ret && (ret != -ENOENT))
2848 			return ret;
2849 
2850 		ret = ice_hash_moveback(pf,
2851 					&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_TCP]);
2852 		if (ret && (ret != -ENOENT))
2853 			return ret;
2854 
2855 		ret = ice_hash_moveback(pf,
2856 					&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
2857 		if (ret && (ret != -ENOENT))
2858 			return ret;
2859 
2860 		ret = ice_hash_moveback(pf,
2861 					&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_TCP]);
2862 		if (ret && (ret != -ENOENT))
2863 			return ret;
2864 
2865 		break;
2866 	case ICE_HASH_GTPU_CTX_EH_IP_TCP:
2867 		ret = ice_hash_moveback(pf,
2868 					&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP]);
2869 		if (ret && (ret != -ENOENT))
2870 			return ret;
2871 
2872 		ret = ice_hash_moveback(pf,
2873 					&ctx->ctx[ICE_HASH_GTPU_CTX_UP_IP_UDP]);
2874 		if (ret && (ret != -ENOENT))
2875 			return ret;
2876 
2877 		ret = ice_hash_moveback(pf,
2878 					&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP]);
2879 		if (ret && (ret != -ENOENT))
2880 			return ret;
2881 
2882 		ret = ice_hash_moveback(pf,
2883 					&ctx->ctx[ICE_HASH_GTPU_CTX_DW_IP_UDP]);
2884 		if (ret && (ret != -ENOENT))
2885 			return ret;
2886 
2887 		break;
2888 	case ICE_HASH_GTPU_CTX_UP_IP:
2889 	case ICE_HASH_GTPU_CTX_UP_IP_UDP:
2890 	case ICE_HASH_GTPU_CTX_UP_IP_TCP:
2891 	case ICE_HASH_GTPU_CTX_DW_IP:
2892 	case ICE_HASH_GTPU_CTX_DW_IP_UDP:
2893 	case ICE_HASH_GTPU_CTX_DW_IP_TCP:
2894 		ret = ice_hash_moveback(pf,
2895 					&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP]);
2896 		if (ret && (ret != -ENOENT))
2897 			return ret;
2898 
2899 		ret = ice_hash_moveback(pf,
2900 					&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_UDP]);
2901 		if (ret && (ret != -ENOENT))
2902 			return ret;
2903 
2904 		ret = ice_hash_moveback(pf,
2905 					&ctx->ctx[ICE_HASH_GTPU_CTX_EH_IP_TCP]);
2906 		if (ret && (ret != -ENOENT))
2907 			return ret;
2908 
2909 		break;
2910 	default:
2911 		break;
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 static int
2918 ice_add_rss_cfg_post(struct ice_pf *pf, struct ice_rss_hash_cfg *cfg)
2919 {
2920 	u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(cfg->addl_hdrs);
2921 
2922 	if (cfg->addl_hdrs & ICE_FLOW_SEG_HDR_IPV4)
2923 		return ice_add_rss_cfg_post_gtpu(pf, &pf->hash_ctx.gtpu4,
2924 						 gtpu_ctx_idx, cfg);
2925 	else if (cfg->addl_hdrs & ICE_FLOW_SEG_HDR_IPV6)
2926 		return ice_add_rss_cfg_post_gtpu(pf, &pf->hash_ctx.gtpu6,
2927 						 gtpu_ctx_idx, cfg);
2928 
2929 	return 0;
2930 }
2931 
2932 static void
2933 ice_rem_rss_cfg_post(struct ice_pf *pf, uint32_t hdr)
2934 {
2935 	u8 gtpu_ctx_idx = calc_gtpu_ctx_idx(hdr);
2936 
2937 	if (gtpu_ctx_idx >= ICE_HASH_GTPU_CTX_MAX)
2938 		return;
2939 
2940 	if (hdr & ICE_FLOW_SEG_HDR_IPV4)
2941 		hash_cfg_reset(&pf->hash_ctx.gtpu4.ctx[gtpu_ctx_idx]);
2942 	else if (hdr & ICE_FLOW_SEG_HDR_IPV6)
2943 		hash_cfg_reset(&pf->hash_ctx.gtpu6.ctx[gtpu_ctx_idx]);
2944 }
2945 
2946 int
2947 ice_rem_rss_cfg_wrap(struct ice_pf *pf, uint16_t vsi_id,
2948 		     struct ice_rss_hash_cfg *cfg)
2949 {
2950 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
2951 	int ret;
2952 
2953 	ret = ice_rem_rss_cfg(hw, vsi_id, cfg);
2954 	if (ret && ret != ICE_ERR_DOES_NOT_EXIST)
2955 		PMD_DRV_LOG(ERR, "remove rss cfg failed\n");
2956 
2957 	ice_rem_rss_cfg_post(pf, cfg->addl_hdrs);
2958 
2959 	return 0;
2960 }
2961 
2962 int
2963 ice_add_rss_cfg_wrap(struct ice_pf *pf, uint16_t vsi_id,
2964 		     struct ice_rss_hash_cfg *cfg)
2965 {
2966 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
2967 	int ret;
2968 
2969 	ret = ice_add_rss_cfg_pre(pf, cfg->addl_hdrs);
2970 	if (ret)
2971 		PMD_DRV_LOG(ERR, "add rss cfg pre failed\n");
2972 
2973 	ret = ice_add_rss_cfg(hw, vsi_id, cfg);
2974 	if (ret)
2975 		PMD_DRV_LOG(ERR, "add rss cfg failed\n");
2976 
2977 	ret = ice_add_rss_cfg_post(pf, cfg);
2978 	if (ret)
2979 		PMD_DRV_LOG(ERR, "add rss cfg post failed\n");
2980 
2981 	return 0;
2982 }
2983 
2984 static void
2985 ice_rss_hash_set(struct ice_pf *pf, uint64_t rss_hf)
2986 {
2987 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
2988 	struct ice_vsi *vsi = pf->main_vsi;
2989 	struct ice_rss_hash_cfg cfg;
2990 	int ret;
2991 
2992 #define ICE_RSS_HF_ALL ( \
2993 	RTE_ETH_RSS_IPV4 | \
2994 	RTE_ETH_RSS_IPV6 | \
2995 	RTE_ETH_RSS_NONFRAG_IPV4_UDP | \
2996 	RTE_ETH_RSS_NONFRAG_IPV6_UDP | \
2997 	RTE_ETH_RSS_NONFRAG_IPV4_TCP | \
2998 	RTE_ETH_RSS_NONFRAG_IPV6_TCP | \
2999 	RTE_ETH_RSS_NONFRAG_IPV4_SCTP | \
3000 	RTE_ETH_RSS_NONFRAG_IPV6_SCTP)
3001 
3002 	ret = ice_rem_vsi_rss_cfg(hw, vsi->idx);
3003 	if (ret)
3004 		PMD_DRV_LOG(ERR, "%s Remove rss vsi fail %d",
3005 			    __func__, ret);
3006 
3007 	cfg.symm = 0;
3008 	cfg.hdr_type = ICE_RSS_OUTER_HEADERS;
3009 	/* Configure RSS for IPv4 with src/dst addr as input set */
3010 	if (rss_hf & RTE_ETH_RSS_IPV4) {
3011 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
3012 		cfg.hash_flds = ICE_FLOW_HASH_IPV4;
3013 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3014 		if (ret)
3015 			PMD_DRV_LOG(ERR, "%s IPV4 rss flow fail %d",
3016 				    __func__, ret);
3017 	}
3018 
3019 	/* Configure RSS for IPv6 with src/dst addr as input set */
3020 	if (rss_hf & RTE_ETH_RSS_IPV6) {
3021 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
3022 		cfg.hash_flds = ICE_FLOW_HASH_IPV6;
3023 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3024 		if (ret)
3025 			PMD_DRV_LOG(ERR, "%s IPV6 rss flow fail %d",
3026 				    __func__, ret);
3027 	}
3028 
3029 	/* Configure RSS for udp4 with src/dst addr and port as input set */
3030 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP) {
3031 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4 |
3032 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3033 		cfg.hash_flds = ICE_HASH_UDP_IPV4;
3034 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3035 		if (ret)
3036 			PMD_DRV_LOG(ERR, "%s UDP_IPV4 rss flow fail %d",
3037 				    __func__, ret);
3038 	}
3039 
3040 	/* Configure RSS for udp6 with src/dst addr and port as input set */
3041 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP) {
3042 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6 |
3043 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3044 		cfg.hash_flds = ICE_HASH_UDP_IPV6;
3045 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3046 		if (ret)
3047 			PMD_DRV_LOG(ERR, "%s UDP_IPV6 rss flow fail %d",
3048 				    __func__, ret);
3049 	}
3050 
3051 	/* Configure RSS for tcp4 with src/dst addr and port as input set */
3052 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP) {
3053 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4 |
3054 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3055 		cfg.hash_flds = ICE_HASH_TCP_IPV4;
3056 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3057 		if (ret)
3058 			PMD_DRV_LOG(ERR, "%s TCP_IPV4 rss flow fail %d",
3059 				    __func__, ret);
3060 	}
3061 
3062 	/* Configure RSS for tcp6 with src/dst addr and port as input set */
3063 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP) {
3064 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6 |
3065 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3066 		cfg.hash_flds = ICE_HASH_TCP_IPV6;
3067 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3068 		if (ret)
3069 			PMD_DRV_LOG(ERR, "%s TCP_IPV6 rss flow fail %d",
3070 				    __func__, ret);
3071 	}
3072 
3073 	/* Configure RSS for sctp4 with src/dst addr and port as input set */
3074 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_SCTP) {
3075 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4 |
3076 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3077 		cfg.hash_flds = ICE_HASH_SCTP_IPV4;
3078 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3079 		if (ret)
3080 			PMD_DRV_LOG(ERR, "%s SCTP_IPV4 rss flow fail %d",
3081 				    __func__, ret);
3082 	}
3083 
3084 	/* Configure RSS for sctp6 with src/dst addr and port as input set */
3085 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_SCTP) {
3086 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6 |
3087 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3088 		cfg.hash_flds = ICE_HASH_SCTP_IPV6;
3089 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3090 		if (ret)
3091 			PMD_DRV_LOG(ERR, "%s SCTP_IPV6 rss flow fail %d",
3092 				    __func__, ret);
3093 	}
3094 
3095 	if (rss_hf & RTE_ETH_RSS_IPV4) {
3096 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_IPV4 |
3097 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3098 		cfg.hash_flds = ICE_FLOW_HASH_IPV4;
3099 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3100 		if (ret)
3101 			PMD_DRV_LOG(ERR, "%s PPPoE_IPV4 rss flow fail %d",
3102 				    __func__, ret);
3103 	}
3104 
3105 	if (rss_hf & RTE_ETH_RSS_IPV6) {
3106 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_IPV6 |
3107 				ICE_FLOW_SEG_HDR_IPV_OTHER;
3108 		cfg.hash_flds = ICE_FLOW_HASH_IPV6;
3109 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3110 		if (ret)
3111 			PMD_DRV_LOG(ERR, "%s PPPoE_IPV6 rss flow fail %d",
3112 				    __func__, ret);
3113 	}
3114 
3115 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_UDP) {
3116 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_UDP |
3117 				ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
3118 		cfg.hash_flds = ICE_HASH_UDP_IPV4;
3119 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3120 		if (ret)
3121 			PMD_DRV_LOG(ERR, "%s PPPoE_IPV4_UDP rss flow fail %d",
3122 				    __func__, ret);
3123 	}
3124 
3125 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_UDP) {
3126 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_UDP |
3127 				ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
3128 		cfg.hash_flds = ICE_HASH_UDP_IPV6;
3129 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3130 		if (ret)
3131 			PMD_DRV_LOG(ERR, "%s PPPoE_IPV6_UDP rss flow fail %d",
3132 				    __func__, ret);
3133 	}
3134 
3135 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV4_TCP) {
3136 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_TCP |
3137 				ICE_FLOW_SEG_HDR_IPV4 | ICE_FLOW_SEG_HDR_IPV_OTHER;
3138 		cfg.hash_flds = ICE_HASH_TCP_IPV4;
3139 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3140 		if (ret)
3141 			PMD_DRV_LOG(ERR, "%s PPPoE_IPV4_TCP rss flow fail %d",
3142 				    __func__, ret);
3143 	}
3144 
3145 	if (rss_hf & RTE_ETH_RSS_NONFRAG_IPV6_TCP) {
3146 		cfg.addl_hdrs = ICE_FLOW_SEG_HDR_PPPOE | ICE_FLOW_SEG_HDR_TCP |
3147 				ICE_FLOW_SEG_HDR_IPV6 | ICE_FLOW_SEG_HDR_IPV_OTHER;
3148 		cfg.hash_flds = ICE_HASH_TCP_IPV6;
3149 		ret = ice_add_rss_cfg_wrap(pf, vsi->idx, &cfg);
3150 		if (ret)
3151 			PMD_DRV_LOG(ERR, "%s PPPoE_IPV6_TCP rss flow fail %d",
3152 				    __func__, ret);
3153 	}
3154 
3155 	pf->rss_hf = rss_hf & ICE_RSS_HF_ALL;
3156 }
3157 
3158 static void
3159 ice_get_default_rss_key(uint8_t *rss_key, uint32_t rss_key_size)
3160 {
3161 	static struct ice_aqc_get_set_rss_keys default_key;
3162 	static bool default_key_done;
3163 	uint8_t *key = (uint8_t *)&default_key;
3164 	size_t i;
3165 
3166 	if (rss_key_size > sizeof(default_key)) {
3167 		PMD_DRV_LOG(WARNING,
3168 			    "requested size %u is larger than default %zu, "
3169 			    "only %zu bytes are gotten for key\n",
3170 			    rss_key_size, sizeof(default_key),
3171 			    sizeof(default_key));
3172 	}
3173 
3174 	if (!default_key_done) {
3175 		/* Calculate the default hash key */
3176 		for (i = 0; i < sizeof(default_key); i++)
3177 			key[i] = (uint8_t)rte_rand();
3178 		default_key_done = true;
3179 	}
3180 	rte_memcpy(rss_key, key, RTE_MIN(rss_key_size, sizeof(default_key)));
3181 }
3182 
3183 static int ice_init_rss(struct ice_pf *pf)
3184 {
3185 	struct ice_hw *hw = ICE_PF_TO_HW(pf);
3186 	struct ice_vsi *vsi = pf->main_vsi;
3187 	struct rte_eth_dev_data *dev_data = pf->dev_data;
3188 	struct ice_aq_get_set_rss_lut_params lut_params;
3189 	struct rte_eth_rss_conf *rss_conf;
3190 	struct ice_aqc_get_set_rss_keys key;
3191 	uint16_t i, nb_q;
3192 	int ret = 0;
3193 	bool is_safe_mode = pf->adapter->is_safe_mode;
3194 	uint32_t reg;
3195 
3196 	rss_conf = &dev_data->dev_conf.rx_adv_conf.rss_conf;
3197 	nb_q = dev_data->nb_rx_queues;
3198 	vsi->rss_key_size = ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE;
3199 	vsi->rss_lut_size = pf->hash_lut_size;
3200 
3201 	if (nb_q == 0) {
3202 		PMD_DRV_LOG(WARNING,
3203 			"RSS is not supported as rx queues number is zero\n");
3204 		return 0;
3205 	}
3206 
3207 	if (is_safe_mode) {
3208 		PMD_DRV_LOG(WARNING, "RSS is not supported in safe mode\n");
3209 		return 0;
3210 	}
3211 
3212 	if (!vsi->rss_key) {
3213 		vsi->rss_key = rte_zmalloc(NULL,
3214 					   vsi->rss_key_size, 0);
3215 		if (vsi->rss_key == NULL) {
3216 			PMD_DRV_LOG(ERR, "Failed to allocate memory for rss_key");
3217 			return -ENOMEM;
3218 		}
3219 	}
3220 	if (!vsi->rss_lut) {
3221 		vsi->rss_lut = rte_zmalloc(NULL,
3222 					   vsi->rss_lut_size, 0);
3223 		if (vsi->rss_lut == NULL) {
3224 			PMD_DRV_LOG(ERR, "Failed to allocate memory for rss_key");
3225 			rte_free(vsi->rss_key);
3226 			vsi->rss_key = NULL;
3227 			return -ENOMEM;
3228 		}
3229 	}
3230 	/* configure RSS key */
3231 	if (!rss_conf->rss_key)
3232 		ice_get_default_rss_key(vsi->rss_key, vsi->rss_key_size);
3233 	else
3234 		rte_memcpy(vsi->rss_key, rss_conf->rss_key,
3235 			   RTE_MIN(rss_conf->rss_key_len,
3236 				   vsi->rss_key_size));
3237 
3238 	rte_memcpy(key.standard_rss_key, vsi->rss_key, vsi->rss_key_size);
3239 	ret = ice_aq_set_rss_key(hw, vsi->idx, &key);
3240 	if (ret)
3241 		goto out;
3242 
3243 	/* init RSS LUT table */
3244 	for (i = 0; i < vsi->rss_lut_size; i++)
3245 		vsi->rss_lut[i] = i % nb_q;
3246 
3247 	lut_params.vsi_handle = vsi->idx;
3248 	lut_params.lut_size = vsi->rss_lut_size;
3249 	lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
3250 	lut_params.lut = vsi->rss_lut;
3251 	lut_params.global_lut_id = 0;
3252 	ret = ice_aq_set_rss_lut(hw, &lut_params);
3253 	if (ret)
3254 		goto out;
3255 
3256 	/* Enable registers for symmetric_toeplitz function. */
3257 	reg = ICE_READ_REG(hw, VSIQF_HASH_CTL(vsi->vsi_id));
3258 	reg = (reg & (~VSIQF_HASH_CTL_HASH_SCHEME_M)) |
3259 		(1 << VSIQF_HASH_CTL_HASH_SCHEME_S);
3260 	ICE_WRITE_REG(hw, VSIQF_HASH_CTL(vsi->vsi_id), reg);
3261 
3262 	/* RSS hash configuration */
3263 	ice_rss_hash_set(pf, rss_conf->rss_hf);
3264 
3265 	return 0;
3266 out:
3267 	rte_free(vsi->rss_key);
3268 	vsi->rss_key = NULL;
3269 	rte_free(vsi->rss_lut);
3270 	vsi->rss_lut = NULL;
3271 	return -EINVAL;
3272 }
3273 
3274 static int
3275 ice_dev_configure(struct rte_eth_dev *dev)
3276 {
3277 	struct ice_adapter *ad =
3278 		ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3279 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
3280 	int ret;
3281 
3282 	/* Initialize to TRUE. If any of Rx queues doesn't meet the
3283 	 * bulk allocation or vector Rx preconditions we will reset it.
3284 	 */
3285 	ad->rx_bulk_alloc_allowed = true;
3286 	ad->tx_simple_allowed = true;
3287 
3288 	if (dev->data->dev_conf.rxmode.mq_mode & RTE_ETH_MQ_RX_RSS_FLAG)
3289 		dev->data->dev_conf.rxmode.offloads |= RTE_ETH_RX_OFFLOAD_RSS_HASH;
3290 
3291 	if (dev->data->nb_rx_queues) {
3292 		ret = ice_init_rss(pf);
3293 		if (ret) {
3294 			PMD_DRV_LOG(ERR, "Failed to enable rss for PF");
3295 			return ret;
3296 		}
3297 	}
3298 
3299 	return 0;
3300 }
3301 
3302 static void
3303 __vsi_queues_bind_intr(struct ice_vsi *vsi, uint16_t msix_vect,
3304 		       int base_queue, int nb_queue)
3305 {
3306 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
3307 	uint32_t val, val_tx;
3308 	int rx_low_latency, i;
3309 
3310 	rx_low_latency = vsi->adapter->devargs.rx_low_latency;
3311 	for (i = 0; i < nb_queue; i++) {
3312 		/*do actual bind*/
3313 		val = (msix_vect & QINT_RQCTL_MSIX_INDX_M) |
3314 		      (0 << QINT_RQCTL_ITR_INDX_S) | QINT_RQCTL_CAUSE_ENA_M;
3315 		val_tx = (msix_vect & QINT_TQCTL_MSIX_INDX_M) |
3316 			 (0 << QINT_TQCTL_ITR_INDX_S) | QINT_TQCTL_CAUSE_ENA_M;
3317 
3318 		PMD_DRV_LOG(INFO, "queue %d is binding to vect %d",
3319 			    base_queue + i, msix_vect);
3320 
3321 		/* set ITR0 value */
3322 		if (rx_low_latency) {
3323 			/**
3324 			 * Empirical configuration for optimal real time
3325 			 * latency reduced interrupt throttling to 2us
3326 			 */
3327 			ICE_WRITE_REG(hw, GLINT_ITR(0, msix_vect), 0x1);
3328 			ICE_WRITE_REG(hw, QRX_ITR(base_queue + i),
3329 				      QRX_ITR_NO_EXPR_M);
3330 		} else {
3331 			ICE_WRITE_REG(hw, GLINT_ITR(0, msix_vect), 0x2);
3332 			ICE_WRITE_REG(hw, QRX_ITR(base_queue + i), 0);
3333 		}
3334 
3335 		ICE_WRITE_REG(hw, QINT_RQCTL(base_queue + i), val);
3336 		ICE_WRITE_REG(hw, QINT_TQCTL(base_queue + i), val_tx);
3337 	}
3338 }
3339 
3340 void
3341 ice_vsi_queues_bind_intr(struct ice_vsi *vsi)
3342 {
3343 	struct rte_eth_dev *dev = &rte_eth_devices[vsi->adapter->pf.dev_data->port_id];
3344 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
3345 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3346 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
3347 	uint16_t msix_vect = vsi->msix_intr;
3348 	uint16_t nb_msix = RTE_MIN(vsi->nb_msix,
3349 				   rte_intr_nb_efd_get(intr_handle));
3350 	uint16_t queue_idx = 0;
3351 	int record = 0;
3352 	int i;
3353 
3354 	/* clear Rx/Tx queue interrupt */
3355 	for (i = 0; i < vsi->nb_used_qps; i++) {
3356 		ICE_WRITE_REG(hw, QINT_TQCTL(vsi->base_queue + i), 0);
3357 		ICE_WRITE_REG(hw, QINT_RQCTL(vsi->base_queue + i), 0);
3358 	}
3359 
3360 	/* PF bind interrupt */
3361 	if (rte_intr_dp_is_en(intr_handle)) {
3362 		queue_idx = 0;
3363 		record = 1;
3364 	}
3365 
3366 	for (i = 0; i < vsi->nb_used_qps; i++) {
3367 		if (nb_msix <= 1) {
3368 			if (!rte_intr_allow_others(intr_handle))
3369 				msix_vect = ICE_MISC_VEC_ID;
3370 
3371 			/* uio mapping all queue to one msix_vect */
3372 			__vsi_queues_bind_intr(vsi, msix_vect,
3373 					       vsi->base_queue + i,
3374 					       vsi->nb_used_qps - i);
3375 
3376 			for (; !!record && i < vsi->nb_used_qps; i++)
3377 				rte_intr_vec_list_index_set(intr_handle,
3378 						queue_idx + i, msix_vect);
3379 
3380 			break;
3381 		}
3382 
3383 		/* vfio 1:1 queue/msix_vect mapping */
3384 		__vsi_queues_bind_intr(vsi, msix_vect,
3385 				       vsi->base_queue + i, 1);
3386 
3387 		if (!!record)
3388 			rte_intr_vec_list_index_set(intr_handle,
3389 							   queue_idx + i,
3390 							   msix_vect);
3391 
3392 		msix_vect++;
3393 		nb_msix--;
3394 	}
3395 }
3396 
3397 void
3398 ice_vsi_enable_queues_intr(struct ice_vsi *vsi)
3399 {
3400 	struct rte_eth_dev *dev = &rte_eth_devices[vsi->adapter->pf.dev_data->port_id];
3401 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
3402 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3403 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
3404 	uint16_t msix_intr, i;
3405 
3406 	if (rte_intr_allow_others(intr_handle))
3407 		for (i = 0; i < vsi->nb_used_qps; i++) {
3408 			msix_intr = vsi->msix_intr + i;
3409 			ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr),
3410 				      GLINT_DYN_CTL_INTENA_M |
3411 				      GLINT_DYN_CTL_CLEARPBA_M |
3412 				      GLINT_DYN_CTL_ITR_INDX_M |
3413 				      GLINT_DYN_CTL_WB_ON_ITR_M);
3414 		}
3415 	else
3416 		ICE_WRITE_REG(hw, GLINT_DYN_CTL(0),
3417 			      GLINT_DYN_CTL_INTENA_M |
3418 			      GLINT_DYN_CTL_CLEARPBA_M |
3419 			      GLINT_DYN_CTL_ITR_INDX_M |
3420 			      GLINT_DYN_CTL_WB_ON_ITR_M);
3421 }
3422 
3423 static int
3424 ice_rxq_intr_setup(struct rte_eth_dev *dev)
3425 {
3426 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
3427 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
3428 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
3429 	struct ice_vsi *vsi = pf->main_vsi;
3430 	uint32_t intr_vector = 0;
3431 
3432 	rte_intr_disable(intr_handle);
3433 
3434 	/* check and configure queue intr-vector mapping */
3435 	if ((rte_intr_cap_multiple(intr_handle) ||
3436 	     !RTE_ETH_DEV_SRIOV(dev).active) &&
3437 	    dev->data->dev_conf.intr_conf.rxq != 0) {
3438 		intr_vector = dev->data->nb_rx_queues;
3439 		if (intr_vector > ICE_MAX_INTR_QUEUE_NUM) {
3440 			PMD_DRV_LOG(ERR, "At most %d intr queues supported",
3441 				    ICE_MAX_INTR_QUEUE_NUM);
3442 			return -ENOTSUP;
3443 		}
3444 		if (rte_intr_efd_enable(intr_handle, intr_vector))
3445 			return -1;
3446 	}
3447 
3448 	if (rte_intr_dp_is_en(intr_handle)) {
3449 		if (rte_intr_vec_list_alloc(intr_handle, NULL,
3450 						   dev->data->nb_rx_queues)) {
3451 			PMD_DRV_LOG(ERR,
3452 				    "Failed to allocate %d rx_queues intr_vec",
3453 				    dev->data->nb_rx_queues);
3454 			return -ENOMEM;
3455 		}
3456 	}
3457 
3458 	/* Map queues with MSIX interrupt */
3459 	vsi->nb_used_qps = dev->data->nb_rx_queues;
3460 	ice_vsi_queues_bind_intr(vsi);
3461 
3462 	/* Enable interrupts for all the queues */
3463 	ice_vsi_enable_queues_intr(vsi);
3464 
3465 	rte_intr_enable(intr_handle);
3466 
3467 	return 0;
3468 }
3469 
3470 static void
3471 ice_get_init_link_status(struct rte_eth_dev *dev)
3472 {
3473 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3474 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
3475 	bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false;
3476 	struct ice_link_status link_status;
3477 	int ret;
3478 
3479 	ret = ice_aq_get_link_info(hw->port_info, enable_lse,
3480 				   &link_status, NULL);
3481 	if (ret != ICE_SUCCESS) {
3482 		PMD_DRV_LOG(ERR, "Failed to get link info");
3483 		pf->init_link_up = false;
3484 		return;
3485 	}
3486 
3487 	if (link_status.link_info & ICE_AQ_LINK_UP)
3488 		pf->init_link_up = true;
3489 }
3490 
3491 static int
3492 ice_pps_out_cfg(struct ice_hw *hw, int idx, int timer)
3493 {
3494 	uint64_t current_time, start_time;
3495 	uint32_t hi, lo, lo2, func, val;
3496 
3497 	lo = ICE_READ_REG(hw, GLTSYN_TIME_L(timer));
3498 	hi = ICE_READ_REG(hw, GLTSYN_TIME_H(timer));
3499 	lo2 = ICE_READ_REG(hw, GLTSYN_TIME_L(timer));
3500 
3501 	if (lo2 < lo) {
3502 		lo = ICE_READ_REG(hw, GLTSYN_TIME_L(timer));
3503 		hi = ICE_READ_REG(hw, GLTSYN_TIME_H(timer));
3504 	}
3505 
3506 	current_time = ((uint64_t)hi << 32) | lo;
3507 
3508 	start_time = (current_time + NSEC_PER_SEC) /
3509 			NSEC_PER_SEC * NSEC_PER_SEC;
3510 	start_time = start_time - PPS_OUT_DELAY_NS;
3511 
3512 	func = 8 + idx + timer * 4;
3513 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
3514 		((func << GLGEN_GPIO_CTL_PIN_FUNC_S) &
3515 		GLGEN_GPIO_CTL_PIN_FUNC_M);
3516 
3517 	/* Write clkout with half of period value */
3518 	ICE_WRITE_REG(hw, GLTSYN_CLKO(idx, timer), NSEC_PER_SEC / 2);
3519 
3520 	/* Write TARGET time register */
3521 	ICE_WRITE_REG(hw, GLTSYN_TGT_L(idx, timer), start_time & 0xffffffff);
3522 	ICE_WRITE_REG(hw, GLTSYN_TGT_H(idx, timer), start_time >> 32);
3523 
3524 	/* Write AUX_OUT register */
3525 	ICE_WRITE_REG(hw, GLTSYN_AUX_OUT(idx, timer),
3526 		      GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M);
3527 
3528 	/* Write GPIO CTL register */
3529 	ICE_WRITE_REG(hw, GLGEN_GPIO_CTL(idx), val);
3530 
3531 	return 0;
3532 }
3533 
3534 static int
3535 ice_dev_start(struct rte_eth_dev *dev)
3536 {
3537 	struct rte_eth_dev_data *data = dev->data;
3538 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3539 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
3540 	struct ice_vsi *vsi = pf->main_vsi;
3541 	struct ice_adapter *ad =
3542 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
3543 	uint16_t nb_rxq = 0;
3544 	uint16_t nb_txq, i;
3545 	uint16_t max_frame_size;
3546 	int mask, ret;
3547 	uint8_t timer = hw->func_caps.ts_func_info.tmr_index_owned;
3548 	uint32_t pin_idx = ad->devargs.pin_idx;
3549 
3550 	/* program Tx queues' context in hardware */
3551 	for (nb_txq = 0; nb_txq < data->nb_tx_queues; nb_txq++) {
3552 		ret = ice_tx_queue_start(dev, nb_txq);
3553 		if (ret) {
3554 			PMD_DRV_LOG(ERR, "fail to start Tx queue %u", nb_txq);
3555 			goto tx_err;
3556 		}
3557 	}
3558 
3559 	/* program Rx queues' context in hardware*/
3560 	for (nb_rxq = 0; nb_rxq < data->nb_rx_queues; nb_rxq++) {
3561 		ret = ice_rx_queue_start(dev, nb_rxq);
3562 		if (ret) {
3563 			PMD_DRV_LOG(ERR, "fail to start Rx queue %u", nb_rxq);
3564 			goto rx_err;
3565 		}
3566 	}
3567 
3568 	ice_set_rx_function(dev);
3569 	ice_set_tx_function(dev);
3570 
3571 	mask = RTE_ETH_VLAN_STRIP_MASK | RTE_ETH_VLAN_FILTER_MASK |
3572 			RTE_ETH_VLAN_EXTEND_MASK;
3573 	ret = ice_vlan_offload_set(dev, mask);
3574 	if (ret) {
3575 		PMD_INIT_LOG(ERR, "Unable to set VLAN offload");
3576 		goto rx_err;
3577 	}
3578 
3579 	/* enable Rx interrput and mapping Rx queue to interrupt vector */
3580 	if (ice_rxq_intr_setup(dev))
3581 		return -EIO;
3582 
3583 	/* Enable receiving broadcast packets and transmitting packets */
3584 	ret = ice_set_vsi_promisc(hw, vsi->idx,
3585 				  ICE_PROMISC_BCAST_RX | ICE_PROMISC_BCAST_TX |
3586 				  ICE_PROMISC_UCAST_TX | ICE_PROMISC_MCAST_TX,
3587 				  0);
3588 	if (ret != ICE_SUCCESS)
3589 		PMD_DRV_LOG(INFO, "fail to set vsi broadcast");
3590 
3591 	ret = ice_aq_set_event_mask(hw, hw->port_info->lport,
3592 				    ((u16)(ICE_AQ_LINK_EVENT_LINK_FAULT |
3593 				     ICE_AQ_LINK_EVENT_PHY_TEMP_ALARM |
3594 				     ICE_AQ_LINK_EVENT_EXCESSIVE_ERRORS |
3595 				     ICE_AQ_LINK_EVENT_SIGNAL_DETECT |
3596 				     ICE_AQ_LINK_EVENT_AN_COMPLETED |
3597 				     ICE_AQ_LINK_EVENT_PORT_TX_SUSPENDED)),
3598 				     NULL);
3599 	if (ret != ICE_SUCCESS)
3600 		PMD_DRV_LOG(WARNING, "Fail to set phy mask");
3601 
3602 	ice_get_init_link_status(dev);
3603 
3604 	ice_dev_set_link_up(dev);
3605 
3606 	/* Call get_link_info aq commond to enable/disable LSE */
3607 	ice_link_update(dev, 0);
3608 
3609 	pf->adapter_stopped = false;
3610 
3611 	/* Set the max frame size to default value*/
3612 	max_frame_size = pf->dev_data->mtu ?
3613 		pf->dev_data->mtu + ICE_ETH_OVERHEAD :
3614 		ICE_FRAME_SIZE_MAX;
3615 
3616 	/* Set the max frame size to HW*/
3617 	ice_aq_set_mac_cfg(hw, max_frame_size, NULL);
3618 
3619 	if (ad->devargs.pps_out_ena) {
3620 		ret = ice_pps_out_cfg(hw, pin_idx, timer);
3621 		if (ret) {
3622 			PMD_DRV_LOG(ERR, "Fail to configure 1pps out");
3623 			goto rx_err;
3624 		}
3625 	}
3626 
3627 	return 0;
3628 
3629 	/* stop the started queues if failed to start all queues */
3630 rx_err:
3631 	for (i = 0; i < nb_rxq; i++)
3632 		ice_rx_queue_stop(dev, i);
3633 tx_err:
3634 	for (i = 0; i < nb_txq; i++)
3635 		ice_tx_queue_stop(dev, i);
3636 
3637 	return -EIO;
3638 }
3639 
3640 static int
3641 ice_dev_reset(struct rte_eth_dev *dev)
3642 {
3643 	int ret;
3644 
3645 	if (dev->data->sriov.active)
3646 		return -ENOTSUP;
3647 
3648 	ret = ice_dev_uninit(dev);
3649 	if (ret) {
3650 		PMD_INIT_LOG(ERR, "failed to uninit device, status = %d", ret);
3651 		return -ENXIO;
3652 	}
3653 
3654 	ret = ice_dev_init(dev);
3655 	if (ret) {
3656 		PMD_INIT_LOG(ERR, "failed to init device, status = %d", ret);
3657 		return -ENXIO;
3658 	}
3659 
3660 	return 0;
3661 }
3662 
3663 static int
3664 ice_dev_info_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
3665 {
3666 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
3667 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3668 	struct ice_vsi *vsi = pf->main_vsi;
3669 	struct rte_pci_device *pci_dev = RTE_DEV_TO_PCI(dev->device);
3670 	bool is_safe_mode = pf->adapter->is_safe_mode;
3671 	u64 phy_type_low;
3672 	u64 phy_type_high;
3673 
3674 	dev_info->min_rx_bufsize = ICE_BUF_SIZE_MIN;
3675 	dev_info->max_rx_pktlen = ICE_FRAME_SIZE_MAX;
3676 	dev_info->max_rx_queues = vsi->nb_qps;
3677 	dev_info->max_tx_queues = vsi->nb_qps;
3678 	dev_info->max_mac_addrs = vsi->max_macaddrs;
3679 	dev_info->max_vfs = pci_dev->max_vfs;
3680 	dev_info->max_mtu = dev_info->max_rx_pktlen - ICE_ETH_OVERHEAD;
3681 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
3682 
3683 	dev_info->rx_offload_capa =
3684 		RTE_ETH_RX_OFFLOAD_VLAN_STRIP |
3685 		RTE_ETH_RX_OFFLOAD_KEEP_CRC |
3686 		RTE_ETH_RX_OFFLOAD_SCATTER |
3687 		RTE_ETH_RX_OFFLOAD_VLAN_FILTER;
3688 	dev_info->tx_offload_capa =
3689 		RTE_ETH_TX_OFFLOAD_VLAN_INSERT |
3690 		RTE_ETH_TX_OFFLOAD_TCP_TSO |
3691 		RTE_ETH_TX_OFFLOAD_MULTI_SEGS |
3692 		RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3693 	dev_info->flow_type_rss_offloads = 0;
3694 
3695 	if (!is_safe_mode) {
3696 		dev_info->rx_offload_capa |=
3697 			RTE_ETH_RX_OFFLOAD_IPV4_CKSUM |
3698 			RTE_ETH_RX_OFFLOAD_UDP_CKSUM |
3699 			RTE_ETH_RX_OFFLOAD_TCP_CKSUM |
3700 			RTE_ETH_RX_OFFLOAD_QINQ_STRIP |
3701 			RTE_ETH_RX_OFFLOAD_OUTER_IPV4_CKSUM |
3702 			RTE_ETH_RX_OFFLOAD_VLAN_EXTEND |
3703 			RTE_ETH_RX_OFFLOAD_RSS_HASH |
3704 			RTE_ETH_RX_OFFLOAD_TIMESTAMP;
3705 		dev_info->tx_offload_capa |=
3706 			RTE_ETH_TX_OFFLOAD_QINQ_INSERT |
3707 			RTE_ETH_TX_OFFLOAD_IPV4_CKSUM |
3708 			RTE_ETH_TX_OFFLOAD_UDP_CKSUM |
3709 			RTE_ETH_TX_OFFLOAD_TCP_CKSUM |
3710 			RTE_ETH_TX_OFFLOAD_SCTP_CKSUM |
3711 			RTE_ETH_TX_OFFLOAD_OUTER_IPV4_CKSUM |
3712 			RTE_ETH_TX_OFFLOAD_OUTER_UDP_CKSUM;
3713 		dev_info->flow_type_rss_offloads |= ICE_RSS_OFFLOAD_ALL;
3714 	}
3715 
3716 	dev_info->rx_queue_offload_capa = 0;
3717 	dev_info->tx_queue_offload_capa = RTE_ETH_TX_OFFLOAD_MBUF_FAST_FREE;
3718 
3719 	dev_info->reta_size = pf->hash_lut_size;
3720 	dev_info->hash_key_size = (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
3721 
3722 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
3723 		.rx_thresh = {
3724 			.pthresh = ICE_DEFAULT_RX_PTHRESH,
3725 			.hthresh = ICE_DEFAULT_RX_HTHRESH,
3726 			.wthresh = ICE_DEFAULT_RX_WTHRESH,
3727 		},
3728 		.rx_free_thresh = ICE_DEFAULT_RX_FREE_THRESH,
3729 		.rx_drop_en = 0,
3730 		.offloads = 0,
3731 	};
3732 
3733 	dev_info->default_txconf = (struct rte_eth_txconf) {
3734 		.tx_thresh = {
3735 			.pthresh = ICE_DEFAULT_TX_PTHRESH,
3736 			.hthresh = ICE_DEFAULT_TX_HTHRESH,
3737 			.wthresh = ICE_DEFAULT_TX_WTHRESH,
3738 		},
3739 		.tx_free_thresh = ICE_DEFAULT_TX_FREE_THRESH,
3740 		.tx_rs_thresh = ICE_DEFAULT_TX_RSBIT_THRESH,
3741 		.offloads = 0,
3742 	};
3743 
3744 	dev_info->rx_desc_lim = (struct rte_eth_desc_lim) {
3745 		.nb_max = ICE_MAX_RING_DESC,
3746 		.nb_min = ICE_MIN_RING_DESC,
3747 		.nb_align = ICE_ALIGN_RING_DESC,
3748 	};
3749 
3750 	dev_info->tx_desc_lim = (struct rte_eth_desc_lim) {
3751 		.nb_max = ICE_MAX_RING_DESC,
3752 		.nb_min = ICE_MIN_RING_DESC,
3753 		.nb_align = ICE_ALIGN_RING_DESC,
3754 	};
3755 
3756 	dev_info->speed_capa = RTE_ETH_LINK_SPEED_10M |
3757 			       RTE_ETH_LINK_SPEED_100M |
3758 			       RTE_ETH_LINK_SPEED_1G |
3759 			       RTE_ETH_LINK_SPEED_2_5G |
3760 			       RTE_ETH_LINK_SPEED_5G |
3761 			       RTE_ETH_LINK_SPEED_10G |
3762 			       RTE_ETH_LINK_SPEED_20G |
3763 			       RTE_ETH_LINK_SPEED_25G;
3764 
3765 	phy_type_low = hw->port_info->phy.phy_type_low;
3766 	phy_type_high = hw->port_info->phy.phy_type_high;
3767 
3768 	if (ICE_PHY_TYPE_SUPPORT_50G(phy_type_low))
3769 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_50G;
3770 
3771 	if (ICE_PHY_TYPE_SUPPORT_100G_LOW(phy_type_low) ||
3772 			ICE_PHY_TYPE_SUPPORT_100G_HIGH(phy_type_high))
3773 		dev_info->speed_capa |= RTE_ETH_LINK_SPEED_100G;
3774 
3775 	dev_info->nb_rx_queues = dev->data->nb_rx_queues;
3776 	dev_info->nb_tx_queues = dev->data->nb_tx_queues;
3777 
3778 	dev_info->default_rxportconf.burst_size = ICE_RX_MAX_BURST;
3779 	dev_info->default_txportconf.burst_size = ICE_TX_MAX_BURST;
3780 	dev_info->default_rxportconf.nb_queues = 1;
3781 	dev_info->default_txportconf.nb_queues = 1;
3782 	dev_info->default_rxportconf.ring_size = ICE_BUF_SIZE_MIN;
3783 	dev_info->default_txportconf.ring_size = ICE_BUF_SIZE_MIN;
3784 
3785 	return 0;
3786 }
3787 
3788 static inline int
3789 ice_atomic_read_link_status(struct rte_eth_dev *dev,
3790 			    struct rte_eth_link *link)
3791 {
3792 	struct rte_eth_link *dst = link;
3793 	struct rte_eth_link *src = &dev->data->dev_link;
3794 
3795 	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
3796 				*(uint64_t *)src) == 0)
3797 		return -1;
3798 
3799 	return 0;
3800 }
3801 
3802 static inline int
3803 ice_atomic_write_link_status(struct rte_eth_dev *dev,
3804 			     struct rte_eth_link *link)
3805 {
3806 	struct rte_eth_link *dst = &dev->data->dev_link;
3807 	struct rte_eth_link *src = link;
3808 
3809 	if (rte_atomic64_cmpset((uint64_t *)dst, *(uint64_t *)dst,
3810 				*(uint64_t *)src) == 0)
3811 		return -1;
3812 
3813 	return 0;
3814 }
3815 
3816 static int
3817 ice_link_update(struct rte_eth_dev *dev, int wait_to_complete)
3818 {
3819 #define CHECK_INTERVAL 100  /* 100ms */
3820 #define MAX_REPEAT_TIME 10  /* 1s (10 * 100ms) in total */
3821 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3822 	struct ice_link_status link_status;
3823 	struct rte_eth_link link, old;
3824 	int status;
3825 	unsigned int rep_cnt = MAX_REPEAT_TIME;
3826 	bool enable_lse = dev->data->dev_conf.intr_conf.lsc ? true : false;
3827 
3828 	memset(&link, 0, sizeof(link));
3829 	memset(&old, 0, sizeof(old));
3830 	memset(&link_status, 0, sizeof(link_status));
3831 	ice_atomic_read_link_status(dev, &old);
3832 
3833 	do {
3834 		/* Get link status information from hardware */
3835 		status = ice_aq_get_link_info(hw->port_info, enable_lse,
3836 					      &link_status, NULL);
3837 		if (status != ICE_SUCCESS) {
3838 			link.link_speed = RTE_ETH_SPEED_NUM_100M;
3839 			link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3840 			PMD_DRV_LOG(ERR, "Failed to get link info");
3841 			goto out;
3842 		}
3843 
3844 		link.link_status = link_status.link_info & ICE_AQ_LINK_UP;
3845 		if (!wait_to_complete || link.link_status)
3846 			break;
3847 
3848 		rte_delay_ms(CHECK_INTERVAL);
3849 	} while (--rep_cnt);
3850 
3851 	if (!link.link_status)
3852 		goto out;
3853 
3854 	/* Full-duplex operation at all supported speeds */
3855 	link.link_duplex = RTE_ETH_LINK_FULL_DUPLEX;
3856 
3857 	/* Parse the link status */
3858 	switch (link_status.link_speed) {
3859 	case ICE_AQ_LINK_SPEED_10MB:
3860 		link.link_speed = RTE_ETH_SPEED_NUM_10M;
3861 		break;
3862 	case ICE_AQ_LINK_SPEED_100MB:
3863 		link.link_speed = RTE_ETH_SPEED_NUM_100M;
3864 		break;
3865 	case ICE_AQ_LINK_SPEED_1000MB:
3866 		link.link_speed = RTE_ETH_SPEED_NUM_1G;
3867 		break;
3868 	case ICE_AQ_LINK_SPEED_2500MB:
3869 		link.link_speed = RTE_ETH_SPEED_NUM_2_5G;
3870 		break;
3871 	case ICE_AQ_LINK_SPEED_5GB:
3872 		link.link_speed = RTE_ETH_SPEED_NUM_5G;
3873 		break;
3874 	case ICE_AQ_LINK_SPEED_10GB:
3875 		link.link_speed = RTE_ETH_SPEED_NUM_10G;
3876 		break;
3877 	case ICE_AQ_LINK_SPEED_20GB:
3878 		link.link_speed = RTE_ETH_SPEED_NUM_20G;
3879 		break;
3880 	case ICE_AQ_LINK_SPEED_25GB:
3881 		link.link_speed = RTE_ETH_SPEED_NUM_25G;
3882 		break;
3883 	case ICE_AQ_LINK_SPEED_40GB:
3884 		link.link_speed = RTE_ETH_SPEED_NUM_40G;
3885 		break;
3886 	case ICE_AQ_LINK_SPEED_50GB:
3887 		link.link_speed = RTE_ETH_SPEED_NUM_50G;
3888 		break;
3889 	case ICE_AQ_LINK_SPEED_100GB:
3890 		link.link_speed = RTE_ETH_SPEED_NUM_100G;
3891 		break;
3892 	case ICE_AQ_LINK_SPEED_UNKNOWN:
3893 		PMD_DRV_LOG(ERR, "Unknown link speed");
3894 		link.link_speed = RTE_ETH_SPEED_NUM_UNKNOWN;
3895 		break;
3896 	default:
3897 		PMD_DRV_LOG(ERR, "None link speed");
3898 		link.link_speed = RTE_ETH_SPEED_NUM_NONE;
3899 		break;
3900 	}
3901 
3902 	link.link_autoneg = !(dev->data->dev_conf.link_speeds &
3903 			      RTE_ETH_LINK_SPEED_FIXED);
3904 
3905 out:
3906 	ice_atomic_write_link_status(dev, &link);
3907 	if (link.link_status == old.link_status)
3908 		return -1;
3909 
3910 	return 0;
3911 }
3912 
3913 /* Force the physical link state by getting the current PHY capabilities from
3914  * hardware and setting the PHY config based on the determined capabilities. If
3915  * link changes, link event will be triggered because both the Enable Automatic
3916  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
3917  */
3918 static enum ice_status
3919 ice_force_phys_link_state(struct ice_hw *hw, bool link_up)
3920 {
3921 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3922 	struct ice_aqc_get_phy_caps_data *pcaps;
3923 	struct ice_port_info *pi;
3924 	enum ice_status status;
3925 
3926 	if (!hw || !hw->port_info)
3927 		return ICE_ERR_PARAM;
3928 
3929 	pi = hw->port_info;
3930 
3931 	pcaps = (struct ice_aqc_get_phy_caps_data *)
3932 		ice_malloc(hw, sizeof(*pcaps));
3933 	if (!pcaps)
3934 		return ICE_ERR_NO_MEMORY;
3935 
3936 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3937 				     pcaps, NULL);
3938 	if (status)
3939 		goto out;
3940 
3941 	/* No change in link */
3942 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
3943 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
3944 		goto out;
3945 
3946 	cfg.phy_type_low = pcaps->phy_type_low;
3947 	cfg.phy_type_high = pcaps->phy_type_high;
3948 	cfg.caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3949 	cfg.low_power_ctrl_an = pcaps->low_power_ctrl_an;
3950 	cfg.eee_cap = pcaps->eee_cap;
3951 	cfg.eeer_value = pcaps->eeer_value;
3952 	cfg.link_fec_opt = pcaps->link_fec_options;
3953 	if (link_up)
3954 		cfg.caps |= ICE_AQ_PHY_ENA_LINK;
3955 	else
3956 		cfg.caps &= ~ICE_AQ_PHY_ENA_LINK;
3957 
3958 	status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3959 
3960 out:
3961 	ice_free(hw, pcaps);
3962 	return status;
3963 }
3964 
3965 static int
3966 ice_dev_set_link_up(struct rte_eth_dev *dev)
3967 {
3968 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3969 
3970 	return ice_force_phys_link_state(hw, true);
3971 }
3972 
3973 static int
3974 ice_dev_set_link_down(struct rte_eth_dev *dev)
3975 {
3976 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3977 
3978 	return ice_force_phys_link_state(hw, false);
3979 }
3980 
3981 static int
3982 ice_mtu_set(struct rte_eth_dev *dev, uint16_t mtu __rte_unused)
3983 {
3984 	/* mtu setting is forbidden if port is start */
3985 	if (dev->data->dev_started != 0) {
3986 		PMD_DRV_LOG(ERR,
3987 			    "port %d must be stopped before configuration",
3988 			    dev->data->port_id);
3989 		return -EBUSY;
3990 	}
3991 
3992 	return 0;
3993 }
3994 
3995 static int ice_macaddr_set(struct rte_eth_dev *dev,
3996 			   struct rte_ether_addr *mac_addr)
3997 {
3998 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3999 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4000 	struct ice_vsi *vsi = pf->main_vsi;
4001 	struct ice_mac_filter *f;
4002 	uint8_t flags = 0;
4003 	int ret;
4004 
4005 	if (!rte_is_valid_assigned_ether_addr(mac_addr)) {
4006 		PMD_DRV_LOG(ERR, "Tried to set invalid MAC address.");
4007 		return -EINVAL;
4008 	}
4009 
4010 	TAILQ_FOREACH(f, &vsi->mac_list, next) {
4011 		if (rte_is_same_ether_addr(&pf->dev_addr, &f->mac_info.mac_addr))
4012 			break;
4013 	}
4014 
4015 	if (!f) {
4016 		PMD_DRV_LOG(ERR, "Failed to find filter for default mac");
4017 		return -EIO;
4018 	}
4019 
4020 	ret = ice_remove_mac_filter(vsi, &f->mac_info.mac_addr);
4021 	if (ret != ICE_SUCCESS) {
4022 		PMD_DRV_LOG(ERR, "Failed to delete mac filter");
4023 		return -EIO;
4024 	}
4025 	ret = ice_add_mac_filter(vsi, mac_addr);
4026 	if (ret != ICE_SUCCESS) {
4027 		PMD_DRV_LOG(ERR, "Failed to add mac filter");
4028 		return -EIO;
4029 	}
4030 	rte_ether_addr_copy(mac_addr, &pf->dev_addr);
4031 
4032 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4033 	ret = ice_aq_manage_mac_write(hw, mac_addr->addr_bytes, flags, NULL);
4034 	if (ret != ICE_SUCCESS)
4035 		PMD_DRV_LOG(ERR, "Failed to set manage mac");
4036 
4037 	return 0;
4038 }
4039 
4040 /* Add a MAC address, and update filters */
4041 static int
4042 ice_macaddr_add(struct rte_eth_dev *dev,
4043 		struct rte_ether_addr *mac_addr,
4044 		__rte_unused uint32_t index,
4045 		__rte_unused uint32_t pool)
4046 {
4047 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4048 	struct ice_vsi *vsi = pf->main_vsi;
4049 	int ret;
4050 
4051 	ret = ice_add_mac_filter(vsi, mac_addr);
4052 	if (ret != ICE_SUCCESS) {
4053 		PMD_DRV_LOG(ERR, "Failed to add MAC filter");
4054 		return -EINVAL;
4055 	}
4056 
4057 	return ICE_SUCCESS;
4058 }
4059 
4060 /* Remove a MAC address, and update filters */
4061 static void
4062 ice_macaddr_remove(struct rte_eth_dev *dev, uint32_t index)
4063 {
4064 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4065 	struct ice_vsi *vsi = pf->main_vsi;
4066 	struct rte_eth_dev_data *data = dev->data;
4067 	struct rte_ether_addr *macaddr;
4068 	int ret;
4069 
4070 	macaddr = &data->mac_addrs[index];
4071 	ret = ice_remove_mac_filter(vsi, macaddr);
4072 	if (ret) {
4073 		PMD_DRV_LOG(ERR, "Failed to remove MAC filter");
4074 		return;
4075 	}
4076 }
4077 
4078 static int
4079 ice_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
4080 {
4081 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4082 	struct ice_vlan vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, vlan_id);
4083 	struct ice_vsi *vsi = pf->main_vsi;
4084 	int ret;
4085 
4086 	PMD_INIT_FUNC_TRACE();
4087 
4088 	/**
4089 	 * Vlan 0 is the generic filter for untagged packets
4090 	 * and can't be removed or added by user.
4091 	 */
4092 	if (vlan_id == 0)
4093 		return 0;
4094 
4095 	if (on) {
4096 		ret = ice_add_vlan_filter(vsi, &vlan);
4097 		if (ret < 0) {
4098 			PMD_DRV_LOG(ERR, "Failed to add vlan filter");
4099 			return -EINVAL;
4100 		}
4101 	} else {
4102 		ret = ice_remove_vlan_filter(vsi, &vlan);
4103 		if (ret < 0) {
4104 			PMD_DRV_LOG(ERR, "Failed to remove vlan filter");
4105 			return -EINVAL;
4106 		}
4107 	}
4108 
4109 	return 0;
4110 }
4111 
4112 /* In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are
4113  * based on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8)
4114  * doesn't matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
4115  * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
4116  *
4117  * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
4118  * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
4119  * traffic in SVM, since the VLAN TPID isn't part of filtering.
4120  *
4121  * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
4122  * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
4123  * part of filtering.
4124  */
4125 static int
4126 ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
4127 {
4128 	struct ice_vlan vlan;
4129 	int err;
4130 
4131 	vlan = ICE_VLAN(0, 0);
4132 	err = ice_add_vlan_filter(vsi, &vlan);
4133 	if (err) {
4134 		PMD_DRV_LOG(DEBUG, "Failed to add VLAN ID 0");
4135 		return err;
4136 	}
4137 
4138 	/* in SVM both VLAN 0 filters are identical */
4139 	if (!ice_is_dvm_ena(&vsi->adapter->hw))
4140 		return 0;
4141 
4142 	vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, 0);
4143 	err = ice_add_vlan_filter(vsi, &vlan);
4144 	if (err) {
4145 		PMD_DRV_LOG(DEBUG, "Failed to add VLAN ID 0 in double VLAN mode");
4146 		return err;
4147 	}
4148 
4149 	return 0;
4150 }
4151 
4152 /*
4153  * Delete the VLAN 0 filters in the same manner that they were added in
4154  * ice_vsi_add_vlan_zero.
4155  */
4156 static int
4157 ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
4158 {
4159 	struct ice_vlan vlan;
4160 	int err;
4161 
4162 	vlan = ICE_VLAN(0, 0);
4163 	err = ice_remove_vlan_filter(vsi, &vlan);
4164 	if (err) {
4165 		PMD_DRV_LOG(DEBUG, "Failed to remove VLAN ID 0");
4166 		return err;
4167 	}
4168 
4169 	/* in SVM both VLAN 0 filters are identical */
4170 	if (!ice_is_dvm_ena(&vsi->adapter->hw))
4171 		return 0;
4172 
4173 	vlan = ICE_VLAN(RTE_ETHER_TYPE_VLAN, 0);
4174 	err = ice_remove_vlan_filter(vsi, &vlan);
4175 	if (err) {
4176 		PMD_DRV_LOG(DEBUG, "Failed to remove VLAN ID 0 in double VLAN mode");
4177 		return err;
4178 	}
4179 
4180 	return 0;
4181 }
4182 
4183 /* Configure vlan filter on or off */
4184 static int
4185 ice_vsi_config_vlan_filter(struct ice_vsi *vsi, bool on)
4186 {
4187 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4188 	struct ice_vsi_ctx ctxt;
4189 	uint8_t sw_flags2;
4190 	int ret = 0;
4191 
4192 	sw_flags2 = ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4193 
4194 	if (on)
4195 		vsi->info.sw_flags2 |= sw_flags2;
4196 	else
4197 		vsi->info.sw_flags2 &= ~sw_flags2;
4198 
4199 	vsi->info.sw_id = hw->port_info->sw_id;
4200 	(void)rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
4201 	ctxt.info.valid_sections =
4202 		rte_cpu_to_le_16(ICE_AQ_VSI_PROP_SW_VALID |
4203 				 ICE_AQ_VSI_PROP_SECURITY_VALID);
4204 	ctxt.vsi_num = vsi->vsi_id;
4205 
4206 	ret = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
4207 	if (ret) {
4208 		PMD_DRV_LOG(INFO, "Update VSI failed to %s vlan rx pruning",
4209 			    on ? "enable" : "disable");
4210 		return -EINVAL;
4211 	} else {
4212 		vsi->info.valid_sections |=
4213 			rte_cpu_to_le_16(ICE_AQ_VSI_PROP_SW_VALID |
4214 					 ICE_AQ_VSI_PROP_SECURITY_VALID);
4215 	}
4216 
4217 	/* consist with other drivers, allow untagged packet when vlan filter on */
4218 	if (on)
4219 		ret = ice_vsi_add_vlan_zero(vsi);
4220 	else
4221 		ret = ice_vsi_del_vlan_zero(vsi);
4222 
4223 	return 0;
4224 }
4225 
4226 /* Manage VLAN stripping for the VSI for Rx */
4227 static int
4228 ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
4229 {
4230 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4231 	struct ice_vsi_ctx ctxt;
4232 	enum ice_status status;
4233 	int err = 0;
4234 
4235 	/* do not allow modifying VLAN stripping when a port VLAN is configured
4236 	 * on this VSI
4237 	 */
4238 	if (vsi->info.port_based_inner_vlan)
4239 		return 0;
4240 
4241 	memset(&ctxt, 0, sizeof(ctxt));
4242 
4243 	if (ena)
4244 		/* Strip VLAN tag from Rx packet and put it in the desc */
4245 		ctxt.info.inner_vlan_flags =
4246 					ICE_AQ_VSI_INNER_VLAN_EMODE_STR_BOTH;
4247 	else
4248 		/* Disable stripping. Leave tag in packet */
4249 		ctxt.info.inner_vlan_flags =
4250 					ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4251 
4252 	/* Allow all packets untagged/tagged */
4253 	ctxt.info.inner_vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL;
4254 
4255 	ctxt.info.valid_sections = rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID);
4256 
4257 	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
4258 	if (status) {
4259 		PMD_DRV_LOG(ERR, "Update VSI failed to %s vlan stripping",
4260 			    ena ? "enable" : "disable");
4261 		err = -EIO;
4262 	} else {
4263 		vsi->info.inner_vlan_flags = ctxt.info.inner_vlan_flags;
4264 	}
4265 
4266 	return err;
4267 }
4268 
4269 static int
4270 ice_vsi_ena_inner_stripping(struct ice_vsi *vsi)
4271 {
4272 	return ice_vsi_manage_vlan_stripping(vsi, true);
4273 }
4274 
4275 static int
4276 ice_vsi_dis_inner_stripping(struct ice_vsi *vsi)
4277 {
4278 	return ice_vsi_manage_vlan_stripping(vsi, false);
4279 }
4280 
4281 static int ice_vsi_ena_outer_stripping(struct ice_vsi *vsi)
4282 {
4283 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4284 	struct ice_vsi_ctx ctxt;
4285 	enum ice_status status;
4286 	int err = 0;
4287 
4288 	/* do not allow modifying VLAN stripping when a port VLAN is configured
4289 	 * on this VSI
4290 	 */
4291 	if (vsi->info.port_based_outer_vlan)
4292 		return 0;
4293 
4294 	memset(&ctxt, 0, sizeof(ctxt));
4295 
4296 	ctxt.info.valid_sections =
4297 		rte_cpu_to_le_16(ICE_AQ_VSI_PROP_OUTER_TAG_VALID);
4298 	/* clear current outer VLAN strip settings */
4299 	ctxt.info.outer_vlan_flags = vsi->info.outer_vlan_flags &
4300 		~(ICE_AQ_VSI_OUTER_VLAN_EMODE_M | ICE_AQ_VSI_OUTER_TAG_TYPE_M);
4301 	ctxt.info.outer_vlan_flags |=
4302 		(ICE_AQ_VSI_OUTER_VLAN_EMODE_SHOW_BOTH <<
4303 		 ICE_AQ_VSI_OUTER_VLAN_EMODE_S) |
4304 		(ICE_AQ_VSI_OUTER_TAG_VLAN_8100 <<
4305 		 ICE_AQ_VSI_OUTER_TAG_TYPE_S);
4306 
4307 	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
4308 	if (status) {
4309 		PMD_DRV_LOG(ERR, "Update VSI failed to enable outer VLAN stripping");
4310 		err = -EIO;
4311 	} else {
4312 		vsi->info.outer_vlan_flags = ctxt.info.outer_vlan_flags;
4313 	}
4314 
4315 	return err;
4316 }
4317 
4318 static int
4319 ice_vsi_dis_outer_stripping(struct ice_vsi *vsi)
4320 {
4321 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4322 	struct ice_vsi_ctx ctxt;
4323 	enum ice_status status;
4324 	int err = 0;
4325 
4326 	if (vsi->info.port_based_outer_vlan)
4327 		return 0;
4328 
4329 	memset(&ctxt, 0, sizeof(ctxt));
4330 
4331 	ctxt.info.valid_sections =
4332 		rte_cpu_to_le_16(ICE_AQ_VSI_PROP_OUTER_TAG_VALID);
4333 	/* clear current outer VLAN strip settings */
4334 	ctxt.info.outer_vlan_flags = vsi->info.outer_vlan_flags &
4335 		~ICE_AQ_VSI_OUTER_VLAN_EMODE_M;
4336 	ctxt.info.outer_vlan_flags |= ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING <<
4337 		ICE_AQ_VSI_OUTER_VLAN_EMODE_S;
4338 
4339 	status = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
4340 	if (status) {
4341 		PMD_DRV_LOG(ERR, "Update VSI failed to disable outer VLAN stripping");
4342 		err = -EIO;
4343 	} else {
4344 		vsi->info.outer_vlan_flags = ctxt.info.outer_vlan_flags;
4345 	}
4346 
4347 	return err;
4348 }
4349 
4350 static int
4351 ice_vsi_config_vlan_stripping(struct ice_vsi *vsi, bool ena)
4352 {
4353 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4354 	int ret;
4355 
4356 	if (ice_is_dvm_ena(hw)) {
4357 		if (ena)
4358 			ret = ice_vsi_ena_outer_stripping(vsi);
4359 		else
4360 			ret = ice_vsi_dis_outer_stripping(vsi);
4361 	} else {
4362 		if (ena)
4363 			ret = ice_vsi_ena_inner_stripping(vsi);
4364 		else
4365 			ret = ice_vsi_dis_inner_stripping(vsi);
4366 	}
4367 
4368 	return ret;
4369 }
4370 
4371 static int
4372 ice_vlan_offload_set(struct rte_eth_dev *dev, int mask)
4373 {
4374 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4375 	struct ice_vsi *vsi = pf->main_vsi;
4376 	struct rte_eth_rxmode *rxmode;
4377 
4378 	rxmode = &dev->data->dev_conf.rxmode;
4379 	if (mask & RTE_ETH_VLAN_FILTER_MASK) {
4380 		if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_FILTER)
4381 			ice_vsi_config_vlan_filter(vsi, true);
4382 		else
4383 			ice_vsi_config_vlan_filter(vsi, false);
4384 	}
4385 
4386 	if (mask & RTE_ETH_VLAN_STRIP_MASK) {
4387 		if (rxmode->offloads & RTE_ETH_RX_OFFLOAD_VLAN_STRIP)
4388 			ice_vsi_config_vlan_stripping(vsi, true);
4389 		else
4390 			ice_vsi_config_vlan_stripping(vsi, false);
4391 	}
4392 
4393 	return 0;
4394 }
4395 
4396 static int
4397 ice_get_rss_lut(struct ice_vsi *vsi, uint8_t *lut, uint16_t lut_size)
4398 {
4399 	struct ice_aq_get_set_rss_lut_params lut_params;
4400 	struct ice_pf *pf = ICE_VSI_TO_PF(vsi);
4401 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4402 	int ret;
4403 
4404 	if (!lut)
4405 		return -EINVAL;
4406 
4407 	if (pf->flags & ICE_FLAG_RSS_AQ_CAPABLE) {
4408 		lut_params.vsi_handle = vsi->idx;
4409 		lut_params.lut_size = lut_size;
4410 		lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
4411 		lut_params.lut = lut;
4412 		lut_params.global_lut_id = 0;
4413 		ret = ice_aq_get_rss_lut(hw, &lut_params);
4414 		if (ret) {
4415 			PMD_DRV_LOG(ERR, "Failed to get RSS lookup table");
4416 			return -EINVAL;
4417 		}
4418 	} else {
4419 		uint64_t *lut_dw = (uint64_t *)lut;
4420 		uint16_t i, lut_size_dw = lut_size / 4;
4421 
4422 		for (i = 0; i < lut_size_dw; i++)
4423 			lut_dw[i] = ICE_READ_REG(hw, PFQF_HLUT(i));
4424 	}
4425 
4426 	return 0;
4427 }
4428 
4429 static int
4430 ice_set_rss_lut(struct ice_vsi *vsi, uint8_t *lut, uint16_t lut_size)
4431 {
4432 	struct ice_aq_get_set_rss_lut_params lut_params;
4433 	struct ice_pf *pf;
4434 	struct ice_hw *hw;
4435 	int ret;
4436 
4437 	if (!vsi || !lut)
4438 		return -EINVAL;
4439 
4440 	pf = ICE_VSI_TO_PF(vsi);
4441 	hw = ICE_VSI_TO_HW(vsi);
4442 
4443 	if (pf->flags & ICE_FLAG_RSS_AQ_CAPABLE) {
4444 		lut_params.vsi_handle = vsi->idx;
4445 		lut_params.lut_size = lut_size;
4446 		lut_params.lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
4447 		lut_params.lut = lut;
4448 		lut_params.global_lut_id = 0;
4449 		ret = ice_aq_set_rss_lut(hw, &lut_params);
4450 		if (ret) {
4451 			PMD_DRV_LOG(ERR, "Failed to set RSS lookup table");
4452 			return -EINVAL;
4453 		}
4454 	} else {
4455 		uint64_t *lut_dw = (uint64_t *)lut;
4456 		uint16_t i, lut_size_dw = lut_size / 4;
4457 
4458 		for (i = 0; i < lut_size_dw; i++)
4459 			ICE_WRITE_REG(hw, PFQF_HLUT(i), lut_dw[i]);
4460 
4461 		ice_flush(hw);
4462 	}
4463 
4464 	return 0;
4465 }
4466 
4467 static int
4468 ice_rss_reta_update(struct rte_eth_dev *dev,
4469 		    struct rte_eth_rss_reta_entry64 *reta_conf,
4470 		    uint16_t reta_size)
4471 {
4472 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4473 	uint16_t i, lut_size = pf->hash_lut_size;
4474 	uint16_t idx, shift;
4475 	uint8_t *lut;
4476 	int ret;
4477 
4478 	if (reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128 &&
4479 	    reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512 &&
4480 	    reta_size != ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K) {
4481 		PMD_DRV_LOG(ERR,
4482 			    "The size of hash lookup table configured (%d)"
4483 			    "doesn't match the number hardware can "
4484 			    "supported (128, 512, 2048)",
4485 			    reta_size);
4486 		return -EINVAL;
4487 	}
4488 
4489 	/* It MUST use the current LUT size to get the RSS lookup table,
4490 	 * otherwise if will fail with -100 error code.
4491 	 */
4492 	lut = rte_zmalloc(NULL,  RTE_MAX(reta_size, lut_size), 0);
4493 	if (!lut) {
4494 		PMD_DRV_LOG(ERR, "No memory can be allocated");
4495 		return -ENOMEM;
4496 	}
4497 	ret = ice_get_rss_lut(pf->main_vsi, lut, lut_size);
4498 	if (ret)
4499 		goto out;
4500 
4501 	for (i = 0; i < reta_size; i++) {
4502 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
4503 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
4504 		if (reta_conf[idx].mask & (1ULL << shift))
4505 			lut[i] = reta_conf[idx].reta[shift];
4506 	}
4507 	ret = ice_set_rss_lut(pf->main_vsi, lut, reta_size);
4508 	if (ret == 0 && lut_size != reta_size) {
4509 		PMD_DRV_LOG(INFO,
4510 			    "The size of hash lookup table is changed from (%d) to (%d)",
4511 			    lut_size, reta_size);
4512 		pf->hash_lut_size = reta_size;
4513 	}
4514 
4515 out:
4516 	rte_free(lut);
4517 
4518 	return ret;
4519 }
4520 
4521 static int
4522 ice_rss_reta_query(struct rte_eth_dev *dev,
4523 		   struct rte_eth_rss_reta_entry64 *reta_conf,
4524 		   uint16_t reta_size)
4525 {
4526 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4527 	uint16_t i, lut_size = pf->hash_lut_size;
4528 	uint16_t idx, shift;
4529 	uint8_t *lut;
4530 	int ret;
4531 
4532 	if (reta_size != lut_size) {
4533 		PMD_DRV_LOG(ERR,
4534 			    "The size of hash lookup table configured (%d)"
4535 			    "doesn't match the number hardware can "
4536 			    "supported (%d)",
4537 			    reta_size, lut_size);
4538 		return -EINVAL;
4539 	}
4540 
4541 	lut = rte_zmalloc(NULL, reta_size, 0);
4542 	if (!lut) {
4543 		PMD_DRV_LOG(ERR, "No memory can be allocated");
4544 		return -ENOMEM;
4545 	}
4546 
4547 	ret = ice_get_rss_lut(pf->main_vsi, lut, reta_size);
4548 	if (ret)
4549 		goto out;
4550 
4551 	for (i = 0; i < reta_size; i++) {
4552 		idx = i / RTE_ETH_RETA_GROUP_SIZE;
4553 		shift = i % RTE_ETH_RETA_GROUP_SIZE;
4554 		if (reta_conf[idx].mask & (1ULL << shift))
4555 			reta_conf[idx].reta[shift] = lut[i];
4556 	}
4557 
4558 out:
4559 	rte_free(lut);
4560 
4561 	return ret;
4562 }
4563 
4564 static int
4565 ice_set_rss_key(struct ice_vsi *vsi, uint8_t *key, uint8_t key_len)
4566 {
4567 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4568 	int ret = 0;
4569 
4570 	if (!key || key_len == 0) {
4571 		PMD_DRV_LOG(DEBUG, "No key to be configured");
4572 		return 0;
4573 	} else if (key_len != (VSIQF_HKEY_MAX_INDEX + 1) *
4574 		   sizeof(uint32_t)) {
4575 		PMD_DRV_LOG(ERR, "Invalid key length %u", key_len);
4576 		return -EINVAL;
4577 	}
4578 
4579 	struct ice_aqc_get_set_rss_keys *key_dw =
4580 		(struct ice_aqc_get_set_rss_keys *)key;
4581 
4582 	ret = ice_aq_set_rss_key(hw, vsi->idx, key_dw);
4583 	if (ret) {
4584 		PMD_DRV_LOG(ERR, "Failed to configure RSS key via AQ");
4585 		ret = -EINVAL;
4586 	}
4587 
4588 	return ret;
4589 }
4590 
4591 static int
4592 ice_get_rss_key(struct ice_vsi *vsi, uint8_t *key, uint8_t *key_len)
4593 {
4594 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4595 	int ret;
4596 
4597 	if (!key || !key_len)
4598 		return -EINVAL;
4599 
4600 	ret = ice_aq_get_rss_key
4601 		(hw, vsi->idx,
4602 		 (struct ice_aqc_get_set_rss_keys *)key);
4603 	if (ret) {
4604 		PMD_DRV_LOG(ERR, "Failed to get RSS key via AQ");
4605 		return -EINVAL;
4606 	}
4607 	*key_len = (VSIQF_HKEY_MAX_INDEX + 1) * sizeof(uint32_t);
4608 
4609 	return 0;
4610 }
4611 
4612 static int
4613 ice_rss_hash_update(struct rte_eth_dev *dev,
4614 		    struct rte_eth_rss_conf *rss_conf)
4615 {
4616 	enum ice_status status = ICE_SUCCESS;
4617 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4618 	struct ice_vsi *vsi = pf->main_vsi;
4619 
4620 	/* set hash key */
4621 	status = ice_set_rss_key(vsi, rss_conf->rss_key, rss_conf->rss_key_len);
4622 	if (status)
4623 		return status;
4624 
4625 	if (rss_conf->rss_hf == 0) {
4626 		pf->rss_hf = 0;
4627 		return 0;
4628 	}
4629 
4630 	/* RSS hash configuration */
4631 	ice_rss_hash_set(pf, rss_conf->rss_hf);
4632 
4633 	return 0;
4634 }
4635 
4636 static int
4637 ice_rss_hash_conf_get(struct rte_eth_dev *dev,
4638 		      struct rte_eth_rss_conf *rss_conf)
4639 {
4640 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4641 	struct ice_vsi *vsi = pf->main_vsi;
4642 
4643 	ice_get_rss_key(vsi, rss_conf->rss_key,
4644 			&rss_conf->rss_key_len);
4645 
4646 	rss_conf->rss_hf = pf->rss_hf;
4647 	return 0;
4648 }
4649 
4650 static int
4651 ice_promisc_enable(struct rte_eth_dev *dev)
4652 {
4653 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4654 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4655 	struct ice_vsi *vsi = pf->main_vsi;
4656 	enum ice_status status;
4657 	uint8_t pmask;
4658 	int ret = 0;
4659 
4660 	pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX |
4661 		ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
4662 
4663 	status = ice_set_vsi_promisc(hw, vsi->idx, pmask, 0);
4664 	switch (status) {
4665 	case ICE_ERR_ALREADY_EXISTS:
4666 		PMD_DRV_LOG(DEBUG, "Promisc mode has already been enabled");
4667 	case ICE_SUCCESS:
4668 		break;
4669 	default:
4670 		PMD_DRV_LOG(ERR, "Failed to enable promisc, err=%d", status);
4671 		ret = -EAGAIN;
4672 	}
4673 
4674 	return ret;
4675 }
4676 
4677 static int
4678 ice_promisc_disable(struct rte_eth_dev *dev)
4679 {
4680 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4681 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4682 	struct ice_vsi *vsi = pf->main_vsi;
4683 	enum ice_status status;
4684 	uint8_t pmask;
4685 	int ret = 0;
4686 
4687 	if (dev->data->all_multicast == 1)
4688 		pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX;
4689 	else
4690 		pmask = ICE_PROMISC_UCAST_RX | ICE_PROMISC_UCAST_TX |
4691 			ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
4692 
4693 	status = ice_clear_vsi_promisc(hw, vsi->idx, pmask, 0);
4694 	if (status != ICE_SUCCESS) {
4695 		PMD_DRV_LOG(ERR, "Failed to clear promisc, err=%d", status);
4696 		ret = -EAGAIN;
4697 	}
4698 
4699 	return ret;
4700 }
4701 
4702 static int
4703 ice_allmulti_enable(struct rte_eth_dev *dev)
4704 {
4705 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4706 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4707 	struct ice_vsi *vsi = pf->main_vsi;
4708 	enum ice_status status;
4709 	uint8_t pmask;
4710 	int ret = 0;
4711 
4712 	pmask = ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
4713 
4714 	status = ice_set_vsi_promisc(hw, vsi->idx, pmask, 0);
4715 
4716 	switch (status) {
4717 	case ICE_ERR_ALREADY_EXISTS:
4718 		PMD_DRV_LOG(DEBUG, "Allmulti has already been enabled");
4719 	case ICE_SUCCESS:
4720 		break;
4721 	default:
4722 		PMD_DRV_LOG(ERR, "Failed to enable allmulti, err=%d", status);
4723 		ret = -EAGAIN;
4724 	}
4725 
4726 	return ret;
4727 }
4728 
4729 static int
4730 ice_allmulti_disable(struct rte_eth_dev *dev)
4731 {
4732 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4733 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4734 	struct ice_vsi *vsi = pf->main_vsi;
4735 	enum ice_status status;
4736 	uint8_t pmask;
4737 	int ret = 0;
4738 
4739 	if (dev->data->promiscuous == 1)
4740 		return 0; /* must remain in all_multicast mode */
4741 
4742 	pmask = ICE_PROMISC_MCAST_RX | ICE_PROMISC_MCAST_TX;
4743 
4744 	status = ice_clear_vsi_promisc(hw, vsi->idx, pmask, 0);
4745 	if (status != ICE_SUCCESS) {
4746 		PMD_DRV_LOG(ERR, "Failed to clear allmulti, err=%d", status);
4747 		ret = -EAGAIN;
4748 	}
4749 
4750 	return ret;
4751 }
4752 
4753 static int ice_rx_queue_intr_enable(struct rte_eth_dev *dev,
4754 				    uint16_t queue_id)
4755 {
4756 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
4757 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
4758 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4759 	uint32_t val;
4760 	uint16_t msix_intr;
4761 
4762 	msix_intr = rte_intr_vec_list_index_get(intr_handle, queue_id);
4763 
4764 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
4765 	      GLINT_DYN_CTL_ITR_INDX_M;
4766 	val &= ~GLINT_DYN_CTL_WB_ON_ITR_M;
4767 
4768 	ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), val);
4769 	rte_intr_ack(pci_dev->intr_handle);
4770 
4771 	return 0;
4772 }
4773 
4774 static int ice_rx_queue_intr_disable(struct rte_eth_dev *dev,
4775 				     uint16_t queue_id)
4776 {
4777 	struct rte_pci_device *pci_dev = ICE_DEV_TO_PCI(dev);
4778 	struct rte_intr_handle *intr_handle = pci_dev->intr_handle;
4779 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4780 	uint16_t msix_intr;
4781 
4782 	msix_intr = rte_intr_vec_list_index_get(intr_handle, queue_id);
4783 
4784 	ICE_WRITE_REG(hw, GLINT_DYN_CTL(msix_intr), GLINT_DYN_CTL_WB_ON_ITR_M);
4785 
4786 	return 0;
4787 }
4788 
4789 static int
4790 ice_fw_version_get(struct rte_eth_dev *dev, char *fw_version, size_t fw_size)
4791 {
4792 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4793 	u8 ver, patch;
4794 	u16 build;
4795 	int ret;
4796 
4797 	ver = hw->flash.orom.major;
4798 	patch = hw->flash.orom.patch;
4799 	build = hw->flash.orom.build;
4800 
4801 	ret = snprintf(fw_version, fw_size,
4802 			"%x.%02x 0x%08x %d.%d.%d",
4803 			hw->flash.nvm.major,
4804 			hw->flash.nvm.minor,
4805 			hw->flash.nvm.eetrack,
4806 			ver, build, patch);
4807 	if (ret < 0)
4808 		return -EINVAL;
4809 
4810 	/* add the size of '\0' */
4811 	ret += 1;
4812 	if (fw_size < (size_t)ret)
4813 		return ret;
4814 	else
4815 		return 0;
4816 }
4817 
4818 static int
4819 ice_vsi_vlan_pvid_set(struct ice_vsi *vsi, struct ice_vsi_vlan_pvid_info *info)
4820 {
4821 	struct ice_hw *hw;
4822 	struct ice_vsi_ctx ctxt;
4823 	uint8_t vlan_flags = 0;
4824 	int ret;
4825 
4826 	if (!vsi || !info) {
4827 		PMD_DRV_LOG(ERR, "invalid parameters");
4828 		return -EINVAL;
4829 	}
4830 
4831 	if (info->on) {
4832 		vsi->info.port_based_inner_vlan = info->config.pvid;
4833 		/**
4834 		 * If insert pvid is enabled, only tagged pkts are
4835 		 * allowed to be sent out.
4836 		 */
4837 		vlan_flags = ICE_AQ_VSI_INNER_VLAN_INSERT_PVID |
4838 			     ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTUNTAGGED;
4839 	} else {
4840 		vsi->info.port_based_inner_vlan = 0;
4841 		if (info->config.reject.tagged == 0)
4842 			vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTTAGGED;
4843 
4844 		if (info->config.reject.untagged == 0)
4845 			vlan_flags |= ICE_AQ_VSI_INNER_VLAN_TX_MODE_ACCEPTUNTAGGED;
4846 	}
4847 	vsi->info.inner_vlan_flags &= ~(ICE_AQ_VSI_INNER_VLAN_INSERT_PVID |
4848 				  ICE_AQ_VSI_INNER_VLAN_EMODE_M);
4849 	vsi->info.inner_vlan_flags |= vlan_flags;
4850 	memset(&ctxt, 0, sizeof(ctxt));
4851 	rte_memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info));
4852 	ctxt.info.valid_sections =
4853 		rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID);
4854 	ctxt.vsi_num = vsi->vsi_id;
4855 
4856 	hw = ICE_VSI_TO_HW(vsi);
4857 	ret = ice_update_vsi(hw, vsi->idx, &ctxt, NULL);
4858 	if (ret != ICE_SUCCESS) {
4859 		PMD_DRV_LOG(ERR,
4860 			    "update VSI for VLAN insert failed, err %d",
4861 			    ret);
4862 		return -EINVAL;
4863 	}
4864 
4865 	vsi->info.valid_sections |=
4866 		rte_cpu_to_le_16(ICE_AQ_VSI_PROP_VLAN_VALID);
4867 
4868 	return ret;
4869 }
4870 
4871 static int
4872 ice_vlan_pvid_set(struct rte_eth_dev *dev, uint16_t pvid, int on)
4873 {
4874 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
4875 	struct ice_vsi *vsi = pf->main_vsi;
4876 	struct rte_eth_dev_data *data = pf->dev_data;
4877 	struct ice_vsi_vlan_pvid_info info;
4878 	int ret;
4879 
4880 	memset(&info, 0, sizeof(info));
4881 	info.on = on;
4882 	if (info.on) {
4883 		info.config.pvid = pvid;
4884 	} else {
4885 		info.config.reject.tagged =
4886 			data->dev_conf.txmode.hw_vlan_reject_tagged;
4887 		info.config.reject.untagged =
4888 			data->dev_conf.txmode.hw_vlan_reject_untagged;
4889 	}
4890 
4891 	ret = ice_vsi_vlan_pvid_set(vsi, &info);
4892 	if (ret < 0) {
4893 		PMD_DRV_LOG(ERR, "Failed to set pvid.");
4894 		return -EINVAL;
4895 	}
4896 
4897 	return 0;
4898 }
4899 
4900 static int
4901 ice_get_eeprom_length(struct rte_eth_dev *dev)
4902 {
4903 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4904 
4905 	return hw->flash.flash_size;
4906 }
4907 
4908 static int
4909 ice_get_eeprom(struct rte_eth_dev *dev,
4910 	       struct rte_dev_eeprom_info *eeprom)
4911 {
4912 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4913 	enum ice_status status = ICE_SUCCESS;
4914 	uint8_t *data = eeprom->data;
4915 
4916 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
4917 
4918 	status = ice_acquire_nvm(hw, ICE_RES_READ);
4919 	if (status) {
4920 		PMD_DRV_LOG(ERR, "acquire nvm failed.");
4921 		return -EIO;
4922 	}
4923 
4924 	status = ice_read_flat_nvm(hw, eeprom->offset, &eeprom->length,
4925 				   data, false);
4926 
4927 	ice_release_nvm(hw);
4928 
4929 	if (status) {
4930 		PMD_DRV_LOG(ERR, "EEPROM read failed.");
4931 		return -EIO;
4932 	}
4933 
4934 	return 0;
4935 }
4936 
4937 static void
4938 ice_stat_update_32(struct ice_hw *hw,
4939 		   uint32_t reg,
4940 		   bool offset_loaded,
4941 		   uint64_t *offset,
4942 		   uint64_t *stat)
4943 {
4944 	uint64_t new_data;
4945 
4946 	new_data = (uint64_t)ICE_READ_REG(hw, reg);
4947 	if (!offset_loaded)
4948 		*offset = new_data;
4949 
4950 	if (new_data >= *offset)
4951 		*stat = (uint64_t)(new_data - *offset);
4952 	else
4953 		*stat = (uint64_t)((new_data +
4954 				    ((uint64_t)1 << ICE_32_BIT_WIDTH))
4955 				   - *offset);
4956 }
4957 
4958 static void
4959 ice_stat_update_40(struct ice_hw *hw,
4960 		   uint32_t hireg,
4961 		   uint32_t loreg,
4962 		   bool offset_loaded,
4963 		   uint64_t *offset,
4964 		   uint64_t *stat)
4965 {
4966 	uint64_t new_data;
4967 
4968 	new_data = (uint64_t)ICE_READ_REG(hw, loreg);
4969 	new_data |= (uint64_t)(ICE_READ_REG(hw, hireg) & ICE_8_BIT_MASK) <<
4970 		    ICE_32_BIT_WIDTH;
4971 
4972 	if (!offset_loaded)
4973 		*offset = new_data;
4974 
4975 	if (new_data >= *offset)
4976 		*stat = new_data - *offset;
4977 	else
4978 		*stat = (uint64_t)((new_data +
4979 				    ((uint64_t)1 << ICE_40_BIT_WIDTH)) -
4980 				   *offset);
4981 
4982 	*stat &= ICE_40_BIT_MASK;
4983 }
4984 
4985 /* Get all the statistics of a VSI */
4986 static void
4987 ice_update_vsi_stats(struct ice_vsi *vsi)
4988 {
4989 	struct ice_eth_stats *oes = &vsi->eth_stats_offset;
4990 	struct ice_eth_stats *nes = &vsi->eth_stats;
4991 	struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
4992 	int idx = rte_le_to_cpu_16(vsi->vsi_id);
4993 
4994 	ice_stat_update_40(hw, GLV_GORCH(idx), GLV_GORCL(idx),
4995 			   vsi->offset_loaded, &oes->rx_bytes,
4996 			   &nes->rx_bytes);
4997 	ice_stat_update_40(hw, GLV_UPRCH(idx), GLV_UPRCL(idx),
4998 			   vsi->offset_loaded, &oes->rx_unicast,
4999 			   &nes->rx_unicast);
5000 	ice_stat_update_40(hw, GLV_MPRCH(idx), GLV_MPRCL(idx),
5001 			   vsi->offset_loaded, &oes->rx_multicast,
5002 			   &nes->rx_multicast);
5003 	ice_stat_update_40(hw, GLV_BPRCH(idx), GLV_BPRCL(idx),
5004 			   vsi->offset_loaded, &oes->rx_broadcast,
5005 			   &nes->rx_broadcast);
5006 	/* enlarge the limitation when rx_bytes overflowed */
5007 	if (vsi->offset_loaded) {
5008 		if (ICE_RXTX_BYTES_LOW(vsi->old_rx_bytes) > nes->rx_bytes)
5009 			nes->rx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
5010 		nes->rx_bytes += ICE_RXTX_BYTES_HIGH(vsi->old_rx_bytes);
5011 	}
5012 	vsi->old_rx_bytes = nes->rx_bytes;
5013 	/* exclude CRC bytes */
5014 	nes->rx_bytes -= (nes->rx_unicast + nes->rx_multicast +
5015 			  nes->rx_broadcast) * RTE_ETHER_CRC_LEN;
5016 
5017 	ice_stat_update_32(hw, GLV_RDPC(idx), vsi->offset_loaded,
5018 			   &oes->rx_discards, &nes->rx_discards);
5019 	/* GLV_REPC not supported */
5020 	/* GLV_RMPC not supported */
5021 	ice_stat_update_32(hw, GLSWID_RUPP(idx), vsi->offset_loaded,
5022 			   &oes->rx_unknown_protocol,
5023 			   &nes->rx_unknown_protocol);
5024 	ice_stat_update_40(hw, GLV_GOTCH(idx), GLV_GOTCL(idx),
5025 			   vsi->offset_loaded, &oes->tx_bytes,
5026 			   &nes->tx_bytes);
5027 	ice_stat_update_40(hw, GLV_UPTCH(idx), GLV_UPTCL(idx),
5028 			   vsi->offset_loaded, &oes->tx_unicast,
5029 			   &nes->tx_unicast);
5030 	ice_stat_update_40(hw, GLV_MPTCH(idx), GLV_MPTCL(idx),
5031 			   vsi->offset_loaded, &oes->tx_multicast,
5032 			   &nes->tx_multicast);
5033 	ice_stat_update_40(hw, GLV_BPTCH(idx), GLV_BPTCL(idx),
5034 			   vsi->offset_loaded,  &oes->tx_broadcast,
5035 			   &nes->tx_broadcast);
5036 	/* GLV_TDPC not supported */
5037 	ice_stat_update_32(hw, GLV_TEPC(idx), vsi->offset_loaded,
5038 			   &oes->tx_errors, &nes->tx_errors);
5039 	/* enlarge the limitation when tx_bytes overflowed */
5040 	if (vsi->offset_loaded) {
5041 		if (ICE_RXTX_BYTES_LOW(vsi->old_tx_bytes) > nes->tx_bytes)
5042 			nes->tx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
5043 		nes->tx_bytes += ICE_RXTX_BYTES_HIGH(vsi->old_tx_bytes);
5044 	}
5045 	vsi->old_tx_bytes = nes->tx_bytes;
5046 	vsi->offset_loaded = true;
5047 
5048 	PMD_DRV_LOG(DEBUG, "************** VSI[%u] stats start **************",
5049 		    vsi->vsi_id);
5050 	PMD_DRV_LOG(DEBUG, "rx_bytes:            %"PRIu64"", nes->rx_bytes);
5051 	PMD_DRV_LOG(DEBUG, "rx_unicast:          %"PRIu64"", nes->rx_unicast);
5052 	PMD_DRV_LOG(DEBUG, "rx_multicast:        %"PRIu64"", nes->rx_multicast);
5053 	PMD_DRV_LOG(DEBUG, "rx_broadcast:        %"PRIu64"", nes->rx_broadcast);
5054 	PMD_DRV_LOG(DEBUG, "rx_discards:         %"PRIu64"", nes->rx_discards);
5055 	PMD_DRV_LOG(DEBUG, "rx_unknown_protocol: %"PRIu64"",
5056 		    nes->rx_unknown_protocol);
5057 	PMD_DRV_LOG(DEBUG, "tx_bytes:            %"PRIu64"", nes->tx_bytes);
5058 	PMD_DRV_LOG(DEBUG, "tx_unicast:          %"PRIu64"", nes->tx_unicast);
5059 	PMD_DRV_LOG(DEBUG, "tx_multicast:        %"PRIu64"", nes->tx_multicast);
5060 	PMD_DRV_LOG(DEBUG, "tx_broadcast:        %"PRIu64"", nes->tx_broadcast);
5061 	PMD_DRV_LOG(DEBUG, "tx_discards:         %"PRIu64"", nes->tx_discards);
5062 	PMD_DRV_LOG(DEBUG, "tx_errors:           %"PRIu64"", nes->tx_errors);
5063 	PMD_DRV_LOG(DEBUG, "************** VSI[%u] stats end ****************",
5064 		    vsi->vsi_id);
5065 }
5066 
5067 static void
5068 ice_read_stats_registers(struct ice_pf *pf, struct ice_hw *hw)
5069 {
5070 	struct ice_hw_port_stats *ns = &pf->stats; /* new stats */
5071 	struct ice_hw_port_stats *os = &pf->stats_offset; /* old stats */
5072 
5073 	/* Get statistics of struct ice_eth_stats */
5074 	ice_stat_update_40(hw, GLPRT_GORCH(hw->port_info->lport),
5075 			   GLPRT_GORCL(hw->port_info->lport),
5076 			   pf->offset_loaded, &os->eth.rx_bytes,
5077 			   &ns->eth.rx_bytes);
5078 	ice_stat_update_40(hw, GLPRT_UPRCH(hw->port_info->lport),
5079 			   GLPRT_UPRCL(hw->port_info->lport),
5080 			   pf->offset_loaded, &os->eth.rx_unicast,
5081 			   &ns->eth.rx_unicast);
5082 	ice_stat_update_40(hw, GLPRT_MPRCH(hw->port_info->lport),
5083 			   GLPRT_MPRCL(hw->port_info->lport),
5084 			   pf->offset_loaded, &os->eth.rx_multicast,
5085 			   &ns->eth.rx_multicast);
5086 	ice_stat_update_40(hw, GLPRT_BPRCH(hw->port_info->lport),
5087 			   GLPRT_BPRCL(hw->port_info->lport),
5088 			   pf->offset_loaded, &os->eth.rx_broadcast,
5089 			   &ns->eth.rx_broadcast);
5090 	ice_stat_update_32(hw, PRTRPB_RDPC,
5091 			   pf->offset_loaded, &os->eth.rx_discards,
5092 			   &ns->eth.rx_discards);
5093 	/* enlarge the limitation when rx_bytes overflowed */
5094 	if (pf->offset_loaded) {
5095 		if (ICE_RXTX_BYTES_LOW(pf->old_rx_bytes) > ns->eth.rx_bytes)
5096 			ns->eth.rx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
5097 		ns->eth.rx_bytes += ICE_RXTX_BYTES_HIGH(pf->old_rx_bytes);
5098 	}
5099 	pf->old_rx_bytes = ns->eth.rx_bytes;
5100 
5101 	/* Workaround: CRC size should not be included in byte statistics,
5102 	 * so subtract RTE_ETHER_CRC_LEN from the byte counter for each rx
5103 	 * packet.
5104 	 */
5105 	ns->eth.rx_bytes -= (ns->eth.rx_unicast + ns->eth.rx_multicast +
5106 			     ns->eth.rx_broadcast) * RTE_ETHER_CRC_LEN;
5107 
5108 	/* GLPRT_REPC not supported */
5109 	/* GLPRT_RMPC not supported */
5110 	ice_stat_update_32(hw, GLSWID_RUPP(hw->port_info->lport),
5111 			   pf->offset_loaded,
5112 			   &os->eth.rx_unknown_protocol,
5113 			   &ns->eth.rx_unknown_protocol);
5114 	ice_stat_update_40(hw, GLPRT_GOTCH(hw->port_info->lport),
5115 			   GLPRT_GOTCL(hw->port_info->lport),
5116 			   pf->offset_loaded, &os->eth.tx_bytes,
5117 			   &ns->eth.tx_bytes);
5118 	ice_stat_update_40(hw, GLPRT_UPTCH(hw->port_info->lport),
5119 			   GLPRT_UPTCL(hw->port_info->lport),
5120 			   pf->offset_loaded, &os->eth.tx_unicast,
5121 			   &ns->eth.tx_unicast);
5122 	ice_stat_update_40(hw, GLPRT_MPTCH(hw->port_info->lport),
5123 			   GLPRT_MPTCL(hw->port_info->lport),
5124 			   pf->offset_loaded, &os->eth.tx_multicast,
5125 			   &ns->eth.tx_multicast);
5126 	ice_stat_update_40(hw, GLPRT_BPTCH(hw->port_info->lport),
5127 			   GLPRT_BPTCL(hw->port_info->lport),
5128 			   pf->offset_loaded, &os->eth.tx_broadcast,
5129 			   &ns->eth.tx_broadcast);
5130 	/* enlarge the limitation when tx_bytes overflowed */
5131 	if (pf->offset_loaded) {
5132 		if (ICE_RXTX_BYTES_LOW(pf->old_tx_bytes) > ns->eth.tx_bytes)
5133 			ns->eth.tx_bytes += (uint64_t)1 << ICE_40_BIT_WIDTH;
5134 		ns->eth.tx_bytes += ICE_RXTX_BYTES_HIGH(pf->old_tx_bytes);
5135 	}
5136 	pf->old_tx_bytes = ns->eth.tx_bytes;
5137 	ns->eth.tx_bytes -= (ns->eth.tx_unicast + ns->eth.tx_multicast +
5138 			     ns->eth.tx_broadcast) * RTE_ETHER_CRC_LEN;
5139 
5140 	/* GLPRT_TEPC not supported */
5141 
5142 	/* additional port specific stats */
5143 	ice_stat_update_32(hw, GLPRT_TDOLD(hw->port_info->lport),
5144 			   pf->offset_loaded, &os->tx_dropped_link_down,
5145 			   &ns->tx_dropped_link_down);
5146 	ice_stat_update_32(hw, GLPRT_CRCERRS(hw->port_info->lport),
5147 			   pf->offset_loaded, &os->crc_errors,
5148 			   &ns->crc_errors);
5149 	ice_stat_update_32(hw, GLPRT_ILLERRC(hw->port_info->lport),
5150 			   pf->offset_loaded, &os->illegal_bytes,
5151 			   &ns->illegal_bytes);
5152 	/* GLPRT_ERRBC not supported */
5153 	ice_stat_update_32(hw, GLPRT_MLFC(hw->port_info->lport),
5154 			   pf->offset_loaded, &os->mac_local_faults,
5155 			   &ns->mac_local_faults);
5156 	ice_stat_update_32(hw, GLPRT_MRFC(hw->port_info->lport),
5157 			   pf->offset_loaded, &os->mac_remote_faults,
5158 			   &ns->mac_remote_faults);
5159 
5160 	ice_stat_update_32(hw, GLPRT_RLEC(hw->port_info->lport),
5161 			   pf->offset_loaded, &os->rx_len_errors,
5162 			   &ns->rx_len_errors);
5163 
5164 	ice_stat_update_32(hw, GLPRT_LXONRXC(hw->port_info->lport),
5165 			   pf->offset_loaded, &os->link_xon_rx,
5166 			   &ns->link_xon_rx);
5167 	ice_stat_update_32(hw, GLPRT_LXOFFRXC(hw->port_info->lport),
5168 			   pf->offset_loaded, &os->link_xoff_rx,
5169 			   &ns->link_xoff_rx);
5170 	ice_stat_update_32(hw, GLPRT_LXONTXC(hw->port_info->lport),
5171 			   pf->offset_loaded, &os->link_xon_tx,
5172 			   &ns->link_xon_tx);
5173 	ice_stat_update_32(hw, GLPRT_LXOFFTXC(hw->port_info->lport),
5174 			   pf->offset_loaded, &os->link_xoff_tx,
5175 			   &ns->link_xoff_tx);
5176 	ice_stat_update_40(hw, GLPRT_PRC64H(hw->port_info->lport),
5177 			   GLPRT_PRC64L(hw->port_info->lport),
5178 			   pf->offset_loaded, &os->rx_size_64,
5179 			   &ns->rx_size_64);
5180 	ice_stat_update_40(hw, GLPRT_PRC127H(hw->port_info->lport),
5181 			   GLPRT_PRC127L(hw->port_info->lport),
5182 			   pf->offset_loaded, &os->rx_size_127,
5183 			   &ns->rx_size_127);
5184 	ice_stat_update_40(hw, GLPRT_PRC255H(hw->port_info->lport),
5185 			   GLPRT_PRC255L(hw->port_info->lport),
5186 			   pf->offset_loaded, &os->rx_size_255,
5187 			   &ns->rx_size_255);
5188 	ice_stat_update_40(hw, GLPRT_PRC511H(hw->port_info->lport),
5189 			   GLPRT_PRC511L(hw->port_info->lport),
5190 			   pf->offset_loaded, &os->rx_size_511,
5191 			   &ns->rx_size_511);
5192 	ice_stat_update_40(hw, GLPRT_PRC1023H(hw->port_info->lport),
5193 			   GLPRT_PRC1023L(hw->port_info->lport),
5194 			   pf->offset_loaded, &os->rx_size_1023,
5195 			   &ns->rx_size_1023);
5196 	ice_stat_update_40(hw, GLPRT_PRC1522H(hw->port_info->lport),
5197 			   GLPRT_PRC1522L(hw->port_info->lport),
5198 			   pf->offset_loaded, &os->rx_size_1522,
5199 			   &ns->rx_size_1522);
5200 	ice_stat_update_40(hw, GLPRT_PRC9522H(hw->port_info->lport),
5201 			   GLPRT_PRC9522L(hw->port_info->lport),
5202 			   pf->offset_loaded, &os->rx_size_big,
5203 			   &ns->rx_size_big);
5204 	ice_stat_update_32(hw, GLPRT_RUC(hw->port_info->lport),
5205 			   pf->offset_loaded, &os->rx_undersize,
5206 			   &ns->rx_undersize);
5207 	ice_stat_update_32(hw, GLPRT_RFC(hw->port_info->lport),
5208 			   pf->offset_loaded, &os->rx_fragments,
5209 			   &ns->rx_fragments);
5210 	ice_stat_update_32(hw, GLPRT_ROC(hw->port_info->lport),
5211 			   pf->offset_loaded, &os->rx_oversize,
5212 			   &ns->rx_oversize);
5213 	ice_stat_update_32(hw, GLPRT_RJC(hw->port_info->lport),
5214 			   pf->offset_loaded, &os->rx_jabber,
5215 			   &ns->rx_jabber);
5216 	ice_stat_update_40(hw, GLPRT_PTC64H(hw->port_info->lport),
5217 			   GLPRT_PTC64L(hw->port_info->lport),
5218 			   pf->offset_loaded, &os->tx_size_64,
5219 			   &ns->tx_size_64);
5220 	ice_stat_update_40(hw, GLPRT_PTC127H(hw->port_info->lport),
5221 			   GLPRT_PTC127L(hw->port_info->lport),
5222 			   pf->offset_loaded, &os->tx_size_127,
5223 			   &ns->tx_size_127);
5224 	ice_stat_update_40(hw, GLPRT_PTC255H(hw->port_info->lport),
5225 			   GLPRT_PTC255L(hw->port_info->lport),
5226 			   pf->offset_loaded, &os->tx_size_255,
5227 			   &ns->tx_size_255);
5228 	ice_stat_update_40(hw, GLPRT_PTC511H(hw->port_info->lport),
5229 			   GLPRT_PTC511L(hw->port_info->lport),
5230 			   pf->offset_loaded, &os->tx_size_511,
5231 			   &ns->tx_size_511);
5232 	ice_stat_update_40(hw, GLPRT_PTC1023H(hw->port_info->lport),
5233 			   GLPRT_PTC1023L(hw->port_info->lport),
5234 			   pf->offset_loaded, &os->tx_size_1023,
5235 			   &ns->tx_size_1023);
5236 	ice_stat_update_40(hw, GLPRT_PTC1522H(hw->port_info->lport),
5237 			   GLPRT_PTC1522L(hw->port_info->lport),
5238 			   pf->offset_loaded, &os->tx_size_1522,
5239 			   &ns->tx_size_1522);
5240 	ice_stat_update_40(hw, GLPRT_PTC9522H(hw->port_info->lport),
5241 			   GLPRT_PTC9522L(hw->port_info->lport),
5242 			   pf->offset_loaded, &os->tx_size_big,
5243 			   &ns->tx_size_big);
5244 
5245 	/* GLPRT_MSPDC not supported */
5246 	/* GLPRT_XEC not supported */
5247 
5248 	pf->offset_loaded = true;
5249 
5250 	if (pf->main_vsi)
5251 		ice_update_vsi_stats(pf->main_vsi);
5252 }
5253 
5254 /* Get all statistics of a port */
5255 static int
5256 ice_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *stats)
5257 {
5258 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5259 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5260 	struct ice_hw_port_stats *ns = &pf->stats; /* new stats */
5261 
5262 	/* call read registers - updates values, now write them to struct */
5263 	ice_read_stats_registers(pf, hw);
5264 
5265 	stats->ipackets = pf->main_vsi->eth_stats.rx_unicast +
5266 			  pf->main_vsi->eth_stats.rx_multicast +
5267 			  pf->main_vsi->eth_stats.rx_broadcast -
5268 			  pf->main_vsi->eth_stats.rx_discards;
5269 	stats->opackets = ns->eth.tx_unicast +
5270 			  ns->eth.tx_multicast +
5271 			  ns->eth.tx_broadcast;
5272 	stats->ibytes   = pf->main_vsi->eth_stats.rx_bytes;
5273 	stats->obytes   = ns->eth.tx_bytes;
5274 	stats->oerrors  = ns->eth.tx_errors +
5275 			  pf->main_vsi->eth_stats.tx_errors;
5276 
5277 	/* Rx Errors */
5278 	stats->imissed  = ns->eth.rx_discards +
5279 			  pf->main_vsi->eth_stats.rx_discards;
5280 	stats->ierrors  = ns->crc_errors +
5281 			  ns->rx_undersize +
5282 			  ns->rx_oversize + ns->rx_fragments + ns->rx_jabber;
5283 
5284 	PMD_DRV_LOG(DEBUG, "*************** PF stats start *****************");
5285 	PMD_DRV_LOG(DEBUG, "rx_bytes:	%"PRIu64"", ns->eth.rx_bytes);
5286 	PMD_DRV_LOG(DEBUG, "rx_unicast:	%"PRIu64"", ns->eth.rx_unicast);
5287 	PMD_DRV_LOG(DEBUG, "rx_multicast:%"PRIu64"", ns->eth.rx_multicast);
5288 	PMD_DRV_LOG(DEBUG, "rx_broadcast:%"PRIu64"", ns->eth.rx_broadcast);
5289 	PMD_DRV_LOG(DEBUG, "rx_discards:%"PRIu64"", ns->eth.rx_discards);
5290 	PMD_DRV_LOG(DEBUG, "vsi rx_discards:%"PRIu64"",
5291 		    pf->main_vsi->eth_stats.rx_discards);
5292 	PMD_DRV_LOG(DEBUG, "rx_unknown_protocol:  %"PRIu64"",
5293 		    ns->eth.rx_unknown_protocol);
5294 	PMD_DRV_LOG(DEBUG, "tx_bytes:	%"PRIu64"", ns->eth.tx_bytes);
5295 	PMD_DRV_LOG(DEBUG, "tx_unicast:	%"PRIu64"", ns->eth.tx_unicast);
5296 	PMD_DRV_LOG(DEBUG, "tx_multicast:%"PRIu64"", ns->eth.tx_multicast);
5297 	PMD_DRV_LOG(DEBUG, "tx_broadcast:%"PRIu64"", ns->eth.tx_broadcast);
5298 	PMD_DRV_LOG(DEBUG, "tx_discards:%"PRIu64"", ns->eth.tx_discards);
5299 	PMD_DRV_LOG(DEBUG, "vsi tx_discards:%"PRIu64"",
5300 		    pf->main_vsi->eth_stats.tx_discards);
5301 	PMD_DRV_LOG(DEBUG, "tx_errors:		%"PRIu64"", ns->eth.tx_errors);
5302 
5303 	PMD_DRV_LOG(DEBUG, "tx_dropped_link_down:	%"PRIu64"",
5304 		    ns->tx_dropped_link_down);
5305 	PMD_DRV_LOG(DEBUG, "crc_errors:	%"PRIu64"", ns->crc_errors);
5306 	PMD_DRV_LOG(DEBUG, "illegal_bytes:	%"PRIu64"",
5307 		    ns->illegal_bytes);
5308 	PMD_DRV_LOG(DEBUG, "error_bytes:	%"PRIu64"", ns->error_bytes);
5309 	PMD_DRV_LOG(DEBUG, "mac_local_faults:	%"PRIu64"",
5310 		    ns->mac_local_faults);
5311 	PMD_DRV_LOG(DEBUG, "mac_remote_faults:	%"PRIu64"",
5312 		    ns->mac_remote_faults);
5313 	PMD_DRV_LOG(DEBUG, "link_xon_rx:	%"PRIu64"", ns->link_xon_rx);
5314 	PMD_DRV_LOG(DEBUG, "link_xoff_rx:	%"PRIu64"", ns->link_xoff_rx);
5315 	PMD_DRV_LOG(DEBUG, "link_xon_tx:	%"PRIu64"", ns->link_xon_tx);
5316 	PMD_DRV_LOG(DEBUG, "link_xoff_tx:	%"PRIu64"", ns->link_xoff_tx);
5317 	PMD_DRV_LOG(DEBUG, "rx_size_64:		%"PRIu64"", ns->rx_size_64);
5318 	PMD_DRV_LOG(DEBUG, "rx_size_127:	%"PRIu64"", ns->rx_size_127);
5319 	PMD_DRV_LOG(DEBUG, "rx_size_255:	%"PRIu64"", ns->rx_size_255);
5320 	PMD_DRV_LOG(DEBUG, "rx_size_511:	%"PRIu64"", ns->rx_size_511);
5321 	PMD_DRV_LOG(DEBUG, "rx_size_1023:	%"PRIu64"", ns->rx_size_1023);
5322 	PMD_DRV_LOG(DEBUG, "rx_size_1522:	%"PRIu64"", ns->rx_size_1522);
5323 	PMD_DRV_LOG(DEBUG, "rx_size_big:	%"PRIu64"", ns->rx_size_big);
5324 	PMD_DRV_LOG(DEBUG, "rx_undersize:	%"PRIu64"", ns->rx_undersize);
5325 	PMD_DRV_LOG(DEBUG, "rx_fragments:	%"PRIu64"", ns->rx_fragments);
5326 	PMD_DRV_LOG(DEBUG, "rx_oversize:	%"PRIu64"", ns->rx_oversize);
5327 	PMD_DRV_LOG(DEBUG, "rx_jabber:		%"PRIu64"", ns->rx_jabber);
5328 	PMD_DRV_LOG(DEBUG, "tx_size_64:		%"PRIu64"", ns->tx_size_64);
5329 	PMD_DRV_LOG(DEBUG, "tx_size_127:	%"PRIu64"", ns->tx_size_127);
5330 	PMD_DRV_LOG(DEBUG, "tx_size_255:	%"PRIu64"", ns->tx_size_255);
5331 	PMD_DRV_LOG(DEBUG, "tx_size_511:	%"PRIu64"", ns->tx_size_511);
5332 	PMD_DRV_LOG(DEBUG, "tx_size_1023:	%"PRIu64"", ns->tx_size_1023);
5333 	PMD_DRV_LOG(DEBUG, "tx_size_1522:	%"PRIu64"", ns->tx_size_1522);
5334 	PMD_DRV_LOG(DEBUG, "tx_size_big:	%"PRIu64"", ns->tx_size_big);
5335 	PMD_DRV_LOG(DEBUG, "rx_len_errors:	%"PRIu64"", ns->rx_len_errors);
5336 	PMD_DRV_LOG(DEBUG, "************* PF stats end ****************");
5337 	return 0;
5338 }
5339 
5340 /* Reset the statistics */
5341 static int
5342 ice_stats_reset(struct rte_eth_dev *dev)
5343 {
5344 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5345 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5346 
5347 	/* Mark PF and VSI stats to update the offset, aka "reset" */
5348 	pf->offset_loaded = false;
5349 	if (pf->main_vsi)
5350 		pf->main_vsi->offset_loaded = false;
5351 
5352 	/* read the stats, reading current register values into offset */
5353 	ice_read_stats_registers(pf, hw);
5354 
5355 	return 0;
5356 }
5357 
5358 static uint32_t
5359 ice_xstats_calc_num(void)
5360 {
5361 	uint32_t num;
5362 
5363 	num = ICE_NB_ETH_XSTATS + ICE_NB_HW_PORT_XSTATS;
5364 
5365 	return num;
5366 }
5367 
5368 static int
5369 ice_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
5370 	       unsigned int n)
5371 {
5372 	struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
5373 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5374 	unsigned int i;
5375 	unsigned int count;
5376 	struct ice_hw_port_stats *hw_stats = &pf->stats;
5377 
5378 	count = ice_xstats_calc_num();
5379 	if (n < count)
5380 		return count;
5381 
5382 	ice_read_stats_registers(pf, hw);
5383 
5384 	if (!xstats)
5385 		return 0;
5386 
5387 	count = 0;
5388 
5389 	/* Get stats from ice_eth_stats struct */
5390 	for (i = 0; i < ICE_NB_ETH_XSTATS; i++) {
5391 		xstats[count].value =
5392 			*(uint64_t *)((char *)&hw_stats->eth +
5393 				      ice_stats_strings[i].offset);
5394 		xstats[count].id = count;
5395 		count++;
5396 	}
5397 
5398 	/* Get individiual stats from ice_hw_port struct */
5399 	for (i = 0; i < ICE_NB_HW_PORT_XSTATS; i++) {
5400 		xstats[count].value =
5401 			*(uint64_t *)((char *)hw_stats +
5402 				      ice_hw_port_strings[i].offset);
5403 		xstats[count].id = count;
5404 		count++;
5405 	}
5406 
5407 	return count;
5408 }
5409 
5410 static int ice_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
5411 				struct rte_eth_xstat_name *xstats_names,
5412 				__rte_unused unsigned int limit)
5413 {
5414 	unsigned int count = 0;
5415 	unsigned int i;
5416 
5417 	if (!xstats_names)
5418 		return ice_xstats_calc_num();
5419 
5420 	/* Note: limit checked in rte_eth_xstats_names() */
5421 
5422 	/* Get stats from ice_eth_stats struct */
5423 	for (i = 0; i < ICE_NB_ETH_XSTATS; i++) {
5424 		strlcpy(xstats_names[count].name, ice_stats_strings[i].name,
5425 			sizeof(xstats_names[count].name));
5426 		count++;
5427 	}
5428 
5429 	/* Get individiual stats from ice_hw_port struct */
5430 	for (i = 0; i < ICE_NB_HW_PORT_XSTATS; i++) {
5431 		strlcpy(xstats_names[count].name, ice_hw_port_strings[i].name,
5432 			sizeof(xstats_names[count].name));
5433 		count++;
5434 	}
5435 
5436 	return count;
5437 }
5438 
5439 static int
5440 ice_dev_flow_ops_get(struct rte_eth_dev *dev,
5441 		     const struct rte_flow_ops **ops)
5442 {
5443 	if (!dev)
5444 		return -EINVAL;
5445 
5446 	*ops = &ice_flow_ops;
5447 	return 0;
5448 }
5449 
5450 /* Add UDP tunneling port */
5451 static int
5452 ice_dev_udp_tunnel_port_add(struct rte_eth_dev *dev,
5453 			     struct rte_eth_udp_tunnel *udp_tunnel)
5454 {
5455 	int ret = 0;
5456 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5457 
5458 	if (udp_tunnel == NULL)
5459 		return -EINVAL;
5460 
5461 	switch (udp_tunnel->prot_type) {
5462 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
5463 		ret = ice_create_tunnel(hw, TNL_VXLAN, udp_tunnel->udp_port);
5464 		break;
5465 	default:
5466 		PMD_DRV_LOG(ERR, "Invalid tunnel type");
5467 		ret = -EINVAL;
5468 		break;
5469 	}
5470 
5471 	return ret;
5472 }
5473 
5474 /* Delete UDP tunneling port */
5475 static int
5476 ice_dev_udp_tunnel_port_del(struct rte_eth_dev *dev,
5477 			     struct rte_eth_udp_tunnel *udp_tunnel)
5478 {
5479 	int ret = 0;
5480 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5481 
5482 	if (udp_tunnel == NULL)
5483 		return -EINVAL;
5484 
5485 	switch (udp_tunnel->prot_type) {
5486 	case RTE_ETH_TUNNEL_TYPE_VXLAN:
5487 		ret = ice_destroy_tunnel(hw, udp_tunnel->udp_port, 0);
5488 		break;
5489 	default:
5490 		PMD_DRV_LOG(ERR, "Invalid tunnel type");
5491 		ret = -EINVAL;
5492 		break;
5493 	}
5494 
5495 	return ret;
5496 }
5497 
5498 static int
5499 ice_timesync_enable(struct rte_eth_dev *dev)
5500 {
5501 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5502 	struct ice_adapter *ad =
5503 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5504 	int ret;
5505 
5506 	if (dev->data->dev_started && !(dev->data->dev_conf.rxmode.offloads &
5507 	    RTE_ETH_RX_OFFLOAD_TIMESTAMP)) {
5508 		PMD_DRV_LOG(ERR, "Rx timestamp offload not configured");
5509 		return -1;
5510 	}
5511 
5512 	if (hw->func_caps.ts_func_info.src_tmr_owned) {
5513 		ret = ice_ptp_init_phc(hw);
5514 		if (ret) {
5515 			PMD_DRV_LOG(ERR, "Failed to initialize PHC");
5516 			return -1;
5517 		}
5518 
5519 		ret = ice_ptp_write_incval(hw, ICE_PTP_NOMINAL_INCVAL_E810);
5520 		if (ret) {
5521 			PMD_DRV_LOG(ERR,
5522 				"Failed to write PHC increment time value");
5523 			return -1;
5524 		}
5525 	}
5526 
5527 	/* Initialize cycle counters for system time/RX/TX timestamp */
5528 	memset(&ad->systime_tc, 0, sizeof(struct rte_timecounter));
5529 	memset(&ad->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5530 	memset(&ad->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
5531 
5532 	ad->systime_tc.cc_mask = ICE_CYCLECOUNTER_MASK;
5533 	ad->systime_tc.cc_shift = 0;
5534 	ad->systime_tc.nsec_mask = 0;
5535 
5536 	ad->rx_tstamp_tc.cc_mask = ICE_CYCLECOUNTER_MASK;
5537 	ad->rx_tstamp_tc.cc_shift = 0;
5538 	ad->rx_tstamp_tc.nsec_mask = 0;
5539 
5540 	ad->tx_tstamp_tc.cc_mask = ICE_CYCLECOUNTER_MASK;
5541 	ad->tx_tstamp_tc.cc_shift = 0;
5542 	ad->tx_tstamp_tc.nsec_mask = 0;
5543 
5544 	ad->ptp_ena = 1;
5545 
5546 	return 0;
5547 }
5548 
5549 static int
5550 ice_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
5551 			       struct timespec *timestamp, uint32_t flags)
5552 {
5553 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5554 	struct ice_adapter *ad =
5555 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5556 	struct ice_rx_queue *rxq;
5557 	uint32_t ts_high;
5558 	uint64_t ts_ns, ns;
5559 
5560 	rxq = dev->data->rx_queues[flags];
5561 
5562 	ts_high = rxq->time_high;
5563 	ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, ts_high);
5564 	ns = rte_timecounter_update(&ad->rx_tstamp_tc, ts_ns);
5565 	*timestamp = rte_ns_to_timespec(ns);
5566 
5567 	return 0;
5568 }
5569 
5570 static int
5571 ice_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
5572 			       struct timespec *timestamp)
5573 {
5574 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5575 	struct ice_adapter *ad =
5576 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5577 	uint8_t lport;
5578 	uint64_t ts_ns, ns, tstamp;
5579 	const uint64_t mask = 0xFFFFFFFF;
5580 	int ret;
5581 
5582 	lport = hw->port_info->lport;
5583 
5584 	ret = ice_read_phy_tstamp(hw, lport, 0, &tstamp);
5585 	if (ret) {
5586 		PMD_DRV_LOG(ERR, "Failed to read phy timestamp");
5587 		return -1;
5588 	}
5589 
5590 	ts_ns = ice_tstamp_convert_32b_64b(hw, ad, 1, (tstamp >> 8) & mask);
5591 	ns = rte_timecounter_update(&ad->tx_tstamp_tc, ts_ns);
5592 	*timestamp = rte_ns_to_timespec(ns);
5593 
5594 	return 0;
5595 }
5596 
5597 static int
5598 ice_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
5599 {
5600 	struct ice_adapter *ad =
5601 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5602 
5603 	ad->systime_tc.nsec += delta;
5604 	ad->rx_tstamp_tc.nsec += delta;
5605 	ad->tx_tstamp_tc.nsec += delta;
5606 
5607 	return 0;
5608 }
5609 
5610 static int
5611 ice_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
5612 {
5613 	struct ice_adapter *ad =
5614 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5615 	uint64_t ns;
5616 
5617 	ns = rte_timespec_to_ns(ts);
5618 
5619 	ad->systime_tc.nsec = ns;
5620 	ad->rx_tstamp_tc.nsec = ns;
5621 	ad->tx_tstamp_tc.nsec = ns;
5622 
5623 	return 0;
5624 }
5625 
5626 static int
5627 ice_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
5628 {
5629 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5630 	struct ice_adapter *ad =
5631 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5632 	uint32_t hi, lo, lo2;
5633 	uint64_t time, ns;
5634 
5635 	lo = ICE_READ_REG(hw, GLTSYN_TIME_L(0));
5636 	hi = ICE_READ_REG(hw, GLTSYN_TIME_H(0));
5637 	lo2 = ICE_READ_REG(hw, GLTSYN_TIME_L(0));
5638 
5639 	if (lo2 < lo) {
5640 		lo = ICE_READ_REG(hw, GLTSYN_TIME_L(0));
5641 		hi = ICE_READ_REG(hw, GLTSYN_TIME_H(0));
5642 	}
5643 
5644 	time = ((uint64_t)hi << 32) | lo;
5645 	ns = rte_timecounter_update(&ad->systime_tc, time);
5646 	*ts = rte_ns_to_timespec(ns);
5647 
5648 	return 0;
5649 }
5650 
5651 static int
5652 ice_timesync_disable(struct rte_eth_dev *dev)
5653 {
5654 	struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5655 	struct ice_adapter *ad =
5656 			ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
5657 	uint64_t val;
5658 	uint8_t lport;
5659 
5660 	lport = hw->port_info->lport;
5661 
5662 	ice_clear_phy_tstamp(hw, lport, 0);
5663 
5664 	val = ICE_READ_REG(hw, GLTSYN_ENA(0));
5665 	val &= ~GLTSYN_ENA_TSYN_ENA_M;
5666 	ICE_WRITE_REG(hw, GLTSYN_ENA(0), val);
5667 
5668 	ICE_WRITE_REG(hw, GLTSYN_INCVAL_L(0), 0);
5669 	ICE_WRITE_REG(hw, GLTSYN_INCVAL_H(0), 0);
5670 
5671 	ad->ptp_ena = 0;
5672 
5673 	return 0;
5674 }
5675 
5676 static int
5677 ice_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
5678 	      struct rte_pci_device *pci_dev)
5679 {
5680 	return rte_eth_dev_pci_generic_probe(pci_dev,
5681 					     sizeof(struct ice_adapter),
5682 					     ice_dev_init);
5683 }
5684 
5685 static int
5686 ice_pci_remove(struct rte_pci_device *pci_dev)
5687 {
5688 	return rte_eth_dev_pci_generic_remove(pci_dev, ice_dev_uninit);
5689 }
5690 
5691 static struct rte_pci_driver rte_ice_pmd = {
5692 	.id_table = pci_id_ice_map,
5693 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
5694 	.probe = ice_pci_probe,
5695 	.remove = ice_pci_remove,
5696 };
5697 
5698 /**
5699  * Driver initialization routine.
5700  * Invoked once at EAL init time.
5701  * Register itself as the [Poll Mode] Driver of PCI devices.
5702  */
5703 RTE_PMD_REGISTER_PCI(net_ice, rte_ice_pmd);
5704 RTE_PMD_REGISTER_PCI_TABLE(net_ice, pci_id_ice_map);
5705 RTE_PMD_REGISTER_KMOD_DEP(net_ice, "* igb_uio | uio_pci_generic | vfio-pci");
5706 RTE_PMD_REGISTER_PARAM_STRING(net_ice,
5707 			      ICE_HW_DEBUG_MASK_ARG "=0xXXX"
5708 			      ICE_PROTO_XTR_ARG "=[queue:]<vlan|ipv4|ipv6|ipv6_flow|tcp|ip_offset>"
5709 			      ICE_SAFE_MODE_SUPPORT_ARG "=<0|1>"
5710 			      ICE_PIPELINE_MODE_SUPPORT_ARG "=<0|1>"
5711 			      ICE_RX_LOW_LATENCY_ARG "=<0|1>");
5712 
5713 RTE_LOG_REGISTER_SUFFIX(ice_logtype_init, init, NOTICE);
5714 RTE_LOG_REGISTER_SUFFIX(ice_logtype_driver, driver, NOTICE);
5715 #ifdef RTE_ETHDEV_DEBUG_RX
5716 RTE_LOG_REGISTER_SUFFIX(ice_logtype_rx, rx, DEBUG);
5717 #endif
5718 #ifdef RTE_ETHDEV_DEBUG_TX
5719 RTE_LOG_REGISTER_SUFFIX(ice_logtype_tx, tx, DEBUG);
5720 #endif
5721