xref: /dpdk/drivers/net/ice/base/ice_flex_pipe.c (revision a62f0950)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2001-2021 Intel Corporation
3  */
4 
5 #include "ice_common.h"
6 #include "ice_flex_pipe.h"
7 #include "ice_protocol_type.h"
8 #include "ice_flow.h"
9 
10 /* For supporting double VLAN mode, it is necessary to enable or disable certain
11  * boost tcam entries. The metadata labels names that match the following
12  * prefixes will be saved to allow enabling double VLAN mode.
13  */
14 #define ICE_DVM_PRE	"BOOST_MAC_VLAN_DVM"	/* enable these entries */
15 #define ICE_SVM_PRE	"BOOST_MAC_VLAN_SVM"	/* disable these entries */
16 
17 /* To support tunneling entries by PF, the package will append the PF number to
18  * the label; for example TNL_VXLAN_PF0, TNL_VXLAN_PF1, TNL_VXLAN_PF2, etc.
19  */
20 #define ICE_TNL_PRE	"TNL_"
21 static const struct ice_tunnel_type_scan tnls[] = {
22 	{ TNL_VXLAN,		"TNL_VXLAN_PF" },
23 	{ TNL_GENEVE,		"TNL_GENEVE_PF" },
24 	{ TNL_ECPRI,		"TNL_UDP_ECPRI_PF" },
25 	{ TNL_LAST,		"" }
26 };
27 
28 static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
29 	/* SWITCH */
30 	{
31 		ICE_SID_XLT0_SW,
32 		ICE_SID_XLT_KEY_BUILDER_SW,
33 		ICE_SID_XLT1_SW,
34 		ICE_SID_XLT2_SW,
35 		ICE_SID_PROFID_TCAM_SW,
36 		ICE_SID_PROFID_REDIR_SW,
37 		ICE_SID_FLD_VEC_SW,
38 		ICE_SID_CDID_KEY_BUILDER_SW,
39 		ICE_SID_CDID_REDIR_SW
40 	},
41 
42 	/* ACL */
43 	{
44 		ICE_SID_XLT0_ACL,
45 		ICE_SID_XLT_KEY_BUILDER_ACL,
46 		ICE_SID_XLT1_ACL,
47 		ICE_SID_XLT2_ACL,
48 		ICE_SID_PROFID_TCAM_ACL,
49 		ICE_SID_PROFID_REDIR_ACL,
50 		ICE_SID_FLD_VEC_ACL,
51 		ICE_SID_CDID_KEY_BUILDER_ACL,
52 		ICE_SID_CDID_REDIR_ACL
53 	},
54 
55 	/* FD */
56 	{
57 		ICE_SID_XLT0_FD,
58 		ICE_SID_XLT_KEY_BUILDER_FD,
59 		ICE_SID_XLT1_FD,
60 		ICE_SID_XLT2_FD,
61 		ICE_SID_PROFID_TCAM_FD,
62 		ICE_SID_PROFID_REDIR_FD,
63 		ICE_SID_FLD_VEC_FD,
64 		ICE_SID_CDID_KEY_BUILDER_FD,
65 		ICE_SID_CDID_REDIR_FD
66 	},
67 
68 	/* RSS */
69 	{
70 		ICE_SID_XLT0_RSS,
71 		ICE_SID_XLT_KEY_BUILDER_RSS,
72 		ICE_SID_XLT1_RSS,
73 		ICE_SID_XLT2_RSS,
74 		ICE_SID_PROFID_TCAM_RSS,
75 		ICE_SID_PROFID_REDIR_RSS,
76 		ICE_SID_FLD_VEC_RSS,
77 		ICE_SID_CDID_KEY_BUILDER_RSS,
78 		ICE_SID_CDID_REDIR_RSS
79 	},
80 
81 	/* PE */
82 	{
83 		ICE_SID_XLT0_PE,
84 		ICE_SID_XLT_KEY_BUILDER_PE,
85 		ICE_SID_XLT1_PE,
86 		ICE_SID_XLT2_PE,
87 		ICE_SID_PROFID_TCAM_PE,
88 		ICE_SID_PROFID_REDIR_PE,
89 		ICE_SID_FLD_VEC_PE,
90 		ICE_SID_CDID_KEY_BUILDER_PE,
91 		ICE_SID_CDID_REDIR_PE
92 	}
93 };
94 
95 /**
96  * ice_sect_id - returns section ID
97  * @blk: block type
98  * @sect: section type
99  *
100  * This helper function returns the proper section ID given a block type and a
101  * section type.
102  */
ice_sect_id(enum ice_block blk,enum ice_sect sect)103 static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
104 {
105 	return ice_sect_lkup[blk][sect];
106 }
107 
108 /**
109  * ice_pkg_val_buf
110  * @buf: pointer to the ice buffer
111  *
112  * This helper function validates a buffer's header.
113  */
ice_pkg_val_buf(struct ice_buf * buf)114 static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
115 {
116 	struct ice_buf_hdr *hdr;
117 	u16 section_count;
118 	u16 data_end;
119 
120 	hdr = (struct ice_buf_hdr *)buf->buf;
121 	/* verify data */
122 	section_count = LE16_TO_CPU(hdr->section_count);
123 	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
124 		return NULL;
125 
126 	data_end = LE16_TO_CPU(hdr->data_end);
127 	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
128 		return NULL;
129 
130 	return hdr;
131 }
132 
133 /**
134  * ice_find_buf_table
135  * @ice_seg: pointer to the ice segment
136  *
137  * Returns the address of the buffer table within the ice segment.
138  */
ice_find_buf_table(struct ice_seg * ice_seg)139 static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
140 {
141 	struct ice_nvm_table *nvms;
142 
143 	nvms = (struct ice_nvm_table *)
144 		(ice_seg->device_table +
145 		 LE32_TO_CPU(ice_seg->device_table_count));
146 
147 	return (_FORCE_ struct ice_buf_table *)
148 		(nvms->vers + LE32_TO_CPU(nvms->table_count));
149 }
150 
151 /**
152  * ice_pkg_enum_buf
153  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
154  * @state: pointer to the enum state
155  *
156  * This function will enumerate all the buffers in the ice segment. The first
157  * call is made with the ice_seg parameter non-NULL; on subsequent calls,
158  * ice_seg is set to NULL which continues the enumeration. When the function
159  * returns a NULL pointer, then the end of the buffers has been reached, or an
160  * unexpected value has been detected (for example an invalid section count or
161  * an invalid buffer end value).
162  */
163 static struct ice_buf_hdr *
ice_pkg_enum_buf(struct ice_seg * ice_seg,struct ice_pkg_enum * state)164 ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
165 {
166 	if (ice_seg) {
167 		state->buf_table = ice_find_buf_table(ice_seg);
168 		if (!state->buf_table)
169 			return NULL;
170 
171 		state->buf_idx = 0;
172 		return ice_pkg_val_buf(state->buf_table->buf_array);
173 	}
174 
175 	if (++state->buf_idx < LE32_TO_CPU(state->buf_table->buf_count))
176 		return ice_pkg_val_buf(state->buf_table->buf_array +
177 				       state->buf_idx);
178 	else
179 		return NULL;
180 }
181 
182 /**
183  * ice_pkg_advance_sect
184  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
185  * @state: pointer to the enum state
186  *
187  * This helper function will advance the section within the ice segment,
188  * also advancing the buffer if needed.
189  */
190 static bool
ice_pkg_advance_sect(struct ice_seg * ice_seg,struct ice_pkg_enum * state)191 ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
192 {
193 	if (!ice_seg && !state->buf)
194 		return false;
195 
196 	if (!ice_seg && state->buf)
197 		if (++state->sect_idx < LE16_TO_CPU(state->buf->section_count))
198 			return true;
199 
200 	state->buf = ice_pkg_enum_buf(ice_seg, state);
201 	if (!state->buf)
202 		return false;
203 
204 	/* start of new buffer, reset section index */
205 	state->sect_idx = 0;
206 	return true;
207 }
208 
209 /**
210  * ice_pkg_enum_section
211  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
212  * @state: pointer to the enum state
213  * @sect_type: section type to enumerate
214  *
215  * This function will enumerate all the sections of a particular type in the
216  * ice segment. The first call is made with the ice_seg parameter non-NULL;
217  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
218  * When the function returns a NULL pointer, then the end of the matching
219  * sections has been reached.
220  */
221 void *
ice_pkg_enum_section(struct ice_seg * ice_seg,struct ice_pkg_enum * state,u32 sect_type)222 ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
223 		     u32 sect_type)
224 {
225 	u16 offset, size;
226 
227 	if (ice_seg)
228 		state->type = sect_type;
229 
230 	if (!ice_pkg_advance_sect(ice_seg, state))
231 		return NULL;
232 
233 	/* scan for next matching section */
234 	while (state->buf->section_entry[state->sect_idx].type !=
235 	       CPU_TO_LE32(state->type))
236 		if (!ice_pkg_advance_sect(NULL, state))
237 			return NULL;
238 
239 	/* validate section */
240 	offset = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
241 	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
242 		return NULL;
243 
244 	size = LE16_TO_CPU(state->buf->section_entry[state->sect_idx].size);
245 	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
246 		return NULL;
247 
248 	/* make sure the section fits in the buffer */
249 	if (offset + size > ICE_PKG_BUF_SIZE)
250 		return NULL;
251 
252 	state->sect_type =
253 		LE32_TO_CPU(state->buf->section_entry[state->sect_idx].type);
254 
255 	/* calc pointer to this section */
256 	state->sect = ((u8 *)state->buf) +
257 		LE16_TO_CPU(state->buf->section_entry[state->sect_idx].offset);
258 
259 	return state->sect;
260 }
261 
262 /**
263  * ice_pkg_enum_entry
264  * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
265  * @state: pointer to the enum state
266  * @sect_type: section type to enumerate
267  * @offset: pointer to variable that receives the offset in the table (optional)
268  * @handler: function that handles access to the entries into the section type
269  *
270  * This function will enumerate all the entries in particular section type in
271  * the ice segment. The first call is made with the ice_seg parameter non-NULL;
272  * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
273  * When the function returns a NULL pointer, then the end of the entries has
274  * been reached.
275  *
276  * Since each section may have a different header and entry size, the handler
277  * function is needed to determine the number and location entries in each
278  * section.
279  *
280  * The offset parameter is optional, but should be used for sections that
281  * contain an offset for each section table. For such cases, the section handler
282  * function must return the appropriate offset + index to give the absolution
283  * offset for each entry. For example, if the base for a section's header
284  * indicates a base offset of 10, and the index for the entry is 2, then
285  * section handler function should set the offset to 10 + 2 = 12.
286  */
287 void *
ice_pkg_enum_entry(struct ice_seg * ice_seg,struct ice_pkg_enum * state,u32 sect_type,u32 * offset,void * (* handler)(u32 sect_type,void * section,u32 index,u32 * offset))288 ice_pkg_enum_entry(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
289 		   u32 sect_type, u32 *offset,
290 		   void *(*handler)(u32 sect_type, void *section,
291 				    u32 index, u32 *offset))
292 {
293 	void *entry;
294 
295 	if (ice_seg) {
296 		if (!handler)
297 			return NULL;
298 
299 		if (!ice_pkg_enum_section(ice_seg, state, sect_type))
300 			return NULL;
301 
302 		state->entry_idx = 0;
303 		state->handler = handler;
304 	} else {
305 		state->entry_idx++;
306 	}
307 
308 	if (!state->handler)
309 		return NULL;
310 
311 	/* get entry */
312 	entry = state->handler(state->sect_type, state->sect, state->entry_idx,
313 			       offset);
314 	if (!entry) {
315 		/* end of a section, look for another section of this type */
316 		if (!ice_pkg_enum_section(NULL, state, 0))
317 			return NULL;
318 
319 		state->entry_idx = 0;
320 		entry = state->handler(state->sect_type, state->sect,
321 				       state->entry_idx, offset);
322 	}
323 
324 	return entry;
325 }
326 
327 /**
328  * ice_hw_ptype_ena - check if the PTYPE is enabled or not
329  * @hw: pointer to the HW structure
330  * @ptype: the hardware PTYPE
331  */
ice_hw_ptype_ena(struct ice_hw * hw,u16 ptype)332 bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
333 {
334 	return ptype < ICE_FLOW_PTYPE_MAX &&
335 	       ice_is_bit_set(hw->hw_ptype, ptype);
336 }
337 
338 /**
339  * ice_marker_ptype_tcam_handler
340  * @sect_type: section type
341  * @section: pointer to section
342  * @index: index of the Marker PType TCAM entry to be returned
343  * @offset: pointer to receive absolute offset, always 0 for ptype TCAM sections
344  *
345  * This is a callback function that can be passed to ice_pkg_enum_entry.
346  * Handles enumeration of individual Marker PType TCAM entries.
347  */
348 static void *
ice_marker_ptype_tcam_handler(u32 sect_type,void * section,u32 index,u32 * offset)349 ice_marker_ptype_tcam_handler(u32 sect_type, void *section, u32 index,
350 			      u32 *offset)
351 {
352 	struct ice_marker_ptype_tcam_section *marker_ptype;
353 
354 	if (!section)
355 		return NULL;
356 
357 	if (sect_type != ICE_SID_RXPARSER_MARKER_PTYPE)
358 		return NULL;
359 
360 	if (index > ICE_MAX_MARKER_PTYPE_TCAMS_IN_BUF)
361 		return NULL;
362 
363 	if (offset)
364 		*offset = 0;
365 
366 	marker_ptype = (struct ice_marker_ptype_tcam_section *)section;
367 	if (index >= LE16_TO_CPU(marker_ptype->count))
368 		return NULL;
369 
370 	return marker_ptype->tcam + index;
371 }
372 
373 /**
374  * ice_fill_hw_ptype - fill the enabled PTYPE bit information
375  * @hw: pointer to the HW structure
376  */
377 static void
ice_fill_hw_ptype(struct ice_hw * hw)378 ice_fill_hw_ptype(struct ice_hw *hw)
379 {
380 	struct ice_marker_ptype_tcam_entry *tcam;
381 	struct ice_seg *seg = hw->seg;
382 	struct ice_pkg_enum state;
383 
384 	ice_zero_bitmap(hw->hw_ptype, ICE_FLOW_PTYPE_MAX);
385 	if (!seg)
386 		return;
387 
388 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
389 
390 	do {
391 		tcam = (struct ice_marker_ptype_tcam_entry *)
392 			ice_pkg_enum_entry(seg, &state,
393 					   ICE_SID_RXPARSER_MARKER_PTYPE, NULL,
394 					   ice_marker_ptype_tcam_handler);
395 		if (tcam &&
396 		    LE16_TO_CPU(tcam->addr) < ICE_MARKER_PTYPE_TCAM_ADDR_MAX &&
397 		    LE16_TO_CPU(tcam->ptype) < ICE_FLOW_PTYPE_MAX)
398 			ice_set_bit(LE16_TO_CPU(tcam->ptype), hw->hw_ptype);
399 
400 		seg = NULL;
401 	} while (tcam);
402 }
403 
404 /**
405  * ice_boost_tcam_handler
406  * @sect_type: section type
407  * @section: pointer to section
408  * @index: index of the boost TCAM entry to be returned
409  * @offset: pointer to receive absolute offset, always 0 for boost TCAM sections
410  *
411  * This is a callback function that can be passed to ice_pkg_enum_entry.
412  * Handles enumeration of individual boost TCAM entries.
413  */
414 static void *
ice_boost_tcam_handler(u32 sect_type,void * section,u32 index,u32 * offset)415 ice_boost_tcam_handler(u32 sect_type, void *section, u32 index, u32 *offset)
416 {
417 	struct ice_boost_tcam_section *boost;
418 
419 	if (!section)
420 		return NULL;
421 
422 	if (sect_type != ICE_SID_RXPARSER_BOOST_TCAM)
423 		return NULL;
424 
425 	if (index > ICE_MAX_BST_TCAMS_IN_BUF)
426 		return NULL;
427 
428 	if (offset)
429 		*offset = 0;
430 
431 	boost = (struct ice_boost_tcam_section *)section;
432 	if (index >= LE16_TO_CPU(boost->count))
433 		return NULL;
434 
435 	return boost->tcam + index;
436 }
437 
438 /**
439  * ice_find_boost_entry
440  * @ice_seg: pointer to the ice segment (non-NULL)
441  * @addr: Boost TCAM address of entry to search for
442  * @entry: returns pointer to the entry
443  *
444  * Finds a particular Boost TCAM entry and returns a pointer to that entry
445  * if it is found. The ice_seg parameter must not be NULL since the first call
446  * to ice_pkg_enum_entry requires a pointer to an actual ice_segment structure.
447  */
448 static enum ice_status
ice_find_boost_entry(struct ice_seg * ice_seg,u16 addr,struct ice_boost_tcam_entry ** entry)449 ice_find_boost_entry(struct ice_seg *ice_seg, u16 addr,
450 		     struct ice_boost_tcam_entry **entry)
451 {
452 	struct ice_boost_tcam_entry *tcam;
453 	struct ice_pkg_enum state;
454 
455 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
456 
457 	if (!ice_seg)
458 		return ICE_ERR_PARAM;
459 
460 	do {
461 		tcam = (struct ice_boost_tcam_entry *)
462 		       ice_pkg_enum_entry(ice_seg, &state,
463 					  ICE_SID_RXPARSER_BOOST_TCAM, NULL,
464 					  ice_boost_tcam_handler);
465 		if (tcam && LE16_TO_CPU(tcam->addr) == addr) {
466 			*entry = tcam;
467 			return ICE_SUCCESS;
468 		}
469 
470 		ice_seg = NULL;
471 	} while (tcam);
472 
473 	*entry = NULL;
474 	return ICE_ERR_CFG;
475 }
476 
477 /**
478  * ice_label_enum_handler
479  * @sect_type: section type
480  * @section: pointer to section
481  * @index: index of the label entry to be returned
482  * @offset: pointer to receive absolute offset, always zero for label sections
483  *
484  * This is a callback function that can be passed to ice_pkg_enum_entry.
485  * Handles enumeration of individual label entries.
486  */
487 static void *
ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type,void * section,u32 index,u32 * offset)488 ice_label_enum_handler(u32 __ALWAYS_UNUSED sect_type, void *section, u32 index,
489 		       u32 *offset)
490 {
491 	struct ice_label_section *labels;
492 
493 	if (!section)
494 		return NULL;
495 
496 	if (index > ICE_MAX_LABELS_IN_BUF)
497 		return NULL;
498 
499 	if (offset)
500 		*offset = 0;
501 
502 	labels = (struct ice_label_section *)section;
503 	if (index >= LE16_TO_CPU(labels->count))
504 		return NULL;
505 
506 	return labels->label + index;
507 }
508 
509 /**
510  * ice_enum_labels
511  * @ice_seg: pointer to the ice segment (NULL on subsequent calls)
512  * @type: the section type that will contain the label (0 on subsequent calls)
513  * @state: ice_pkg_enum structure that will hold the state of the enumeration
514  * @value: pointer to a value that will return the label's value if found
515  *
516  * Enumerates a list of labels in the package. The caller will call
517  * ice_enum_labels(ice_seg, type, ...) to start the enumeration, then call
518  * ice_enum_labels(NULL, 0, ...) to continue. When the function returns a NULL
519  * the end of the list has been reached.
520  */
521 static char *
ice_enum_labels(struct ice_seg * ice_seg,u32 type,struct ice_pkg_enum * state,u16 * value)522 ice_enum_labels(struct ice_seg *ice_seg, u32 type, struct ice_pkg_enum *state,
523 		u16 *value)
524 {
525 	struct ice_label *label;
526 
527 	/* Check for valid label section on first call */
528 	if (type && !(type >= ICE_SID_LBL_FIRST && type <= ICE_SID_LBL_LAST))
529 		return NULL;
530 
531 	label = (struct ice_label *)ice_pkg_enum_entry(ice_seg, state, type,
532 						       NULL,
533 						       ice_label_enum_handler);
534 	if (!label)
535 		return NULL;
536 
537 	*value = LE16_TO_CPU(label->value);
538 	return label->name;
539 }
540 
541 /**
542  * ice_add_tunnel_hint
543  * @hw: pointer to the HW structure
544  * @label_name: label text
545  * @val: value of the tunnel port boost entry
546  */
ice_add_tunnel_hint(struct ice_hw * hw,char * label_name,u16 val)547 static void ice_add_tunnel_hint(struct ice_hw *hw, char *label_name, u16 val)
548 {
549 	if (hw->tnl.count < ICE_TUNNEL_MAX_ENTRIES) {
550 		u16 i;
551 
552 		for (i = 0; tnls[i].type != TNL_LAST; i++) {
553 			size_t len = strlen(tnls[i].label_prefix);
554 
555 			/* Look for matching label start, before continuing */
556 			if (strncmp(label_name, tnls[i].label_prefix, len))
557 				continue;
558 
559 			/* Make sure this label matches our PF. Note that the PF
560 			 * character ('0' - '7') will be located where our
561 			 * prefix string's null terminator is located.
562 			 */
563 			if ((label_name[len] - '0') == hw->pf_id) {
564 				hw->tnl.tbl[hw->tnl.count].type = tnls[i].type;
565 				hw->tnl.tbl[hw->tnl.count].valid = false;
566 				hw->tnl.tbl[hw->tnl.count].in_use = false;
567 				hw->tnl.tbl[hw->tnl.count].marked = false;
568 				hw->tnl.tbl[hw->tnl.count].boost_addr = val;
569 				hw->tnl.tbl[hw->tnl.count].port = 0;
570 				hw->tnl.count++;
571 				break;
572 			}
573 		}
574 	}
575 }
576 
577 /**
578  * ice_add_dvm_hint
579  * @hw: pointer to the HW structure
580  * @val: value of the boost entry
581  * @enable: true if entry needs to be enabled, or false if needs to be disabled
582  */
ice_add_dvm_hint(struct ice_hw * hw,u16 val,bool enable)583 static void ice_add_dvm_hint(struct ice_hw *hw, u16 val, bool enable)
584 {
585 	if (hw->dvm_upd.count < ICE_DVM_MAX_ENTRIES) {
586 		hw->dvm_upd.tbl[hw->dvm_upd.count].boost_addr = val;
587 		hw->dvm_upd.tbl[hw->dvm_upd.count].enable = enable;
588 		hw->dvm_upd.count++;
589 	}
590 }
591 
592 /**
593  * ice_init_pkg_hints
594  * @hw: pointer to the HW structure
595  * @ice_seg: pointer to the segment of the package scan (non-NULL)
596  *
597  * This function will scan the package and save off relevant information
598  * (hints or metadata) for driver use. The ice_seg parameter must not be NULL
599  * since the first call to ice_enum_labels requires a pointer to an actual
600  * ice_seg structure.
601  */
ice_init_pkg_hints(struct ice_hw * hw,struct ice_seg * ice_seg)602 static void ice_init_pkg_hints(struct ice_hw *hw, struct ice_seg *ice_seg)
603 {
604 	struct ice_pkg_enum state;
605 	char *label_name;
606 	u16 val;
607 	int i;
608 
609 	ice_memset(&hw->tnl, 0, sizeof(hw->tnl), ICE_NONDMA_MEM);
610 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
611 
612 	if (!ice_seg)
613 		return;
614 
615 	label_name = ice_enum_labels(ice_seg, ICE_SID_LBL_RXPARSER_TMEM, &state,
616 				     &val);
617 
618 	while (label_name) {
619 		if (!strncmp(label_name, ICE_TNL_PRE, strlen(ICE_TNL_PRE)))
620 			/* check for a tunnel entry */
621 			ice_add_tunnel_hint(hw, label_name, val);
622 
623 		/* check for a dvm mode entry */
624 		else if (!strncmp(label_name, ICE_DVM_PRE, strlen(ICE_DVM_PRE)))
625 			ice_add_dvm_hint(hw, val, true);
626 
627 		/* check for a svm mode entry */
628 		else if (!strncmp(label_name, ICE_SVM_PRE, strlen(ICE_SVM_PRE)))
629 			ice_add_dvm_hint(hw, val, false);
630 
631 		label_name = ice_enum_labels(NULL, 0, &state, &val);
632 	}
633 
634 	/* Cache the appropriate boost TCAM entry pointers for tunnels */
635 	for (i = 0; i < hw->tnl.count; i++) {
636 		ice_find_boost_entry(ice_seg, hw->tnl.tbl[i].boost_addr,
637 				     &hw->tnl.tbl[i].boost_entry);
638 		if (hw->tnl.tbl[i].boost_entry)
639 			hw->tnl.tbl[i].valid = true;
640 	}
641 
642 	/* Cache the appropriate boost TCAM entry pointers for DVM and SVM */
643 	for (i = 0; i < hw->dvm_upd.count; i++)
644 		ice_find_boost_entry(ice_seg, hw->dvm_upd.tbl[i].boost_addr,
645 				     &hw->dvm_upd.tbl[i].boost_entry);
646 }
647 
648 /* Key creation */
649 
650 #define ICE_DC_KEY	0x1	/* don't care */
651 #define ICE_DC_KEYINV	0x1
652 #define ICE_NM_KEY	0x0	/* never match */
653 #define ICE_NM_KEYINV	0x0
654 #define ICE_0_KEY	0x1	/* match 0 */
655 #define ICE_0_KEYINV	0x0
656 #define ICE_1_KEY	0x0	/* match 1 */
657 #define ICE_1_KEYINV	0x1
658 
659 /**
660  * ice_gen_key_word - generate 16-bits of a key/mask word
661  * @val: the value
662  * @valid: valid bits mask (change only the valid bits)
663  * @dont_care: don't care mask
664  * @nvr_mtch: never match mask
665  * @key: pointer to an array of where the resulting key portion
666  * @key_inv: pointer to an array of where the resulting key invert portion
667  *
668  * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
669  * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
670  * of key and 8 bits of key invert.
671  *
672  *     '0' =    b01, always match a 0 bit
673  *     '1' =    b10, always match a 1 bit
674  *     '?' =    b11, don't care bit (always matches)
675  *     '~' =    b00, never match bit
676  *
677  * Input:
678  *          val:         b0  1  0  1  0  1
679  *          dont_care:   b0  0  1  1  0  0
680  *          never_mtch:  b0  0  0  0  1  1
681  *          ------------------------------
682  * Result:  key:        b01 10 11 11 00 00
683  */
684 static enum ice_status
ice_gen_key_word(u8 val,u8 valid,u8 dont_care,u8 nvr_mtch,u8 * key,u8 * key_inv)685 ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
686 		 u8 *key_inv)
687 {
688 	u8 in_key = *key, in_key_inv = *key_inv;
689 	u8 i;
690 
691 	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
692 	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
693 		return ICE_ERR_CFG;
694 
695 	*key = 0;
696 	*key_inv = 0;
697 
698 	/* encode the 8 bits into 8-bit key and 8-bit key invert */
699 	for (i = 0; i < 8; i++) {
700 		*key >>= 1;
701 		*key_inv >>= 1;
702 
703 		if (!(valid & 0x1)) { /* change only valid bits */
704 			*key |= (in_key & 0x1) << 7;
705 			*key_inv |= (in_key_inv & 0x1) << 7;
706 		} else if (dont_care & 0x1) { /* don't care bit */
707 			*key |= ICE_DC_KEY << 7;
708 			*key_inv |= ICE_DC_KEYINV << 7;
709 		} else if (nvr_mtch & 0x1) { /* never match bit */
710 			*key |= ICE_NM_KEY << 7;
711 			*key_inv |= ICE_NM_KEYINV << 7;
712 		} else if (val & 0x01) { /* exact 1 match */
713 			*key |= ICE_1_KEY << 7;
714 			*key_inv |= ICE_1_KEYINV << 7;
715 		} else { /* exact 0 match */
716 			*key |= ICE_0_KEY << 7;
717 			*key_inv |= ICE_0_KEYINV << 7;
718 		}
719 
720 		dont_care >>= 1;
721 		nvr_mtch >>= 1;
722 		valid >>= 1;
723 		val >>= 1;
724 		in_key >>= 1;
725 		in_key_inv >>= 1;
726 	}
727 
728 	return ICE_SUCCESS;
729 }
730 
731 /**
732  * ice_bits_max_set - determine if the number of bits set is within a maximum
733  * @mask: pointer to the byte array which is the mask
734  * @size: the number of bytes in the mask
735  * @max: the max number of set bits
736  *
737  * This function determines if there are at most 'max' number of bits set in an
738  * array. Returns true if the number for bits set is <= max or will return false
739  * otherwise.
740  */
ice_bits_max_set(const u8 * mask,u16 size,u16 max)741 static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
742 {
743 	u16 count = 0;
744 	u16 i;
745 
746 	/* check each byte */
747 	for (i = 0; i < size; i++) {
748 		/* if 0, go to next byte */
749 		if (!mask[i])
750 			continue;
751 
752 		/* We know there is at least one set bit in this byte because of
753 		 * the above check; if we already have found 'max' number of
754 		 * bits set, then we can return failure now.
755 		 */
756 		if (count == max)
757 			return false;
758 
759 		/* count the bits in this byte, checking threshold */
760 		count += ice_hweight8(mask[i]);
761 		if (count > max)
762 			return false;
763 	}
764 
765 	return true;
766 }
767 
768 /**
769  * ice_set_key - generate a variable sized key with multiples of 16-bits
770  * @key: pointer to where the key will be stored
771  * @size: the size of the complete key in bytes (must be even)
772  * @val: array of 8-bit values that makes up the value portion of the key
773  * @upd: array of 8-bit masks that determine what key portion to update
774  * @dc: array of 8-bit masks that make up the don't care mask
775  * @nm: array of 8-bit masks that make up the never match mask
776  * @off: the offset of the first byte in the key to update
777  * @len: the number of bytes in the key update
778  *
779  * This function generates a key from a value, a don't care mask and a never
780  * match mask.
781  * upd, dc, and nm are optional parameters, and can be NULL:
782  *	upd == NULL --> upd mask is all 1's (update all bits)
783  *	dc == NULL --> dc mask is all 0's (no don't care bits)
784  *	nm == NULL --> nm mask is all 0's (no never match bits)
785  */
786 enum ice_status
ice_set_key(u8 * key,u16 size,u8 * val,u8 * upd,u8 * dc,u8 * nm,u16 off,u16 len)787 ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
788 	    u16 len)
789 {
790 	u16 half_size;
791 	u16 i;
792 
793 	/* size must be a multiple of 2 bytes. */
794 	if (size % 2)
795 		return ICE_ERR_CFG;
796 	half_size = size / 2;
797 
798 	if (off + len > half_size)
799 		return ICE_ERR_CFG;
800 
801 	/* Make sure at most one bit is set in the never match mask. Having more
802 	 * than one never match mask bit set will cause HW to consume excessive
803 	 * power otherwise; this is a power management efficiency check.
804 	 */
805 #define ICE_NVR_MTCH_BITS_MAX	1
806 	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
807 		return ICE_ERR_CFG;
808 
809 	for (i = 0; i < len; i++)
810 		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
811 				     dc ? dc[i] : 0, nm ? nm[i] : 0,
812 				     key + off + i, key + half_size + off + i))
813 			return ICE_ERR_CFG;
814 
815 	return ICE_SUCCESS;
816 }
817 
818 /**
819  * ice_acquire_global_cfg_lock
820  * @hw: pointer to the HW structure
821  * @access: access type (read or write)
822  *
823  * This function will request ownership of the global config lock for reading
824  * or writing of the package. When attempting to obtain write access, the
825  * caller must check for the following two return values:
826  *
827  * ICE_SUCCESS        - Means the caller has acquired the global config lock
828  *                      and can perform writing of the package.
829  * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
830  *                      package or has found that no update was necessary; in
831  *                      this case, the caller can just skip performing any
832  *                      update of the package.
833  */
834 static enum ice_status
ice_acquire_global_cfg_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)835 ice_acquire_global_cfg_lock(struct ice_hw *hw,
836 			    enum ice_aq_res_access_type access)
837 {
838 	enum ice_status status;
839 
840 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
841 
842 	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
843 				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
844 
845 	if (status == ICE_ERR_AQ_NO_WORK)
846 		ice_debug(hw, ICE_DBG_PKG, "Global config lock: No work to do\n");
847 
848 	return status;
849 }
850 
851 /**
852  * ice_release_global_cfg_lock
853  * @hw: pointer to the HW structure
854  *
855  * This function will release the global config lock.
856  */
ice_release_global_cfg_lock(struct ice_hw * hw)857 static void ice_release_global_cfg_lock(struct ice_hw *hw)
858 {
859 	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
860 }
861 
862 /**
863  * ice_acquire_change_lock
864  * @hw: pointer to the HW structure
865  * @access: access type (read or write)
866  *
867  * This function will request ownership of the change lock.
868  */
869 enum ice_status
ice_acquire_change_lock(struct ice_hw * hw,enum ice_aq_res_access_type access)870 ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
871 {
872 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
873 
874 	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
875 			       ICE_CHANGE_LOCK_TIMEOUT);
876 }
877 
878 /**
879  * ice_release_change_lock
880  * @hw: pointer to the HW structure
881  *
882  * This function will release the change lock using the proper Admin Command.
883  */
ice_release_change_lock(struct ice_hw * hw)884 void ice_release_change_lock(struct ice_hw *hw)
885 {
886 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
887 
888 	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
889 }
890 
891 /**
892  * ice_aq_download_pkg
893  * @hw: pointer to the hardware structure
894  * @pkg_buf: the package buffer to transfer
895  * @buf_size: the size of the package buffer
896  * @last_buf: last buffer indicator
897  * @error_offset: returns error offset
898  * @error_info: returns error information
899  * @cd: pointer to command details structure or NULL
900  *
901  * Download Package (0x0C40)
902  */
903 static enum ice_status
ice_aq_download_pkg(struct ice_hw * hw,struct ice_buf_hdr * pkg_buf,u16 buf_size,bool last_buf,u32 * error_offset,u32 * error_info,struct ice_sq_cd * cd)904 ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
905 		    u16 buf_size, bool last_buf, u32 *error_offset,
906 		    u32 *error_info, struct ice_sq_cd *cd)
907 {
908 	struct ice_aqc_download_pkg *cmd;
909 	struct ice_aq_desc desc;
910 	enum ice_status status;
911 
912 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
913 
914 	if (error_offset)
915 		*error_offset = 0;
916 	if (error_info)
917 		*error_info = 0;
918 
919 	cmd = &desc.params.download_pkg;
920 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
921 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
922 
923 	if (last_buf)
924 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
925 
926 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
927 	if (status == ICE_ERR_AQ_ERROR) {
928 		/* Read error from buffer only when the FW returned an error */
929 		struct ice_aqc_download_pkg_resp *resp;
930 
931 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
932 		if (error_offset)
933 			*error_offset = LE32_TO_CPU(resp->error_offset);
934 		if (error_info)
935 			*error_info = LE32_TO_CPU(resp->error_info);
936 	}
937 
938 	return status;
939 }
940 
941 /**
942  * ice_aq_upload_section
943  * @hw: pointer to the hardware structure
944  * @pkg_buf: the package buffer which will receive the section
945  * @buf_size: the size of the package buffer
946  * @cd: pointer to command details structure or NULL
947  *
948  * Upload Section (0x0C41)
949  */
950 enum ice_status
ice_aq_upload_section(struct ice_hw * hw,struct ice_buf_hdr * pkg_buf,u16 buf_size,struct ice_sq_cd * cd)951 ice_aq_upload_section(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
952 		      u16 buf_size, struct ice_sq_cd *cd)
953 {
954 	struct ice_aq_desc desc;
955 
956 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
957 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_upload_section);
958 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
959 
960 	return ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
961 }
962 
963 /**
964  * ice_aq_update_pkg
965  * @hw: pointer to the hardware structure
966  * @pkg_buf: the package cmd buffer
967  * @buf_size: the size of the package cmd buffer
968  * @last_buf: last buffer indicator
969  * @error_offset: returns error offset
970  * @error_info: returns error information
971  * @cd: pointer to command details structure or NULL
972  *
973  * Update Package (0x0C42)
974  */
975 static enum ice_status
ice_aq_update_pkg(struct ice_hw * hw,struct ice_buf_hdr * pkg_buf,u16 buf_size,bool last_buf,u32 * error_offset,u32 * error_info,struct ice_sq_cd * cd)976 ice_aq_update_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf, u16 buf_size,
977 		  bool last_buf, u32 *error_offset, u32 *error_info,
978 		  struct ice_sq_cd *cd)
979 {
980 	struct ice_aqc_download_pkg *cmd;
981 	struct ice_aq_desc desc;
982 	enum ice_status status;
983 
984 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
985 
986 	if (error_offset)
987 		*error_offset = 0;
988 	if (error_info)
989 		*error_info = 0;
990 
991 	cmd = &desc.params.download_pkg;
992 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_pkg);
993 	desc.flags |= CPU_TO_LE16(ICE_AQ_FLAG_RD);
994 
995 	if (last_buf)
996 		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
997 
998 	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
999 	if (status == ICE_ERR_AQ_ERROR) {
1000 		/* Read error from buffer only when the FW returned an error */
1001 		struct ice_aqc_download_pkg_resp *resp;
1002 
1003 		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
1004 		if (error_offset)
1005 			*error_offset = LE32_TO_CPU(resp->error_offset);
1006 		if (error_info)
1007 			*error_info = LE32_TO_CPU(resp->error_info);
1008 	}
1009 
1010 	return status;
1011 }
1012 
1013 /**
1014  * ice_find_seg_in_pkg
1015  * @hw: pointer to the hardware structure
1016  * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
1017  * @pkg_hdr: pointer to the package header to be searched
1018  *
1019  * This function searches a package file for a particular segment type. On
1020  * success it returns a pointer to the segment header, otherwise it will
1021  * return NULL.
1022  */
1023 static struct ice_generic_seg_hdr *
ice_find_seg_in_pkg(struct ice_hw * hw,u32 seg_type,struct ice_pkg_hdr * pkg_hdr)1024 ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
1025 		    struct ice_pkg_hdr *pkg_hdr)
1026 {
1027 	u32 i;
1028 
1029 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1030 	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
1031 		  pkg_hdr->pkg_format_ver.major, pkg_hdr->pkg_format_ver.minor,
1032 		  pkg_hdr->pkg_format_ver.update,
1033 		  pkg_hdr->pkg_format_ver.draft);
1034 
1035 	/* Search all package segments for the requested segment type */
1036 	for (i = 0; i < LE32_TO_CPU(pkg_hdr->seg_count); i++) {
1037 		struct ice_generic_seg_hdr *seg;
1038 
1039 		seg = (struct ice_generic_seg_hdr *)
1040 			((u8 *)pkg_hdr + LE32_TO_CPU(pkg_hdr->seg_offset[i]));
1041 
1042 		if (LE32_TO_CPU(seg->seg_type) == seg_type)
1043 			return seg;
1044 	}
1045 
1046 	return NULL;
1047 }
1048 
1049 /**
1050  * ice_update_pkg_no_lock
1051  * @hw: pointer to the hardware structure
1052  * @bufs: pointer to an array of buffers
1053  * @count: the number of buffers in the array
1054  */
1055 static enum ice_status
ice_update_pkg_no_lock(struct ice_hw * hw,struct ice_buf * bufs,u32 count)1056 ice_update_pkg_no_lock(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1057 {
1058 	enum ice_status status = ICE_SUCCESS;
1059 	u32 i;
1060 
1061 	for (i = 0; i < count; i++) {
1062 		struct ice_buf_hdr *bh = (struct ice_buf_hdr *)(bufs + i);
1063 		bool last = ((i + 1) == count);
1064 		u32 offset, info;
1065 
1066 		status = ice_aq_update_pkg(hw, bh, LE16_TO_CPU(bh->data_end),
1067 					   last, &offset, &info, NULL);
1068 
1069 		if (status) {
1070 			ice_debug(hw, ICE_DBG_PKG, "Update pkg failed: err %d off %d inf %d\n",
1071 				  status, offset, info);
1072 			break;
1073 		}
1074 	}
1075 
1076 	return status;
1077 }
1078 
1079 /**
1080  * ice_update_pkg
1081  * @hw: pointer to the hardware structure
1082  * @bufs: pointer to an array of buffers
1083  * @count: the number of buffers in the array
1084  *
1085  * Obtains change lock and updates package.
1086  */
1087 enum ice_status
ice_update_pkg(struct ice_hw * hw,struct ice_buf * bufs,u32 count)1088 ice_update_pkg(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1089 {
1090 	enum ice_status status;
1091 
1092 	status = ice_acquire_change_lock(hw, ICE_RES_WRITE);
1093 	if (status)
1094 		return status;
1095 
1096 	status = ice_update_pkg_no_lock(hw, bufs, count);
1097 
1098 	ice_release_change_lock(hw);
1099 
1100 	return status;
1101 }
1102 
1103 /**
1104  * ice_dwnld_cfg_bufs
1105  * @hw: pointer to the hardware structure
1106  * @bufs: pointer to an array of buffers
1107  * @count: the number of buffers in the array
1108  *
1109  * Obtains global config lock and downloads the package configuration buffers
1110  * to the firmware. Metadata buffers are skipped, and the first metadata buffer
1111  * found indicates that the rest of the buffers are all metadata buffers.
1112  */
1113 static enum ice_status
ice_dwnld_cfg_bufs(struct ice_hw * hw,struct ice_buf * bufs,u32 count)1114 ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
1115 {
1116 	enum ice_status status;
1117 	struct ice_buf_hdr *bh;
1118 	u32 offset, info, i;
1119 
1120 	if (!bufs || !count)
1121 		return ICE_ERR_PARAM;
1122 
1123 	/* If the first buffer's first section has its metadata bit set
1124 	 * then there are no buffers to be downloaded, and the operation is
1125 	 * considered a success.
1126 	 */
1127 	bh = (struct ice_buf_hdr *)bufs;
1128 	if (LE32_TO_CPU(bh->section_entry[0].type) & ICE_METADATA_BUF)
1129 		return ICE_SUCCESS;
1130 
1131 	/* reset pkg_dwnld_status in case this function is called in the
1132 	 * reset/rebuild flow
1133 	 */
1134 	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
1135 
1136 	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
1137 	if (status) {
1138 		if (status == ICE_ERR_AQ_NO_WORK)
1139 			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
1140 		else
1141 			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1142 		return status;
1143 	}
1144 
1145 	for (i = 0; i < count; i++) {
1146 		bool last = ((i + 1) == count);
1147 
1148 		if (!last) {
1149 			/* check next buffer for metadata flag */
1150 			bh = (struct ice_buf_hdr *)(bufs + i + 1);
1151 
1152 			/* A set metadata flag in the next buffer will signal
1153 			 * that the current buffer will be the last buffer
1154 			 * downloaded
1155 			 */
1156 			if (LE16_TO_CPU(bh->section_count))
1157 				if (LE32_TO_CPU(bh->section_entry[0].type) &
1158 				    ICE_METADATA_BUF)
1159 					last = true;
1160 		}
1161 
1162 		bh = (struct ice_buf_hdr *)(bufs + i);
1163 
1164 		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
1165 					     &offset, &info, NULL);
1166 
1167 		/* Save AQ status from download package */
1168 		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
1169 		if (status) {
1170 			ice_debug(hw, ICE_DBG_PKG, "Pkg download failed: err %d off %d inf %d\n",
1171 				  status, offset, info);
1172 			break;
1173 		}
1174 
1175 		if (last)
1176 			break;
1177 	}
1178 
1179 	if (!status) {
1180 		status = ice_set_vlan_mode(hw);
1181 		if (status)
1182 			ice_debug(hw, ICE_DBG_PKG, "Failed to set VLAN mode: err %d\n",
1183 				  status);
1184 	}
1185 
1186 	ice_release_global_cfg_lock(hw);
1187 
1188 	return status;
1189 }
1190 
1191 /**
1192  * ice_aq_get_pkg_info_list
1193  * @hw: pointer to the hardware structure
1194  * @pkg_info: the buffer which will receive the information list
1195  * @buf_size: the size of the pkg_info information buffer
1196  * @cd: pointer to command details structure or NULL
1197  *
1198  * Get Package Info List (0x0C43)
1199  */
1200 static enum ice_status
ice_aq_get_pkg_info_list(struct ice_hw * hw,struct ice_aqc_get_pkg_info_resp * pkg_info,u16 buf_size,struct ice_sq_cd * cd)1201 ice_aq_get_pkg_info_list(struct ice_hw *hw,
1202 			 struct ice_aqc_get_pkg_info_resp *pkg_info,
1203 			 u16 buf_size, struct ice_sq_cd *cd)
1204 {
1205 	struct ice_aq_desc desc;
1206 
1207 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1208 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
1209 
1210 	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
1211 }
1212 
1213 /**
1214  * ice_download_pkg
1215  * @hw: pointer to the hardware structure
1216  * @ice_seg: pointer to the segment of the package to be downloaded
1217  *
1218  * Handles the download of a complete package.
1219  */
1220 static enum ice_status
ice_download_pkg(struct ice_hw * hw,struct ice_seg * ice_seg)1221 ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
1222 {
1223 	struct ice_buf_table *ice_buf_tbl;
1224 	enum ice_status status;
1225 
1226 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1227 	ice_debug(hw, ICE_DBG_PKG, "Segment format version: %d.%d.%d.%d\n",
1228 		  ice_seg->hdr.seg_format_ver.major,
1229 		  ice_seg->hdr.seg_format_ver.minor,
1230 		  ice_seg->hdr.seg_format_ver.update,
1231 		  ice_seg->hdr.seg_format_ver.draft);
1232 
1233 	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
1234 		  LE32_TO_CPU(ice_seg->hdr.seg_type),
1235 		  LE32_TO_CPU(ice_seg->hdr.seg_size), ice_seg->hdr.seg_id);
1236 
1237 	ice_buf_tbl = ice_find_buf_table(ice_seg);
1238 
1239 	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
1240 		  LE32_TO_CPU(ice_buf_tbl->buf_count));
1241 
1242 	status = ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
1243 				    LE32_TO_CPU(ice_buf_tbl->buf_count));
1244 
1245 	ice_post_pkg_dwnld_vlan_mode_cfg(hw);
1246 
1247 	return status;
1248 }
1249 
1250 /**
1251  * ice_init_pkg_info
1252  * @hw: pointer to the hardware structure
1253  * @pkg_hdr: pointer to the driver's package hdr
1254  *
1255  * Saves off the package details into the HW structure.
1256  */
1257 static enum ice_status
ice_init_pkg_info(struct ice_hw * hw,struct ice_pkg_hdr * pkg_hdr)1258 ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
1259 {
1260 	struct ice_generic_seg_hdr *seg_hdr;
1261 
1262 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1263 	if (!pkg_hdr)
1264 		return ICE_ERR_PARAM;
1265 
1266 	hw->pkg_seg_id = SEGMENT_TYPE_ICE_E810;
1267 
1268 	ice_debug(hw, ICE_DBG_INIT, "Pkg using segment id: 0x%08X\n",
1269 		  hw->pkg_seg_id);
1270 
1271 	seg_hdr = (struct ice_generic_seg_hdr *)
1272 		ice_find_seg_in_pkg(hw, hw->pkg_seg_id, pkg_hdr);
1273 	if (seg_hdr) {
1274 		struct ice_meta_sect *meta;
1275 		struct ice_pkg_enum state;
1276 
1277 		ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1278 
1279 		/* Get package information from the Metadata Section */
1280 		meta = (struct ice_meta_sect *)
1281 			ice_pkg_enum_section((struct ice_seg *)seg_hdr, &state,
1282 					     ICE_SID_METADATA);
1283 		if (!meta) {
1284 			ice_debug(hw, ICE_DBG_INIT, "Did not find ice metadata section in package\n");
1285 			return ICE_ERR_CFG;
1286 		}
1287 
1288 		hw->pkg_ver = meta->ver;
1289 		ice_memcpy(hw->pkg_name, meta->name, sizeof(meta->name),
1290 			   ICE_NONDMA_TO_NONDMA);
1291 
1292 		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
1293 			  meta->ver.major, meta->ver.minor, meta->ver.update,
1294 			  meta->ver.draft, meta->name);
1295 
1296 		hw->ice_seg_fmt_ver = seg_hdr->seg_format_ver;
1297 		ice_memcpy(hw->ice_seg_id, seg_hdr->seg_id,
1298 			   sizeof(hw->ice_seg_id), ICE_NONDMA_TO_NONDMA);
1299 
1300 		ice_debug(hw, ICE_DBG_PKG, "Ice Seg: %d.%d.%d.%d, %s\n",
1301 			  seg_hdr->seg_format_ver.major,
1302 			  seg_hdr->seg_format_ver.minor,
1303 			  seg_hdr->seg_format_ver.update,
1304 			  seg_hdr->seg_format_ver.draft,
1305 			  seg_hdr->seg_id);
1306 	} else {
1307 		ice_debug(hw, ICE_DBG_INIT, "Did not find ice segment in driver package\n");
1308 		return ICE_ERR_CFG;
1309 	}
1310 
1311 	return ICE_SUCCESS;
1312 }
1313 
1314 /**
1315  * ice_get_pkg_info
1316  * @hw: pointer to the hardware structure
1317  *
1318  * Store details of the package currently loaded in HW into the HW structure.
1319  */
ice_get_pkg_info(struct ice_hw * hw)1320 static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
1321 {
1322 	struct ice_aqc_get_pkg_info_resp *pkg_info;
1323 	enum ice_status status;
1324 	u16 size;
1325 	u32 i;
1326 
1327 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1328 
1329 	size = ice_struct_size(pkg_info, pkg_info, ICE_PKG_CNT);
1330 	pkg_info = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1331 	if (!pkg_info)
1332 		return ICE_ERR_NO_MEMORY;
1333 
1334 	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
1335 	if (status)
1336 		goto init_pkg_free_alloc;
1337 
1338 	for (i = 0; i < LE32_TO_CPU(pkg_info->count); i++) {
1339 #define ICE_PKG_FLAG_COUNT	4
1340 		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
1341 		u8 place = 0;
1342 
1343 		if (pkg_info->pkg_info[i].is_active) {
1344 			flags[place++] = 'A';
1345 			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
1346 			hw->active_track_id =
1347 				LE32_TO_CPU(pkg_info->pkg_info[i].track_id);
1348 			ice_memcpy(hw->active_pkg_name,
1349 				   pkg_info->pkg_info[i].name,
1350 				   sizeof(pkg_info->pkg_info[i].name),
1351 				   ICE_NONDMA_TO_NONDMA);
1352 			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
1353 		}
1354 		if (pkg_info->pkg_info[i].is_active_at_boot)
1355 			flags[place++] = 'B';
1356 		if (pkg_info->pkg_info[i].is_modified)
1357 			flags[place++] = 'M';
1358 		if (pkg_info->pkg_info[i].is_in_nvm)
1359 			flags[place++] = 'N';
1360 
1361 		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
1362 			  i, pkg_info->pkg_info[i].ver.major,
1363 			  pkg_info->pkg_info[i].ver.minor,
1364 			  pkg_info->pkg_info[i].ver.update,
1365 			  pkg_info->pkg_info[i].ver.draft,
1366 			  pkg_info->pkg_info[i].name, flags);
1367 	}
1368 
1369 init_pkg_free_alloc:
1370 	ice_free(hw, pkg_info);
1371 
1372 	return status;
1373 }
1374 
1375 /**
1376  * ice_verify_pkg - verify package
1377  * @pkg: pointer to the package buffer
1378  * @len: size of the package buffer
1379  *
1380  * Verifies various attributes of the package file, including length, format
1381  * version, and the requirement of at least one segment.
1382  */
ice_verify_pkg(struct ice_pkg_hdr * pkg,u32 len)1383 static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
1384 {
1385 	u32 seg_count;
1386 	u32 i;
1387 
1388 	if (len < ice_struct_size(pkg, seg_offset, 1))
1389 		return ICE_ERR_BUF_TOO_SHORT;
1390 
1391 	if (pkg->pkg_format_ver.major != ICE_PKG_FMT_VER_MAJ ||
1392 	    pkg->pkg_format_ver.minor != ICE_PKG_FMT_VER_MNR ||
1393 	    pkg->pkg_format_ver.update != ICE_PKG_FMT_VER_UPD ||
1394 	    pkg->pkg_format_ver.draft != ICE_PKG_FMT_VER_DFT)
1395 		return ICE_ERR_CFG;
1396 
1397 	/* pkg must have at least one segment */
1398 	seg_count = LE32_TO_CPU(pkg->seg_count);
1399 	if (seg_count < 1)
1400 		return ICE_ERR_CFG;
1401 
1402 	/* make sure segment array fits in package length */
1403 	if (len < ice_struct_size(pkg, seg_offset, seg_count))
1404 		return ICE_ERR_BUF_TOO_SHORT;
1405 
1406 	/* all segments must fit within length */
1407 	for (i = 0; i < seg_count; i++) {
1408 		u32 off = LE32_TO_CPU(pkg->seg_offset[i]);
1409 		struct ice_generic_seg_hdr *seg;
1410 
1411 		/* segment header must fit */
1412 		if (len < off + sizeof(*seg))
1413 			return ICE_ERR_BUF_TOO_SHORT;
1414 
1415 		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
1416 
1417 		/* segment body must fit */
1418 		if (len < off + LE32_TO_CPU(seg->seg_size))
1419 			return ICE_ERR_BUF_TOO_SHORT;
1420 	}
1421 
1422 	return ICE_SUCCESS;
1423 }
1424 
1425 /**
1426  * ice_free_seg - free package segment pointer
1427  * @hw: pointer to the hardware structure
1428  *
1429  * Frees the package segment pointer in the proper manner, depending on if the
1430  * segment was allocated or just the passed in pointer was stored.
1431  */
ice_free_seg(struct ice_hw * hw)1432 void ice_free_seg(struct ice_hw *hw)
1433 {
1434 	if (hw->pkg_copy) {
1435 		ice_free(hw, hw->pkg_copy);
1436 		hw->pkg_copy = NULL;
1437 		hw->pkg_size = 0;
1438 	}
1439 	hw->seg = NULL;
1440 }
1441 
1442 /**
1443  * ice_init_pkg_regs - initialize additional package registers
1444  * @hw: pointer to the hardware structure
1445  */
ice_init_pkg_regs(struct ice_hw * hw)1446 static void ice_init_pkg_regs(struct ice_hw *hw)
1447 {
1448 #define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
1449 #define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
1450 #define ICE_SW_BLK_IDX	0
1451 	if (hw->dcf_enabled)
1452 		return;
1453 
1454 	/* setup Switch block input mask, which is 48-bits in two parts */
1455 	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
1456 	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
1457 }
1458 
1459 /**
1460  * ice_chk_pkg_version - check package version for compatibility with driver
1461  * @pkg_ver: pointer to a version structure to check
1462  *
1463  * Check to make sure that the package about to be downloaded is compatible with
1464  * the driver. To be compatible, the major and minor components of the package
1465  * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
1466  * definitions.
1467  */
ice_chk_pkg_version(struct ice_pkg_ver * pkg_ver)1468 static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
1469 {
1470 	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
1471 	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
1472 		return ICE_ERR_NOT_SUPPORTED;
1473 
1474 	return ICE_SUCCESS;
1475 }
1476 
1477 /**
1478  * ice_chk_pkg_compat
1479  * @hw: pointer to the hardware structure
1480  * @ospkg: pointer to the package hdr
1481  * @seg: pointer to the package segment hdr
1482  *
1483  * This function checks the package version compatibility with driver and NVM
1484  */
1485 static enum ice_status
ice_chk_pkg_compat(struct ice_hw * hw,struct ice_pkg_hdr * ospkg,struct ice_seg ** seg)1486 ice_chk_pkg_compat(struct ice_hw *hw, struct ice_pkg_hdr *ospkg,
1487 		   struct ice_seg **seg)
1488 {
1489 	struct ice_aqc_get_pkg_info_resp *pkg;
1490 	enum ice_status status;
1491 	u16 size;
1492 	u32 i;
1493 
1494 	ice_debug(hw, ICE_DBG_TRACE, "%s\n", __func__);
1495 
1496 	/* Check package version compatibility */
1497 	status = ice_chk_pkg_version(&hw->pkg_ver);
1498 	if (status) {
1499 		ice_debug(hw, ICE_DBG_INIT, "Package version check failed.\n");
1500 		return status;
1501 	}
1502 
1503 	/* find ICE segment in given package */
1504 	*seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, hw->pkg_seg_id,
1505 						     ospkg);
1506 	if (!*seg) {
1507 		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
1508 		return ICE_ERR_CFG;
1509 	}
1510 
1511 	/* Check if FW is compatible with the OS package */
1512 	size = ice_struct_size(pkg, pkg_info, ICE_PKG_CNT);
1513 	pkg = (struct ice_aqc_get_pkg_info_resp *)ice_malloc(hw, size);
1514 	if (!pkg)
1515 		return ICE_ERR_NO_MEMORY;
1516 
1517 	status = ice_aq_get_pkg_info_list(hw, pkg, size, NULL);
1518 	if (status)
1519 		goto fw_ddp_compat_free_alloc;
1520 
1521 	for (i = 0; i < LE32_TO_CPU(pkg->count); i++) {
1522 		/* loop till we find the NVM package */
1523 		if (!pkg->pkg_info[i].is_in_nvm)
1524 			continue;
1525 		if ((*seg)->hdr.seg_format_ver.major !=
1526 			pkg->pkg_info[i].ver.major ||
1527 		    (*seg)->hdr.seg_format_ver.minor >
1528 			pkg->pkg_info[i].ver.minor) {
1529 			status = ICE_ERR_FW_DDP_MISMATCH;
1530 			ice_debug(hw, ICE_DBG_INIT, "OS package is not compatible with NVM.\n");
1531 		}
1532 		/* done processing NVM package so break */
1533 		break;
1534 	}
1535 fw_ddp_compat_free_alloc:
1536 	ice_free(hw, pkg);
1537 	return status;
1538 }
1539 
1540 /**
1541  * ice_sw_fv_handler
1542  * @sect_type: section type
1543  * @section: pointer to section
1544  * @index: index of the field vector entry to be returned
1545  * @offset: ptr to variable that receives the offset in the field vector table
1546  *
1547  * This is a callback function that can be passed to ice_pkg_enum_entry.
1548  * This function treats the given section as of type ice_sw_fv_section and
1549  * enumerates offset field. "offset" is an index into the field vector table.
1550  */
1551 static void *
ice_sw_fv_handler(u32 sect_type,void * section,u32 index,u32 * offset)1552 ice_sw_fv_handler(u32 sect_type, void *section, u32 index, u32 *offset)
1553 {
1554 	struct ice_sw_fv_section *fv_section =
1555 		(struct ice_sw_fv_section *)section;
1556 
1557 	if (!section || sect_type != ICE_SID_FLD_VEC_SW)
1558 		return NULL;
1559 	if (index >= LE16_TO_CPU(fv_section->count))
1560 		return NULL;
1561 	if (offset)
1562 		/* "index" passed in to this function is relative to a given
1563 		 * 4k block. To get to the true index into the field vector
1564 		 * table need to add the relative index to the base_offset
1565 		 * field of this section
1566 		 */
1567 		*offset = LE16_TO_CPU(fv_section->base_offset) + index;
1568 	return fv_section->fv + index;
1569 }
1570 
1571 /**
1572  * ice_get_prof_index_max - get the max profile index for used profile
1573  * @hw: pointer to the HW struct
1574  *
1575  * Calling this function will get the max profile index for used profile
1576  * and store the index number in struct ice_switch_info *switch_info
1577  * in hw for following use.
1578  */
ice_get_prof_index_max(struct ice_hw * hw)1579 static int ice_get_prof_index_max(struct ice_hw *hw)
1580 {
1581 	u16 prof_index = 0, j, max_prof_index = 0;
1582 	struct ice_pkg_enum state;
1583 	struct ice_seg *ice_seg;
1584 	bool flag = false;
1585 	struct ice_fv *fv;
1586 	u32 offset;
1587 
1588 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1589 
1590 	if (!hw->seg)
1591 		return ICE_ERR_PARAM;
1592 
1593 	ice_seg = hw->seg;
1594 
1595 	do {
1596 		fv = (struct ice_fv *)
1597 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1598 					   &offset, ice_sw_fv_handler);
1599 		if (!fv)
1600 			break;
1601 		ice_seg = NULL;
1602 
1603 		/* in the profile that not be used, the prot_id is set to 0xff
1604 		 * and the off is set to 0x1ff for all the field vectors.
1605 		 */
1606 		for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1607 			if (fv->ew[j].prot_id != ICE_PROT_INVALID ||
1608 			    fv->ew[j].off != ICE_FV_OFFSET_INVAL)
1609 				flag = true;
1610 		if (flag && prof_index > max_prof_index)
1611 			max_prof_index = prof_index;
1612 
1613 		prof_index++;
1614 		flag = false;
1615 	} while (fv);
1616 
1617 	hw->switch_info->max_used_prof_index = max_prof_index;
1618 
1619 	return ICE_SUCCESS;
1620 }
1621 
1622 /**
1623  * ice_init_pkg - initialize/download package
1624  * @hw: pointer to the hardware structure
1625  * @buf: pointer to the package buffer
1626  * @len: size of the package buffer
1627  *
1628  * This function initializes a package. The package contains HW tables
1629  * required to do packet processing. First, the function extracts package
1630  * information such as version. Then it finds the ice configuration segment
1631  * within the package; this function then saves a copy of the segment pointer
1632  * within the supplied package buffer. Next, the function will cache any hints
1633  * from the package, followed by downloading the package itself. Note, that if
1634  * a previous PF driver has already downloaded the package successfully, then
1635  * the current driver will not have to download the package again.
1636  *
1637  * The local package contents will be used to query default behavior and to
1638  * update specific sections of the HW's version of the package (e.g. to update
1639  * the parse graph to understand new protocols).
1640  *
1641  * This function stores a pointer to the package buffer memory, and it is
1642  * expected that the supplied buffer will not be freed immediately. If the
1643  * package buffer needs to be freed, such as when read from a file, use
1644  * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
1645  * case.
1646  */
ice_init_pkg(struct ice_hw * hw,u8 * buf,u32 len)1647 enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
1648 {
1649 	struct ice_pkg_hdr *pkg;
1650 	enum ice_status status;
1651 	struct ice_seg *seg;
1652 
1653 	if (!buf || !len)
1654 		return ICE_ERR_PARAM;
1655 
1656 	pkg = (struct ice_pkg_hdr *)buf;
1657 	status = ice_verify_pkg(pkg, len);
1658 	if (status) {
1659 		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
1660 			  status);
1661 		return status;
1662 	}
1663 
1664 	/* initialize package info */
1665 	status = ice_init_pkg_info(hw, pkg);
1666 	if (status)
1667 		return status;
1668 
1669 	/* before downloading the package, check package version for
1670 	 * compatibility with driver
1671 	 */
1672 	status = ice_chk_pkg_compat(hw, pkg, &seg);
1673 	if (status)
1674 		return status;
1675 
1676 	/* initialize package hints and then download package */
1677 	ice_init_pkg_hints(hw, seg);
1678 	status = ice_download_pkg(hw, seg);
1679 	if (status == ICE_ERR_AQ_NO_WORK) {
1680 		ice_debug(hw, ICE_DBG_INIT, "package previously loaded - no work.\n");
1681 		status = ICE_SUCCESS;
1682 	}
1683 
1684 	/* Get information on the package currently loaded in HW, then make sure
1685 	 * the driver is compatible with this version.
1686 	 */
1687 	if (!status) {
1688 		status = ice_get_pkg_info(hw);
1689 		if (!status)
1690 			status = ice_chk_pkg_version(&hw->active_pkg_ver);
1691 	}
1692 
1693 	if (!status) {
1694 		hw->seg = seg;
1695 		/* on successful package download update other required
1696 		 * registers to support the package and fill HW tables
1697 		 * with package content.
1698 		 */
1699 		ice_init_pkg_regs(hw);
1700 		ice_fill_blk_tbls(hw);
1701 		ice_fill_hw_ptype(hw);
1702 		ice_get_prof_index_max(hw);
1703 	} else {
1704 		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
1705 			  status);
1706 	}
1707 
1708 	return status;
1709 }
1710 
1711 /**
1712  * ice_copy_and_init_pkg - initialize/download a copy of the package
1713  * @hw: pointer to the hardware structure
1714  * @buf: pointer to the package buffer
1715  * @len: size of the package buffer
1716  *
1717  * This function copies the package buffer, and then calls ice_init_pkg() to
1718  * initialize the copied package contents.
1719  *
1720  * The copying is necessary if the package buffer supplied is constant, or if
1721  * the memory may disappear shortly after calling this function.
1722  *
1723  * If the package buffer resides in the data segment and can be modified, the
1724  * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
1725  *
1726  * However, if the package buffer needs to be copied first, such as when being
1727  * read from a file, the caller should use ice_copy_and_init_pkg().
1728  *
1729  * This function will first copy the package buffer, before calling
1730  * ice_init_pkg(). The caller is free to immediately destroy the original
1731  * package buffer, as the new copy will be managed by this function and
1732  * related routines.
1733  */
ice_copy_and_init_pkg(struct ice_hw * hw,const u8 * buf,u32 len)1734 enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
1735 {
1736 	enum ice_status status;
1737 	u8 *buf_copy;
1738 
1739 	if (!buf || !len)
1740 		return ICE_ERR_PARAM;
1741 
1742 	buf_copy = (u8 *)ice_memdup(hw, buf, len, ICE_NONDMA_TO_NONDMA);
1743 
1744 	status = ice_init_pkg(hw, buf_copy, len);
1745 	if (status) {
1746 		/* Free the copy, since we failed to initialize the package */
1747 		ice_free(hw, buf_copy);
1748 	} else {
1749 		/* Track the copied pkg so we can free it later */
1750 		hw->pkg_copy = buf_copy;
1751 		hw->pkg_size = len;
1752 	}
1753 
1754 	return status;
1755 }
1756 
1757 /**
1758  * ice_pkg_buf_alloc
1759  * @hw: pointer to the HW structure
1760  *
1761  * Allocates a package buffer and returns a pointer to the buffer header.
1762  * Note: all package contents must be in Little Endian form.
1763  */
ice_pkg_buf_alloc(struct ice_hw * hw)1764 static struct ice_buf_build *ice_pkg_buf_alloc(struct ice_hw *hw)
1765 {
1766 	struct ice_buf_build *bld;
1767 	struct ice_buf_hdr *buf;
1768 
1769 	bld = (struct ice_buf_build *)ice_malloc(hw, sizeof(*bld));
1770 	if (!bld)
1771 		return NULL;
1772 
1773 	buf = (struct ice_buf_hdr *)bld;
1774 	buf->data_end = CPU_TO_LE16(offsetof(struct ice_buf_hdr,
1775 					     section_entry));
1776 	return bld;
1777 }
1778 
1779 /**
1780  * ice_get_sw_prof_type - determine switch profile type
1781  * @hw: pointer to the HW structure
1782  * @fv: pointer to the switch field vector
1783  */
1784 static enum ice_prof_type
ice_get_sw_prof_type(struct ice_hw * hw,struct ice_fv * fv)1785 ice_get_sw_prof_type(struct ice_hw *hw, struct ice_fv *fv)
1786 {
1787 	u16 i;
1788 	bool valid_prof = false;
1789 
1790 	for (i = 0; i < hw->blk[ICE_BLK_SW].es.fvw; i++) {
1791 		if (fv->ew[i].off != ICE_NAN_OFFSET)
1792 			valid_prof = true;
1793 
1794 		/* UDP tunnel will have UDP_OF protocol ID and VNI offset */
1795 		if (fv->ew[i].prot_id == (u8)ICE_PROT_UDP_OF &&
1796 		    fv->ew[i].off == ICE_VNI_OFFSET)
1797 			return ICE_PROF_TUN_UDP;
1798 
1799 		/* GRE tunnel will have GRE protocol */
1800 		if (fv->ew[i].prot_id == (u8)ICE_PROT_GRE_OF)
1801 			return ICE_PROF_TUN_GRE;
1802 
1803 		/* PPPOE tunnel will have PPPOE protocol */
1804 		if (fv->ew[i].prot_id == (u8)ICE_PROT_PPPOE)
1805 			return ICE_PROF_TUN_PPPOE;
1806 	}
1807 
1808 	return valid_prof ? ICE_PROF_NON_TUN : ICE_PROF_INVALID;
1809 }
1810 
1811 /**
1812  * ice_get_sw_fv_bitmap - Get switch field vector bitmap based on profile type
1813  * @hw: pointer to hardware structure
1814  * @req_profs: type of profiles requested
1815  * @bm: pointer to memory for returning the bitmap of field vectors
1816  */
1817 void
ice_get_sw_fv_bitmap(struct ice_hw * hw,enum ice_prof_type req_profs,ice_bitmap_t * bm)1818 ice_get_sw_fv_bitmap(struct ice_hw *hw, enum ice_prof_type req_profs,
1819 		     ice_bitmap_t *bm)
1820 {
1821 	struct ice_pkg_enum state;
1822 	struct ice_seg *ice_seg;
1823 	struct ice_fv *fv;
1824 
1825 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1826 	ice_zero_bitmap(bm, ICE_MAX_NUM_PROFILES);
1827 	ice_seg = hw->seg;
1828 	do {
1829 		enum ice_prof_type prof_type;
1830 		u32 offset;
1831 
1832 		fv = (struct ice_fv *)
1833 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1834 					   &offset, ice_sw_fv_handler);
1835 		ice_seg = NULL;
1836 
1837 		if (fv) {
1838 			/* Determine field vector type */
1839 			prof_type = ice_get_sw_prof_type(hw, fv);
1840 
1841 			if (req_profs & prof_type)
1842 				ice_set_bit((u16)offset, bm);
1843 		}
1844 	} while (fv);
1845 }
1846 
1847 /**
1848  * ice_get_sw_fv_list
1849  * @hw: pointer to the HW structure
1850  * @prot_ids: field vector to search for with a given protocol ID
1851  * @ids_cnt: lookup/protocol count
1852  * @bm: bitmap of field vectors to consider
1853  * @fv_list: Head of a list
1854  *
1855  * Finds all the field vector entries from switch block that contain
1856  * a given protocol ID and returns a list of structures of type
1857  * "ice_sw_fv_list_entry". Every structure in the list has a field vector
1858  * definition and profile ID information
1859  * NOTE: The caller of the function is responsible for freeing the memory
1860  * allocated for every list entry.
1861  */
1862 enum ice_status
ice_get_sw_fv_list(struct ice_hw * hw,u8 * prot_ids,u16 ids_cnt,ice_bitmap_t * bm,struct LIST_HEAD_TYPE * fv_list)1863 ice_get_sw_fv_list(struct ice_hw *hw, u8 *prot_ids, u16 ids_cnt,
1864 		   ice_bitmap_t *bm, struct LIST_HEAD_TYPE *fv_list)
1865 {
1866 	struct ice_sw_fv_list_entry *fvl;
1867 	struct ice_sw_fv_list_entry *tmp;
1868 	struct ice_pkg_enum state;
1869 	struct ice_seg *ice_seg;
1870 	struct ice_fv *fv;
1871 	u32 offset;
1872 
1873 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1874 
1875 	if (!ids_cnt || !hw->seg)
1876 		return ICE_ERR_PARAM;
1877 
1878 	ice_seg = hw->seg;
1879 	do {
1880 		u16 i;
1881 
1882 		fv = (struct ice_fv *)
1883 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1884 					   &offset, ice_sw_fv_handler);
1885 		if (!fv)
1886 			break;
1887 		ice_seg = NULL;
1888 
1889 		/* If field vector is not in the bitmap list, then skip this
1890 		 * profile.
1891 		 */
1892 		if (!ice_is_bit_set(bm, (u16)offset))
1893 			continue;
1894 
1895 		for (i = 0; i < ids_cnt; i++) {
1896 			int j;
1897 
1898 			/* This code assumes that if a switch field vector line
1899 			 * has a matching protocol, then this line will contain
1900 			 * the entries necessary to represent every field in
1901 			 * that protocol header.
1902 			 */
1903 			for (j = 0; j < hw->blk[ICE_BLK_SW].es.fvw; j++)
1904 				if (fv->ew[j].prot_id == prot_ids[i])
1905 					break;
1906 			if (j >= hw->blk[ICE_BLK_SW].es.fvw)
1907 				break;
1908 			if (i + 1 == ids_cnt) {
1909 				fvl = (struct ice_sw_fv_list_entry *)
1910 					ice_malloc(hw, sizeof(*fvl));
1911 				if (!fvl)
1912 					goto err;
1913 				fvl->fv_ptr = fv;
1914 				fvl->profile_id = offset;
1915 				LIST_ADD(&fvl->list_entry, fv_list);
1916 				break;
1917 			}
1918 		}
1919 	} while (fv);
1920 	if (LIST_EMPTY(fv_list))
1921 		return ICE_ERR_CFG;
1922 	return ICE_SUCCESS;
1923 
1924 err:
1925 	LIST_FOR_EACH_ENTRY_SAFE(fvl, tmp, fv_list, ice_sw_fv_list_entry,
1926 				 list_entry) {
1927 		LIST_DEL(&fvl->list_entry);
1928 		ice_free(hw, fvl);
1929 	}
1930 
1931 	return ICE_ERR_NO_MEMORY;
1932 }
1933 
1934 /**
1935  * ice_init_prof_result_bm - Initialize the profile result index bitmap
1936  * @hw: pointer to hardware structure
1937  */
ice_init_prof_result_bm(struct ice_hw * hw)1938 void ice_init_prof_result_bm(struct ice_hw *hw)
1939 {
1940 	struct ice_pkg_enum state;
1941 	struct ice_seg *ice_seg;
1942 	struct ice_fv *fv;
1943 
1944 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
1945 
1946 	if (!hw->seg)
1947 		return;
1948 
1949 	ice_seg = hw->seg;
1950 	do {
1951 		u32 off;
1952 		u16 i;
1953 
1954 		fv = (struct ice_fv *)
1955 			ice_pkg_enum_entry(ice_seg, &state, ICE_SID_FLD_VEC_SW,
1956 					   &off, ice_sw_fv_handler);
1957 		ice_seg = NULL;
1958 		if (!fv)
1959 			break;
1960 
1961 		ice_zero_bitmap(hw->switch_info->prof_res_bm[off],
1962 				ICE_MAX_FV_WORDS);
1963 
1964 		/* Determine empty field vector indices, these can be
1965 		 * used for recipe results. Skip index 0, since it is
1966 		 * always used for Switch ID.
1967 		 */
1968 		for (i = 1; i < ICE_MAX_FV_WORDS; i++)
1969 			if (fv->ew[i].prot_id == ICE_PROT_INVALID &&
1970 			    fv->ew[i].off == ICE_FV_OFFSET_INVAL)
1971 				ice_set_bit(i,
1972 					    hw->switch_info->prof_res_bm[off]);
1973 	} while (fv);
1974 }
1975 
1976 /**
1977  * ice_pkg_buf_free
1978  * @hw: pointer to the HW structure
1979  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1980  *
1981  * Frees a package buffer
1982  */
ice_pkg_buf_free(struct ice_hw * hw,struct ice_buf_build * bld)1983 void ice_pkg_buf_free(struct ice_hw *hw, struct ice_buf_build *bld)
1984 {
1985 	ice_free(hw, bld);
1986 }
1987 
1988 /**
1989  * ice_pkg_buf_reserve_section
1990  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
1991  * @count: the number of sections to reserve
1992  *
1993  * Reserves one or more section table entries in a package buffer. This routine
1994  * can be called multiple times as long as they are made before calling
1995  * ice_pkg_buf_alloc_section(). Once ice_pkg_buf_alloc_section()
1996  * is called once, the number of sections that can be allocated will not be able
1997  * to be increased; not using all reserved sections is fine, but this will
1998  * result in some wasted space in the buffer.
1999  * Note: all package contents must be in Little Endian form.
2000  */
2001 static enum ice_status
ice_pkg_buf_reserve_section(struct ice_buf_build * bld,u16 count)2002 ice_pkg_buf_reserve_section(struct ice_buf_build *bld, u16 count)
2003 {
2004 	struct ice_buf_hdr *buf;
2005 	u16 section_count;
2006 	u16 data_end;
2007 
2008 	if (!bld)
2009 		return ICE_ERR_PARAM;
2010 
2011 	buf = (struct ice_buf_hdr *)&bld->buf;
2012 
2013 	/* already an active section, can't increase table size */
2014 	section_count = LE16_TO_CPU(buf->section_count);
2015 	if (section_count > 0)
2016 		return ICE_ERR_CFG;
2017 
2018 	if (bld->reserved_section_table_entries + count > ICE_MAX_S_COUNT)
2019 		return ICE_ERR_CFG;
2020 	bld->reserved_section_table_entries += count;
2021 
2022 	data_end = LE16_TO_CPU(buf->data_end) +
2023 		FLEX_ARRAY_SIZE(buf, section_entry, count);
2024 	buf->data_end = CPU_TO_LE16(data_end);
2025 
2026 	return ICE_SUCCESS;
2027 }
2028 
2029 /**
2030  * ice_pkg_buf_alloc_section
2031  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2032  * @type: the section type value
2033  * @size: the size of the section to reserve (in bytes)
2034  *
2035  * Reserves memory in the buffer for a section's content and updates the
2036  * buffers' status accordingly. This routine returns a pointer to the first
2037  * byte of the section start within the buffer, which is used to fill in the
2038  * section contents.
2039  * Note: all package contents must be in Little Endian form.
2040  */
2041 static void *
ice_pkg_buf_alloc_section(struct ice_buf_build * bld,u32 type,u16 size)2042 ice_pkg_buf_alloc_section(struct ice_buf_build *bld, u32 type, u16 size)
2043 {
2044 	struct ice_buf_hdr *buf;
2045 	u16 sect_count;
2046 	u16 data_end;
2047 
2048 	if (!bld || !type || !size)
2049 		return NULL;
2050 
2051 	buf = (struct ice_buf_hdr *)&bld->buf;
2052 
2053 	/* check for enough space left in buffer */
2054 	data_end = LE16_TO_CPU(buf->data_end);
2055 
2056 	/* section start must align on 4 byte boundary */
2057 	data_end = ICE_ALIGN(data_end, 4);
2058 
2059 	if ((data_end + size) > ICE_MAX_S_DATA_END)
2060 		return NULL;
2061 
2062 	/* check for more available section table entries */
2063 	sect_count = LE16_TO_CPU(buf->section_count);
2064 	if (sect_count < bld->reserved_section_table_entries) {
2065 		void *section_ptr = ((u8 *)buf) + data_end;
2066 
2067 		buf->section_entry[sect_count].offset = CPU_TO_LE16(data_end);
2068 		buf->section_entry[sect_count].size = CPU_TO_LE16(size);
2069 		buf->section_entry[sect_count].type = CPU_TO_LE32(type);
2070 
2071 		data_end += size;
2072 		buf->data_end = CPU_TO_LE16(data_end);
2073 
2074 		buf->section_count = CPU_TO_LE16(sect_count + 1);
2075 		return section_ptr;
2076 	}
2077 
2078 	/* no free section table entries */
2079 	return NULL;
2080 }
2081 
2082 /**
2083  * ice_pkg_buf_alloc_single_section
2084  * @hw: pointer to the HW structure
2085  * @type: the section type value
2086  * @size: the size of the section to reserve (in bytes)
2087  * @section: returns pointer to the section
2088  *
2089  * Allocates a package buffer with a single section.
2090  * Note: all package contents must be in Little Endian form.
2091  */
2092 struct ice_buf_build *
ice_pkg_buf_alloc_single_section(struct ice_hw * hw,u32 type,u16 size,void ** section)2093 ice_pkg_buf_alloc_single_section(struct ice_hw *hw, u32 type, u16 size,
2094 				 void **section)
2095 {
2096 	struct ice_buf_build *buf;
2097 
2098 	if (!section)
2099 		return NULL;
2100 
2101 	buf = ice_pkg_buf_alloc(hw);
2102 	if (!buf)
2103 		return NULL;
2104 
2105 	if (ice_pkg_buf_reserve_section(buf, 1))
2106 		goto ice_pkg_buf_alloc_single_section_err;
2107 
2108 	*section = ice_pkg_buf_alloc_section(buf, type, size);
2109 	if (!*section)
2110 		goto ice_pkg_buf_alloc_single_section_err;
2111 
2112 	return buf;
2113 
2114 ice_pkg_buf_alloc_single_section_err:
2115 	ice_pkg_buf_free(hw, buf);
2116 	return NULL;
2117 }
2118 
2119 /**
2120  * ice_pkg_buf_get_active_sections
2121  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2122  *
2123  * Returns the number of active sections. Before using the package buffer
2124  * in an update package command, the caller should make sure that there is at
2125  * least one active section - otherwise, the buffer is not legal and should
2126  * not be used.
2127  * Note: all package contents must be in Little Endian form.
2128  */
ice_pkg_buf_get_active_sections(struct ice_buf_build * bld)2129 static u16 ice_pkg_buf_get_active_sections(struct ice_buf_build *bld)
2130 {
2131 	struct ice_buf_hdr *buf;
2132 
2133 	if (!bld)
2134 		return 0;
2135 
2136 	buf = (struct ice_buf_hdr *)&bld->buf;
2137 	return LE16_TO_CPU(buf->section_count);
2138 }
2139 
2140 /**
2141  * ice_pkg_buf
2142  * @bld: pointer to pkg build (allocated by ice_pkg_buf_alloc())
2143  *
2144  * Return a pointer to the buffer's header
2145  */
ice_pkg_buf(struct ice_buf_build * bld)2146 struct ice_buf *ice_pkg_buf(struct ice_buf_build *bld)
2147 {
2148 	if (!bld)
2149 		return NULL;
2150 
2151 	return &bld->buf;
2152 }
2153 
2154 /**
2155  * ice_tunnel_port_in_use_hlpr - helper function to determine tunnel usage
2156  * @hw: pointer to the HW structure
2157  * @port: port to search for
2158  * @index: optionally returns index
2159  *
2160  * Returns whether a port is already in use as a tunnel, and optionally its
2161  * index
2162  */
ice_tunnel_port_in_use_hlpr(struct ice_hw * hw,u16 port,u16 * index)2163 static bool ice_tunnel_port_in_use_hlpr(struct ice_hw *hw, u16 port, u16 *index)
2164 {
2165 	u16 i;
2166 
2167 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2168 		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2169 			if (index)
2170 				*index = i;
2171 			return true;
2172 		}
2173 
2174 	return false;
2175 }
2176 
2177 /**
2178  * ice_tunnel_port_in_use
2179  * @hw: pointer to the HW structure
2180  * @port: port to search for
2181  * @index: optionally returns index
2182  *
2183  * Returns whether a port is already in use as a tunnel, and optionally its
2184  * index
2185  */
ice_tunnel_port_in_use(struct ice_hw * hw,u16 port,u16 * index)2186 bool ice_tunnel_port_in_use(struct ice_hw *hw, u16 port, u16 *index)
2187 {
2188 	bool res;
2189 
2190 	ice_acquire_lock(&hw->tnl_lock);
2191 	res = ice_tunnel_port_in_use_hlpr(hw, port, index);
2192 	ice_release_lock(&hw->tnl_lock);
2193 
2194 	return res;
2195 }
2196 
2197 /**
2198  * ice_tunnel_get_type
2199  * @hw: pointer to the HW structure
2200  * @port: port to search for
2201  * @type: returns tunnel index
2202  *
2203  * For a given port number, will return the type of tunnel.
2204  */
2205 bool
ice_tunnel_get_type(struct ice_hw * hw,u16 port,enum ice_tunnel_type * type)2206 ice_tunnel_get_type(struct ice_hw *hw, u16 port, enum ice_tunnel_type *type)
2207 {
2208 	bool res = false;
2209 	u16 i;
2210 
2211 	ice_acquire_lock(&hw->tnl_lock);
2212 
2213 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2214 		if (hw->tnl.tbl[i].in_use && hw->tnl.tbl[i].port == port) {
2215 			*type = hw->tnl.tbl[i].type;
2216 			res = true;
2217 			break;
2218 		}
2219 
2220 	ice_release_lock(&hw->tnl_lock);
2221 
2222 	return res;
2223 }
2224 
2225 /**
2226  * ice_find_free_tunnel_entry
2227  * @hw: pointer to the HW structure
2228  * @type: tunnel type
2229  * @index: optionally returns index
2230  *
2231  * Returns whether there is a free tunnel entry, and optionally its index
2232  */
2233 static bool
ice_find_free_tunnel_entry(struct ice_hw * hw,enum ice_tunnel_type type,u16 * index)2234 ice_find_free_tunnel_entry(struct ice_hw *hw, enum ice_tunnel_type type,
2235 			   u16 *index)
2236 {
2237 	u16 i;
2238 
2239 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2240 		if (hw->tnl.tbl[i].valid && !hw->tnl.tbl[i].in_use &&
2241 		    hw->tnl.tbl[i].type == type) {
2242 			if (index)
2243 				*index = i;
2244 			return true;
2245 		}
2246 
2247 	return false;
2248 }
2249 
2250 /**
2251  * ice_get_open_tunnel_port - retrieve an open tunnel port
2252  * @hw: pointer to the HW structure
2253  * @type: tunnel type (TNL_ALL will return any open port)
2254  * @port: returns open port
2255  */
2256 bool
ice_get_open_tunnel_port(struct ice_hw * hw,enum ice_tunnel_type type,u16 * port)2257 ice_get_open_tunnel_port(struct ice_hw *hw, enum ice_tunnel_type type,
2258 			 u16 *port)
2259 {
2260 	bool res = false;
2261 	u16 i;
2262 
2263 	ice_acquire_lock(&hw->tnl_lock);
2264 
2265 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2266 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2267 		    (type == TNL_ALL || hw->tnl.tbl[i].type == type)) {
2268 			*port = hw->tnl.tbl[i].port;
2269 			res = true;
2270 			break;
2271 		}
2272 
2273 	ice_release_lock(&hw->tnl_lock);
2274 
2275 	return res;
2276 }
2277 
2278 /**
2279  * ice_upd_dvm_boost_entry
2280  * @hw: pointer to the HW structure
2281  * @entry: pointer to double vlan boost entry info
2282  */
2283 static enum ice_status
ice_upd_dvm_boost_entry(struct ice_hw * hw,struct ice_dvm_entry * entry)2284 ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
2285 {
2286 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2287 	enum ice_status status = ICE_ERR_MAX_LIMIT;
2288 	struct ice_buf_build *bld;
2289 	u8 val, dc, nm;
2290 
2291 	bld = ice_pkg_buf_alloc(hw);
2292 	if (!bld)
2293 		return ICE_ERR_NO_MEMORY;
2294 
2295 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2296 	if (ice_pkg_buf_reserve_section(bld, 2))
2297 		goto ice_upd_dvm_boost_entry_err;
2298 
2299 	sect_rx = (struct ice_boost_tcam_section *)
2300 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2301 					  ice_struct_size(sect_rx, tcam, 1));
2302 	if (!sect_rx)
2303 		goto ice_upd_dvm_boost_entry_err;
2304 	sect_rx->count = CPU_TO_LE16(1);
2305 
2306 	sect_tx = (struct ice_boost_tcam_section *)
2307 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2308 					  ice_struct_size(sect_tx, tcam, 1));
2309 	if (!sect_tx)
2310 		goto ice_upd_dvm_boost_entry_err;
2311 	sect_tx->count = CPU_TO_LE16(1);
2312 
2313 	/* copy original boost entry to update package buffer */
2314 	ice_memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam),
2315 		   ICE_NONDMA_TO_NONDMA);
2316 
2317 	/* re-write the don't care and never match bits accordingly */
2318 	if (entry->enable) {
2319 		/* all bits are don't care */
2320 		val = 0x00;
2321 		dc = 0xFF;
2322 		nm = 0x00;
2323 	} else {
2324 		/* disable, one never match bit, the rest are don't care */
2325 		val = 0x00;
2326 		dc = 0xF7;
2327 		nm = 0x08;
2328 	}
2329 
2330 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2331 		    &val, NULL, &dc, &nm, 0, sizeof(u8));
2332 
2333 	/* exact copy of entry to Tx section entry */
2334 	ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2335 		   ICE_NONDMA_TO_NONDMA);
2336 
2337 	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
2338 
2339 ice_upd_dvm_boost_entry_err:
2340 	ice_pkg_buf_free(hw, bld);
2341 
2342 	return status;
2343 }
2344 
2345 /**
2346  * ice_set_dvm_boost_entries
2347  * @hw: pointer to the HW structure
2348  *
2349  * Enable double vlan by updating the appropriate boost tcam entries.
2350  */
ice_set_dvm_boost_entries(struct ice_hw * hw)2351 enum ice_status ice_set_dvm_boost_entries(struct ice_hw *hw)
2352 {
2353 	enum ice_status status;
2354 	u16 i;
2355 
2356 	for (i = 0; i < hw->dvm_upd.count; i++) {
2357 		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
2358 		if (status)
2359 			return status;
2360 	}
2361 
2362 	return ICE_SUCCESS;
2363 }
2364 
2365 /**
2366  * ice_create_tunnel
2367  * @hw: pointer to the HW structure
2368  * @type: type of tunnel
2369  * @port: port of tunnel to create
2370  *
2371  * Create a tunnel by updating the parse graph in the parser. We do that by
2372  * creating a package buffer with the tunnel info and issuing an update package
2373  * command.
2374  */
2375 enum ice_status
ice_create_tunnel(struct ice_hw * hw,enum ice_tunnel_type type,u16 port)2376 ice_create_tunnel(struct ice_hw *hw, enum ice_tunnel_type type, u16 port)
2377 {
2378 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2379 	enum ice_status status = ICE_ERR_MAX_LIMIT;
2380 	struct ice_buf_build *bld;
2381 	u16 index;
2382 
2383 	ice_acquire_lock(&hw->tnl_lock);
2384 
2385 	if (ice_tunnel_port_in_use_hlpr(hw, port, &index)) {
2386 		hw->tnl.tbl[index].ref++;
2387 		status = ICE_SUCCESS;
2388 		goto ice_create_tunnel_end;
2389 	}
2390 
2391 	if (!ice_find_free_tunnel_entry(hw, type, &index)) {
2392 		status = ICE_ERR_OUT_OF_RANGE;
2393 		goto ice_create_tunnel_end;
2394 	}
2395 
2396 	bld = ice_pkg_buf_alloc(hw);
2397 	if (!bld) {
2398 		status = ICE_ERR_NO_MEMORY;
2399 		goto ice_create_tunnel_end;
2400 	}
2401 
2402 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2403 	if (ice_pkg_buf_reserve_section(bld, 2))
2404 		goto ice_create_tunnel_err;
2405 
2406 	sect_rx = (struct ice_boost_tcam_section *)
2407 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2408 					  ice_struct_size(sect_rx, tcam, 1));
2409 	if (!sect_rx)
2410 		goto ice_create_tunnel_err;
2411 	sect_rx->count = CPU_TO_LE16(1);
2412 
2413 	sect_tx = (struct ice_boost_tcam_section *)
2414 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2415 					  ice_struct_size(sect_tx, tcam, 1));
2416 	if (!sect_tx)
2417 		goto ice_create_tunnel_err;
2418 	sect_tx->count = CPU_TO_LE16(1);
2419 
2420 	/* copy original boost entry to update package buffer */
2421 	ice_memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
2422 		   sizeof(*sect_rx->tcam), ICE_NONDMA_TO_NONDMA);
2423 
2424 	/* over-write the never-match dest port key bits with the encoded port
2425 	 * bits
2426 	 */
2427 	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
2428 		    (u8 *)&port, NULL, NULL, NULL,
2429 		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
2430 		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
2431 
2432 	/* exact copy of entry to Tx section entry */
2433 	ice_memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam),
2434 		   ICE_NONDMA_TO_NONDMA);
2435 
2436 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2437 	if (!status) {
2438 		hw->tnl.tbl[index].port = port;
2439 		hw->tnl.tbl[index].in_use = true;
2440 		hw->tnl.tbl[index].ref = 1;
2441 	}
2442 
2443 ice_create_tunnel_err:
2444 	ice_pkg_buf_free(hw, bld);
2445 
2446 ice_create_tunnel_end:
2447 	ice_release_lock(&hw->tnl_lock);
2448 
2449 	return status;
2450 }
2451 
2452 /**
2453  * ice_destroy_tunnel
2454  * @hw: pointer to the HW structure
2455  * @port: port of tunnel to destroy (ignored if the all parameter is true)
2456  * @all: flag that states to destroy all tunnels
2457  *
2458  * Destroys a tunnel or all tunnels by creating an update package buffer
2459  * targeting the specific updates requested and then performing an update
2460  * package.
2461  */
ice_destroy_tunnel(struct ice_hw * hw,u16 port,bool all)2462 enum ice_status ice_destroy_tunnel(struct ice_hw *hw, u16 port, bool all)
2463 {
2464 	struct ice_boost_tcam_section *sect_rx, *sect_tx;
2465 	enum ice_status status = ICE_ERR_MAX_LIMIT;
2466 	struct ice_buf_build *bld;
2467 	u16 count = 0;
2468 	u16 index;
2469 	u16 size;
2470 	u16 i, j;
2471 
2472 	ice_acquire_lock(&hw->tnl_lock);
2473 
2474 	if (!all && ice_tunnel_port_in_use_hlpr(hw, port, &index))
2475 		if (hw->tnl.tbl[index].ref > 1) {
2476 			hw->tnl.tbl[index].ref--;
2477 			status = ICE_SUCCESS;
2478 			goto ice_destroy_tunnel_end;
2479 		}
2480 
2481 	/* determine count */
2482 	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2483 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2484 		    (all || hw->tnl.tbl[i].port == port))
2485 			count++;
2486 
2487 	if (!count) {
2488 		status = ICE_ERR_PARAM;
2489 		goto ice_destroy_tunnel_end;
2490 	}
2491 
2492 	/* size of section - there is at least one entry */
2493 	size = ice_struct_size(sect_rx, tcam, count);
2494 
2495 	bld = ice_pkg_buf_alloc(hw);
2496 	if (!bld) {
2497 		status = ICE_ERR_NO_MEMORY;
2498 		goto ice_destroy_tunnel_end;
2499 	}
2500 
2501 	/* allocate 2 sections, one for Rx parser, one for Tx parser */
2502 	if (ice_pkg_buf_reserve_section(bld, 2))
2503 		goto ice_destroy_tunnel_err;
2504 
2505 	sect_rx = (struct ice_boost_tcam_section *)
2506 		ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
2507 					  size);
2508 	if (!sect_rx)
2509 		goto ice_destroy_tunnel_err;
2510 	sect_rx->count = CPU_TO_LE16(count);
2511 
2512 	sect_tx = (struct ice_boost_tcam_section *)
2513 		ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
2514 					  size);
2515 	if (!sect_tx)
2516 		goto ice_destroy_tunnel_err;
2517 	sect_tx->count = CPU_TO_LE16(count);
2518 
2519 	/* copy original boost entry to update package buffer, one copy to Rx
2520 	 * section, another copy to the Tx section
2521 	 */
2522 	for (i = 0, j = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
2523 		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].in_use &&
2524 		    (all || hw->tnl.tbl[i].port == port)) {
2525 			ice_memcpy(sect_rx->tcam + j,
2526 				   hw->tnl.tbl[i].boost_entry,
2527 				   sizeof(*sect_rx->tcam),
2528 				   ICE_NONDMA_TO_NONDMA);
2529 			ice_memcpy(sect_tx->tcam + j,
2530 				   hw->tnl.tbl[i].boost_entry,
2531 				   sizeof(*sect_tx->tcam),
2532 				   ICE_NONDMA_TO_NONDMA);
2533 			hw->tnl.tbl[i].marked = true;
2534 			j++;
2535 		}
2536 
2537 	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
2538 	if (!status)
2539 		for (i = 0; i < hw->tnl.count &&
2540 		     i < ICE_TUNNEL_MAX_ENTRIES; i++)
2541 			if (hw->tnl.tbl[i].marked) {
2542 				hw->tnl.tbl[i].ref = 0;
2543 				hw->tnl.tbl[i].port = 0;
2544 				hw->tnl.tbl[i].in_use = false;
2545 				hw->tnl.tbl[i].marked = false;
2546 			}
2547 
2548 ice_destroy_tunnel_err:
2549 	ice_pkg_buf_free(hw, bld);
2550 
2551 ice_destroy_tunnel_end:
2552 	ice_release_lock(&hw->tnl_lock);
2553 
2554 	return status;
2555 }
2556 
2557 /**
2558  * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
2559  * @hw: pointer to the hardware structure
2560  * @blk: hardware block
2561  * @prof: profile ID
2562  * @fv_idx: field vector word index
2563  * @prot: variable to receive the protocol ID
2564  * @off: variable to receive the protocol offset
2565  */
2566 enum ice_status
ice_find_prot_off(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 fv_idx,u8 * prot,u16 * off)2567 ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
2568 		  u8 *prot, u16 *off)
2569 {
2570 	struct ice_fv_word *fv_ext;
2571 
2572 	if (prof >= hw->blk[blk].es.count)
2573 		return ICE_ERR_PARAM;
2574 
2575 	if (fv_idx >= hw->blk[blk].es.fvw)
2576 		return ICE_ERR_PARAM;
2577 
2578 	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
2579 
2580 	*prot = fv_ext[fv_idx].prot_id;
2581 	*off = fv_ext[fv_idx].off;
2582 
2583 	return ICE_SUCCESS;
2584 }
2585 
2586 /* PTG Management */
2587 
2588 /**
2589  * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
2590  * @hw: pointer to the hardware structure
2591  * @blk: HW block
2592  * @ptype: the ptype to search for
2593  * @ptg: pointer to variable that receives the PTG
2594  *
2595  * This function will search the PTGs for a particular ptype, returning the
2596  * PTG ID that contains it through the PTG parameter, with the value of
2597  * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
2598  */
2599 static enum ice_status
ice_ptg_find_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 * ptg)2600 ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
2601 {
2602 	if (ptype >= ICE_XLT1_CNT || !ptg)
2603 		return ICE_ERR_PARAM;
2604 
2605 	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
2606 	return ICE_SUCCESS;
2607 }
2608 
2609 /**
2610  * ice_ptg_alloc_val - Allocates a new packet type group ID by value
2611  * @hw: pointer to the hardware structure
2612  * @blk: HW block
2613  * @ptg: the PTG to allocate
2614  *
2615  * This function allocates a given packet type group ID specified by the PTG
2616  * parameter.
2617  */
ice_ptg_alloc_val(struct ice_hw * hw,enum ice_block blk,u8 ptg)2618 static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
2619 {
2620 	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
2621 }
2622 
2623 /**
2624  * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
2625  * @hw: pointer to the hardware structure
2626  * @blk: HW block
2627  * @ptype: the ptype to remove
2628  * @ptg: the PTG to remove the ptype from
2629  *
2630  * This function will remove the ptype from the specific PTG, and move it to
2631  * the default PTG (ICE_DEFAULT_PTG).
2632  */
2633 static enum ice_status
ice_ptg_remove_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)2634 ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2635 {
2636 	struct ice_ptg_ptype **ch;
2637 	struct ice_ptg_ptype *p;
2638 
2639 	if (ptype > ICE_XLT1_CNT - 1)
2640 		return ICE_ERR_PARAM;
2641 
2642 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
2643 		return ICE_ERR_DOES_NOT_EXIST;
2644 
2645 	/* Should not happen if .in_use is set, bad config */
2646 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
2647 		return ICE_ERR_CFG;
2648 
2649 	/* find the ptype within this PTG, and bypass the link over it */
2650 	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2651 	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2652 	while (p) {
2653 		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
2654 			*ch = p->next_ptype;
2655 			break;
2656 		}
2657 
2658 		ch = &p->next_ptype;
2659 		p = p->next_ptype;
2660 	}
2661 
2662 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
2663 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
2664 
2665 	return ICE_SUCCESS;
2666 }
2667 
2668 /**
2669  * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
2670  * @hw: pointer to the hardware structure
2671  * @blk: HW block
2672  * @ptype: the ptype to add or move
2673  * @ptg: the PTG to add or move the ptype to
2674  *
2675  * This function will either add or move a ptype to a particular PTG depending
2676  * on if the ptype is already part of another group. Note that using a
2677  * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
2678  * default PTG.
2679  */
2680 static enum ice_status
ice_ptg_add_mv_ptype(struct ice_hw * hw,enum ice_block blk,u16 ptype,u8 ptg)2681 ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
2682 {
2683 	enum ice_status status;
2684 	u8 original_ptg;
2685 
2686 	if (ptype > ICE_XLT1_CNT - 1)
2687 		return ICE_ERR_PARAM;
2688 
2689 	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
2690 		return ICE_ERR_DOES_NOT_EXIST;
2691 
2692 	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
2693 	if (status)
2694 		return status;
2695 
2696 	/* Is ptype already in the correct PTG? */
2697 	if (original_ptg == ptg)
2698 		return ICE_SUCCESS;
2699 
2700 	/* Remove from original PTG and move back to the default PTG */
2701 	if (original_ptg != ICE_DEFAULT_PTG)
2702 		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
2703 
2704 	/* Moving to default PTG? Then we're done with this request */
2705 	if (ptg == ICE_DEFAULT_PTG)
2706 		return ICE_SUCCESS;
2707 
2708 	/* Add ptype to PTG at beginning of list */
2709 	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
2710 		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
2711 	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
2712 		&hw->blk[blk].xlt1.ptypes[ptype];
2713 
2714 	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
2715 	hw->blk[blk].xlt1.t[ptype] = ptg;
2716 
2717 	return ICE_SUCCESS;
2718 }
2719 
2720 /* Block / table size info */
2721 struct ice_blk_size_details {
2722 	u16 xlt1;			/* # XLT1 entries */
2723 	u16 xlt2;			/* # XLT2 entries */
2724 	u16 prof_tcam;			/* # profile ID TCAM entries */
2725 	u16 prof_id;			/* # profile IDs */
2726 	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
2727 	u16 prof_redir;			/* # profile redirection entries */
2728 	u16 es;				/* # extraction sequence entries */
2729 	u16 fvw;			/* # field vector words */
2730 	u8 overwrite;			/* overwrite existing entries allowed */
2731 	u8 reverse;			/* reverse FV order */
2732 };
2733 
2734 static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
2735 	/**
2736 	 * Table Definitions
2737 	 * XLT1 - Number of entries in XLT1 table
2738 	 * XLT2 - Number of entries in XLT2 table
2739 	 * TCAM - Number of entries Profile ID TCAM table
2740 	 * CDID - Control Domain ID of the hardware block
2741 	 * PRED - Number of entries in the Profile Redirection Table
2742 	 * FV   - Number of entries in the Field Vector
2743 	 * FVW  - Width (in WORDs) of the Field Vector
2744 	 * OVR  - Overwrite existing table entries
2745 	 * REV  - Reverse FV
2746 	 */
2747 	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
2748 	/*          Overwrite   , Reverse FV */
2749 	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
2750 		    false, false },
2751 	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
2752 		    false, false },
2753 	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2754 		    false, true  },
2755 	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
2756 		    true,  true  },
2757 	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
2758 		    false, false },
2759 };
2760 
2761 enum ice_sid_all {
2762 	ICE_SID_XLT1_OFF = 0,
2763 	ICE_SID_XLT2_OFF,
2764 	ICE_SID_PR_OFF,
2765 	ICE_SID_PR_REDIR_OFF,
2766 	ICE_SID_ES_OFF,
2767 	ICE_SID_OFF_COUNT,
2768 };
2769 
2770 /* Characteristic handling */
2771 
2772 /**
2773  * ice_match_prop_lst - determine if properties of two lists match
2774  * @list1: first properties list
2775  * @list2: second properties list
2776  *
2777  * Count, cookies and the order must match in order to be considered equivalent.
2778  */
2779 static bool
ice_match_prop_lst(struct LIST_HEAD_TYPE * list1,struct LIST_HEAD_TYPE * list2)2780 ice_match_prop_lst(struct LIST_HEAD_TYPE *list1, struct LIST_HEAD_TYPE *list2)
2781 {
2782 	struct ice_vsig_prof *tmp1;
2783 	struct ice_vsig_prof *tmp2;
2784 	u16 chk_count = 0;
2785 	u16 count = 0;
2786 
2787 	/* compare counts */
2788 	LIST_FOR_EACH_ENTRY(tmp1, list1, ice_vsig_prof, list)
2789 		count++;
2790 	LIST_FOR_EACH_ENTRY(tmp2, list2, ice_vsig_prof, list)
2791 		chk_count++;
2792 	if (!count || count != chk_count)
2793 		return false;
2794 
2795 	tmp1 = LIST_FIRST_ENTRY(list1, struct ice_vsig_prof, list);
2796 	tmp2 = LIST_FIRST_ENTRY(list2, struct ice_vsig_prof, list);
2797 
2798 	/* profile cookies must compare, and in the exact same order to take
2799 	 * into account priority
2800 	 */
2801 	while (count--) {
2802 		if (tmp2->profile_cookie != tmp1->profile_cookie)
2803 			return false;
2804 
2805 		tmp1 = LIST_NEXT_ENTRY(tmp1, struct ice_vsig_prof, list);
2806 		tmp2 = LIST_NEXT_ENTRY(tmp2, struct ice_vsig_prof, list);
2807 	}
2808 
2809 	return true;
2810 }
2811 
2812 /* VSIG Management */
2813 
2814 /**
2815  * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
2816  * @hw: pointer to the hardware structure
2817  * @blk: HW block
2818  * @vsi: VSI of interest
2819  * @vsig: pointer to receive the VSI group
2820  *
2821  * This function will lookup the VSI entry in the XLT2 list and return
2822  * the VSI group its associated with.
2823  */
2824 enum ice_status
ice_vsig_find_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 * vsig)2825 ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
2826 {
2827 	if (!vsig || vsi >= ICE_MAX_VSI)
2828 		return ICE_ERR_PARAM;
2829 
2830 	/* As long as there's a default or valid VSIG associated with the input
2831 	 * VSI, the functions returns a success. Any handling of VSIG will be
2832 	 * done by the following add, update or remove functions.
2833 	 */
2834 	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
2835 
2836 	return ICE_SUCCESS;
2837 }
2838 
2839 /**
2840  * ice_vsig_alloc_val - allocate a new VSIG by value
2841  * @hw: pointer to the hardware structure
2842  * @blk: HW block
2843  * @vsig: the VSIG to allocate
2844  *
2845  * This function will allocate a given VSIG specified by the VSIG parameter.
2846  */
ice_vsig_alloc_val(struct ice_hw * hw,enum ice_block blk,u16 vsig)2847 static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2848 {
2849 	u16 idx = vsig & ICE_VSIG_IDX_M;
2850 
2851 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
2852 		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2853 		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
2854 	}
2855 
2856 	return ICE_VSIG_VALUE(idx, hw->pf_id);
2857 }
2858 
2859 /**
2860  * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
2861  * @hw: pointer to the hardware structure
2862  * @blk: HW block
2863  *
2864  * This function will iterate through the VSIG list and mark the first
2865  * unused entry for the new VSIG entry as used and return that value.
2866  */
ice_vsig_alloc(struct ice_hw * hw,enum ice_block blk)2867 static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
2868 {
2869 	u16 i;
2870 
2871 	for (i = 1; i < ICE_MAX_VSIGS; i++)
2872 		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2873 			return ice_vsig_alloc_val(hw, blk, i);
2874 
2875 	return ICE_DEFAULT_VSIG;
2876 }
2877 
2878 /**
2879  * ice_find_dup_props_vsig - find VSI group with a specified set of properties
2880  * @hw: pointer to the hardware structure
2881  * @blk: HW block
2882  * @chs: characteristic list
2883  * @vsig: returns the VSIG with the matching profiles, if found
2884  *
2885  * Each VSIG is associated with a characteristic set; i.e. all VSIs under
2886  * a group have the same characteristic set. To check if there exists a VSIG
2887  * which has the same characteristics as the input characteristics; this
2888  * function will iterate through the XLT2 list and return the VSIG that has a
2889  * matching configuration. In order to make sure that priorities are accounted
2890  * for, the list must match exactly, including the order in which the
2891  * characteristics are listed.
2892  */
2893 static enum ice_status
ice_find_dup_props_vsig(struct ice_hw * hw,enum ice_block blk,struct LIST_HEAD_TYPE * chs,u16 * vsig)2894 ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
2895 			struct LIST_HEAD_TYPE *chs, u16 *vsig)
2896 {
2897 	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
2898 	u16 i;
2899 
2900 	for (i = 0; i < xlt2->count; i++)
2901 		if (xlt2->vsig_tbl[i].in_use &&
2902 		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
2903 			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
2904 			return ICE_SUCCESS;
2905 		}
2906 
2907 	return ICE_ERR_DOES_NOT_EXIST;
2908 }
2909 
2910 /**
2911  * ice_vsig_free - free VSI group
2912  * @hw: pointer to the hardware structure
2913  * @blk: HW block
2914  * @vsig: VSIG to remove
2915  *
2916  * The function will remove all VSIs associated with the input VSIG and move
2917  * them to the DEFAULT_VSIG and mark the VSIG available.
2918  */
2919 static enum ice_status
ice_vsig_free(struct ice_hw * hw,enum ice_block blk,u16 vsig)2920 ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
2921 {
2922 	struct ice_vsig_prof *dtmp, *del;
2923 	struct ice_vsig_vsi *vsi_cur;
2924 	u16 idx;
2925 
2926 	idx = vsig & ICE_VSIG_IDX_M;
2927 	if (idx >= ICE_MAX_VSIGS)
2928 		return ICE_ERR_PARAM;
2929 
2930 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2931 		return ICE_ERR_DOES_NOT_EXIST;
2932 
2933 	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
2934 
2935 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2936 	/* If the VSIG has at least 1 VSI then iterate through the
2937 	 * list and remove the VSIs before deleting the group.
2938 	 */
2939 	if (vsi_cur) {
2940 		/* remove all vsis associated with this VSIG XLT2 entry */
2941 		do {
2942 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
2943 
2944 			vsi_cur->vsig = ICE_DEFAULT_VSIG;
2945 			vsi_cur->changed = 1;
2946 			vsi_cur->next_vsi = NULL;
2947 			vsi_cur = tmp;
2948 		} while (vsi_cur);
2949 
2950 		/* NULL terminate head of VSI list */
2951 		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
2952 	}
2953 
2954 	/* free characteristic list */
2955 	LIST_FOR_EACH_ENTRY_SAFE(del, dtmp,
2956 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2957 				 ice_vsig_prof, list) {
2958 		LIST_DEL(&del->list);
2959 		ice_free(hw, del);
2960 	}
2961 
2962 	/* if VSIG characteristic list was cleared for reset
2963 	 * re-initialize the list head
2964 	 */
2965 	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
2966 
2967 	return ICE_SUCCESS;
2968 }
2969 
2970 /**
2971  * ice_vsig_remove_vsi - remove VSI from VSIG
2972  * @hw: pointer to the hardware structure
2973  * @blk: HW block
2974  * @vsi: VSI to remove
2975  * @vsig: VSI group to remove from
2976  *
2977  * The function will remove the input VSI from its VSI group and move it
2978  * to the DEFAULT_VSIG.
2979  */
2980 static enum ice_status
ice_vsig_remove_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)2981 ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
2982 {
2983 	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
2984 	u16 idx;
2985 
2986 	idx = vsig & ICE_VSIG_IDX_M;
2987 
2988 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
2989 		return ICE_ERR_PARAM;
2990 
2991 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2992 		return ICE_ERR_DOES_NOT_EXIST;
2993 
2994 	/* entry already in default VSIG, don't have to remove */
2995 	if (idx == ICE_DEFAULT_VSIG)
2996 		return ICE_SUCCESS;
2997 
2998 	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2999 	if (!(*vsi_head))
3000 		return ICE_ERR_CFG;
3001 
3002 	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
3003 	vsi_cur = (*vsi_head);
3004 
3005 	/* iterate the VSI list, skip over the entry to be removed */
3006 	while (vsi_cur) {
3007 		if (vsi_tgt == vsi_cur) {
3008 			(*vsi_head) = vsi_cur->next_vsi;
3009 			break;
3010 		}
3011 		vsi_head = &vsi_cur->next_vsi;
3012 		vsi_cur = vsi_cur->next_vsi;
3013 	}
3014 
3015 	/* verify if VSI was removed from group list */
3016 	if (!vsi_cur)
3017 		return ICE_ERR_DOES_NOT_EXIST;
3018 
3019 	vsi_cur->vsig = ICE_DEFAULT_VSIG;
3020 	vsi_cur->changed = 1;
3021 	vsi_cur->next_vsi = NULL;
3022 
3023 	return ICE_SUCCESS;
3024 }
3025 
3026 /**
3027  * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
3028  * @hw: pointer to the hardware structure
3029  * @blk: HW block
3030  * @vsi: VSI to move
3031  * @vsig: destination VSI group
3032  *
3033  * This function will move or add the input VSI to the target VSIG.
3034  * The function will find the original VSIG the VSI belongs to and
3035  * move the entry to the DEFAULT_VSIG, update the original VSIG and
3036  * then move entry to the new VSIG.
3037  */
3038 static enum ice_status
ice_vsig_add_mv_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)3039 ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
3040 {
3041 	struct ice_vsig_vsi *tmp;
3042 	enum ice_status status;
3043 	u16 orig_vsig, idx;
3044 
3045 	idx = vsig & ICE_VSIG_IDX_M;
3046 
3047 	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
3048 		return ICE_ERR_PARAM;
3049 
3050 	/* if VSIG not in use and VSIG is not default type this VSIG
3051 	 * doesn't exist.
3052 	 */
3053 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
3054 	    vsig != ICE_DEFAULT_VSIG)
3055 		return ICE_ERR_DOES_NOT_EXIST;
3056 
3057 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3058 	if (status)
3059 		return status;
3060 
3061 	/* no update required if vsigs match */
3062 	if (orig_vsig == vsig)
3063 		return ICE_SUCCESS;
3064 
3065 	if (orig_vsig != ICE_DEFAULT_VSIG) {
3066 		/* remove entry from orig_vsig and add to default VSIG */
3067 		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
3068 		if (status)
3069 			return status;
3070 	}
3071 
3072 	if (idx == ICE_DEFAULT_VSIG)
3073 		return ICE_SUCCESS;
3074 
3075 	/* Create VSI entry and add VSIG and prop_mask values */
3076 	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
3077 	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
3078 
3079 	/* Add new entry to the head of the VSIG list */
3080 	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3081 	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
3082 		&hw->blk[blk].xlt2.vsis[vsi];
3083 	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
3084 	hw->blk[blk].xlt2.t[vsi] = vsig;
3085 
3086 	return ICE_SUCCESS;
3087 }
3088 
3089 /**
3090  * ice_prof_has_mask_idx - determine if profile index masking is identical
3091  * @hw: pointer to the hardware structure
3092  * @blk: HW block
3093  * @prof: profile to check
3094  * @idx: profile index to check
3095  * @mask: mask to match
3096  */
3097 static bool
ice_prof_has_mask_idx(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 idx,u16 mask)3098 ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
3099 		      u16 mask)
3100 {
3101 	bool expect_no_mask = false;
3102 	bool found = false;
3103 	bool match = false;
3104 	u16 i;
3105 
3106 	/* If mask is 0x0000 or 0xffff, then there is no masking */
3107 	if (mask == 0 || mask == 0xffff)
3108 		expect_no_mask = true;
3109 
3110 	/* Scan the enabled masks on this profile, for the specified idx */
3111 	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
3112 	     hw->blk[blk].masks.count; i++)
3113 		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
3114 			if (hw->blk[blk].masks.masks[i].in_use &&
3115 			    hw->blk[blk].masks.masks[i].idx == idx) {
3116 				found = true;
3117 				if (hw->blk[blk].masks.masks[i].mask == mask)
3118 					match = true;
3119 				break;
3120 			}
3121 
3122 	if (expect_no_mask) {
3123 		if (found)
3124 			return false;
3125 	} else {
3126 		if (!match)
3127 			return false;
3128 	}
3129 
3130 	return true;
3131 }
3132 
3133 /**
3134  * ice_prof_has_mask - determine if profile masking is identical
3135  * @hw: pointer to the hardware structure
3136  * @blk: HW block
3137  * @prof: profile to check
3138  * @masks: masks to match
3139  */
3140 static bool
ice_prof_has_mask(struct ice_hw * hw,enum ice_block blk,u8 prof,u16 * masks)3141 ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
3142 {
3143 	u16 i;
3144 
3145 	/* es->mask_ena[prof] will have the mask */
3146 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
3147 		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
3148 			return false;
3149 
3150 	return true;
3151 }
3152 
3153 /**
3154  * ice_find_prof_id_with_mask - find profile ID for a given field vector
3155  * @hw: pointer to the hardware structure
3156  * @blk: HW block
3157  * @fv: field vector to search for
3158  * @masks: masks for fv
3159  * @prof_id: receives the profile ID
3160  */
3161 static enum ice_status
ice_find_prof_id_with_mask(struct ice_hw * hw,enum ice_block blk,struct ice_fv_word * fv,u16 * masks,u8 * prof_id)3162 ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
3163 			   struct ice_fv_word *fv, u16 *masks, u8 *prof_id)
3164 {
3165 	struct ice_es *es = &hw->blk[blk].es;
3166 	u8 i;
3167 
3168 	/* For FD and RSS, we don't want to re-use an existed profile with the
3169 	 * same field vector and mask. This will cause rule interference.
3170 	 */
3171 	if (blk == ICE_BLK_FD || blk == ICE_BLK_RSS)
3172 		return ICE_ERR_DOES_NOT_EXIST;
3173 
3174 	for (i = 0; i < (u8)es->count; i++) {
3175 		u16 off = i * es->fvw;
3176 
3177 		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
3178 			continue;
3179 
3180 		/* check if masks settings are the same for this profile */
3181 		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
3182 			continue;
3183 
3184 		*prof_id = i;
3185 		return ICE_SUCCESS;
3186 	}
3187 
3188 	return ICE_ERR_DOES_NOT_EXIST;
3189 }
3190 
3191 /**
3192  * ice_prof_id_rsrc_type - get profile ID resource type for a block type
3193  * @blk: the block type
3194  * @rsrc_type: pointer to variable to receive the resource type
3195  */
ice_prof_id_rsrc_type(enum ice_block blk,u16 * rsrc_type)3196 static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3197 {
3198 	switch (blk) {
3199 	case ICE_BLK_SW:
3200 		*rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_PROFID;
3201 		break;
3202 	case ICE_BLK_ACL:
3203 		*rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_PROFID;
3204 		break;
3205 	case ICE_BLK_FD:
3206 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
3207 		break;
3208 	case ICE_BLK_RSS:
3209 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
3210 		break;
3211 	case ICE_BLK_PE:
3212 		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_PROFID;
3213 		break;
3214 	default:
3215 		return false;
3216 	}
3217 	return true;
3218 }
3219 
3220 /**
3221  * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
3222  * @blk: the block type
3223  * @rsrc_type: pointer to variable to receive the resource type
3224  */
ice_tcam_ent_rsrc_type(enum ice_block blk,u16 * rsrc_type)3225 static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
3226 {
3227 	switch (blk) {
3228 	case ICE_BLK_SW:
3229 		*rsrc_type = ICE_AQC_RES_TYPE_SWITCH_PROF_BLDR_TCAM;
3230 		break;
3231 	case ICE_BLK_ACL:
3232 		*rsrc_type = ICE_AQC_RES_TYPE_ACL_PROF_BLDR_TCAM;
3233 		break;
3234 	case ICE_BLK_FD:
3235 		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
3236 		break;
3237 	case ICE_BLK_RSS:
3238 		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
3239 		break;
3240 	case ICE_BLK_PE:
3241 		*rsrc_type = ICE_AQC_RES_TYPE_QHASH_PROF_BLDR_TCAM;
3242 		break;
3243 	default:
3244 		return false;
3245 	}
3246 	return true;
3247 }
3248 
3249 /**
3250  * ice_alloc_tcam_ent - allocate hardware TCAM entry
3251  * @hw: pointer to the HW struct
3252  * @blk: the block to allocate the TCAM for
3253  * @btm: true to allocate from bottom of table, false to allocate from top
3254  * @tcam_idx: pointer to variable to receive the TCAM entry
3255  *
3256  * This function allocates a new entry in a Profile ID TCAM for a specific
3257  * block.
3258  */
3259 static enum ice_status
ice_alloc_tcam_ent(struct ice_hw * hw,enum ice_block blk,bool btm,u16 * tcam_idx)3260 ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
3261 		   u16 *tcam_idx)
3262 {
3263 	u16 res_type;
3264 
3265 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3266 		return ICE_ERR_PARAM;
3267 
3268 	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
3269 }
3270 
3271 /**
3272  * ice_free_tcam_ent - free hardware TCAM entry
3273  * @hw: pointer to the HW struct
3274  * @blk: the block from which to free the TCAM entry
3275  * @tcam_idx: the TCAM entry to free
3276  *
3277  * This function frees an entry in a Profile ID TCAM for a specific block.
3278  */
3279 static enum ice_status
ice_free_tcam_ent(struct ice_hw * hw,enum ice_block blk,u16 tcam_idx)3280 ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
3281 {
3282 	u16 res_type;
3283 
3284 	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
3285 		return ICE_ERR_PARAM;
3286 
3287 	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
3288 }
3289 
3290 /**
3291  * ice_alloc_prof_id - allocate profile ID
3292  * @hw: pointer to the HW struct
3293  * @blk: the block to allocate the profile ID for
3294  * @prof_id: pointer to variable to receive the profile ID
3295  *
3296  * This function allocates a new profile ID, which also corresponds to a Field
3297  * Vector (Extraction Sequence) entry.
3298  */
3299 static enum ice_status
ice_alloc_prof_id(struct ice_hw * hw,enum ice_block blk,u8 * prof_id)3300 ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
3301 {
3302 	enum ice_status status;
3303 	u16 res_type;
3304 	u16 get_prof;
3305 
3306 	if (!ice_prof_id_rsrc_type(blk, &res_type))
3307 		return ICE_ERR_PARAM;
3308 
3309 	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
3310 	if (!status)
3311 		*prof_id = (u8)get_prof;
3312 
3313 	return status;
3314 }
3315 
3316 /**
3317  * ice_free_prof_id - free profile ID
3318  * @hw: pointer to the HW struct
3319  * @blk: the block from which to free the profile ID
3320  * @prof_id: the profile ID to free
3321  *
3322  * This function frees a profile ID, which also corresponds to a Field Vector.
3323  */
3324 static enum ice_status
ice_free_prof_id(struct ice_hw * hw,enum ice_block blk,u8 prof_id)3325 ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3326 {
3327 	u16 tmp_prof_id = (u16)prof_id;
3328 	u16 res_type;
3329 
3330 	if (!ice_prof_id_rsrc_type(blk, &res_type))
3331 		return ICE_ERR_PARAM;
3332 
3333 	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
3334 }
3335 
3336 /**
3337  * ice_prof_inc_ref - increment reference count for profile
3338  * @hw: pointer to the HW struct
3339  * @blk: the block from which to free the profile ID
3340  * @prof_id: the profile ID for which to increment the reference count
3341  */
3342 static enum ice_status
ice_prof_inc_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)3343 ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3344 {
3345 	if (prof_id > hw->blk[blk].es.count)
3346 		return ICE_ERR_PARAM;
3347 
3348 	hw->blk[blk].es.ref_count[prof_id]++;
3349 
3350 	return ICE_SUCCESS;
3351 }
3352 
3353 /**
3354  * ice_write_prof_mask_reg - write profile mask register
3355  * @hw: pointer to the HW struct
3356  * @blk: hardware block
3357  * @mask_idx: mask index
3358  * @idx: index of the FV which will use the mask
3359  * @mask: the 16-bit mask
3360  */
3361 static void
ice_write_prof_mask_reg(struct ice_hw * hw,enum ice_block blk,u16 mask_idx,u16 idx,u16 mask)3362 ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
3363 			u16 idx, u16 mask)
3364 {
3365 	u32 offset;
3366 	u32 val;
3367 
3368 	switch (blk) {
3369 	case ICE_BLK_RSS:
3370 		offset = GLQF_HMASK(mask_idx);
3371 		val = (idx << GLQF_HMASK_MSK_INDEX_S) &
3372 			GLQF_HMASK_MSK_INDEX_M;
3373 		val |= (mask << GLQF_HMASK_MASK_S) & GLQF_HMASK_MASK_M;
3374 		break;
3375 	case ICE_BLK_FD:
3376 		offset = GLQF_FDMASK(mask_idx);
3377 		val = (idx << GLQF_FDMASK_MSK_INDEX_S) &
3378 			GLQF_FDMASK_MSK_INDEX_M;
3379 		val |= (mask << GLQF_FDMASK_MASK_S) &
3380 			GLQF_FDMASK_MASK_M;
3381 		break;
3382 	default:
3383 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3384 			  blk);
3385 		return;
3386 	}
3387 
3388 	wr32(hw, offset, val);
3389 	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
3390 		  blk, idx, offset, val);
3391 }
3392 
3393 /**
3394  * ice_write_prof_mask_enable_res - write profile mask enable register
3395  * @hw: pointer to the HW struct
3396  * @blk: hardware block
3397  * @prof_id: profile ID
3398  * @enable_mask: enable mask
3399  */
3400 static void
ice_write_prof_mask_enable_res(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u32 enable_mask)3401 ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
3402 			       u16 prof_id, u32 enable_mask)
3403 {
3404 	u32 offset;
3405 
3406 	switch (blk) {
3407 	case ICE_BLK_RSS:
3408 		offset = GLQF_HMASK_SEL(prof_id);
3409 		break;
3410 	case ICE_BLK_FD:
3411 		offset = GLQF_FDMASK_SEL(prof_id);
3412 		break;
3413 	default:
3414 		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
3415 			  blk);
3416 		return;
3417 	}
3418 
3419 	wr32(hw, offset, enable_mask);
3420 	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
3421 		  blk, prof_id, offset, enable_mask);
3422 }
3423 
3424 /**
3425  * ice_init_prof_masks - initial prof masks
3426  * @hw: pointer to the HW struct
3427  * @blk: hardware block
3428  */
ice_init_prof_masks(struct ice_hw * hw,enum ice_block blk)3429 static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
3430 {
3431 	u16 per_pf;
3432 	u16 i;
3433 
3434 	ice_init_lock(&hw->blk[blk].masks.lock);
3435 
3436 	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
3437 
3438 	hw->blk[blk].masks.count = per_pf;
3439 	hw->blk[blk].masks.first = hw->logical_pf_id * per_pf;
3440 
3441 	ice_memset(hw->blk[blk].masks.masks, 0,
3442 		   sizeof(hw->blk[blk].masks.masks), ICE_NONDMA_MEM);
3443 
3444 	for (i = hw->blk[blk].masks.first;
3445 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3446 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3447 }
3448 
3449 /**
3450  * ice_init_all_prof_masks - initial all prof masks
3451  * @hw: pointer to the HW struct
3452  */
ice_init_all_prof_masks(struct ice_hw * hw)3453 void ice_init_all_prof_masks(struct ice_hw *hw)
3454 {
3455 	ice_init_prof_masks(hw, ICE_BLK_RSS);
3456 	ice_init_prof_masks(hw, ICE_BLK_FD);
3457 }
3458 
3459 /**
3460  * ice_alloc_prof_mask - allocate profile mask
3461  * @hw: pointer to the HW struct
3462  * @blk: hardware block
3463  * @idx: index of FV which will use the mask
3464  * @mask: the 16-bit mask
3465  * @mask_idx: variable to receive the mask index
3466  */
3467 static enum ice_status
ice_alloc_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 idx,u16 mask,u16 * mask_idx)3468 ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
3469 		    u16 *mask_idx)
3470 {
3471 	bool found_unused = false, found_copy = false;
3472 	enum ice_status status = ICE_ERR_MAX_LIMIT;
3473 	u16 unused_idx = 0, copy_idx = 0;
3474 	u16 i;
3475 
3476 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3477 		return ICE_ERR_PARAM;
3478 
3479 	ice_acquire_lock(&hw->blk[blk].masks.lock);
3480 
3481 	for (i = hw->blk[blk].masks.first;
3482 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
3483 		if (hw->blk[blk].masks.masks[i].in_use) {
3484 			/* if mask is in use and it exactly duplicates the
3485 			 * desired mask and index, then in can be reused
3486 			 */
3487 			if (hw->blk[blk].masks.masks[i].mask == mask &&
3488 			    hw->blk[blk].masks.masks[i].idx == idx) {
3489 				found_copy = true;
3490 				copy_idx = i;
3491 				break;
3492 			}
3493 		} else {
3494 			/* save off unused index, but keep searching in case
3495 			 * there is an exact match later on
3496 			 */
3497 			if (!found_unused) {
3498 				found_unused = true;
3499 				unused_idx = i;
3500 			}
3501 		}
3502 
3503 	if (found_copy)
3504 		i = copy_idx;
3505 	else if (found_unused)
3506 		i = unused_idx;
3507 	else
3508 		goto err_ice_alloc_prof_mask;
3509 
3510 	/* update mask for a new entry */
3511 	if (found_unused) {
3512 		hw->blk[blk].masks.masks[i].in_use = true;
3513 		hw->blk[blk].masks.masks[i].mask = mask;
3514 		hw->blk[blk].masks.masks[i].idx = idx;
3515 		hw->blk[blk].masks.masks[i].ref = 0;
3516 		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
3517 	}
3518 
3519 	hw->blk[blk].masks.masks[i].ref++;
3520 	*mask_idx = i;
3521 	status = ICE_SUCCESS;
3522 
3523 err_ice_alloc_prof_mask:
3524 	ice_release_lock(&hw->blk[blk].masks.lock);
3525 
3526 	return status;
3527 }
3528 
3529 /**
3530  * ice_free_prof_mask - free profile mask
3531  * @hw: pointer to the HW struct
3532  * @blk: hardware block
3533  * @mask_idx: index of mask
3534  */
3535 static enum ice_status
ice_free_prof_mask(struct ice_hw * hw,enum ice_block blk,u16 mask_idx)3536 ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
3537 {
3538 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3539 		return ICE_ERR_PARAM;
3540 
3541 	if (!(mask_idx >= hw->blk[blk].masks.first &&
3542 	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
3543 		return ICE_ERR_DOES_NOT_EXIST;
3544 
3545 	ice_acquire_lock(&hw->blk[blk].masks.lock);
3546 
3547 	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
3548 		goto exit_ice_free_prof_mask;
3549 
3550 	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
3551 		hw->blk[blk].masks.masks[mask_idx].ref--;
3552 		goto exit_ice_free_prof_mask;
3553 	}
3554 
3555 	/* remove mask */
3556 	hw->blk[blk].masks.masks[mask_idx].in_use = false;
3557 	hw->blk[blk].masks.masks[mask_idx].mask = 0;
3558 	hw->blk[blk].masks.masks[mask_idx].idx = 0;
3559 
3560 	/* update mask as unused entry */
3561 	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
3562 		  mask_idx);
3563 	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
3564 
3565 exit_ice_free_prof_mask:
3566 	ice_release_lock(&hw->blk[blk].masks.lock);
3567 
3568 	return ICE_SUCCESS;
3569 }
3570 
3571 /**
3572  * ice_free_prof_masks - free all profile masks for a profile
3573  * @hw: pointer to the HW struct
3574  * @blk: hardware block
3575  * @prof_id: profile ID
3576  */
3577 static enum ice_status
ice_free_prof_masks(struct ice_hw * hw,enum ice_block blk,u16 prof_id)3578 ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
3579 {
3580 	u32 mask_bm;
3581 	u16 i;
3582 
3583 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3584 		return ICE_ERR_PARAM;
3585 
3586 	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
3587 	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
3588 		if (mask_bm & BIT(i))
3589 			ice_free_prof_mask(hw, blk, i);
3590 
3591 	return ICE_SUCCESS;
3592 }
3593 
3594 /**
3595  * ice_shutdown_prof_masks - releases lock for masking
3596  * @hw: pointer to the HW struct
3597  * @blk: hardware block
3598  *
3599  * This should be called before unloading the driver
3600  */
ice_shutdown_prof_masks(struct ice_hw * hw,enum ice_block blk)3601 static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
3602 {
3603 	u16 i;
3604 
3605 	ice_acquire_lock(&hw->blk[blk].masks.lock);
3606 
3607 	for (i = hw->blk[blk].masks.first;
3608 	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
3609 		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
3610 
3611 		hw->blk[blk].masks.masks[i].in_use = false;
3612 		hw->blk[blk].masks.masks[i].idx = 0;
3613 		hw->blk[blk].masks.masks[i].mask = 0;
3614 	}
3615 
3616 	ice_release_lock(&hw->blk[blk].masks.lock);
3617 	ice_destroy_lock(&hw->blk[blk].masks.lock);
3618 }
3619 
3620 /**
3621  * ice_shutdown_all_prof_masks - releases all locks for masking
3622  * @hw: pointer to the HW struct
3623  *
3624  * This should be called before unloading the driver
3625  */
ice_shutdown_all_prof_masks(struct ice_hw * hw)3626 void ice_shutdown_all_prof_masks(struct ice_hw *hw)
3627 {
3628 	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
3629 	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
3630 }
3631 
3632 /**
3633  * ice_update_prof_masking - set registers according to masking
3634  * @hw: pointer to the HW struct
3635  * @blk: hardware block
3636  * @prof_id: profile ID
3637  * @masks: masks
3638  */
3639 static enum ice_status
ice_update_prof_masking(struct ice_hw * hw,enum ice_block blk,u16 prof_id,u16 * masks)3640 ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
3641 			u16 *masks)
3642 {
3643 	bool err = false;
3644 	u32 ena_mask = 0;
3645 	u16 idx;
3646 	u16 i;
3647 
3648 	/* Only support FD and RSS masking, otherwise nothing to be done */
3649 	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
3650 		return ICE_SUCCESS;
3651 
3652 	for (i = 0; i < hw->blk[blk].es.fvw; i++)
3653 		if (masks[i] && masks[i] != 0xFFFF) {
3654 			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
3655 				ena_mask |= BIT(idx);
3656 			} else {
3657 				/* not enough bitmaps */
3658 				err = true;
3659 				break;
3660 			}
3661 		}
3662 
3663 	if (err) {
3664 		/* free any bitmaps we have allocated */
3665 		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
3666 			if (ena_mask & BIT(i))
3667 				ice_free_prof_mask(hw, blk, i);
3668 
3669 		return ICE_ERR_OUT_OF_RANGE;
3670 	}
3671 
3672 	/* enable the masks for this profile */
3673 	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
3674 
3675 	/* store enabled masks with profile so that they can be freed later */
3676 	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
3677 
3678 	return ICE_SUCCESS;
3679 }
3680 
3681 /**
3682  * ice_write_es - write an extraction sequence to hardware
3683  * @hw: pointer to the HW struct
3684  * @blk: the block in which to write the extraction sequence
3685  * @prof_id: the profile ID to write
3686  * @fv: pointer to the extraction sequence to write - NULL to clear extraction
3687  */
3688 static void
ice_write_es(struct ice_hw * hw,enum ice_block blk,u8 prof_id,struct ice_fv_word * fv)3689 ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
3690 	     struct ice_fv_word *fv)
3691 {
3692 	u16 off;
3693 
3694 	off = prof_id * hw->blk[blk].es.fvw;
3695 	if (!fv) {
3696 		ice_memset(&hw->blk[blk].es.t[off], 0, hw->blk[blk].es.fvw *
3697 			   sizeof(*fv), ICE_NONDMA_MEM);
3698 		hw->blk[blk].es.written[prof_id] = false;
3699 	} else {
3700 		ice_memcpy(&hw->blk[blk].es.t[off], fv, hw->blk[blk].es.fvw *
3701 			   sizeof(*fv), ICE_NONDMA_TO_NONDMA);
3702 	}
3703 }
3704 
3705 /**
3706  * ice_prof_dec_ref - decrement reference count for profile
3707  * @hw: pointer to the HW struct
3708  * @blk: the block from which to free the profile ID
3709  * @prof_id: the profile ID for which to decrement the reference count
3710  */
3711 static enum ice_status
ice_prof_dec_ref(struct ice_hw * hw,enum ice_block blk,u8 prof_id)3712 ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
3713 {
3714 	if (prof_id > hw->blk[blk].es.count)
3715 		return ICE_ERR_PARAM;
3716 
3717 	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
3718 		if (!--hw->blk[blk].es.ref_count[prof_id]) {
3719 			ice_write_es(hw, blk, prof_id, NULL);
3720 			ice_free_prof_masks(hw, blk, prof_id);
3721 			return ice_free_prof_id(hw, blk, prof_id);
3722 		}
3723 	}
3724 
3725 	return ICE_SUCCESS;
3726 }
3727 
3728 /* Block / table section IDs */
3729 static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
3730 	/* SWITCH */
3731 	{	ICE_SID_XLT1_SW,
3732 		ICE_SID_XLT2_SW,
3733 		ICE_SID_PROFID_TCAM_SW,
3734 		ICE_SID_PROFID_REDIR_SW,
3735 		ICE_SID_FLD_VEC_SW
3736 	},
3737 
3738 	/* ACL */
3739 	{	ICE_SID_XLT1_ACL,
3740 		ICE_SID_XLT2_ACL,
3741 		ICE_SID_PROFID_TCAM_ACL,
3742 		ICE_SID_PROFID_REDIR_ACL,
3743 		ICE_SID_FLD_VEC_ACL
3744 	},
3745 
3746 	/* FD */
3747 	{	ICE_SID_XLT1_FD,
3748 		ICE_SID_XLT2_FD,
3749 		ICE_SID_PROFID_TCAM_FD,
3750 		ICE_SID_PROFID_REDIR_FD,
3751 		ICE_SID_FLD_VEC_FD
3752 	},
3753 
3754 	/* RSS */
3755 	{	ICE_SID_XLT1_RSS,
3756 		ICE_SID_XLT2_RSS,
3757 		ICE_SID_PROFID_TCAM_RSS,
3758 		ICE_SID_PROFID_REDIR_RSS,
3759 		ICE_SID_FLD_VEC_RSS
3760 	},
3761 
3762 	/* PE */
3763 	{	ICE_SID_XLT1_PE,
3764 		ICE_SID_XLT2_PE,
3765 		ICE_SID_PROFID_TCAM_PE,
3766 		ICE_SID_PROFID_REDIR_PE,
3767 		ICE_SID_FLD_VEC_PE
3768 	}
3769 };
3770 
3771 /**
3772  * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
3773  * @hw: pointer to the hardware structure
3774  * @blk: the HW block to initialize
3775  */
ice_init_sw_xlt1_db(struct ice_hw * hw,enum ice_block blk)3776 static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
3777 {
3778 	u16 pt;
3779 
3780 	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
3781 		u8 ptg;
3782 
3783 		ptg = hw->blk[blk].xlt1.t[pt];
3784 		if (ptg != ICE_DEFAULT_PTG) {
3785 			ice_ptg_alloc_val(hw, blk, ptg);
3786 			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
3787 		}
3788 	}
3789 }
3790 
3791 /**
3792  * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
3793  * @hw: pointer to the hardware structure
3794  * @blk: the HW block to initialize
3795  */
ice_init_sw_xlt2_db(struct ice_hw * hw,enum ice_block blk)3796 static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
3797 {
3798 	u16 vsi;
3799 
3800 	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
3801 		u16 vsig;
3802 
3803 		vsig = hw->blk[blk].xlt2.t[vsi];
3804 		if (vsig) {
3805 			ice_vsig_alloc_val(hw, blk, vsig);
3806 			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3807 			/* no changes at this time, since this has been
3808 			 * initialized from the original package
3809 			 */
3810 			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
3811 		}
3812 	}
3813 }
3814 
3815 /**
3816  * ice_init_sw_db - init software database from HW tables
3817  * @hw: pointer to the hardware structure
3818  */
ice_init_sw_db(struct ice_hw * hw)3819 static void ice_init_sw_db(struct ice_hw *hw)
3820 {
3821 	u16 i;
3822 
3823 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3824 		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
3825 		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
3826 	}
3827 }
3828 
3829 /**
3830  * ice_fill_tbl - Reads content of a single table type into database
3831  * @hw: pointer to the hardware structure
3832  * @block_id: Block ID of the table to copy
3833  * @sid: Section ID of the table to copy
3834  *
3835  * Will attempt to read the entire content of a given table of a single block
3836  * into the driver database. We assume that the buffer will always
3837  * be as large or larger than the data contained in the package. If
3838  * this condition is not met, there is most likely an error in the package
3839  * contents.
3840  */
ice_fill_tbl(struct ice_hw * hw,enum ice_block block_id,u32 sid)3841 static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
3842 {
3843 	u32 dst_len, sect_len, offset = 0;
3844 	struct ice_prof_redir_section *pr;
3845 	struct ice_prof_id_section *pid;
3846 	struct ice_xlt1_section *xlt1;
3847 	struct ice_xlt2_section *xlt2;
3848 	struct ice_sw_fv_section *es;
3849 	struct ice_pkg_enum state;
3850 	u8 *src, *dst;
3851 	void *sect;
3852 
3853 	/* if the HW segment pointer is null then the first iteration of
3854 	 * ice_pkg_enum_section() will fail. In this case the HW tables will
3855 	 * not be filled and return success.
3856 	 */
3857 	if (!hw->seg) {
3858 		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
3859 		return;
3860 	}
3861 
3862 	ice_memset(&state, 0, sizeof(state), ICE_NONDMA_MEM);
3863 
3864 	sect = ice_pkg_enum_section(hw->seg, &state, sid);
3865 
3866 	while (sect) {
3867 		switch (sid) {
3868 		case ICE_SID_XLT1_SW:
3869 		case ICE_SID_XLT1_FD:
3870 		case ICE_SID_XLT1_RSS:
3871 		case ICE_SID_XLT1_ACL:
3872 		case ICE_SID_XLT1_PE:
3873 			xlt1 = (struct ice_xlt1_section *)sect;
3874 			src = xlt1->value;
3875 			sect_len = LE16_TO_CPU(xlt1->count) *
3876 				sizeof(*hw->blk[block_id].xlt1.t);
3877 			dst = hw->blk[block_id].xlt1.t;
3878 			dst_len = hw->blk[block_id].xlt1.count *
3879 				sizeof(*hw->blk[block_id].xlt1.t);
3880 			break;
3881 		case ICE_SID_XLT2_SW:
3882 		case ICE_SID_XLT2_FD:
3883 		case ICE_SID_XLT2_RSS:
3884 		case ICE_SID_XLT2_ACL:
3885 		case ICE_SID_XLT2_PE:
3886 			xlt2 = (struct ice_xlt2_section *)sect;
3887 			src = (_FORCE_ u8 *)xlt2->value;
3888 			sect_len = LE16_TO_CPU(xlt2->count) *
3889 				sizeof(*hw->blk[block_id].xlt2.t);
3890 			dst = (u8 *)hw->blk[block_id].xlt2.t;
3891 			dst_len = hw->blk[block_id].xlt2.count *
3892 				sizeof(*hw->blk[block_id].xlt2.t);
3893 			break;
3894 		case ICE_SID_PROFID_TCAM_SW:
3895 		case ICE_SID_PROFID_TCAM_FD:
3896 		case ICE_SID_PROFID_TCAM_RSS:
3897 		case ICE_SID_PROFID_TCAM_ACL:
3898 		case ICE_SID_PROFID_TCAM_PE:
3899 			pid = (struct ice_prof_id_section *)sect;
3900 			src = (u8 *)pid->entry;
3901 			sect_len = LE16_TO_CPU(pid->count) *
3902 				sizeof(*hw->blk[block_id].prof.t);
3903 			dst = (u8 *)hw->blk[block_id].prof.t;
3904 			dst_len = hw->blk[block_id].prof.count *
3905 				sizeof(*hw->blk[block_id].prof.t);
3906 			break;
3907 		case ICE_SID_PROFID_REDIR_SW:
3908 		case ICE_SID_PROFID_REDIR_FD:
3909 		case ICE_SID_PROFID_REDIR_RSS:
3910 		case ICE_SID_PROFID_REDIR_ACL:
3911 		case ICE_SID_PROFID_REDIR_PE:
3912 			pr = (struct ice_prof_redir_section *)sect;
3913 			src = pr->redir_value;
3914 			sect_len = LE16_TO_CPU(pr->count) *
3915 				sizeof(*hw->blk[block_id].prof_redir.t);
3916 			dst = hw->blk[block_id].prof_redir.t;
3917 			dst_len = hw->blk[block_id].prof_redir.count *
3918 				sizeof(*hw->blk[block_id].prof_redir.t);
3919 			break;
3920 		case ICE_SID_FLD_VEC_SW:
3921 		case ICE_SID_FLD_VEC_FD:
3922 		case ICE_SID_FLD_VEC_RSS:
3923 		case ICE_SID_FLD_VEC_ACL:
3924 		case ICE_SID_FLD_VEC_PE:
3925 			es = (struct ice_sw_fv_section *)sect;
3926 			src = (u8 *)es->fv;
3927 			sect_len = (u32)(LE16_TO_CPU(es->count) *
3928 					 hw->blk[block_id].es.fvw) *
3929 				sizeof(*hw->blk[block_id].es.t);
3930 			dst = (u8 *)hw->blk[block_id].es.t;
3931 			dst_len = (u32)(hw->blk[block_id].es.count *
3932 					hw->blk[block_id].es.fvw) *
3933 				sizeof(*hw->blk[block_id].es.t);
3934 			break;
3935 		default:
3936 			return;
3937 		}
3938 
3939 		/* if the section offset exceeds destination length, terminate
3940 		 * table fill.
3941 		 */
3942 		if (offset > dst_len)
3943 			return;
3944 
3945 		/* if the sum of section size and offset exceed destination size
3946 		 * then we are out of bounds of the HW table size for that PF.
3947 		 * Changing section length to fill the remaining table space
3948 		 * of that PF.
3949 		 */
3950 		if ((offset + sect_len) > dst_len)
3951 			sect_len = dst_len - offset;
3952 
3953 		ice_memcpy(dst + offset, src, sect_len, ICE_NONDMA_TO_NONDMA);
3954 		offset += sect_len;
3955 		sect = ice_pkg_enum_section(NULL, &state, sid);
3956 	}
3957 }
3958 
3959 /**
3960  * ice_fill_blk_tbls - Read package context for tables
3961  * @hw: pointer to the hardware structure
3962  *
3963  * Reads the current package contents and populates the driver
3964  * database with the data iteratively for all advanced feature
3965  * blocks. Assume that the HW tables have been allocated.
3966  */
ice_fill_blk_tbls(struct ice_hw * hw)3967 void ice_fill_blk_tbls(struct ice_hw *hw)
3968 {
3969 	u8 i;
3970 
3971 	for (i = 0; i < ICE_BLK_COUNT; i++) {
3972 		enum ice_block blk_id = (enum ice_block)i;
3973 
3974 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
3975 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
3976 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
3977 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
3978 		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
3979 	}
3980 
3981 	ice_init_sw_db(hw);
3982 }
3983 
3984 /**
3985  * ice_free_prof_map - free profile map
3986  * @hw: pointer to the hardware structure
3987  * @blk_idx: HW block index
3988  */
ice_free_prof_map(struct ice_hw * hw,u8 blk_idx)3989 static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
3990 {
3991 	struct ice_es *es = &hw->blk[blk_idx].es;
3992 	struct ice_prof_map *del, *tmp;
3993 
3994 	ice_acquire_lock(&es->prof_map_lock);
3995 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &es->prof_map,
3996 				 ice_prof_map, list) {
3997 		LIST_DEL(&del->list);
3998 		ice_free(hw, del);
3999 	}
4000 	INIT_LIST_HEAD(&es->prof_map);
4001 	ice_release_lock(&es->prof_map_lock);
4002 }
4003 
4004 /**
4005  * ice_free_flow_profs - free flow profile entries
4006  * @hw: pointer to the hardware structure
4007  * @blk_idx: HW block index
4008  */
ice_free_flow_profs(struct ice_hw * hw,u8 blk_idx)4009 static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
4010 {
4011 	struct ice_flow_prof *p, *tmp;
4012 
4013 	ice_acquire_lock(&hw->fl_profs_locks[blk_idx]);
4014 	LIST_FOR_EACH_ENTRY_SAFE(p, tmp, &hw->fl_profs[blk_idx],
4015 				 ice_flow_prof, l_entry) {
4016 		struct ice_flow_entry *e, *t;
4017 
4018 		LIST_FOR_EACH_ENTRY_SAFE(e, t, &p->entries,
4019 					 ice_flow_entry, l_entry)
4020 			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
4021 					   ICE_FLOW_ENTRY_HNDL(e));
4022 
4023 		LIST_DEL(&p->l_entry);
4024 		if (p->acts)
4025 			ice_free(hw, p->acts);
4026 
4027 		ice_destroy_lock(&p->entries_lock);
4028 		ice_free(hw, p);
4029 	}
4030 	ice_release_lock(&hw->fl_profs_locks[blk_idx]);
4031 
4032 	/* if driver is in reset and tables are being cleared
4033 	 * re-initialize the flow profile list heads
4034 	 */
4035 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4036 }
4037 
4038 /**
4039  * ice_free_vsig_tbl - free complete VSIG table entries
4040  * @hw: pointer to the hardware structure
4041  * @blk: the HW block on which to free the VSIG table entries
4042  */
ice_free_vsig_tbl(struct ice_hw * hw,enum ice_block blk)4043 static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
4044 {
4045 	u16 i;
4046 
4047 	if (!hw->blk[blk].xlt2.vsig_tbl)
4048 		return;
4049 
4050 	for (i = 1; i < ICE_MAX_VSIGS; i++)
4051 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
4052 			ice_vsig_free(hw, blk, i);
4053 }
4054 
4055 /**
4056  * ice_free_hw_tbls - free hardware table memory
4057  * @hw: pointer to the hardware structure
4058  */
ice_free_hw_tbls(struct ice_hw * hw)4059 void ice_free_hw_tbls(struct ice_hw *hw)
4060 {
4061 	struct ice_rss_cfg *r, *rt;
4062 	u8 i;
4063 
4064 	for (i = 0; i < ICE_BLK_COUNT; i++) {
4065 		if (hw->blk[i].is_list_init) {
4066 			struct ice_es *es = &hw->blk[i].es;
4067 
4068 			ice_free_prof_map(hw, i);
4069 			ice_destroy_lock(&es->prof_map_lock);
4070 			ice_free_flow_profs(hw, i);
4071 			ice_destroy_lock(&hw->fl_profs_locks[i]);
4072 
4073 			hw->blk[i].is_list_init = false;
4074 		}
4075 		ice_free_vsig_tbl(hw, (enum ice_block)i);
4076 		ice_free(hw, hw->blk[i].xlt1.ptypes);
4077 		ice_free(hw, hw->blk[i].xlt1.ptg_tbl);
4078 		ice_free(hw, hw->blk[i].xlt1.t);
4079 		ice_free(hw, hw->blk[i].xlt2.t);
4080 		ice_free(hw, hw->blk[i].xlt2.vsig_tbl);
4081 		ice_free(hw, hw->blk[i].xlt2.vsis);
4082 		ice_free(hw, hw->blk[i].prof.t);
4083 		ice_free(hw, hw->blk[i].prof_redir.t);
4084 		ice_free(hw, hw->blk[i].es.t);
4085 		ice_free(hw, hw->blk[i].es.ref_count);
4086 		ice_free(hw, hw->blk[i].es.written);
4087 		ice_free(hw, hw->blk[i].es.mask_ena);
4088 	}
4089 
4090 	LIST_FOR_EACH_ENTRY_SAFE(r, rt, &hw->rss_list_head,
4091 				 ice_rss_cfg, l_entry) {
4092 		LIST_DEL(&r->l_entry);
4093 		ice_free(hw, r);
4094 	}
4095 	ice_destroy_lock(&hw->rss_locks);
4096 	if (!hw->dcf_enabled)
4097 		ice_shutdown_all_prof_masks(hw);
4098 	ice_memset(hw->blk, 0, sizeof(hw->blk), ICE_NONDMA_MEM);
4099 }
4100 
4101 /**
4102  * ice_init_flow_profs - init flow profile locks and list heads
4103  * @hw: pointer to the hardware structure
4104  * @blk_idx: HW block index
4105  */
ice_init_flow_profs(struct ice_hw * hw,u8 blk_idx)4106 static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
4107 {
4108 	ice_init_lock(&hw->fl_profs_locks[blk_idx]);
4109 	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
4110 }
4111 
4112 /**
4113  * ice_clear_hw_tbls - clear HW tables and flow profiles
4114  * @hw: pointer to the hardware structure
4115  */
ice_clear_hw_tbls(struct ice_hw * hw)4116 void ice_clear_hw_tbls(struct ice_hw *hw)
4117 {
4118 	u8 i;
4119 
4120 	for (i = 0; i < ICE_BLK_COUNT; i++) {
4121 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4122 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
4123 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4124 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4125 		struct ice_es *es = &hw->blk[i].es;
4126 
4127 		if (hw->blk[i].is_list_init) {
4128 			ice_free_prof_map(hw, i);
4129 			ice_free_flow_profs(hw, i);
4130 		}
4131 
4132 		ice_free_vsig_tbl(hw, (enum ice_block)i);
4133 
4134 		ice_memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes),
4135 			   ICE_NONDMA_MEM);
4136 		ice_memset(xlt1->ptg_tbl, 0,
4137 			   ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl),
4138 			   ICE_NONDMA_MEM);
4139 		ice_memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t),
4140 			   ICE_NONDMA_MEM);
4141 
4142 		ice_memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis),
4143 			   ICE_NONDMA_MEM);
4144 		ice_memset(xlt2->vsig_tbl, 0,
4145 			   xlt2->count * sizeof(*xlt2->vsig_tbl),
4146 			   ICE_NONDMA_MEM);
4147 		ice_memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t),
4148 			   ICE_NONDMA_MEM);
4149 
4150 		ice_memset(prof->t, 0, prof->count * sizeof(*prof->t),
4151 			   ICE_NONDMA_MEM);
4152 		ice_memset(prof_redir->t, 0,
4153 			   prof_redir->count * sizeof(*prof_redir->t),
4154 			   ICE_NONDMA_MEM);
4155 
4156 		ice_memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw,
4157 			   ICE_NONDMA_MEM);
4158 		ice_memset(es->ref_count, 0, es->count * sizeof(*es->ref_count),
4159 			   ICE_NONDMA_MEM);
4160 		ice_memset(es->written, 0, es->count * sizeof(*es->written),
4161 			   ICE_NONDMA_MEM);
4162 		ice_memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena),
4163 			   ICE_NONDMA_MEM);
4164 	}
4165 }
4166 
4167 /**
4168  * ice_init_hw_tbls - init hardware table memory
4169  * @hw: pointer to the hardware structure
4170  */
ice_init_hw_tbls(struct ice_hw * hw)4171 enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
4172 {
4173 	u8 i;
4174 
4175 	ice_init_lock(&hw->rss_locks);
4176 	INIT_LIST_HEAD(&hw->rss_list_head);
4177 	if (!hw->dcf_enabled)
4178 		ice_init_all_prof_masks(hw);
4179 	for (i = 0; i < ICE_BLK_COUNT; i++) {
4180 		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
4181 		struct ice_prof_tcam *prof = &hw->blk[i].prof;
4182 		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
4183 		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
4184 		struct ice_es *es = &hw->blk[i].es;
4185 		u16 j;
4186 
4187 		if (hw->blk[i].is_list_init)
4188 			continue;
4189 
4190 		ice_init_flow_profs(hw, i);
4191 		ice_init_lock(&es->prof_map_lock);
4192 		INIT_LIST_HEAD(&es->prof_map);
4193 		hw->blk[i].is_list_init = true;
4194 
4195 		hw->blk[i].overwrite = blk_sizes[i].overwrite;
4196 		es->reverse = blk_sizes[i].reverse;
4197 
4198 		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
4199 		xlt1->count = blk_sizes[i].xlt1;
4200 
4201 		xlt1->ptypes = (struct ice_ptg_ptype *)
4202 			ice_calloc(hw, xlt1->count, sizeof(*xlt1->ptypes));
4203 
4204 		if (!xlt1->ptypes)
4205 			goto err;
4206 
4207 		xlt1->ptg_tbl = (struct ice_ptg_entry *)
4208 			ice_calloc(hw, ICE_MAX_PTGS, sizeof(*xlt1->ptg_tbl));
4209 
4210 		if (!xlt1->ptg_tbl)
4211 			goto err;
4212 
4213 		xlt1->t = (u8 *)ice_calloc(hw, xlt1->count, sizeof(*xlt1->t));
4214 		if (!xlt1->t)
4215 			goto err;
4216 
4217 		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
4218 		xlt2->count = blk_sizes[i].xlt2;
4219 
4220 		xlt2->vsis = (struct ice_vsig_vsi *)
4221 			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsis));
4222 
4223 		if (!xlt2->vsis)
4224 			goto err;
4225 
4226 		xlt2->vsig_tbl = (struct ice_vsig_entry *)
4227 			ice_calloc(hw, xlt2->count, sizeof(*xlt2->vsig_tbl));
4228 		if (!xlt2->vsig_tbl)
4229 			goto err;
4230 
4231 		for (j = 0; j < xlt2->count; j++)
4232 			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
4233 
4234 		xlt2->t = (u16 *)ice_calloc(hw, xlt2->count, sizeof(*xlt2->t));
4235 		if (!xlt2->t)
4236 			goto err;
4237 
4238 		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
4239 		prof->count = blk_sizes[i].prof_tcam;
4240 		prof->max_prof_id = blk_sizes[i].prof_id;
4241 		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
4242 		prof->t = (struct ice_prof_tcam_entry *)
4243 			ice_calloc(hw, prof->count, sizeof(*prof->t));
4244 
4245 		if (!prof->t)
4246 			goto err;
4247 
4248 		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
4249 		prof_redir->count = blk_sizes[i].prof_redir;
4250 		prof_redir->t = (u8 *)ice_calloc(hw, prof_redir->count,
4251 						 sizeof(*prof_redir->t));
4252 
4253 		if (!prof_redir->t)
4254 			goto err;
4255 
4256 		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
4257 		es->count = blk_sizes[i].es;
4258 		es->fvw = blk_sizes[i].fvw;
4259 		es->t = (struct ice_fv_word *)
4260 			ice_calloc(hw, (u32)(es->count * es->fvw),
4261 				   sizeof(*es->t));
4262 		if (!es->t)
4263 			goto err;
4264 
4265 		es->ref_count = (u16 *)
4266 			ice_calloc(hw, es->count, sizeof(*es->ref_count));
4267 
4268 		if (!es->ref_count)
4269 			goto err;
4270 
4271 		es->written = (u8 *)
4272 			ice_calloc(hw, es->count, sizeof(*es->written));
4273 
4274 		if (!es->written)
4275 			goto err;
4276 
4277 		es->mask_ena = (u32 *)
4278 			ice_calloc(hw, es->count, sizeof(*es->mask_ena));
4279 
4280 		if (!es->mask_ena)
4281 			goto err;
4282 	}
4283 	return ICE_SUCCESS;
4284 
4285 err:
4286 	ice_free_hw_tbls(hw);
4287 	return ICE_ERR_NO_MEMORY;
4288 }
4289 
4290 /**
4291  * ice_prof_gen_key - generate profile ID key
4292  * @hw: pointer to the HW struct
4293  * @blk: the block in which to write profile ID to
4294  * @ptg: packet type group (PTG) portion of key
4295  * @vsig: VSIG portion of key
4296  * @cdid: CDID portion of key
4297  * @flags: flag portion of key
4298  * @vl_msk: valid mask
4299  * @dc_msk: don't care mask
4300  * @nm_msk: never match mask
4301  * @key: output of profile ID key
4302  */
4303 static enum ice_status
ice_prof_gen_key(struct ice_hw * hw,enum ice_block blk,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],u8 key[ICE_TCAM_KEY_SZ])4304 ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
4305 		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4306 		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
4307 		 u8 key[ICE_TCAM_KEY_SZ])
4308 {
4309 	struct ice_prof_id_key inkey;
4310 
4311 	inkey.xlt1 = ptg;
4312 	inkey.xlt2_cdid = CPU_TO_LE16(vsig);
4313 	inkey.flags = CPU_TO_LE16(flags);
4314 
4315 	switch (hw->blk[blk].prof.cdid_bits) {
4316 	case 0:
4317 		break;
4318 	case 2:
4319 #define ICE_CD_2_M 0xC000U
4320 #define ICE_CD_2_S 14
4321 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_2_M);
4322 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_2_S);
4323 		break;
4324 	case 4:
4325 #define ICE_CD_4_M 0xF000U
4326 #define ICE_CD_4_S 12
4327 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_4_M);
4328 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_4_S);
4329 		break;
4330 	case 8:
4331 #define ICE_CD_8_M 0xFF00U
4332 #define ICE_CD_8_S 16
4333 		inkey.xlt2_cdid &= ~CPU_TO_LE16(ICE_CD_8_M);
4334 		inkey.xlt2_cdid |= CPU_TO_LE16(BIT(cdid) << ICE_CD_8_S);
4335 		break;
4336 	default:
4337 		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
4338 		break;
4339 	}
4340 
4341 	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
4342 			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
4343 }
4344 
4345 /**
4346  * ice_tcam_write_entry - write TCAM entry
4347  * @hw: pointer to the HW struct
4348  * @blk: the block in which to write profile ID to
4349  * @idx: the entry index to write to
4350  * @prof_id: profile ID
4351  * @ptg: packet type group (PTG) portion of key
4352  * @vsig: VSIG portion of key
4353  * @cdid: CDID portion of key
4354  * @flags: flag portion of key
4355  * @vl_msk: valid mask
4356  * @dc_msk: don't care mask
4357  * @nm_msk: never match mask
4358  */
4359 static enum ice_status
ice_tcam_write_entry(struct ice_hw * hw,enum ice_block blk,u16 idx,u8 prof_id,u8 ptg,u16 vsig,u8 cdid,u16 flags,u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])4360 ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
4361 		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
4362 		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
4363 		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
4364 		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
4365 {
4366 	struct ice_prof_tcam_entry;
4367 	enum ice_status status;
4368 
4369 	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
4370 				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
4371 	if (!status) {
4372 		hw->blk[blk].prof.t[idx].addr = CPU_TO_LE16(idx);
4373 		hw->blk[blk].prof.t[idx].prof_id = prof_id;
4374 	}
4375 
4376 	return status;
4377 }
4378 
4379 /**
4380  * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
4381  * @hw: pointer to the hardware structure
4382  * @blk: HW block
4383  * @vsig: VSIG to query
4384  * @refs: pointer to variable to receive the reference count
4385  */
4386 static enum ice_status
ice_vsig_get_ref(struct ice_hw * hw,enum ice_block blk,u16 vsig,u16 * refs)4387 ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
4388 {
4389 	u16 idx = vsig & ICE_VSIG_IDX_M;
4390 	struct ice_vsig_vsi *ptr;
4391 
4392 	*refs = 0;
4393 
4394 	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
4395 		return ICE_ERR_DOES_NOT_EXIST;
4396 
4397 	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
4398 	while (ptr) {
4399 		(*refs)++;
4400 		ptr = ptr->next_vsi;
4401 	}
4402 
4403 	return ICE_SUCCESS;
4404 }
4405 
4406 /**
4407  * ice_has_prof_vsig - check to see if VSIG has a specific profile
4408  * @hw: pointer to the hardware structure
4409  * @blk: HW block
4410  * @vsig: VSIG to check against
4411  * @hdl: profile handle
4412  */
4413 static bool
ice_has_prof_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl)4414 ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
4415 {
4416 	u16 idx = vsig & ICE_VSIG_IDX_M;
4417 	struct ice_vsig_prof *ent;
4418 
4419 	LIST_FOR_EACH_ENTRY(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
4420 			    ice_vsig_prof, list)
4421 		if (ent->profile_cookie == hdl)
4422 			return true;
4423 
4424 	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
4425 		  vsig);
4426 	return false;
4427 }
4428 
4429 /**
4430  * ice_prof_bld_es - build profile ID extraction sequence changes
4431  * @hw: pointer to the HW struct
4432  * @blk: hardware block
4433  * @bld: the update package buffer build to add to
4434  * @chgs: the list of changes to make in hardware
4435  */
4436 static enum ice_status
ice_prof_bld_es(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct LIST_HEAD_TYPE * chgs)4437 ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
4438 		struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4439 {
4440 	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
4441 	struct ice_chs_chg *tmp;
4442 
4443 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4444 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
4445 			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
4446 			struct ice_pkg_es *p;
4447 			u32 id;
4448 
4449 			id = ice_sect_id(blk, ICE_VEC_TBL);
4450 			p = (struct ice_pkg_es *)
4451 				ice_pkg_buf_alloc_section(bld, id,
4452 							  ice_struct_size(p, es,
4453 									  1) +
4454 							  vec_size -
4455 							  sizeof(p->es[0]));
4456 
4457 			if (!p)
4458 				return ICE_ERR_MAX_LIMIT;
4459 
4460 			p->count = CPU_TO_LE16(1);
4461 			p->offset = CPU_TO_LE16(tmp->prof_id);
4462 
4463 			ice_memcpy(p->es, &hw->blk[blk].es.t[off], vec_size,
4464 				   ICE_NONDMA_TO_NONDMA);
4465 		}
4466 
4467 	return ICE_SUCCESS;
4468 }
4469 
4470 /**
4471  * ice_prof_bld_tcam - build profile ID TCAM changes
4472  * @hw: pointer to the HW struct
4473  * @blk: hardware block
4474  * @bld: the update package buffer build to add to
4475  * @chgs: the list of changes to make in hardware
4476  */
4477 static enum ice_status
ice_prof_bld_tcam(struct ice_hw * hw,enum ice_block blk,struct ice_buf_build * bld,struct LIST_HEAD_TYPE * chgs)4478 ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
4479 		  struct ice_buf_build *bld, struct LIST_HEAD_TYPE *chgs)
4480 {
4481 	struct ice_chs_chg *tmp;
4482 
4483 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4484 		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
4485 			struct ice_prof_id_section *p;
4486 			u32 id;
4487 
4488 			id = ice_sect_id(blk, ICE_PROF_TCAM);
4489 			p = (struct ice_prof_id_section *)
4490 				ice_pkg_buf_alloc_section(bld, id,
4491 							  ice_struct_size(p,
4492 									  entry,
4493 									  1));
4494 
4495 			if (!p)
4496 				return ICE_ERR_MAX_LIMIT;
4497 
4498 			p->count = CPU_TO_LE16(1);
4499 			p->entry[0].addr = CPU_TO_LE16(tmp->tcam_idx);
4500 			p->entry[0].prof_id = tmp->prof_id;
4501 
4502 			ice_memcpy(p->entry[0].key,
4503 				   &hw->blk[blk].prof.t[tmp->tcam_idx].key,
4504 				   sizeof(hw->blk[blk].prof.t->key),
4505 				   ICE_NONDMA_TO_NONDMA);
4506 		}
4507 
4508 	return ICE_SUCCESS;
4509 }
4510 
4511 /**
4512  * ice_prof_bld_xlt1 - build XLT1 changes
4513  * @blk: hardware block
4514  * @bld: the update package buffer build to add to
4515  * @chgs: the list of changes to make in hardware
4516  */
4517 static enum ice_status
ice_prof_bld_xlt1(enum ice_block blk,struct ice_buf_build * bld,struct LIST_HEAD_TYPE * chgs)4518 ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
4519 		  struct LIST_HEAD_TYPE *chgs)
4520 {
4521 	struct ice_chs_chg *tmp;
4522 
4523 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry)
4524 		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
4525 			struct ice_xlt1_section *p;
4526 			u32 id;
4527 
4528 			id = ice_sect_id(blk, ICE_XLT1);
4529 			p = (struct ice_xlt1_section *)
4530 				ice_pkg_buf_alloc_section(bld, id,
4531 							  ice_struct_size(p,
4532 									  value,
4533 									  1));
4534 
4535 			if (!p)
4536 				return ICE_ERR_MAX_LIMIT;
4537 
4538 			p->count = CPU_TO_LE16(1);
4539 			p->offset = CPU_TO_LE16(tmp->ptype);
4540 			p->value[0] = tmp->ptg;
4541 		}
4542 
4543 	return ICE_SUCCESS;
4544 }
4545 
4546 /**
4547  * ice_prof_bld_xlt2 - build XLT2 changes
4548  * @blk: hardware block
4549  * @bld: the update package buffer build to add to
4550  * @chgs: the list of changes to make in hardware
4551  */
4552 static enum ice_status
ice_prof_bld_xlt2(enum ice_block blk,struct ice_buf_build * bld,struct LIST_HEAD_TYPE * chgs)4553 ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
4554 		  struct LIST_HEAD_TYPE *chgs)
4555 {
4556 	struct ice_chs_chg *tmp;
4557 
4558 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4559 		struct ice_xlt2_section *p;
4560 		u32 id;
4561 
4562 		switch (tmp->type) {
4563 		case ICE_VSIG_ADD:
4564 		case ICE_VSI_MOVE:
4565 		case ICE_VSIG_REM:
4566 			id = ice_sect_id(blk, ICE_XLT2);
4567 			p = (struct ice_xlt2_section *)
4568 				ice_pkg_buf_alloc_section(bld, id,
4569 							  ice_struct_size(p,
4570 									  value,
4571 									  1));
4572 
4573 			if (!p)
4574 				return ICE_ERR_MAX_LIMIT;
4575 
4576 			p->count = CPU_TO_LE16(1);
4577 			p->offset = CPU_TO_LE16(tmp->vsi);
4578 			p->value[0] = CPU_TO_LE16(tmp->vsig);
4579 			break;
4580 		default:
4581 			break;
4582 		}
4583 	}
4584 
4585 	return ICE_SUCCESS;
4586 }
4587 
4588 /**
4589  * ice_upd_prof_hw - update hardware using the change list
4590  * @hw: pointer to the HW struct
4591  * @blk: hardware block
4592  * @chgs: the list of changes to make in hardware
4593  */
4594 static enum ice_status
ice_upd_prof_hw(struct ice_hw * hw,enum ice_block blk,struct LIST_HEAD_TYPE * chgs)4595 ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
4596 		struct LIST_HEAD_TYPE *chgs)
4597 {
4598 	struct ice_buf_build *b;
4599 	struct ice_chs_chg *tmp;
4600 	enum ice_status status;
4601 	u16 pkg_sects;
4602 	u16 xlt1 = 0;
4603 	u16 xlt2 = 0;
4604 	u16 tcam = 0;
4605 	u16 es = 0;
4606 	u16 sects;
4607 
4608 	/* count number of sections we need */
4609 	LIST_FOR_EACH_ENTRY(tmp, chgs, ice_chs_chg, list_entry) {
4610 		switch (tmp->type) {
4611 		case ICE_PTG_ES_ADD:
4612 			if (tmp->add_ptg)
4613 				xlt1++;
4614 			if (tmp->add_prof)
4615 				es++;
4616 			break;
4617 		case ICE_TCAM_ADD:
4618 			tcam++;
4619 			break;
4620 		case ICE_VSIG_ADD:
4621 		case ICE_VSI_MOVE:
4622 		case ICE_VSIG_REM:
4623 			xlt2++;
4624 			break;
4625 		default:
4626 			break;
4627 		}
4628 	}
4629 	sects = xlt1 + xlt2 + tcam + es;
4630 
4631 	if (!sects)
4632 		return ICE_SUCCESS;
4633 
4634 	/* Build update package buffer */
4635 	b = ice_pkg_buf_alloc(hw);
4636 	if (!b)
4637 		return ICE_ERR_NO_MEMORY;
4638 
4639 	status = ice_pkg_buf_reserve_section(b, sects);
4640 	if (status)
4641 		goto error_tmp;
4642 
4643 	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
4644 	if (es) {
4645 		status = ice_prof_bld_es(hw, blk, b, chgs);
4646 		if (status)
4647 			goto error_tmp;
4648 	}
4649 
4650 	if (tcam) {
4651 		status = ice_prof_bld_tcam(hw, blk, b, chgs);
4652 		if (status)
4653 			goto error_tmp;
4654 	}
4655 
4656 	if (xlt1) {
4657 		status = ice_prof_bld_xlt1(blk, b, chgs);
4658 		if (status)
4659 			goto error_tmp;
4660 	}
4661 
4662 	if (xlt2) {
4663 		status = ice_prof_bld_xlt2(blk, b, chgs);
4664 		if (status)
4665 			goto error_tmp;
4666 	}
4667 
4668 	/* After package buffer build check if the section count in buffer is
4669 	 * non-zero and matches the number of sections detected for package
4670 	 * update.
4671 	 */
4672 	pkg_sects = ice_pkg_buf_get_active_sections(b);
4673 	if (!pkg_sects || pkg_sects != sects) {
4674 		status = ICE_ERR_INVAL_SIZE;
4675 		goto error_tmp;
4676 	}
4677 
4678 	/* update package */
4679 	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
4680 	if (status == ICE_ERR_AQ_ERROR)
4681 		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
4682 
4683 error_tmp:
4684 	ice_pkg_buf_free(hw, b);
4685 	return status;
4686 }
4687 
4688 /**
4689  * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
4690  * @hw: pointer to the HW struct
4691  * @prof_id: profile ID
4692  * @mask_sel: mask select
4693  *
4694  * This function enable any of the masks selected by the mask select parameter
4695  * for the profile specified.
4696  */
ice_update_fd_mask(struct ice_hw * hw,u16 prof_id,u32 mask_sel)4697 static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
4698 {
4699 	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
4700 
4701 	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
4702 		  GLQF_FDMASK_SEL(prof_id), mask_sel);
4703 }
4704 
4705 struct ice_fd_src_dst_pair {
4706 	u8 prot_id;
4707 	u8 count;
4708 	u16 off;
4709 };
4710 
4711 static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
4712 	/* These are defined in pairs */
4713 	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
4714 	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
4715 
4716 	{ ICE_PROT_IPV4_IL, 2, 12 },
4717 	{ ICE_PROT_IPV4_IL, 2, 16 },
4718 
4719 	{ ICE_PROT_IPV4_IL_IL, 2, 12 },
4720 	{ ICE_PROT_IPV4_IL_IL, 2, 16 },
4721 
4722 	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
4723 	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
4724 
4725 	{ ICE_PROT_IPV6_IL, 8, 8 },
4726 	{ ICE_PROT_IPV6_IL, 8, 24 },
4727 
4728 	{ ICE_PROT_IPV6_IL_IL, 8, 8 },
4729 	{ ICE_PROT_IPV6_IL_IL, 8, 24 },
4730 
4731 	{ ICE_PROT_TCP_IL, 1, 0 },
4732 	{ ICE_PROT_TCP_IL, 1, 2 },
4733 
4734 	{ ICE_PROT_UDP_OF, 1, 0 },
4735 	{ ICE_PROT_UDP_OF, 1, 2 },
4736 
4737 	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
4738 	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
4739 
4740 	{ ICE_PROT_SCTP_IL, 1, 0 },
4741 	{ ICE_PROT_SCTP_IL, 1, 2 }
4742 };
4743 
4744 #define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
4745 
4746 /**
4747  * ice_update_fd_swap - set register appropriately for a FD FV extraction
4748  * @hw: pointer to the HW struct
4749  * @prof_id: profile ID
4750  * @es: extraction sequence (length of array is determined by the block)
4751  */
4752 static enum ice_status
ice_update_fd_swap(struct ice_hw * hw,u16 prof_id,struct ice_fv_word * es)4753 ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
4754 {
4755 	ice_declare_bitmap(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4756 	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
4757 #define ICE_FD_FV_NOT_FOUND (-2)
4758 	s8 first_free = ICE_FD_FV_NOT_FOUND;
4759 	u8 used[ICE_MAX_FV_WORDS] = { 0 };
4760 	s8 orig_free, si;
4761 	u32 mask_sel = 0;
4762 	u8 i, j, k;
4763 
4764 	ice_zero_bitmap(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
4765 
4766 	/* This code assumes that the Flow Director field vectors are assigned
4767 	 * from the end of the FV indexes working towards the zero index, that
4768 	 * only complete fields will be included and will be consecutive, and
4769 	 * that there are no gaps between valid indexes.
4770 	 */
4771 
4772 	/* Determine swap fields present */
4773 	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
4774 		/* Find the first free entry, assuming right to left population.
4775 		 * This is where we can start adding additional pairs if needed.
4776 		 */
4777 		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
4778 		    ICE_PROT_INVALID)
4779 			first_free = i - 1;
4780 
4781 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4782 			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
4783 			    es[i].off == ice_fd_pairs[j].off) {
4784 				ice_set_bit(j, pair_list);
4785 				pair_start[j] = i;
4786 			}
4787 	}
4788 
4789 	orig_free = first_free;
4790 
4791 	/* determine missing swap fields that need to be added */
4792 	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
4793 		u8 bit1 = ice_is_bit_set(pair_list, i + 1);
4794 		u8 bit0 = ice_is_bit_set(pair_list, i);
4795 
4796 		if (bit0 ^ bit1) {
4797 			u8 index;
4798 
4799 			/* add the appropriate 'paired' entry */
4800 			if (!bit0)
4801 				index = i;
4802 			else
4803 				index = i + 1;
4804 
4805 			/* check for room */
4806 			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
4807 				return ICE_ERR_MAX_LIMIT;
4808 
4809 			/* place in extraction sequence */
4810 			for (k = 0; k < ice_fd_pairs[index].count; k++) {
4811 				es[first_free - k].prot_id =
4812 					ice_fd_pairs[index].prot_id;
4813 				es[first_free - k].off =
4814 					ice_fd_pairs[index].off + (k * 2);
4815 
4816 				if (k > first_free)
4817 					return ICE_ERR_OUT_OF_RANGE;
4818 
4819 				/* keep track of non-relevant fields */
4820 				mask_sel |= BIT(first_free - k);
4821 			}
4822 
4823 			pair_start[index] = first_free;
4824 			first_free -= ice_fd_pairs[index].count;
4825 		}
4826 	}
4827 
4828 	/* fill in the swap array */
4829 	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
4830 	while (si >= 0) {
4831 		u8 indexes_used = 1;
4832 
4833 		/* assume flat at this index */
4834 #define ICE_SWAP_VALID	0x80
4835 		used[si] = si | ICE_SWAP_VALID;
4836 
4837 		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
4838 			si -= indexes_used;
4839 			continue;
4840 		}
4841 
4842 		/* check for a swap location */
4843 		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
4844 			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
4845 			    es[si].off == ice_fd_pairs[j].off) {
4846 				u8 idx;
4847 
4848 				/* determine the appropriate matching field */
4849 				idx = j + ((j % 2) ? -1 : 1);
4850 
4851 				indexes_used = ice_fd_pairs[idx].count;
4852 				for (k = 0; k < indexes_used; k++) {
4853 					used[si - k] = (pair_start[idx] - k) |
4854 						ICE_SWAP_VALID;
4855 				}
4856 
4857 				break;
4858 			}
4859 
4860 		si -= indexes_used;
4861 	}
4862 
4863 	/* for each set of 4 swap and 4 inset indexes, write the appropriate
4864 	 * register
4865 	 */
4866 	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
4867 		u32 raw_swap = 0;
4868 		u32 raw_in = 0;
4869 
4870 		for (k = 0; k < 4; k++) {
4871 			u8 idx;
4872 
4873 			idx = (j * 4) + k;
4874 			if (used[idx] && !(mask_sel & BIT(idx))) {
4875 				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
4876 #define ICE_INSET_DFLT 0x9f
4877 				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
4878 			}
4879 		}
4880 
4881 		/* write the appropriate swap register set */
4882 		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
4883 
4884 		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4885 			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
4886 
4887 		/* write the appropriate inset register set */
4888 		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
4889 
4890 		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4891 			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
4892 	}
4893 
4894 	/* initially clear the mask select for this profile */
4895 	ice_update_fd_mask(hw, prof_id, 0);
4896 
4897 	return ICE_SUCCESS;
4898 }
4899 
4900 /* The entries here needs to match the order of enum ice_ptype_attrib */
4901 static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
4902 	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
4903 	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
4904 	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
4905 	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
4906 };
4907 
4908 /**
4909  * ice_get_ptype_attrib_info - get ptype attribute information
4910  * @type: attribute type
4911  * @info: pointer to variable to the attribute information
4912  */
4913 static void
ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,struct ice_ptype_attrib_info * info)4914 ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
4915 			  struct ice_ptype_attrib_info *info)
4916 {
4917 	*info = ice_ptype_attributes[type];
4918 }
4919 
4920 /**
4921  * ice_add_prof_attrib - add any PTG with attributes to profile
4922  * @prof: pointer to the profile to which PTG entries will be added
4923  * @ptg: PTG to be added
4924  * @ptype: PTYPE that needs to be looked up
4925  * @attr: array of attributes that will be considered
4926  * @attr_cnt: number of elements in the attribute array
4927  */
4928 static enum ice_status
ice_add_prof_attrib(struct ice_prof_map * prof,u8 ptg,u16 ptype,const struct ice_ptype_attributes * attr,u16 attr_cnt)4929 ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
4930 		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
4931 {
4932 	bool found = false;
4933 	u16 i;
4934 
4935 	for (i = 0; i < attr_cnt; i++) {
4936 		if (attr[i].ptype == ptype) {
4937 			found = true;
4938 
4939 			prof->ptg[prof->ptg_cnt] = ptg;
4940 			ice_get_ptype_attrib_info(attr[i].attrib,
4941 						  &prof->attr[prof->ptg_cnt]);
4942 
4943 			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
4944 				return ICE_ERR_MAX_LIMIT;
4945 		}
4946 	}
4947 
4948 	if (!found)
4949 		return ICE_ERR_DOES_NOT_EXIST;
4950 
4951 	return ICE_SUCCESS;
4952 }
4953 
4954 /**
4955  * ice_disable_fd_swap - set register appropriately to disable FD swap
4956  * @hw: pointer to the HW struct
4957  * @prof_id: profile ID
4958  */
ice_disable_fd_swap(struct ice_hw * hw,u16 prof_id)4959 void ice_disable_fd_swap(struct ice_hw *hw, u16 prof_id)
4960 {
4961 	u8 swap_val = ICE_SWAP_VALID;
4962 	u8 i;
4963 	/* Since the SWAP Flag in the Programming Desc doesn't work,
4964 	 * here add method to disable the SWAP Option via setting
4965 	 * certain SWAP and INSET register set.
4966 	 */
4967 	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw / 4; i++) {
4968 		u32 raw_swap = 0;
4969 		u32 raw_in = 0;
4970 		u8 j;
4971 
4972 		for (j = 0; j < 4; j++) {
4973 			raw_swap |= (swap_val++) << (j * BITS_PER_BYTE);
4974 			raw_in |= ICE_INSET_DFLT << (j * BITS_PER_BYTE);
4975 		}
4976 
4977 		/* write the FDIR swap register set */
4978 		wr32(hw, GLQF_FDSWAP(prof_id, i), raw_swap);
4979 
4980 		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
4981 				prof_id, i, GLQF_FDSWAP(prof_id, i), raw_swap);
4982 
4983 		/* write the FDIR inset register set */
4984 		wr32(hw, GLQF_FDINSET(prof_id, i), raw_in);
4985 
4986 		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
4987 				prof_id, i, GLQF_FDINSET(prof_id, i), raw_in);
4988 	}
4989 }
4990 
4991 /**
4992  * ice_add_prof - add profile
4993  * @hw: pointer to the HW struct
4994  * @blk: hardware block
4995  * @id: profile tracking ID
4996  * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
4997  * @attr: array of attributes
4998  * @attr_cnt: number of elements in attrib array
4999  * @es: extraction sequence (length of array is determined by the block)
5000  * @masks: mask for extraction sequence
5001  * @fd_swap: enable/disable FDIR paired src/dst fields swap option
5002  *
5003  * This function registers a profile, which matches a set of PTYPES with a
5004  * particular extraction sequence. While the hardware profile is allocated
5005  * it will not be written until the first call to ice_add_flow that specifies
5006  * the ID value used here.
5007  */
5008 enum ice_status
ice_add_prof(struct ice_hw * hw,enum ice_block blk,u64 id,u8 ptypes[],const struct ice_ptype_attributes * attr,u16 attr_cnt,struct ice_fv_word * es,u16 * masks,bool fd_swap)5009 ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
5010 	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
5011 	     struct ice_fv_word *es, u16 *masks, bool fd_swap)
5012 {
5013 	u32 bytes = DIVIDE_AND_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
5014 	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
5015 	struct ice_prof_map *prof;
5016 	enum ice_status status;
5017 	u8 byte = 0;
5018 	u8 prof_id;
5019 
5020 	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
5021 
5022 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5023 
5024 	/* search for existing profile */
5025 	status = ice_find_prof_id_with_mask(hw, blk, es, masks, &prof_id);
5026 	if (status) {
5027 		/* allocate profile ID */
5028 		status = ice_alloc_prof_id(hw, blk, &prof_id);
5029 		if (status)
5030 			goto err_ice_add_prof;
5031 		if (blk == ICE_BLK_FD && fd_swap) {
5032 			/* For Flow Director block, the extraction sequence may
5033 			 * need to be altered in the case where there are paired
5034 			 * fields that have no match. This is necessary because
5035 			 * for Flow Director, src and dest fields need to paired
5036 			 * for filter programming and these values are swapped
5037 			 * during Tx.
5038 			 */
5039 			status = ice_update_fd_swap(hw, prof_id, es);
5040 			if (status)
5041 				goto err_ice_add_prof;
5042 		} else if (blk == ICE_BLK_FD) {
5043 			ice_disable_fd_swap(hw, prof_id);
5044 		}
5045 		status = ice_update_prof_masking(hw, blk, prof_id, masks);
5046 		if (status)
5047 			goto err_ice_add_prof;
5048 
5049 		/* and write new es */
5050 		ice_write_es(hw, blk, prof_id, es);
5051 	}
5052 
5053 	ice_prof_inc_ref(hw, blk, prof_id);
5054 
5055 	/* add profile info */
5056 
5057 	prof = (struct ice_prof_map *)ice_malloc(hw, sizeof(*prof));
5058 	if (!prof)
5059 		goto err_ice_add_prof;
5060 
5061 	prof->profile_cookie = id;
5062 	prof->prof_id = prof_id;
5063 	prof->ptg_cnt = 0;
5064 	prof->context = 0;
5065 
5066 	/* build list of ptgs */
5067 	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
5068 		u8 bit;
5069 
5070 		if (!ptypes[byte]) {
5071 			bytes--;
5072 			byte++;
5073 			continue;
5074 		}
5075 
5076 		/* Examine 8 bits per byte */
5077 		ice_for_each_set_bit(bit, (ice_bitmap_t *)&ptypes[byte],
5078 				     BITS_PER_BYTE) {
5079 			u16 ptype;
5080 			u8 ptg;
5081 
5082 			ptype = byte * BITS_PER_BYTE + bit;
5083 
5084 			/* The package should place all ptypes in a non-zero
5085 			 * PTG, so the following call should never fail.
5086 			 */
5087 			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
5088 				continue;
5089 
5090 			/* If PTG is already added, skip and continue */
5091 			if (ice_is_bit_set(ptgs_used, ptg))
5092 				continue;
5093 
5094 			ice_set_bit(ptg, ptgs_used);
5095 			/* Check to see there are any attributes for this
5096 			 * ptype, and add them if found.
5097 			 */
5098 			status = ice_add_prof_attrib(prof, ptg, ptype, attr,
5099 						     attr_cnt);
5100 			if (status == ICE_ERR_MAX_LIMIT)
5101 				break;
5102 			if (status) {
5103 				/* This is simple a ptype/PTG with no
5104 				 * attribute
5105 				 */
5106 				prof->ptg[prof->ptg_cnt] = ptg;
5107 				prof->attr[prof->ptg_cnt].flags = 0;
5108 				prof->attr[prof->ptg_cnt].mask = 0;
5109 
5110 				if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
5111 					break;
5112 			}
5113 		}
5114 
5115 		bytes--;
5116 		byte++;
5117 	}
5118 
5119 	LIST_ADD(&prof->list, &hw->blk[blk].es.prof_map);
5120 	status = ICE_SUCCESS;
5121 
5122 err_ice_add_prof:
5123 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5124 	return status;
5125 }
5126 
5127 /**
5128  * ice_search_prof_id - Search for a profile tracking ID
5129  * @hw: pointer to the HW struct
5130  * @blk: hardware block
5131  * @id: profile tracking ID
5132  *
5133  * This will search for a profile tracking ID which was previously added.
5134  * The profile map lock should be held before calling this function.
5135  */
5136 struct ice_prof_map *
ice_search_prof_id(struct ice_hw * hw,enum ice_block blk,u64 id)5137 ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
5138 {
5139 	struct ice_prof_map *entry = NULL;
5140 	struct ice_prof_map *map;
5141 
5142 	LIST_FOR_EACH_ENTRY(map, &hw->blk[blk].es.prof_map, ice_prof_map, list)
5143 		if (map->profile_cookie == id) {
5144 			entry = map;
5145 			break;
5146 		}
5147 
5148 	return entry;
5149 }
5150 
5151 /**
5152  * ice_vsig_prof_id_count - count profiles in a VSIG
5153  * @hw: pointer to the HW struct
5154  * @blk: hardware block
5155  * @vsig: VSIG to remove the profile from
5156  */
5157 static u16
ice_vsig_prof_id_count(struct ice_hw * hw,enum ice_block blk,u16 vsig)5158 ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
5159 {
5160 	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
5161 	struct ice_vsig_prof *p;
5162 
5163 	LIST_FOR_EACH_ENTRY(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5164 			    ice_vsig_prof, list)
5165 		count++;
5166 
5167 	return count;
5168 }
5169 
5170 /**
5171  * ice_rel_tcam_idx - release a TCAM index
5172  * @hw: pointer to the HW struct
5173  * @blk: hardware block
5174  * @idx: the index to release
5175  */
5176 static enum ice_status
ice_rel_tcam_idx(struct ice_hw * hw,enum ice_block blk,u16 idx)5177 ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
5178 {
5179 	/* Masks to invoke a never match entry */
5180 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5181 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
5182 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
5183 	enum ice_status status;
5184 
5185 	/* write the TCAM entry */
5186 	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
5187 				      dc_msk, nm_msk);
5188 	if (status)
5189 		return status;
5190 
5191 	/* release the TCAM entry */
5192 	status = ice_free_tcam_ent(hw, blk, idx);
5193 
5194 	return status;
5195 }
5196 
5197 /**
5198  * ice_rem_prof_id - remove one profile from a VSIG
5199  * @hw: pointer to the HW struct
5200  * @blk: hardware block
5201  * @prof: pointer to profile structure to remove
5202  */
5203 static enum ice_status
ice_rem_prof_id(struct ice_hw * hw,enum ice_block blk,struct ice_vsig_prof * prof)5204 ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
5205 		struct ice_vsig_prof *prof)
5206 {
5207 	enum ice_status status;
5208 	u16 i;
5209 
5210 	for (i = 0; i < prof->tcam_count; i++)
5211 		if (prof->tcam[i].in_use) {
5212 			prof->tcam[i].in_use = false;
5213 			status = ice_rel_tcam_idx(hw, blk,
5214 						  prof->tcam[i].tcam_idx);
5215 			if (status)
5216 				return ICE_ERR_HW_TABLE;
5217 		}
5218 
5219 	return ICE_SUCCESS;
5220 }
5221 
5222 /**
5223  * ice_rem_vsig - remove VSIG
5224  * @hw: pointer to the HW struct
5225  * @blk: hardware block
5226  * @vsig: the VSIG to remove
5227  * @chg: the change list
5228  */
5229 static enum ice_status
ice_rem_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct LIST_HEAD_TYPE * chg)5230 ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5231 	     struct LIST_HEAD_TYPE *chg)
5232 {
5233 	u16 idx = vsig & ICE_VSIG_IDX_M;
5234 	struct ice_vsig_vsi *vsi_cur;
5235 	struct ice_vsig_prof *d, *t;
5236 	enum ice_status status;
5237 
5238 	/* remove TCAM entries */
5239 	LIST_FOR_EACH_ENTRY_SAFE(d, t,
5240 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5241 				 ice_vsig_prof, list) {
5242 		status = ice_rem_prof_id(hw, blk, d);
5243 		if (status)
5244 			return status;
5245 
5246 		LIST_DEL(&d->list);
5247 		ice_free(hw, d);
5248 	}
5249 
5250 	/* Move all VSIS associated with this VSIG to the default VSIG */
5251 	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
5252 	/* If the VSIG has at least 1 VSI then iterate through the list
5253 	 * and remove the VSIs before deleting the group.
5254 	 */
5255 	if (vsi_cur)
5256 		do {
5257 			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
5258 			struct ice_chs_chg *p;
5259 
5260 			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5261 			if (!p)
5262 				return ICE_ERR_NO_MEMORY;
5263 
5264 			p->type = ICE_VSIG_REM;
5265 			p->orig_vsig = vsig;
5266 			p->vsig = ICE_DEFAULT_VSIG;
5267 			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
5268 
5269 			LIST_ADD(&p->list_entry, chg);
5270 
5271 			vsi_cur = tmp;
5272 		} while (vsi_cur);
5273 
5274 	return ice_vsig_free(hw, blk, vsig);
5275 }
5276 
5277 /**
5278  * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
5279  * @hw: pointer to the HW struct
5280  * @blk: hardware block
5281  * @vsig: VSIG to remove the profile from
5282  * @hdl: profile handle indicating which profile to remove
5283  * @chg: list to receive a record of changes
5284  */
5285 static enum ice_status
ice_rem_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,struct LIST_HEAD_TYPE * chg)5286 ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5287 		     struct LIST_HEAD_TYPE *chg)
5288 {
5289 	u16 idx = vsig & ICE_VSIG_IDX_M;
5290 	struct ice_vsig_prof *p, *t;
5291 	enum ice_status status;
5292 
5293 	LIST_FOR_EACH_ENTRY_SAFE(p, t,
5294 				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5295 				 ice_vsig_prof, list)
5296 		if (p->profile_cookie == hdl) {
5297 			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
5298 				/* this is the last profile, remove the VSIG */
5299 				return ice_rem_vsig(hw, blk, vsig, chg);
5300 
5301 			status = ice_rem_prof_id(hw, blk, p);
5302 			if (!status) {
5303 				LIST_DEL(&p->list);
5304 				ice_free(hw, p);
5305 			}
5306 			return status;
5307 		}
5308 
5309 	return ICE_ERR_DOES_NOT_EXIST;
5310 }
5311 
5312 /**
5313  * ice_rem_flow_all - remove all flows with a particular profile
5314  * @hw: pointer to the HW struct
5315  * @blk: hardware block
5316  * @id: profile tracking ID
5317  */
5318 static enum ice_status
ice_rem_flow_all(struct ice_hw * hw,enum ice_block blk,u64 id)5319 ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
5320 {
5321 	struct ice_chs_chg *del, *tmp;
5322 	struct LIST_HEAD_TYPE chg;
5323 	enum ice_status status;
5324 	u16 i;
5325 
5326 	INIT_LIST_HEAD(&chg);
5327 
5328 	for (i = 1; i < ICE_MAX_VSIGS; i++)
5329 		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
5330 			if (ice_has_prof_vsig(hw, blk, i, id)) {
5331 				status = ice_rem_prof_id_vsig(hw, blk, i, id,
5332 							      &chg);
5333 				if (status)
5334 					goto err_ice_rem_flow_all;
5335 			}
5336 		}
5337 
5338 	status = ice_upd_prof_hw(hw, blk, &chg);
5339 
5340 err_ice_rem_flow_all:
5341 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
5342 		LIST_DEL(&del->list_entry);
5343 		ice_free(hw, del);
5344 	}
5345 
5346 	return status;
5347 }
5348 
5349 /**
5350  * ice_rem_prof - remove profile
5351  * @hw: pointer to the HW struct
5352  * @blk: hardware block
5353  * @id: profile tracking ID
5354  *
5355  * This will remove the profile specified by the ID parameter, which was
5356  * previously created through ice_add_prof. If any existing entries
5357  * are associated with this profile, they will be removed as well.
5358  */
ice_rem_prof(struct ice_hw * hw,enum ice_block blk,u64 id)5359 enum ice_status ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
5360 {
5361 	struct ice_prof_map *pmap;
5362 	enum ice_status status;
5363 
5364 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5365 
5366 	pmap = ice_search_prof_id(hw, blk, id);
5367 	if (!pmap) {
5368 		status = ICE_ERR_DOES_NOT_EXIST;
5369 		goto err_ice_rem_prof;
5370 	}
5371 
5372 	/* remove all flows with this profile */
5373 	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
5374 	if (status)
5375 		goto err_ice_rem_prof;
5376 
5377 	/* dereference profile, and possibly remove */
5378 	ice_prof_dec_ref(hw, blk, pmap->prof_id);
5379 
5380 	LIST_DEL(&pmap->list);
5381 	ice_free(hw, pmap);
5382 
5383 err_ice_rem_prof:
5384 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5385 	return status;
5386 }
5387 
5388 /**
5389  * ice_get_prof - get profile
5390  * @hw: pointer to the HW struct
5391  * @blk: hardware block
5392  * @hdl: profile handle
5393  * @chg: change list
5394  */
5395 static enum ice_status
ice_get_prof(struct ice_hw * hw,enum ice_block blk,u64 hdl,struct LIST_HEAD_TYPE * chg)5396 ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
5397 	     struct LIST_HEAD_TYPE *chg)
5398 {
5399 	enum ice_status status = ICE_SUCCESS;
5400 	struct ice_prof_map *map;
5401 	struct ice_chs_chg *p;
5402 	u16 i;
5403 
5404 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5405 	/* Get the details on the profile specified by the handle ID */
5406 	map = ice_search_prof_id(hw, blk, hdl);
5407 	if (!map) {
5408 		status = ICE_ERR_DOES_NOT_EXIST;
5409 		goto err_ice_get_prof;
5410 	}
5411 
5412 	for (i = 0; i < map->ptg_cnt; i++)
5413 		if (!hw->blk[blk].es.written[map->prof_id]) {
5414 			/* add ES to change list */
5415 			p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5416 			if (!p) {
5417 				status = ICE_ERR_NO_MEMORY;
5418 				goto err_ice_get_prof;
5419 			}
5420 
5421 			p->type = ICE_PTG_ES_ADD;
5422 			p->ptype = 0;
5423 			p->ptg = map->ptg[i];
5424 			p->attr = map->attr[i];
5425 			p->add_ptg = 0;
5426 
5427 			p->add_prof = 1;
5428 			p->prof_id = map->prof_id;
5429 
5430 			hw->blk[blk].es.written[map->prof_id] = true;
5431 
5432 			LIST_ADD(&p->list_entry, chg);
5433 		}
5434 
5435 err_ice_get_prof:
5436 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5437 	/* let caller clean up the change list */
5438 	return status;
5439 }
5440 
5441 /**
5442  * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
5443  * @hw: pointer to the HW struct
5444  * @blk: hardware block
5445  * @vsig: VSIG from which to copy the list
5446  * @lst: output list
5447  *
5448  * This routine makes a copy of the list of profiles in the specified VSIG.
5449  */
5450 static enum ice_status
ice_get_profs_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct LIST_HEAD_TYPE * lst)5451 ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5452 		   struct LIST_HEAD_TYPE *lst)
5453 {
5454 	struct ice_vsig_prof *ent1, *ent2;
5455 	u16 idx = vsig & ICE_VSIG_IDX_M;
5456 
5457 	LIST_FOR_EACH_ENTRY(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5458 			    ice_vsig_prof, list) {
5459 		struct ice_vsig_prof *p;
5460 
5461 		/* copy to the input list */
5462 		p = (struct ice_vsig_prof *)ice_memdup(hw, ent1, sizeof(*p),
5463 						       ICE_NONDMA_TO_NONDMA);
5464 		if (!p)
5465 			goto err_ice_get_profs_vsig;
5466 
5467 		LIST_ADD_TAIL(&p->list, lst);
5468 	}
5469 
5470 	return ICE_SUCCESS;
5471 
5472 err_ice_get_profs_vsig:
5473 	LIST_FOR_EACH_ENTRY_SAFE(ent1, ent2, lst, ice_vsig_prof, list) {
5474 		LIST_DEL(&ent1->list);
5475 		ice_free(hw, ent1);
5476 	}
5477 
5478 	return ICE_ERR_NO_MEMORY;
5479 }
5480 
5481 /**
5482  * ice_add_prof_to_lst - add profile entry to a list
5483  * @hw: pointer to the HW struct
5484  * @blk: hardware block
5485  * @lst: the list to be added to
5486  * @hdl: profile handle of entry to add
5487  */
5488 static enum ice_status
ice_add_prof_to_lst(struct ice_hw * hw,enum ice_block blk,struct LIST_HEAD_TYPE * lst,u64 hdl)5489 ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
5490 		    struct LIST_HEAD_TYPE *lst, u64 hdl)
5491 {
5492 	enum ice_status status = ICE_SUCCESS;
5493 	struct ice_prof_map *map;
5494 	struct ice_vsig_prof *p;
5495 	u16 i;
5496 
5497 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5498 	map = ice_search_prof_id(hw, blk, hdl);
5499 	if (!map) {
5500 		status = ICE_ERR_DOES_NOT_EXIST;
5501 		goto err_ice_add_prof_to_lst;
5502 	}
5503 
5504 	p = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*p));
5505 	if (!p) {
5506 		status = ICE_ERR_NO_MEMORY;
5507 		goto err_ice_add_prof_to_lst;
5508 	}
5509 
5510 	p->profile_cookie = map->profile_cookie;
5511 	p->prof_id = map->prof_id;
5512 	p->tcam_count = map->ptg_cnt;
5513 
5514 	for (i = 0; i < map->ptg_cnt; i++) {
5515 		p->tcam[i].prof_id = map->prof_id;
5516 		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
5517 		p->tcam[i].ptg = map->ptg[i];
5518 		p->tcam[i].attr = map->attr[i];
5519 	}
5520 
5521 	LIST_ADD(&p->list, lst);
5522 
5523 err_ice_add_prof_to_lst:
5524 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5525 	return status;
5526 }
5527 
5528 /**
5529  * ice_move_vsi - move VSI to another VSIG
5530  * @hw: pointer to the HW struct
5531  * @blk: hardware block
5532  * @vsi: the VSI to move
5533  * @vsig: the VSIG to move the VSI to
5534  * @chg: the change list
5535  */
5536 static enum ice_status
ice_move_vsi(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig,struct LIST_HEAD_TYPE * chg)5537 ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
5538 	     struct LIST_HEAD_TYPE *chg)
5539 {
5540 	enum ice_status status;
5541 	struct ice_chs_chg *p;
5542 	u16 orig_vsig;
5543 
5544 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5545 	if (!p)
5546 		return ICE_ERR_NO_MEMORY;
5547 
5548 	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
5549 	if (!status)
5550 		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
5551 
5552 	if (status) {
5553 		ice_free(hw, p);
5554 		return status;
5555 	}
5556 
5557 	p->type = ICE_VSI_MOVE;
5558 	p->vsi = vsi;
5559 	p->orig_vsig = orig_vsig;
5560 	p->vsig = vsig;
5561 
5562 	LIST_ADD(&p->list_entry, chg);
5563 
5564 	return ICE_SUCCESS;
5565 }
5566 
5567 /**
5568  * ice_set_tcam_flags - set TCAM flag don't care mask
5569  * @mask: mask for flags
5570  * @dc_mask: pointer to the don't care mask
5571  */
ice_set_tcam_flags(u16 mask,u8 dc_mask[ICE_TCAM_KEY_VAL_SZ])5572 static void ice_set_tcam_flags(u16 mask, u8 dc_mask[ICE_TCAM_KEY_VAL_SZ])
5573 {
5574 	u16 *flag_word;
5575 
5576 	/* flags are lowest u16 */
5577 	flag_word = (u16 *)dc_mask;
5578 	*flag_word = ~mask;
5579 }
5580 
5581 /**
5582  * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
5583  * @hw: pointer to the HW struct
5584  * @idx: the index of the TCAM entry to remove
5585  * @chg: the list of change structures to search
5586  */
5587 static void
ice_rem_chg_tcam_ent(struct ice_hw * hw,u16 idx,struct LIST_HEAD_TYPE * chg)5588 ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct LIST_HEAD_TYPE *chg)
5589 {
5590 	struct ice_chs_chg *pos, *tmp;
5591 
5592 	LIST_FOR_EACH_ENTRY_SAFE(tmp, pos, chg, ice_chs_chg, list_entry)
5593 		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
5594 			LIST_DEL(&tmp->list_entry);
5595 			ice_free(hw, tmp);
5596 		}
5597 }
5598 
5599 /**
5600  * ice_prof_tcam_ena_dis - add enable or disable TCAM change
5601  * @hw: pointer to the HW struct
5602  * @blk: hardware block
5603  * @enable: true to enable, false to disable
5604  * @vsig: the VSIG of the TCAM entry
5605  * @tcam: pointer the TCAM info structure of the TCAM to disable
5606  * @chg: the change list
5607  *
5608  * This function appends an enable or disable TCAM entry in the change log
5609  */
5610 static enum ice_status
ice_prof_tcam_ena_dis(struct ice_hw * hw,enum ice_block blk,bool enable,u16 vsig,struct ice_tcam_inf * tcam,struct LIST_HEAD_TYPE * chg)5611 ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
5612 		      u16 vsig, struct ice_tcam_inf *tcam,
5613 		      struct LIST_HEAD_TYPE *chg)
5614 {
5615 	enum ice_status status;
5616 	struct ice_chs_chg *p;
5617 
5618 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5619 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5620 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5621 
5622 	/* if disabling, free the TCAM */
5623 	if (!enable) {
5624 		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
5625 
5626 		/* if we have already created a change for this TCAM entry, then
5627 		 * we need to remove that entry, in order to prevent writing to
5628 		 * a TCAM entry we no longer will have ownership of.
5629 		 */
5630 		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
5631 		tcam->tcam_idx = 0;
5632 		tcam->in_use = 0;
5633 		return status;
5634 	}
5635 
5636 	/* for re-enabling, reallocate a TCAM */
5637 	/* for entries with empty attribute masks, allocate entry from
5638 	 * the bottom of the TCAM table; otherwise, allocate from the
5639 	 * top of the table in order to give it higher priority
5640 	 */
5641 	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
5642 				    &tcam->tcam_idx);
5643 	if (status)
5644 		return status;
5645 
5646 	/* add TCAM to change list */
5647 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5648 	if (!p)
5649 		return ICE_ERR_NO_MEMORY;
5650 
5651 	/* set don't care masks for TCAM flags */
5652 	ice_set_tcam_flags(tcam->attr.mask, dc_msk);
5653 
5654 	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
5655 				      tcam->ptg, vsig, 0, tcam->attr.flags,
5656 				      vl_msk, dc_msk, nm_msk);
5657 	if (status)
5658 		goto err_ice_prof_tcam_ena_dis;
5659 
5660 	tcam->in_use = 1;
5661 
5662 	p->type = ICE_TCAM_ADD;
5663 	p->add_tcam_idx = true;
5664 	p->prof_id = tcam->prof_id;
5665 	p->ptg = tcam->ptg;
5666 	p->vsig = 0;
5667 	p->tcam_idx = tcam->tcam_idx;
5668 
5669 	/* log change */
5670 	LIST_ADD(&p->list_entry, chg);
5671 
5672 	return ICE_SUCCESS;
5673 
5674 err_ice_prof_tcam_ena_dis:
5675 	ice_free(hw, p);
5676 	return status;
5677 }
5678 
5679 /**
5680  * ice_ptg_attr_in_use - determine if PTG and attribute pair is in use
5681  * @ptg_attr: pointer to the PTG and attribute pair to check
5682  * @ptgs_used: bitmap that denotes which PTGs are in use
5683  * @attr_used: array of PTG and attributes pairs already used
5684  * @attr_cnt: count of entries in the attr_used array
5685  */
5686 static bool
ice_ptg_attr_in_use(struct ice_tcam_inf * ptg_attr,ice_bitmap_t * ptgs_used,struct ice_tcam_inf * attr_used[],u16 attr_cnt)5687 ice_ptg_attr_in_use(struct ice_tcam_inf *ptg_attr, ice_bitmap_t *ptgs_used,
5688 		    struct ice_tcam_inf *attr_used[], u16 attr_cnt)
5689 {
5690 	u16 i;
5691 
5692 	if (!ice_is_bit_set(ptgs_used, ptg_attr->ptg))
5693 		return false;
5694 
5695 	/* the PTG is used, so now look for correct attributes */
5696 	for (i = 0; i < attr_cnt; i++)
5697 		if (attr_used[i]->ptg == ptg_attr->ptg &&
5698 		    attr_used[i]->attr.flags == ptg_attr->attr.flags &&
5699 		    attr_used[i]->attr.mask == ptg_attr->attr.mask)
5700 			return true;
5701 
5702 	return false;
5703 }
5704 
5705 /**
5706  * ice_adj_prof_priorities - adjust profile based on priorities
5707  * @hw: pointer to the HW struct
5708  * @blk: hardware block
5709  * @vsig: the VSIG for which to adjust profile priorities
5710  * @chg: the change list
5711  */
5712 static enum ice_status
ice_adj_prof_priorities(struct ice_hw * hw,enum ice_block blk,u16 vsig,struct LIST_HEAD_TYPE * chg)5713 ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
5714 			struct LIST_HEAD_TYPE *chg)
5715 {
5716 	ice_declare_bitmap(ptgs_used, ICE_XLT1_CNT);
5717 	struct ice_tcam_inf **attr_used;
5718 	enum ice_status status = ICE_SUCCESS;
5719 	struct ice_vsig_prof *t;
5720 	u16 attr_used_cnt = 0;
5721 	u16 idx;
5722 
5723 #define ICE_MAX_PTG_ATTRS	1024
5724 	attr_used = (struct ice_tcam_inf **)ice_calloc(hw, ICE_MAX_PTG_ATTRS,
5725 						       sizeof(*attr_used));
5726 	if (!attr_used)
5727 		return ICE_ERR_NO_MEMORY;
5728 
5729 	ice_zero_bitmap(ptgs_used, ICE_XLT1_CNT);
5730 	idx = vsig & ICE_VSIG_IDX_M;
5731 
5732 	/* Priority is based on the order in which the profiles are added. The
5733 	 * newest added profile has highest priority and the oldest added
5734 	 * profile has the lowest priority. Since the profile property list for
5735 	 * a VSIG is sorted from newest to oldest, this code traverses the list
5736 	 * in order and enables the first of each PTG that it finds (that is not
5737 	 * already enabled); it also disables any duplicate PTGs that it finds
5738 	 * in the older profiles (that are currently enabled).
5739 	 */
5740 
5741 	LIST_FOR_EACH_ENTRY(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
5742 			    ice_vsig_prof, list) {
5743 		u16 i;
5744 
5745 		for (i = 0; i < t->tcam_count; i++) {
5746 			bool used;
5747 
5748 			/* Scan the priorities from newest to oldest.
5749 			 * Make sure that the newest profiles take priority.
5750 			 */
5751 			used = ice_ptg_attr_in_use(&t->tcam[i], ptgs_used,
5752 						   attr_used, attr_used_cnt);
5753 
5754 			if (used && t->tcam[i].in_use) {
5755 				/* need to mark this PTG as never match, as it
5756 				 * was already in use and therefore duplicate
5757 				 * (and lower priority)
5758 				 */
5759 				status = ice_prof_tcam_ena_dis(hw, blk, false,
5760 							       vsig,
5761 							       &t->tcam[i],
5762 							       chg);
5763 				if (status)
5764 					goto err_ice_adj_prof_priorities;
5765 			} else if (!used && !t->tcam[i].in_use) {
5766 				/* need to enable this PTG, as it in not in use
5767 				 * and not enabled (highest priority)
5768 				 */
5769 				status = ice_prof_tcam_ena_dis(hw, blk, true,
5770 							       vsig,
5771 							       &t->tcam[i],
5772 							       chg);
5773 				if (status)
5774 					goto err_ice_adj_prof_priorities;
5775 			}
5776 
5777 			/* keep track of used ptgs */
5778 			ice_set_bit(t->tcam[i].ptg, ptgs_used);
5779 			if (attr_used_cnt < ICE_MAX_PTG_ATTRS)
5780 				attr_used[attr_used_cnt++] = &t->tcam[i];
5781 			else
5782 				ice_debug(hw, ICE_DBG_INIT, "Warn: ICE_MAX_PTG_ATTRS exceeded\n");
5783 		}
5784 	}
5785 
5786 err_ice_adj_prof_priorities:
5787 	ice_free(hw, attr_used);
5788 	return status;
5789 }
5790 
5791 /**
5792  * ice_add_prof_id_vsig - add profile to VSIG
5793  * @hw: pointer to the HW struct
5794  * @blk: hardware block
5795  * @vsig: the VSIG to which this profile is to be added
5796  * @hdl: the profile handle indicating the profile to add
5797  * @rev: true to add entries to the end of the list
5798  * @chg: the change list
5799  */
5800 static enum ice_status
ice_add_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsig,u64 hdl,bool rev,struct LIST_HEAD_TYPE * chg)5801 ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
5802 		     bool rev, struct LIST_HEAD_TYPE *chg)
5803 {
5804 	/* Masks that ignore flags */
5805 	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5806 	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
5807 	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
5808 	enum ice_status status = ICE_SUCCESS;
5809 	struct ice_prof_map *map;
5810 	struct ice_vsig_prof *t;
5811 	struct ice_chs_chg *p;
5812 	u16 vsig_idx, i;
5813 
5814 	/* Error, if this VSIG already has this profile */
5815 	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
5816 		return ICE_ERR_ALREADY_EXISTS;
5817 
5818 	/* new VSIG profile structure */
5819 	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
5820 	if (!t)
5821 		return ICE_ERR_NO_MEMORY;
5822 
5823 	ice_acquire_lock(&hw->blk[blk].es.prof_map_lock);
5824 	/* Get the details on the profile specified by the handle ID */
5825 	map = ice_search_prof_id(hw, blk, hdl);
5826 	if (!map) {
5827 		status = ICE_ERR_DOES_NOT_EXIST;
5828 		goto err_ice_add_prof_id_vsig;
5829 	}
5830 
5831 	t->profile_cookie = map->profile_cookie;
5832 	t->prof_id = map->prof_id;
5833 	t->tcam_count = map->ptg_cnt;
5834 
5835 	/* create TCAM entries */
5836 	for (i = 0; i < map->ptg_cnt; i++) {
5837 		u16 tcam_idx;
5838 
5839 		/* add TCAM to change list */
5840 		p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5841 		if (!p) {
5842 			status = ICE_ERR_NO_MEMORY;
5843 			goto err_ice_add_prof_id_vsig;
5844 		}
5845 
5846 		/* allocate the TCAM entry index */
5847 		/* for entries with empty attribute masks, allocate entry from
5848 		 * the bottom of the TCAM table; otherwise, allocate from the
5849 		 * top of the table in order to give it higher priority
5850 		 */
5851 		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
5852 					    &tcam_idx);
5853 		if (status) {
5854 			ice_free(hw, p);
5855 			goto err_ice_add_prof_id_vsig;
5856 		}
5857 
5858 		t->tcam[i].ptg = map->ptg[i];
5859 		t->tcam[i].prof_id = map->prof_id;
5860 		t->tcam[i].tcam_idx = tcam_idx;
5861 		t->tcam[i].attr = map->attr[i];
5862 		t->tcam[i].in_use = true;
5863 
5864 		p->type = ICE_TCAM_ADD;
5865 		p->add_tcam_idx = true;
5866 		p->prof_id = t->tcam[i].prof_id;
5867 		p->ptg = t->tcam[i].ptg;
5868 		p->vsig = vsig;
5869 		p->tcam_idx = t->tcam[i].tcam_idx;
5870 
5871 		/* set don't care masks for TCAM flags */
5872 		ice_set_tcam_flags(t->tcam[i].attr.mask, dc_msk);
5873 
5874 		/* write the TCAM entry */
5875 		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
5876 					      t->tcam[i].prof_id,
5877 					      t->tcam[i].ptg, vsig, 0,
5878 					      t->tcam[i].attr.flags, vl_msk,
5879 					      dc_msk, nm_msk);
5880 		if (status) {
5881 			ice_free(hw, p);
5882 			goto err_ice_add_prof_id_vsig;
5883 		}
5884 
5885 		/* log change */
5886 		LIST_ADD(&p->list_entry, chg);
5887 	}
5888 
5889 	/* add profile to VSIG */
5890 	vsig_idx = vsig & ICE_VSIG_IDX_M;
5891 	if (rev)
5892 		LIST_ADD_TAIL(&t->list,
5893 			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5894 	else
5895 		LIST_ADD(&t->list,
5896 			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
5897 
5898 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5899 	return status;
5900 
5901 err_ice_add_prof_id_vsig:
5902 	ice_release_lock(&hw->blk[blk].es.prof_map_lock);
5903 	/* let caller clean up the change list */
5904 	ice_free(hw, t);
5905 	return status;
5906 }
5907 
5908 /**
5909  * ice_create_prof_id_vsig - add a new VSIG with a single profile
5910  * @hw: pointer to the HW struct
5911  * @blk: hardware block
5912  * @vsi: the initial VSI that will be in VSIG
5913  * @hdl: the profile handle of the profile that will be added to the VSIG
5914  * @chg: the change list
5915  */
5916 static enum ice_status
ice_create_prof_id_vsig(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl,struct LIST_HEAD_TYPE * chg)5917 ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
5918 			struct LIST_HEAD_TYPE *chg)
5919 {
5920 	enum ice_status status;
5921 	struct ice_chs_chg *p;
5922 	u16 new_vsig;
5923 
5924 	p = (struct ice_chs_chg *)ice_malloc(hw, sizeof(*p));
5925 	if (!p)
5926 		return ICE_ERR_NO_MEMORY;
5927 
5928 	new_vsig = ice_vsig_alloc(hw, blk);
5929 	if (!new_vsig) {
5930 		status = ICE_ERR_HW_TABLE;
5931 		goto err_ice_create_prof_id_vsig;
5932 	}
5933 
5934 	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
5935 	if (status)
5936 		goto err_ice_create_prof_id_vsig;
5937 
5938 	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
5939 	if (status)
5940 		goto err_ice_create_prof_id_vsig;
5941 
5942 	p->type = ICE_VSIG_ADD;
5943 	p->vsi = vsi;
5944 	p->orig_vsig = ICE_DEFAULT_VSIG;
5945 	p->vsig = new_vsig;
5946 
5947 	LIST_ADD(&p->list_entry, chg);
5948 
5949 	return ICE_SUCCESS;
5950 
5951 err_ice_create_prof_id_vsig:
5952 	/* let caller clean up the change list */
5953 	ice_free(hw, p);
5954 	return status;
5955 }
5956 
5957 /**
5958  * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
5959  * @hw: pointer to the HW struct
5960  * @blk: hardware block
5961  * @vsi: the initial VSI that will be in VSIG
5962  * @lst: the list of profile that will be added to the VSIG
5963  * @new_vsig: return of new VSIG
5964  * @chg: the change list
5965  */
5966 static enum ice_status
ice_create_vsig_from_lst(struct ice_hw * hw,enum ice_block blk,u16 vsi,struct LIST_HEAD_TYPE * lst,u16 * new_vsig,struct LIST_HEAD_TYPE * chg)5967 ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
5968 			 struct LIST_HEAD_TYPE *lst, u16 *new_vsig,
5969 			 struct LIST_HEAD_TYPE *chg)
5970 {
5971 	struct ice_vsig_prof *t;
5972 	enum ice_status status;
5973 	u16 vsig;
5974 
5975 	vsig = ice_vsig_alloc(hw, blk);
5976 	if (!vsig)
5977 		return ICE_ERR_HW_TABLE;
5978 
5979 	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
5980 	if (status)
5981 		return status;
5982 
5983 	LIST_FOR_EACH_ENTRY(t, lst, ice_vsig_prof, list) {
5984 		/* Reverse the order here since we are copying the list */
5985 		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
5986 					      true, chg);
5987 		if (status)
5988 			return status;
5989 	}
5990 
5991 	*new_vsig = vsig;
5992 
5993 	return ICE_SUCCESS;
5994 }
5995 
5996 /**
5997  * ice_find_prof_vsig - find a VSIG with a specific profile handle
5998  * @hw: pointer to the HW struct
5999  * @blk: hardware block
6000  * @hdl: the profile handle of the profile to search for
6001  * @vsig: returns the VSIG with the matching profile
6002  */
6003 static bool
ice_find_prof_vsig(struct ice_hw * hw,enum ice_block blk,u64 hdl,u16 * vsig)6004 ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
6005 {
6006 	struct ice_vsig_prof *t;
6007 	struct LIST_HEAD_TYPE lst;
6008 	enum ice_status status;
6009 
6010 	INIT_LIST_HEAD(&lst);
6011 
6012 	t = (struct ice_vsig_prof *)ice_malloc(hw, sizeof(*t));
6013 	if (!t)
6014 		return false;
6015 
6016 	t->profile_cookie = hdl;
6017 	LIST_ADD(&t->list, &lst);
6018 
6019 	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
6020 
6021 	LIST_DEL(&t->list);
6022 	ice_free(hw, t);
6023 
6024 	return status == ICE_SUCCESS;
6025 }
6026 
6027 /**
6028  * ice_add_vsi_flow - add VSI flow
6029  * @hw: pointer to the HW struct
6030  * @blk: hardware block
6031  * @vsi: input VSI
6032  * @vsig: target VSIG to include the input VSI
6033  *
6034  * Calling this function will add the VSI to a given VSIG and
6035  * update the HW tables accordingly. This call can be used to
6036  * add multiple VSIs to a VSIG if we know beforehand that those
6037  * VSIs have the same characteristics of the VSIG. This will
6038  * save time in generating a new VSIG and TCAMs till a match is
6039  * found and subsequent rollback when a matching VSIG is found.
6040  */
6041 enum ice_status
ice_add_vsi_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u16 vsig)6042 ice_add_vsi_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
6043 {
6044 	struct ice_chs_chg *tmp, *del;
6045 	struct LIST_HEAD_TYPE chg;
6046 	enum ice_status status;
6047 
6048 	/* if target VSIG is default the move is invalid */
6049 	if ((vsig & ICE_VSIG_IDX_M) == ICE_DEFAULT_VSIG)
6050 		return ICE_ERR_PARAM;
6051 
6052 	INIT_LIST_HEAD(&chg);
6053 
6054 	/* move VSI to the VSIG that matches */
6055 	status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6056 	/* update hardware if success */
6057 	if (!status)
6058 		status = ice_upd_prof_hw(hw, blk, &chg);
6059 
6060 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
6061 		LIST_DEL(&del->list_entry);
6062 		ice_free(hw, del);
6063 	}
6064 
6065 	return status;
6066 }
6067 
6068 /**
6069  * ice_add_prof_id_flow - add profile flow
6070  * @hw: pointer to the HW struct
6071  * @blk: hardware block
6072  * @vsi: the VSI to enable with the profile specified by ID
6073  * @hdl: profile handle
6074  *
6075  * Calling this function will update the hardware tables to enable the
6076  * profile indicated by the ID parameter for the VSIs specified in the VSI
6077  * array. Once successfully called, the flow will be enabled.
6078  */
6079 enum ice_status
ice_add_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)6080 ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6081 {
6082 	struct ice_vsig_prof *tmp1, *del1;
6083 	struct LIST_HEAD_TYPE union_lst;
6084 	struct ice_chs_chg *tmp, *del;
6085 	struct LIST_HEAD_TYPE chg;
6086 	enum ice_status status;
6087 	u16 vsig;
6088 
6089 	INIT_LIST_HEAD(&union_lst);
6090 	INIT_LIST_HEAD(&chg);
6091 
6092 	/* Get profile */
6093 	status = ice_get_prof(hw, blk, hdl, &chg);
6094 	if (status)
6095 		return status;
6096 
6097 	/* determine if VSI is already part of a VSIG */
6098 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6099 	if (!status && vsig) {
6100 		bool only_vsi;
6101 		u16 or_vsig;
6102 		u16 ref;
6103 
6104 		/* found in VSIG */
6105 		or_vsig = vsig;
6106 
6107 		/* make sure that there is no overlap/conflict between the new
6108 		 * characteristics and the existing ones; we don't support that
6109 		 * scenario
6110 		 */
6111 		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
6112 			status = ICE_ERR_ALREADY_EXISTS;
6113 			goto err_ice_add_prof_id_flow;
6114 		}
6115 
6116 		/* last VSI in the VSIG? */
6117 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6118 		if (status)
6119 			goto err_ice_add_prof_id_flow;
6120 		only_vsi = (ref == 1);
6121 
6122 		/* create a union of the current profiles and the one being
6123 		 * added
6124 		 */
6125 		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
6126 		if (status)
6127 			goto err_ice_add_prof_id_flow;
6128 
6129 		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
6130 		if (status)
6131 			goto err_ice_add_prof_id_flow;
6132 
6133 		/* search for an existing VSIG with an exact charc match */
6134 		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
6135 		if (!status) {
6136 			/* move VSI to the VSIG that matches */
6137 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6138 			if (status)
6139 				goto err_ice_add_prof_id_flow;
6140 
6141 			/* VSI has been moved out of or_vsig. If the or_vsig had
6142 			 * only that VSI it is now empty and can be removed.
6143 			 */
6144 			if (only_vsi) {
6145 				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
6146 				if (status)
6147 					goto err_ice_add_prof_id_flow;
6148 			}
6149 		} else if (only_vsi) {
6150 			/* If the original VSIG only contains one VSI, then it
6151 			 * will be the requesting VSI. In this case the VSI is
6152 			 * not sharing entries and we can simply add the new
6153 			 * profile to the VSIG.
6154 			 */
6155 			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
6156 						      &chg);
6157 			if (status)
6158 				goto err_ice_add_prof_id_flow;
6159 
6160 			/* Adjust priorities */
6161 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
6162 			if (status)
6163 				goto err_ice_add_prof_id_flow;
6164 		} else {
6165 			/* No match, so we need a new VSIG */
6166 			status = ice_create_vsig_from_lst(hw, blk, vsi,
6167 							  &union_lst, &vsig,
6168 							  &chg);
6169 			if (status)
6170 				goto err_ice_add_prof_id_flow;
6171 
6172 			/* Adjust priorities */
6173 			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
6174 			if (status)
6175 				goto err_ice_add_prof_id_flow;
6176 		}
6177 	} else {
6178 		/* need to find or add a VSIG */
6179 		/* search for an existing VSIG with an exact charc match */
6180 		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
6181 			/* found an exact match */
6182 			/* add or move VSI to the VSIG that matches */
6183 			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6184 			if (status)
6185 				goto err_ice_add_prof_id_flow;
6186 		} else {
6187 			/* we did not find an exact match */
6188 			/* we need to add a VSIG */
6189 			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
6190 							 &chg);
6191 			if (status)
6192 				goto err_ice_add_prof_id_flow;
6193 		}
6194 	}
6195 
6196 	/* update hardware */
6197 	if (!status)
6198 		status = ice_upd_prof_hw(hw, blk, &chg);
6199 
6200 err_ice_add_prof_id_flow:
6201 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
6202 		LIST_DEL(&del->list_entry);
6203 		ice_free(hw, del);
6204 	}
6205 
6206 	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &union_lst, ice_vsig_prof, list) {
6207 		LIST_DEL(&del1->list);
6208 		ice_free(hw, del1);
6209 	}
6210 
6211 	return status;
6212 }
6213 
6214 /**
6215  * ice_rem_prof_from_list - remove a profile from list
6216  * @hw: pointer to the HW struct
6217  * @lst: list to remove the profile from
6218  * @hdl: the profile handle indicating the profile to remove
6219  */
6220 static enum ice_status
ice_rem_prof_from_list(struct ice_hw * hw,struct LIST_HEAD_TYPE * lst,u64 hdl)6221 ice_rem_prof_from_list(struct ice_hw *hw, struct LIST_HEAD_TYPE *lst, u64 hdl)
6222 {
6223 	struct ice_vsig_prof *ent, *tmp;
6224 
6225 	LIST_FOR_EACH_ENTRY_SAFE(ent, tmp, lst, ice_vsig_prof, list)
6226 		if (ent->profile_cookie == hdl) {
6227 			LIST_DEL(&ent->list);
6228 			ice_free(hw, ent);
6229 			return ICE_SUCCESS;
6230 		}
6231 
6232 	return ICE_ERR_DOES_NOT_EXIST;
6233 }
6234 
6235 /**
6236  * ice_rem_prof_id_flow - remove flow
6237  * @hw: pointer to the HW struct
6238  * @blk: hardware block
6239  * @vsi: the VSI from which to remove the profile specified by ID
6240  * @hdl: profile tracking handle
6241  *
6242  * Calling this function will update the hardware tables to remove the
6243  * profile indicated by the ID parameter for the VSIs specified in the VSI
6244  * array. Once successfully called, the flow will be disabled.
6245  */
6246 enum ice_status
ice_rem_prof_id_flow(struct ice_hw * hw,enum ice_block blk,u16 vsi,u64 hdl)6247 ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
6248 {
6249 	struct ice_vsig_prof *tmp1, *del1;
6250 	struct LIST_HEAD_TYPE chg, copy;
6251 	struct ice_chs_chg *tmp, *del;
6252 	enum ice_status status;
6253 	u16 vsig;
6254 
6255 	INIT_LIST_HEAD(&copy);
6256 	INIT_LIST_HEAD(&chg);
6257 
6258 	/* determine if VSI is already part of a VSIG */
6259 	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
6260 	if (!status && vsig) {
6261 		bool last_profile;
6262 		bool only_vsi;
6263 		u16 ref;
6264 
6265 		/* found in VSIG */
6266 		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
6267 		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
6268 		if (status)
6269 			goto err_ice_rem_prof_id_flow;
6270 		only_vsi = (ref == 1);
6271 
6272 		if (only_vsi) {
6273 			/* If the original VSIG only contains one reference,
6274 			 * which will be the requesting VSI, then the VSI is not
6275 			 * sharing entries and we can simply remove the specific
6276 			 * characteristics from the VSIG.
6277 			 */
6278 
6279 			if (last_profile) {
6280 				/* If there are no profiles left for this VSIG,
6281 				 * then simply remove the VSIG.
6282 				 */
6283 				status = ice_rem_vsig(hw, blk, vsig, &chg);
6284 				if (status)
6285 					goto err_ice_rem_prof_id_flow;
6286 			} else {
6287 				status = ice_rem_prof_id_vsig(hw, blk, vsig,
6288 							      hdl, &chg);
6289 				if (status)
6290 					goto err_ice_rem_prof_id_flow;
6291 
6292 				/* Adjust priorities */
6293 				status = ice_adj_prof_priorities(hw, blk, vsig,
6294 								 &chg);
6295 				if (status)
6296 					goto err_ice_rem_prof_id_flow;
6297 			}
6298 
6299 		} else {
6300 			/* Make a copy of the VSIG's list of Profiles */
6301 			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
6302 			if (status)
6303 				goto err_ice_rem_prof_id_flow;
6304 
6305 			/* Remove specified profile entry from the list */
6306 			status = ice_rem_prof_from_list(hw, &copy, hdl);
6307 			if (status)
6308 				goto err_ice_rem_prof_id_flow;
6309 
6310 			if (LIST_EMPTY(&copy)) {
6311 				status = ice_move_vsi(hw, blk, vsi,
6312 						      ICE_DEFAULT_VSIG, &chg);
6313 				if (status)
6314 					goto err_ice_rem_prof_id_flow;
6315 
6316 			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
6317 							    &vsig)) {
6318 				/* found an exact match */
6319 				/* add or move VSI to the VSIG that matches */
6320 				/* Search for a VSIG with a matching profile
6321 				 * list
6322 				 */
6323 
6324 				/* Found match, move VSI to the matching VSIG */
6325 				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
6326 				if (status)
6327 					goto err_ice_rem_prof_id_flow;
6328 			} else {
6329 				/* since no existing VSIG supports this
6330 				 * characteristic pattern, we need to create a
6331 				 * new VSIG and TCAM entries
6332 				 */
6333 				status = ice_create_vsig_from_lst(hw, blk, vsi,
6334 								  &copy, &vsig,
6335 								  &chg);
6336 				if (status)
6337 					goto err_ice_rem_prof_id_flow;
6338 
6339 				/* Adjust priorities */
6340 				status = ice_adj_prof_priorities(hw, blk, vsig,
6341 								 &chg);
6342 				if (status)
6343 					goto err_ice_rem_prof_id_flow;
6344 			}
6345 		}
6346 	} else {
6347 		status = ICE_ERR_DOES_NOT_EXIST;
6348 	}
6349 
6350 	/* update hardware tables */
6351 	if (!status)
6352 		status = ice_upd_prof_hw(hw, blk, &chg);
6353 
6354 err_ice_rem_prof_id_flow:
6355 	LIST_FOR_EACH_ENTRY_SAFE(del, tmp, &chg, ice_chs_chg, list_entry) {
6356 		LIST_DEL(&del->list_entry);
6357 		ice_free(hw, del);
6358 	}
6359 
6360 	LIST_FOR_EACH_ENTRY_SAFE(del1, tmp1, &copy, ice_vsig_prof, list) {
6361 		LIST_DEL(&del1->list);
6362 		ice_free(hw, del1);
6363 	}
6364 
6365 	return status;
6366 }
6367 
6368 /**
6369  * ice_flow_assoc_hw_prof - add profile id flow for main/ctrl VSI flow entry
6370  * @hw: pointer to the HW struct
6371  * @blk: HW block
6372  * @dest_vsi_handle: dest VSI handle
6373  * @fdir_vsi_handle: fdir programming VSI handle
6374  * @id: profile id (handle)
6375  *
6376  * Calling this function will update the hardware tables to enable the
6377  * profile indicated by the ID parameter for the VSIs specified in the VSI
6378  * array. Once successfully called, the flow will be enabled.
6379  */
6380 enum ice_status
ice_flow_assoc_hw_prof(struct ice_hw * hw,enum ice_block blk,u16 dest_vsi_handle,u16 fdir_vsi_handle,int id)6381 ice_flow_assoc_hw_prof(struct ice_hw *hw, enum ice_block blk,
6382 		       u16 dest_vsi_handle, u16 fdir_vsi_handle, int id)
6383 {
6384 	enum ice_status status = ICE_SUCCESS;
6385 	u16 vsi_num;
6386 
6387 	vsi_num = ice_get_hw_vsi_num(hw, dest_vsi_handle);
6388 	status = ice_add_prof_id_flow(hw, blk, vsi_num, id);
6389 	if (status) {
6390 		ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed for main VSI flow entry, %d\n",
6391 			  status);
6392 		goto err_add_prof;
6393 	}
6394 
6395 	if (blk != ICE_BLK_FD)
6396 		return status;
6397 
6398 	vsi_num = ice_get_hw_vsi_num(hw, fdir_vsi_handle);
6399 	status = ice_add_prof_id_flow(hw, blk, vsi_num, id);
6400 	if (status) {
6401 		ice_debug(hw, ICE_DBG_FLOW, "HW profile add failed for ctrl VSI flow entry, %d\n",
6402 			  status);
6403 		goto err_add_entry;
6404 	}
6405 
6406 	return status;
6407 
6408 err_add_entry:
6409 	vsi_num = ice_get_hw_vsi_num(hw, dest_vsi_handle);
6410 	ice_rem_prof_id_flow(hw, blk, vsi_num, id);
6411 err_add_prof:
6412 	ice_flow_rem_prof(hw, blk, id);
6413 
6414 	return status;
6415 }
6416