xref: /dpdk/drivers/net/e1000/igb_ethdev.c (revision ff4e52ef)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2016 Intel Corporation
3  */
4 
5 #include <sys/queue.h>
6 #include <stdio.h>
7 #include <errno.h>
8 #include <stdint.h>
9 #include <stdarg.h>
10 
11 #include <rte_string_fns.h>
12 #include <rte_common.h>
13 #include <rte_interrupts.h>
14 #include <rte_byteorder.h>
15 #include <rte_log.h>
16 #include <rte_debug.h>
17 #include <rte_pci.h>
18 #include <rte_bus_pci.h>
19 #include <rte_ether.h>
20 #include <ethdev_driver.h>
21 #include <ethdev_pci.h>
22 #include <rte_memory.h>
23 #include <rte_eal.h>
24 #include <rte_malloc.h>
25 #include <rte_dev.h>
26 
27 #include "e1000_logs.h"
28 #include "base/e1000_api.h"
29 #include "e1000_ethdev.h"
30 #include "igb_regs.h"
31 
32 /*
33  * Default values for port configuration
34  */
35 #define IGB_DEFAULT_RX_FREE_THRESH  32
36 
37 #define IGB_DEFAULT_RX_PTHRESH      ((hw->mac.type == e1000_i354) ? 12 : 8)
38 #define IGB_DEFAULT_RX_HTHRESH      8
39 #define IGB_DEFAULT_RX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 4)
40 
41 #define IGB_DEFAULT_TX_PTHRESH      ((hw->mac.type == e1000_i354) ? 20 : 8)
42 #define IGB_DEFAULT_TX_HTHRESH      1
43 #define IGB_DEFAULT_TX_WTHRESH      ((hw->mac.type == e1000_82576) ? 1 : 16)
44 
45 /* Bit shift and mask */
46 #define IGB_4_BIT_WIDTH  (CHAR_BIT / 2)
47 #define IGB_4_BIT_MASK   RTE_LEN2MASK(IGB_4_BIT_WIDTH, uint8_t)
48 #define IGB_8_BIT_WIDTH  CHAR_BIT
49 #define IGB_8_BIT_MASK   UINT8_MAX
50 
51 /* Additional timesync values. */
52 #define E1000_CYCLECOUNTER_MASK      0xffffffffffffffffULL
53 #define E1000_ETQF_FILTER_1588       3
54 #define IGB_82576_TSYNC_SHIFT        16
55 #define E1000_INCPERIOD_82576        (1 << E1000_TIMINCA_16NS_SHIFT)
56 #define E1000_INCVALUE_82576         (16 << IGB_82576_TSYNC_SHIFT)
57 #define E1000_TSAUXC_DISABLE_SYSTIME 0x80000000
58 
59 #define E1000_VTIVAR_MISC                0x01740
60 #define E1000_VTIVAR_MISC_MASK           0xFF
61 #define E1000_VTIVAR_VALID               0x80
62 #define E1000_VTIVAR_MISC_MAILBOX        0
63 #define E1000_VTIVAR_MISC_INTR_MASK      0x3
64 
65 /* External VLAN Enable bit mask */
66 #define E1000_CTRL_EXT_EXT_VLAN      (1 << 26)
67 
68 /* External VLAN Ether Type bit mask and shift */
69 #define E1000_VET_VET_EXT            0xFFFF0000
70 #define E1000_VET_VET_EXT_SHIFT      16
71 
72 /* MSI-X other interrupt vector */
73 #define IGB_MSIX_OTHER_INTR_VEC      0
74 
75 static int  eth_igb_configure(struct rte_eth_dev *dev);
76 static int  eth_igb_start(struct rte_eth_dev *dev);
77 static int  eth_igb_stop(struct rte_eth_dev *dev);
78 static int  eth_igb_dev_set_link_up(struct rte_eth_dev *dev);
79 static int  eth_igb_dev_set_link_down(struct rte_eth_dev *dev);
80 static int eth_igb_close(struct rte_eth_dev *dev);
81 static int eth_igb_reset(struct rte_eth_dev *dev);
82 static int  eth_igb_promiscuous_enable(struct rte_eth_dev *dev);
83 static int  eth_igb_promiscuous_disable(struct rte_eth_dev *dev);
84 static int  eth_igb_allmulticast_enable(struct rte_eth_dev *dev);
85 static int  eth_igb_allmulticast_disable(struct rte_eth_dev *dev);
86 static int  eth_igb_link_update(struct rte_eth_dev *dev,
87 				int wait_to_complete);
88 static int eth_igb_stats_get(struct rte_eth_dev *dev,
89 				struct rte_eth_stats *rte_stats);
90 static int eth_igb_xstats_get(struct rte_eth_dev *dev,
91 			      struct rte_eth_xstat *xstats, unsigned n);
92 static int eth_igb_xstats_get_by_id(struct rte_eth_dev *dev,
93 		const uint64_t *ids,
94 		uint64_t *values, unsigned int n);
95 static int eth_igb_xstats_get_names(struct rte_eth_dev *dev,
96 				    struct rte_eth_xstat_name *xstats_names,
97 				    unsigned int size);
98 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
99 		const uint64_t *ids, struct rte_eth_xstat_name *xstats_names,
100 		unsigned int limit);
101 static int eth_igb_stats_reset(struct rte_eth_dev *dev);
102 static int eth_igb_xstats_reset(struct rte_eth_dev *dev);
103 static int eth_igb_fw_version_get(struct rte_eth_dev *dev,
104 				   char *fw_version, size_t fw_size);
105 static int eth_igb_infos_get(struct rte_eth_dev *dev,
106 			      struct rte_eth_dev_info *dev_info);
107 static const uint32_t *eth_igb_supported_ptypes_get(struct rte_eth_dev *dev);
108 static int eth_igbvf_infos_get(struct rte_eth_dev *dev,
109 				struct rte_eth_dev_info *dev_info);
110 static int  eth_igb_flow_ctrl_get(struct rte_eth_dev *dev,
111 				struct rte_eth_fc_conf *fc_conf);
112 static int  eth_igb_flow_ctrl_set(struct rte_eth_dev *dev,
113 				struct rte_eth_fc_conf *fc_conf);
114 static int eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on);
115 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev);
116 static int eth_igb_interrupt_get_status(struct rte_eth_dev *dev);
117 static int eth_igb_interrupt_action(struct rte_eth_dev *dev,
118 				    struct rte_intr_handle *handle);
119 static void eth_igb_interrupt_handler(void *param);
120 static int  igb_hardware_init(struct e1000_hw *hw);
121 static void igb_hw_control_acquire(struct e1000_hw *hw);
122 static void igb_hw_control_release(struct e1000_hw *hw);
123 static void igb_init_manageability(struct e1000_hw *hw);
124 static void igb_release_manageability(struct e1000_hw *hw);
125 
126 static int  eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu);
127 
128 static int eth_igb_vlan_filter_set(struct rte_eth_dev *dev,
129 		uint16_t vlan_id, int on);
130 static int eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
131 				 enum rte_vlan_type vlan_type,
132 				 uint16_t tpid_id);
133 static int eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask);
134 
135 static void igb_vlan_hw_filter_enable(struct rte_eth_dev *dev);
136 static void igb_vlan_hw_filter_disable(struct rte_eth_dev *dev);
137 static void igb_vlan_hw_strip_enable(struct rte_eth_dev *dev);
138 static void igb_vlan_hw_strip_disable(struct rte_eth_dev *dev);
139 static void igb_vlan_hw_extend_enable(struct rte_eth_dev *dev);
140 static void igb_vlan_hw_extend_disable(struct rte_eth_dev *dev);
141 
142 static int eth_igb_led_on(struct rte_eth_dev *dev);
143 static int eth_igb_led_off(struct rte_eth_dev *dev);
144 
145 static void igb_intr_disable(struct rte_eth_dev *dev);
146 static int  igb_get_rx_buffer_size(struct e1000_hw *hw);
147 static int eth_igb_rar_set(struct rte_eth_dev *dev,
148 			   struct rte_ether_addr *mac_addr,
149 			   uint32_t index, uint32_t pool);
150 static void eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index);
151 static int eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
152 		struct rte_ether_addr *addr);
153 
154 static void igbvf_intr_disable(struct e1000_hw *hw);
155 static int igbvf_dev_configure(struct rte_eth_dev *dev);
156 static int igbvf_dev_start(struct rte_eth_dev *dev);
157 static int igbvf_dev_stop(struct rte_eth_dev *dev);
158 static int igbvf_dev_close(struct rte_eth_dev *dev);
159 static int igbvf_promiscuous_enable(struct rte_eth_dev *dev);
160 static int igbvf_promiscuous_disable(struct rte_eth_dev *dev);
161 static int igbvf_allmulticast_enable(struct rte_eth_dev *dev);
162 static int igbvf_allmulticast_disable(struct rte_eth_dev *dev);
163 static int eth_igbvf_link_update(struct e1000_hw *hw);
164 static int eth_igbvf_stats_get(struct rte_eth_dev *dev,
165 				struct rte_eth_stats *rte_stats);
166 static int eth_igbvf_xstats_get(struct rte_eth_dev *dev,
167 				struct rte_eth_xstat *xstats, unsigned n);
168 static int eth_igbvf_xstats_get_names(struct rte_eth_dev *dev,
169 				      struct rte_eth_xstat_name *xstats_names,
170 				      unsigned limit);
171 static int eth_igbvf_stats_reset(struct rte_eth_dev *dev);
172 static int igbvf_vlan_filter_set(struct rte_eth_dev *dev,
173 		uint16_t vlan_id, int on);
174 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on);
175 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on);
176 static int igbvf_default_mac_addr_set(struct rte_eth_dev *dev,
177 		struct rte_ether_addr *addr);
178 static int igbvf_get_reg_length(struct rte_eth_dev *dev);
179 static int igbvf_get_regs(struct rte_eth_dev *dev,
180 		struct rte_dev_reg_info *regs);
181 
182 static int eth_igb_rss_reta_update(struct rte_eth_dev *dev,
183 				   struct rte_eth_rss_reta_entry64 *reta_conf,
184 				   uint16_t reta_size);
185 static int eth_igb_rss_reta_query(struct rte_eth_dev *dev,
186 				  struct rte_eth_rss_reta_entry64 *reta_conf,
187 				  uint16_t reta_size);
188 
189 static int igb_add_2tuple_filter(struct rte_eth_dev *dev,
190 			struct rte_eth_ntuple_filter *ntuple_filter);
191 static int igb_remove_2tuple_filter(struct rte_eth_dev *dev,
192 			struct rte_eth_ntuple_filter *ntuple_filter);
193 static int igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
194 			struct rte_eth_ntuple_filter *ntuple_filter);
195 static int igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
196 			struct rte_eth_ntuple_filter *ntuple_filter);
197 static int eth_igb_flow_ops_get(struct rte_eth_dev *dev,
198 				const struct rte_flow_ops **ops);
199 static int eth_igb_get_reg_length(struct rte_eth_dev *dev);
200 static int eth_igb_get_regs(struct rte_eth_dev *dev,
201 		struct rte_dev_reg_info *regs);
202 static int eth_igb_get_eeprom_length(struct rte_eth_dev *dev);
203 static int eth_igb_get_eeprom(struct rte_eth_dev *dev,
204 		struct rte_dev_eeprom_info *eeprom);
205 static int eth_igb_set_eeprom(struct rte_eth_dev *dev,
206 		struct rte_dev_eeprom_info *eeprom);
207 static int eth_igb_get_module_info(struct rte_eth_dev *dev,
208 				   struct rte_eth_dev_module_info *modinfo);
209 static int eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
210 				     struct rte_dev_eeprom_info *info);
211 static int eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
212 				    struct rte_ether_addr *mc_addr_set,
213 				    uint32_t nb_mc_addr);
214 static int igb_timesync_enable(struct rte_eth_dev *dev);
215 static int igb_timesync_disable(struct rte_eth_dev *dev);
216 static int igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
217 					  struct timespec *timestamp,
218 					  uint32_t flags);
219 static int igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
220 					  struct timespec *timestamp);
221 static int igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta);
222 static int igb_timesync_read_time(struct rte_eth_dev *dev,
223 				  struct timespec *timestamp);
224 static int igb_timesync_write_time(struct rte_eth_dev *dev,
225 				   const struct timespec *timestamp);
226 static int eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev,
227 					uint16_t queue_id);
228 static int eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev,
229 					 uint16_t queue_id);
230 static void eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
231 				       uint8_t queue, uint8_t msix_vector);
232 static void eth_igb_write_ivar(struct e1000_hw *hw, uint8_t msix_vector,
233 			       uint8_t index, uint8_t offset);
234 static void eth_igb_configure_msix_intr(struct rte_eth_dev *dev);
235 static void eth_igbvf_interrupt_handler(void *param);
236 static void igbvf_mbx_process(struct rte_eth_dev *dev);
237 static int igb_filter_restore(struct rte_eth_dev *dev);
238 
239 /*
240  * Define VF Stats MACRO for Non "cleared on read" register
241  */
242 #define UPDATE_VF_STAT(reg, last, cur)            \
243 {                                                 \
244 	u32 latest = E1000_READ_REG(hw, reg);     \
245 	cur += (latest - last) & UINT_MAX;        \
246 	last = latest;                            \
247 }
248 
249 #define IGB_FC_PAUSE_TIME 0x0680
250 #define IGB_LINK_UPDATE_CHECK_TIMEOUT  90  /* 9s */
251 #define IGB_LINK_UPDATE_CHECK_INTERVAL 100 /* ms */
252 
253 #define IGBVF_PMD_NAME "rte_igbvf_pmd"     /* PMD name */
254 
255 static enum e1000_fc_mode igb_fc_setting = e1000_fc_full;
256 
257 /*
258  * The set of PCI devices this driver supports
259  */
260 static const struct rte_pci_id pci_id_igb_map[] = {
261 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576) },
262 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_FIBER) },
263 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES) },
264 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER) },
265 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_QUAD_COPPER_ET2) },
266 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS) },
267 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_NS_SERDES) },
268 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_SERDES_QUAD) },
269 
270 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_COPPER) },
271 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575EB_FIBER_SERDES) },
272 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82575GB_QUAD_COPPER) },
273 
274 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER) },
275 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_FIBER) },
276 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SERDES) },
277 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_SGMII) },
278 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_COPPER_DUAL) },
279 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82580_QUAD_FIBER) },
280 
281 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_COPPER) },
282 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_FIBER) },
283 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SERDES) },
284 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_SGMII) },
285 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_DA4) },
286 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER) },
287 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_OEM1) },
288 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_IT) },
289 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_FIBER) },
290 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES) },
291 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SGMII) },
292 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_COPPER_FLASHLESS) },
293 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I210_SERDES_FLASHLESS) },
294 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I211_COPPER) },
295 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
296 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_SGMII) },
297 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
298 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SGMII) },
299 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SERDES) },
300 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_BACKPLANE) },
301 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_DH89XXCC_SFP) },
302 	{ .vendor_id = 0, /* sentinel */ },
303 };
304 
305 /*
306  * The set of PCI devices this driver supports (for 82576&I350 VF)
307  */
308 static const struct rte_pci_id pci_id_igbvf_map[] = {
309 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF) },
310 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_82576_VF_HV) },
311 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF) },
312 	{ RTE_PCI_DEVICE(E1000_INTEL_VENDOR_ID, E1000_DEV_ID_I350_VF_HV) },
313 	{ .vendor_id = 0, /* sentinel */ },
314 };
315 
316 static const struct rte_eth_desc_lim rx_desc_lim = {
317 	.nb_max = E1000_MAX_RING_DESC,
318 	.nb_min = E1000_MIN_RING_DESC,
319 	.nb_align = IGB_RXD_ALIGN,
320 };
321 
322 static const struct rte_eth_desc_lim tx_desc_lim = {
323 	.nb_max = E1000_MAX_RING_DESC,
324 	.nb_min = E1000_MIN_RING_DESC,
325 	.nb_align = IGB_RXD_ALIGN,
326 	.nb_seg_max = IGB_TX_MAX_SEG,
327 	.nb_mtu_seg_max = IGB_TX_MAX_MTU_SEG,
328 };
329 
330 static const struct eth_dev_ops eth_igb_ops = {
331 	.dev_configure        = eth_igb_configure,
332 	.dev_start            = eth_igb_start,
333 	.dev_stop             = eth_igb_stop,
334 	.dev_set_link_up      = eth_igb_dev_set_link_up,
335 	.dev_set_link_down    = eth_igb_dev_set_link_down,
336 	.dev_close            = eth_igb_close,
337 	.dev_reset            = eth_igb_reset,
338 	.promiscuous_enable   = eth_igb_promiscuous_enable,
339 	.promiscuous_disable  = eth_igb_promiscuous_disable,
340 	.allmulticast_enable  = eth_igb_allmulticast_enable,
341 	.allmulticast_disable = eth_igb_allmulticast_disable,
342 	.link_update          = eth_igb_link_update,
343 	.stats_get            = eth_igb_stats_get,
344 	.xstats_get           = eth_igb_xstats_get,
345 	.xstats_get_by_id     = eth_igb_xstats_get_by_id,
346 	.xstats_get_names_by_id = eth_igb_xstats_get_names_by_id,
347 	.xstats_get_names     = eth_igb_xstats_get_names,
348 	.stats_reset          = eth_igb_stats_reset,
349 	.xstats_reset         = eth_igb_xstats_reset,
350 	.fw_version_get       = eth_igb_fw_version_get,
351 	.dev_infos_get        = eth_igb_infos_get,
352 	.dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
353 	.mtu_set              = eth_igb_mtu_set,
354 	.vlan_filter_set      = eth_igb_vlan_filter_set,
355 	.vlan_tpid_set        = eth_igb_vlan_tpid_set,
356 	.vlan_offload_set     = eth_igb_vlan_offload_set,
357 	.rx_queue_setup       = eth_igb_rx_queue_setup,
358 	.rx_queue_intr_enable = eth_igb_rx_queue_intr_enable,
359 	.rx_queue_intr_disable = eth_igb_rx_queue_intr_disable,
360 	.rx_queue_release     = eth_igb_rx_queue_release,
361 	.tx_queue_setup       = eth_igb_tx_queue_setup,
362 	.tx_queue_release     = eth_igb_tx_queue_release,
363 	.tx_done_cleanup      = eth_igb_tx_done_cleanup,
364 	.dev_led_on           = eth_igb_led_on,
365 	.dev_led_off          = eth_igb_led_off,
366 	.flow_ctrl_get        = eth_igb_flow_ctrl_get,
367 	.flow_ctrl_set        = eth_igb_flow_ctrl_set,
368 	.mac_addr_add         = eth_igb_rar_set,
369 	.mac_addr_remove      = eth_igb_rar_clear,
370 	.mac_addr_set         = eth_igb_default_mac_addr_set,
371 	.reta_update          = eth_igb_rss_reta_update,
372 	.reta_query           = eth_igb_rss_reta_query,
373 	.rss_hash_update      = eth_igb_rss_hash_update,
374 	.rss_hash_conf_get    = eth_igb_rss_hash_conf_get,
375 	.flow_ops_get         = eth_igb_flow_ops_get,
376 	.set_mc_addr_list     = eth_igb_set_mc_addr_list,
377 	.rxq_info_get         = igb_rxq_info_get,
378 	.txq_info_get         = igb_txq_info_get,
379 	.timesync_enable      = igb_timesync_enable,
380 	.timesync_disable     = igb_timesync_disable,
381 	.timesync_read_rx_timestamp = igb_timesync_read_rx_timestamp,
382 	.timesync_read_tx_timestamp = igb_timesync_read_tx_timestamp,
383 	.get_reg              = eth_igb_get_regs,
384 	.get_eeprom_length    = eth_igb_get_eeprom_length,
385 	.get_eeprom           = eth_igb_get_eeprom,
386 	.set_eeprom           = eth_igb_set_eeprom,
387 	.get_module_info      = eth_igb_get_module_info,
388 	.get_module_eeprom    = eth_igb_get_module_eeprom,
389 	.timesync_adjust_time = igb_timesync_adjust_time,
390 	.timesync_read_time   = igb_timesync_read_time,
391 	.timesync_write_time  = igb_timesync_write_time,
392 };
393 
394 /*
395  * dev_ops for virtual function, bare necessities for basic vf
396  * operation have been implemented
397  */
398 static const struct eth_dev_ops igbvf_eth_dev_ops = {
399 	.dev_configure        = igbvf_dev_configure,
400 	.dev_start            = igbvf_dev_start,
401 	.dev_stop             = igbvf_dev_stop,
402 	.dev_close            = igbvf_dev_close,
403 	.promiscuous_enable   = igbvf_promiscuous_enable,
404 	.promiscuous_disable  = igbvf_promiscuous_disable,
405 	.allmulticast_enable  = igbvf_allmulticast_enable,
406 	.allmulticast_disable = igbvf_allmulticast_disable,
407 	.link_update          = eth_igb_link_update,
408 	.stats_get            = eth_igbvf_stats_get,
409 	.xstats_get           = eth_igbvf_xstats_get,
410 	.xstats_get_names     = eth_igbvf_xstats_get_names,
411 	.stats_reset          = eth_igbvf_stats_reset,
412 	.xstats_reset         = eth_igbvf_stats_reset,
413 	.vlan_filter_set      = igbvf_vlan_filter_set,
414 	.dev_infos_get        = eth_igbvf_infos_get,
415 	.dev_supported_ptypes_get = eth_igb_supported_ptypes_get,
416 	.rx_queue_setup       = eth_igb_rx_queue_setup,
417 	.rx_queue_release     = eth_igb_rx_queue_release,
418 	.tx_queue_setup       = eth_igb_tx_queue_setup,
419 	.tx_queue_release     = eth_igb_tx_queue_release,
420 	.tx_done_cleanup      = eth_igb_tx_done_cleanup,
421 	.set_mc_addr_list     = eth_igb_set_mc_addr_list,
422 	.rxq_info_get         = igb_rxq_info_get,
423 	.txq_info_get         = igb_txq_info_get,
424 	.mac_addr_set         = igbvf_default_mac_addr_set,
425 	.get_reg              = igbvf_get_regs,
426 };
427 
428 /* store statistics names and its offset in stats structure */
429 struct rte_igb_xstats_name_off {
430 	char name[RTE_ETH_XSTATS_NAME_SIZE];
431 	unsigned offset;
432 };
433 
434 static const struct rte_igb_xstats_name_off rte_igb_stats_strings[] = {
435 	{"rx_crc_errors", offsetof(struct e1000_hw_stats, crcerrs)},
436 	{"rx_align_errors", offsetof(struct e1000_hw_stats, algnerrc)},
437 	{"rx_symbol_errors", offsetof(struct e1000_hw_stats, symerrs)},
438 	{"rx_missed_packets", offsetof(struct e1000_hw_stats, mpc)},
439 	{"tx_single_collision_packets", offsetof(struct e1000_hw_stats, scc)},
440 	{"tx_multiple_collision_packets", offsetof(struct e1000_hw_stats, mcc)},
441 	{"tx_excessive_collision_packets", offsetof(struct e1000_hw_stats,
442 		ecol)},
443 	{"tx_late_collisions", offsetof(struct e1000_hw_stats, latecol)},
444 	{"tx_total_collisions", offsetof(struct e1000_hw_stats, colc)},
445 	{"tx_deferred_packets", offsetof(struct e1000_hw_stats, dc)},
446 	{"tx_no_carrier_sense_packets", offsetof(struct e1000_hw_stats, tncrs)},
447 	{"rx_carrier_ext_errors", offsetof(struct e1000_hw_stats, cexterr)},
448 	{"rx_length_errors", offsetof(struct e1000_hw_stats, rlec)},
449 	{"rx_xon_packets", offsetof(struct e1000_hw_stats, xonrxc)},
450 	{"tx_xon_packets", offsetof(struct e1000_hw_stats, xontxc)},
451 	{"rx_xoff_packets", offsetof(struct e1000_hw_stats, xoffrxc)},
452 	{"tx_xoff_packets", offsetof(struct e1000_hw_stats, xofftxc)},
453 	{"rx_flow_control_unsupported_packets", offsetof(struct e1000_hw_stats,
454 		fcruc)},
455 	{"rx_size_64_packets", offsetof(struct e1000_hw_stats, prc64)},
456 	{"rx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, prc127)},
457 	{"rx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, prc255)},
458 	{"rx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, prc511)},
459 	{"rx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
460 		prc1023)},
461 	{"rx_size_1024_to_max_packets", offsetof(struct e1000_hw_stats,
462 		prc1522)},
463 	{"rx_broadcast_packets", offsetof(struct e1000_hw_stats, bprc)},
464 	{"rx_multicast_packets", offsetof(struct e1000_hw_stats, mprc)},
465 	{"rx_undersize_errors", offsetof(struct e1000_hw_stats, ruc)},
466 	{"rx_fragment_errors", offsetof(struct e1000_hw_stats, rfc)},
467 	{"rx_oversize_errors", offsetof(struct e1000_hw_stats, roc)},
468 	{"rx_jabber_errors", offsetof(struct e1000_hw_stats, rjc)},
469 	{"rx_management_packets", offsetof(struct e1000_hw_stats, mgprc)},
470 	{"rx_management_dropped", offsetof(struct e1000_hw_stats, mgpdc)},
471 	{"tx_management_packets", offsetof(struct e1000_hw_stats, mgptc)},
472 	{"rx_total_packets", offsetof(struct e1000_hw_stats, tpr)},
473 	{"tx_total_packets", offsetof(struct e1000_hw_stats, tpt)},
474 	{"rx_total_bytes", offsetof(struct e1000_hw_stats, tor)},
475 	{"tx_total_bytes", offsetof(struct e1000_hw_stats, tot)},
476 	{"tx_size_64_packets", offsetof(struct e1000_hw_stats, ptc64)},
477 	{"tx_size_65_to_127_packets", offsetof(struct e1000_hw_stats, ptc127)},
478 	{"tx_size_128_to_255_packets", offsetof(struct e1000_hw_stats, ptc255)},
479 	{"tx_size_256_to_511_packets", offsetof(struct e1000_hw_stats, ptc511)},
480 	{"tx_size_512_to_1023_packets", offsetof(struct e1000_hw_stats,
481 		ptc1023)},
482 	{"tx_size_1023_to_max_packets", offsetof(struct e1000_hw_stats,
483 		ptc1522)},
484 	{"tx_multicast_packets", offsetof(struct e1000_hw_stats, mptc)},
485 	{"tx_broadcast_packets", offsetof(struct e1000_hw_stats, bptc)},
486 	{"tx_tso_packets", offsetof(struct e1000_hw_stats, tsctc)},
487 	{"tx_tso_errors", offsetof(struct e1000_hw_stats, tsctfc)},
488 	{"rx_sent_to_host_packets", offsetof(struct e1000_hw_stats, rpthc)},
489 	{"tx_sent_by_host_packets", offsetof(struct e1000_hw_stats, hgptc)},
490 	{"rx_code_violation_packets", offsetof(struct e1000_hw_stats, scvpc)},
491 
492 	{"interrupt_assert_count", offsetof(struct e1000_hw_stats, iac)},
493 };
494 
495 #define IGB_NB_XSTATS (sizeof(rte_igb_stats_strings) / \
496 		sizeof(rte_igb_stats_strings[0]))
497 
498 static const struct rte_igb_xstats_name_off rte_igbvf_stats_strings[] = {
499 	{"rx_multicast_packets", offsetof(struct e1000_vf_stats, mprc)},
500 	{"rx_good_loopback_packets", offsetof(struct e1000_vf_stats, gprlbc)},
501 	{"tx_good_loopback_packets", offsetof(struct e1000_vf_stats, gptlbc)},
502 	{"rx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gorlbc)},
503 	{"tx_good_loopback_bytes", offsetof(struct e1000_vf_stats, gotlbc)},
504 };
505 
506 #define IGBVF_NB_XSTATS (sizeof(rte_igbvf_stats_strings) / \
507 		sizeof(rte_igbvf_stats_strings[0]))
508 
509 
510 static inline void
511 igb_intr_enable(struct rte_eth_dev *dev)
512 {
513 	struct e1000_interrupt *intr =
514 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
515 	struct e1000_hw *hw =
516 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
517 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
518 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
519 
520 	if (rte_intr_allow_others(intr_handle) &&
521 		dev->data->dev_conf.intr_conf.lsc != 0) {
522 		E1000_WRITE_REG(hw, E1000_EIMS, 1 << IGB_MSIX_OTHER_INTR_VEC);
523 	}
524 
525 	E1000_WRITE_REG(hw, E1000_IMS, intr->mask);
526 	E1000_WRITE_FLUSH(hw);
527 }
528 
529 static void
530 igb_intr_disable(struct rte_eth_dev *dev)
531 {
532 	struct e1000_hw *hw =
533 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
534 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
535 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
536 
537 	if (rte_intr_allow_others(intr_handle) &&
538 		dev->data->dev_conf.intr_conf.lsc != 0) {
539 		E1000_WRITE_REG(hw, E1000_EIMC, 1 << IGB_MSIX_OTHER_INTR_VEC);
540 	}
541 
542 	E1000_WRITE_REG(hw, E1000_IMC, ~0);
543 	E1000_WRITE_FLUSH(hw);
544 }
545 
546 static inline void
547 igbvf_intr_enable(struct rte_eth_dev *dev)
548 {
549 	struct e1000_hw *hw =
550 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
551 
552 	/* only for mailbox */
553 	E1000_WRITE_REG(hw, E1000_EIAM, 1 << E1000_VTIVAR_MISC_MAILBOX);
554 	E1000_WRITE_REG(hw, E1000_EIAC, 1 << E1000_VTIVAR_MISC_MAILBOX);
555 	E1000_WRITE_REG(hw, E1000_EIMS, 1 << E1000_VTIVAR_MISC_MAILBOX);
556 	E1000_WRITE_FLUSH(hw);
557 }
558 
559 /* only for mailbox now. If RX/TX needed, should extend this function.  */
560 static void
561 igbvf_set_ivar_map(struct e1000_hw *hw, uint8_t msix_vector)
562 {
563 	uint32_t tmp = 0;
564 
565 	/* mailbox */
566 	tmp |= (msix_vector & E1000_VTIVAR_MISC_INTR_MASK);
567 	tmp |= E1000_VTIVAR_VALID;
568 	E1000_WRITE_REG(hw, E1000_VTIVAR_MISC, tmp);
569 }
570 
571 static void
572 eth_igbvf_configure_msix_intr(struct rte_eth_dev *dev)
573 {
574 	struct e1000_hw *hw =
575 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
576 
577 	/* Configure VF other cause ivar */
578 	igbvf_set_ivar_map(hw, E1000_VTIVAR_MISC_MAILBOX);
579 }
580 
581 static inline int32_t
582 igb_pf_reset_hw(struct e1000_hw *hw)
583 {
584 	uint32_t ctrl_ext;
585 	int32_t status;
586 
587 	status = e1000_reset_hw(hw);
588 
589 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
590 	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
591 	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
592 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
593 	E1000_WRITE_FLUSH(hw);
594 
595 	return status;
596 }
597 
598 static void
599 igb_identify_hardware(struct rte_eth_dev *dev, struct rte_pci_device *pci_dev)
600 {
601 	struct e1000_hw *hw =
602 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
603 
604 
605 	hw->vendor_id = pci_dev->id.vendor_id;
606 	hw->device_id = pci_dev->id.device_id;
607 	hw->subsystem_vendor_id = pci_dev->id.subsystem_vendor_id;
608 	hw->subsystem_device_id = pci_dev->id.subsystem_device_id;
609 
610 	e1000_set_mac_type(hw);
611 
612 	/* need to check if it is a vf device below */
613 }
614 
615 static int
616 igb_reset_swfw_lock(struct e1000_hw *hw)
617 {
618 	int ret_val;
619 
620 	/*
621 	 * Do mac ops initialization manually here, since we will need
622 	 * some function pointers set by this call.
623 	 */
624 	ret_val = e1000_init_mac_params(hw);
625 	if (ret_val)
626 		return ret_val;
627 
628 	/*
629 	 * SMBI lock should not fail in this early stage. If this is the case,
630 	 * it is due to an improper exit of the application.
631 	 * So force the release of the faulty lock.
632 	 */
633 	if (e1000_get_hw_semaphore_generic(hw) < 0) {
634 		PMD_DRV_LOG(DEBUG, "SMBI lock released");
635 	}
636 	e1000_put_hw_semaphore_generic(hw);
637 
638 	if (hw->mac.ops.acquire_swfw_sync != NULL) {
639 		uint16_t mask;
640 
641 		/*
642 		 * Phy lock should not fail in this early stage. If this is the case,
643 		 * it is due to an improper exit of the application.
644 		 * So force the release of the faulty lock.
645 		 */
646 		mask = E1000_SWFW_PHY0_SM << hw->bus.func;
647 		if (hw->bus.func > E1000_FUNC_1)
648 			mask <<= 2;
649 		if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
650 			PMD_DRV_LOG(DEBUG, "SWFW phy%d lock released",
651 				    hw->bus.func);
652 		}
653 		hw->mac.ops.release_swfw_sync(hw, mask);
654 
655 		/*
656 		 * This one is more tricky since it is common to all ports; but
657 		 * swfw_sync retries last long enough (1s) to be almost sure that if
658 		 * lock can not be taken it is due to an improper lock of the
659 		 * semaphore.
660 		 */
661 		mask = E1000_SWFW_EEP_SM;
662 		if (hw->mac.ops.acquire_swfw_sync(hw, mask) < 0) {
663 			PMD_DRV_LOG(DEBUG, "SWFW common locks released");
664 		}
665 		hw->mac.ops.release_swfw_sync(hw, mask);
666 	}
667 
668 	return E1000_SUCCESS;
669 }
670 
671 /* Remove all ntuple filters of the device */
672 static int igb_ntuple_filter_uninit(struct rte_eth_dev *eth_dev)
673 {
674 	struct e1000_filter_info *filter_info =
675 		E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
676 	struct e1000_5tuple_filter *p_5tuple;
677 	struct e1000_2tuple_filter *p_2tuple;
678 
679 	while ((p_5tuple = TAILQ_FIRST(&filter_info->fivetuple_list))) {
680 		TAILQ_REMOVE(&filter_info->fivetuple_list,
681 			p_5tuple, entries);
682 			rte_free(p_5tuple);
683 	}
684 	filter_info->fivetuple_mask = 0;
685 	while ((p_2tuple = TAILQ_FIRST(&filter_info->twotuple_list))) {
686 		TAILQ_REMOVE(&filter_info->twotuple_list,
687 			p_2tuple, entries);
688 			rte_free(p_2tuple);
689 	}
690 	filter_info->twotuple_mask = 0;
691 
692 	return 0;
693 }
694 
695 /* Remove all flex filters of the device */
696 static int igb_flex_filter_uninit(struct rte_eth_dev *eth_dev)
697 {
698 	struct e1000_filter_info *filter_info =
699 		E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
700 	struct e1000_flex_filter *p_flex;
701 
702 	while ((p_flex = TAILQ_FIRST(&filter_info->flex_list))) {
703 		TAILQ_REMOVE(&filter_info->flex_list, p_flex, entries);
704 		rte_free(p_flex);
705 	}
706 	filter_info->flex_mask = 0;
707 
708 	return 0;
709 }
710 
711 static int
712 eth_igb_dev_init(struct rte_eth_dev *eth_dev)
713 {
714 	int error = 0;
715 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
716 	struct e1000_hw *hw =
717 		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
718 	struct e1000_vfta * shadow_vfta =
719 		E1000_DEV_PRIVATE_TO_VFTA(eth_dev->data->dev_private);
720 	struct e1000_filter_info *filter_info =
721 		E1000_DEV_PRIVATE_TO_FILTER_INFO(eth_dev->data->dev_private);
722 	struct e1000_adapter *adapter =
723 		E1000_DEV_PRIVATE(eth_dev->data->dev_private);
724 
725 	uint32_t ctrl_ext;
726 
727 	eth_dev->dev_ops = &eth_igb_ops;
728 	eth_dev->rx_queue_count = eth_igb_rx_queue_count;
729 	eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
730 	eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
731 	eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
732 	eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
733 	eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
734 
735 	/* for secondary processes, we don't initialise any further as primary
736 	 * has already done this work. Only check we don't need a different
737 	 * RX function */
738 	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
739 		if (eth_dev->data->scattered_rx)
740 			eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
741 		return 0;
742 	}
743 
744 	rte_eth_copy_pci_info(eth_dev, pci_dev);
745 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
746 
747 	hw->hw_addr= (void *)pci_dev->mem_resource[0].addr;
748 
749 	igb_identify_hardware(eth_dev, pci_dev);
750 	if (e1000_setup_init_funcs(hw, FALSE) != E1000_SUCCESS) {
751 		error = -EIO;
752 		goto err_late;
753 	}
754 
755 	e1000_get_bus_info(hw);
756 
757 	/* Reset any pending lock */
758 	if (igb_reset_swfw_lock(hw) != E1000_SUCCESS) {
759 		error = -EIO;
760 		goto err_late;
761 	}
762 
763 	/* Finish initialization */
764 	if (e1000_setup_init_funcs(hw, TRUE) != E1000_SUCCESS) {
765 		error = -EIO;
766 		goto err_late;
767 	}
768 
769 	hw->mac.autoneg = 1;
770 	hw->phy.autoneg_wait_to_complete = 0;
771 	hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
772 
773 	/* Copper options */
774 	if (hw->phy.media_type == e1000_media_type_copper) {
775 		hw->phy.mdix = 0; /* AUTO_ALL_MODES */
776 		hw->phy.disable_polarity_correction = 0;
777 		hw->phy.ms_type = e1000_ms_hw_default;
778 	}
779 
780 	/*
781 	 * Start from a known state, this is important in reading the nvm
782 	 * and mac from that.
783 	 */
784 	igb_pf_reset_hw(hw);
785 
786 	/* Make sure we have a good EEPROM before we read from it */
787 	if (e1000_validate_nvm_checksum(hw) < 0) {
788 		/*
789 		 * Some PCI-E parts fail the first check due to
790 		 * the link being in sleep state, call it again,
791 		 * if it fails a second time its a real issue.
792 		 */
793 		if (e1000_validate_nvm_checksum(hw) < 0) {
794 			PMD_INIT_LOG(ERR, "EEPROM checksum invalid");
795 			error = -EIO;
796 			goto err_late;
797 		}
798 	}
799 
800 	/* Read the permanent MAC address out of the EEPROM */
801 	if (e1000_read_mac_addr(hw) != 0) {
802 		PMD_INIT_LOG(ERR, "EEPROM error while reading MAC address");
803 		error = -EIO;
804 		goto err_late;
805 	}
806 
807 	/* Allocate memory for storing MAC addresses */
808 	eth_dev->data->mac_addrs = rte_zmalloc("e1000",
809 		RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count, 0);
810 	if (eth_dev->data->mac_addrs == NULL) {
811 		PMD_INIT_LOG(ERR, "Failed to allocate %d bytes needed to "
812 						"store MAC addresses",
813 				RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
814 		error = -ENOMEM;
815 		goto err_late;
816 	}
817 
818 	/* Copy the permanent MAC address */
819 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.addr,
820 			&eth_dev->data->mac_addrs[0]);
821 
822 	/* initialize the vfta */
823 	memset(shadow_vfta, 0, sizeof(*shadow_vfta));
824 
825 	/* Now initialize the hardware */
826 	if (igb_hardware_init(hw) != 0) {
827 		PMD_INIT_LOG(ERR, "Hardware initialization failed");
828 		rte_free(eth_dev->data->mac_addrs);
829 		eth_dev->data->mac_addrs = NULL;
830 		error = -ENODEV;
831 		goto err_late;
832 	}
833 	hw->mac.get_link_status = 1;
834 	adapter->stopped = 0;
835 
836 	/* Indicate SOL/IDER usage */
837 	if (e1000_check_reset_block(hw) < 0) {
838 		PMD_INIT_LOG(ERR, "PHY reset is blocked due to"
839 					"SOL/IDER session");
840 	}
841 
842 	/* initialize PF if max_vfs not zero */
843 	igb_pf_host_init(eth_dev);
844 
845 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
846 	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
847 	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
848 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
849 	E1000_WRITE_FLUSH(hw);
850 
851 	PMD_INIT_LOG(DEBUG, "port_id %d vendorID=0x%x deviceID=0x%x",
852 		     eth_dev->data->port_id, pci_dev->id.vendor_id,
853 		     pci_dev->id.device_id);
854 
855 	rte_intr_callback_register(&pci_dev->intr_handle,
856 				   eth_igb_interrupt_handler,
857 				   (void *)eth_dev);
858 
859 	/* enable uio/vfio intr/eventfd mapping */
860 	rte_intr_enable(&pci_dev->intr_handle);
861 
862 	/* enable support intr */
863 	igb_intr_enable(eth_dev);
864 
865 	eth_igb_dev_set_link_down(eth_dev);
866 
867 	/* initialize filter info */
868 	memset(filter_info, 0,
869 	       sizeof(struct e1000_filter_info));
870 
871 	TAILQ_INIT(&filter_info->flex_list);
872 	TAILQ_INIT(&filter_info->twotuple_list);
873 	TAILQ_INIT(&filter_info->fivetuple_list);
874 
875 	TAILQ_INIT(&igb_filter_ntuple_list);
876 	TAILQ_INIT(&igb_filter_ethertype_list);
877 	TAILQ_INIT(&igb_filter_syn_list);
878 	TAILQ_INIT(&igb_filter_flex_list);
879 	TAILQ_INIT(&igb_filter_rss_list);
880 	TAILQ_INIT(&igb_flow_list);
881 
882 	return 0;
883 
884 err_late:
885 	igb_hw_control_release(hw);
886 
887 	return error;
888 }
889 
890 static int
891 eth_igb_dev_uninit(struct rte_eth_dev *eth_dev)
892 {
893 	PMD_INIT_FUNC_TRACE();
894 
895 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
896 		return 0;
897 
898 	eth_igb_close(eth_dev);
899 
900 	return 0;
901 }
902 
903 /*
904  * Virtual Function device init
905  */
906 static int
907 eth_igbvf_dev_init(struct rte_eth_dev *eth_dev)
908 {
909 	struct rte_pci_device *pci_dev;
910 	struct rte_intr_handle *intr_handle;
911 	struct e1000_adapter *adapter =
912 		E1000_DEV_PRIVATE(eth_dev->data->dev_private);
913 	struct e1000_hw *hw =
914 		E1000_DEV_PRIVATE_TO_HW(eth_dev->data->dev_private);
915 	int diag;
916 	struct rte_ether_addr *perm_addr =
917 		(struct rte_ether_addr *)hw->mac.perm_addr;
918 
919 	PMD_INIT_FUNC_TRACE();
920 
921 	eth_dev->dev_ops = &igbvf_eth_dev_ops;
922 	eth_dev->rx_descriptor_status = eth_igb_rx_descriptor_status;
923 	eth_dev->tx_descriptor_status = eth_igb_tx_descriptor_status;
924 	eth_dev->rx_pkt_burst = &eth_igb_recv_pkts;
925 	eth_dev->tx_pkt_burst = &eth_igb_xmit_pkts;
926 	eth_dev->tx_pkt_prepare = &eth_igb_prep_pkts;
927 
928 	/* for secondary processes, we don't initialise any further as primary
929 	 * has already done this work. Only check we don't need a different
930 	 * RX function */
931 	if (rte_eal_process_type() != RTE_PROC_PRIMARY){
932 		if (eth_dev->data->scattered_rx)
933 			eth_dev->rx_pkt_burst = &eth_igb_recv_scattered_pkts;
934 		return 0;
935 	}
936 
937 	pci_dev = RTE_ETH_DEV_TO_PCI(eth_dev);
938 	rte_eth_copy_pci_info(eth_dev, pci_dev);
939 	eth_dev->data->dev_flags |= RTE_ETH_DEV_AUTOFILL_QUEUE_XSTATS;
940 
941 	hw->device_id = pci_dev->id.device_id;
942 	hw->vendor_id = pci_dev->id.vendor_id;
943 	hw->hw_addr = (void *)pci_dev->mem_resource[0].addr;
944 	adapter->stopped = 0;
945 
946 	/* Initialize the shared code (base driver) */
947 	diag = e1000_setup_init_funcs(hw, TRUE);
948 	if (diag != 0) {
949 		PMD_INIT_LOG(ERR, "Shared code init failed for igbvf: %d",
950 			diag);
951 		return -EIO;
952 	}
953 
954 	/* init_mailbox_params */
955 	hw->mbx.ops.init_params(hw);
956 
957 	/* Disable the interrupts for VF */
958 	igbvf_intr_disable(hw);
959 
960 	diag = hw->mac.ops.reset_hw(hw);
961 
962 	/* Allocate memory for storing MAC addresses */
963 	eth_dev->data->mac_addrs = rte_zmalloc("igbvf", RTE_ETHER_ADDR_LEN *
964 		hw->mac.rar_entry_count, 0);
965 	if (eth_dev->data->mac_addrs == NULL) {
966 		PMD_INIT_LOG(ERR,
967 			"Failed to allocate %d bytes needed to store MAC "
968 			"addresses",
969 			RTE_ETHER_ADDR_LEN * hw->mac.rar_entry_count);
970 		return -ENOMEM;
971 	}
972 
973 	/* Generate a random MAC address, if none was assigned by PF. */
974 	if (rte_is_zero_ether_addr(perm_addr)) {
975 		rte_eth_random_addr(perm_addr->addr_bytes);
976 		PMD_INIT_LOG(INFO, "\tVF MAC address not assigned by Host PF");
977 		PMD_INIT_LOG(INFO, "\tAssign randomly generated MAC address "
978 			     RTE_ETHER_ADDR_PRT_FMT,
979 			     RTE_ETHER_ADDR_BYTES(perm_addr));
980 	}
981 
982 	diag = e1000_rar_set(hw, perm_addr->addr_bytes, 0);
983 	if (diag) {
984 		rte_free(eth_dev->data->mac_addrs);
985 		eth_dev->data->mac_addrs = NULL;
986 		return diag;
987 	}
988 	/* Copy the permanent MAC address */
989 	rte_ether_addr_copy((struct rte_ether_addr *)hw->mac.perm_addr,
990 			&eth_dev->data->mac_addrs[0]);
991 
992 	PMD_INIT_LOG(DEBUG, "port %d vendorID=0x%x deviceID=0x%x "
993 		     "mac.type=%s",
994 		     eth_dev->data->port_id, pci_dev->id.vendor_id,
995 		     pci_dev->id.device_id, "igb_mac_82576_vf");
996 
997 	intr_handle = &pci_dev->intr_handle;
998 	rte_intr_callback_register(intr_handle,
999 				   eth_igbvf_interrupt_handler, eth_dev);
1000 
1001 	return 0;
1002 }
1003 
1004 static int
1005 eth_igbvf_dev_uninit(struct rte_eth_dev *eth_dev)
1006 {
1007 	PMD_INIT_FUNC_TRACE();
1008 
1009 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1010 		return 0;
1011 
1012 	igbvf_dev_close(eth_dev);
1013 
1014 	return 0;
1015 }
1016 
1017 static int eth_igb_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1018 	struct rte_pci_device *pci_dev)
1019 {
1020 	return rte_eth_dev_pci_generic_probe(pci_dev,
1021 		sizeof(struct e1000_adapter), eth_igb_dev_init);
1022 }
1023 
1024 static int eth_igb_pci_remove(struct rte_pci_device *pci_dev)
1025 {
1026 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_igb_dev_uninit);
1027 }
1028 
1029 static struct rte_pci_driver rte_igb_pmd = {
1030 	.id_table = pci_id_igb_map,
1031 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING | RTE_PCI_DRV_INTR_LSC,
1032 	.probe = eth_igb_pci_probe,
1033 	.remove = eth_igb_pci_remove,
1034 };
1035 
1036 
1037 static int eth_igbvf_pci_probe(struct rte_pci_driver *pci_drv __rte_unused,
1038 	struct rte_pci_device *pci_dev)
1039 {
1040 	return rte_eth_dev_pci_generic_probe(pci_dev,
1041 		sizeof(struct e1000_adapter), eth_igbvf_dev_init);
1042 }
1043 
1044 static int eth_igbvf_pci_remove(struct rte_pci_device *pci_dev)
1045 {
1046 	return rte_eth_dev_pci_generic_remove(pci_dev, eth_igbvf_dev_uninit);
1047 }
1048 
1049 /*
1050  * virtual function driver struct
1051  */
1052 static struct rte_pci_driver rte_igbvf_pmd = {
1053 	.id_table = pci_id_igbvf_map,
1054 	.drv_flags = RTE_PCI_DRV_NEED_MAPPING,
1055 	.probe = eth_igbvf_pci_probe,
1056 	.remove = eth_igbvf_pci_remove,
1057 };
1058 
1059 static void
1060 igb_vmdq_vlan_hw_filter_enable(struct rte_eth_dev *dev)
1061 {
1062 	struct e1000_hw *hw =
1063 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1064 	/* RCTL: enable VLAN filter since VMDq always use VLAN filter */
1065 	uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
1066 	rctl |= E1000_RCTL_VFE;
1067 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1068 }
1069 
1070 static int
1071 igb_check_mq_mode(struct rte_eth_dev *dev)
1072 {
1073 	enum rte_eth_rx_mq_mode rx_mq_mode = dev->data->dev_conf.rxmode.mq_mode;
1074 	enum rte_eth_tx_mq_mode tx_mq_mode = dev->data->dev_conf.txmode.mq_mode;
1075 	uint16_t nb_rx_q = dev->data->nb_rx_queues;
1076 	uint16_t nb_tx_q = dev->data->nb_tx_queues;
1077 
1078 	if ((rx_mq_mode & ETH_MQ_RX_DCB_FLAG) ||
1079 	    tx_mq_mode == ETH_MQ_TX_DCB ||
1080 	    tx_mq_mode == ETH_MQ_TX_VMDQ_DCB) {
1081 		PMD_INIT_LOG(ERR, "DCB mode is not supported.");
1082 		return -EINVAL;
1083 	}
1084 	if (RTE_ETH_DEV_SRIOV(dev).active != 0) {
1085 		/* Check multi-queue mode.
1086 		 * To no break software we accept ETH_MQ_RX_NONE as this might
1087 		 * be used to turn off VLAN filter.
1088 		 */
1089 
1090 		if (rx_mq_mode == ETH_MQ_RX_NONE ||
1091 		    rx_mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1092 			dev->data->dev_conf.rxmode.mq_mode = ETH_MQ_RX_VMDQ_ONLY;
1093 			RTE_ETH_DEV_SRIOV(dev).nb_q_per_pool = 1;
1094 		} else {
1095 			/* Only support one queue on VFs.
1096 			 * RSS together with SRIOV is not supported.
1097 			 */
1098 			PMD_INIT_LOG(ERR, "SRIOV is active,"
1099 					" wrong mq_mode rx %d.",
1100 					rx_mq_mode);
1101 			return -EINVAL;
1102 		}
1103 		/* TX mode is not used here, so mode might be ignored.*/
1104 		if (tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1105 			/* SRIOV only works in VMDq enable mode */
1106 			PMD_INIT_LOG(WARNING, "SRIOV is active,"
1107 					" TX mode %d is not supported. "
1108 					" Driver will behave as %d mode.",
1109 					tx_mq_mode, ETH_MQ_TX_VMDQ_ONLY);
1110 		}
1111 
1112 		/* check valid queue number */
1113 		if ((nb_rx_q > 1) || (nb_tx_q > 1)) {
1114 			PMD_INIT_LOG(ERR, "SRIOV is active,"
1115 					" only support one queue on VFs.");
1116 			return -EINVAL;
1117 		}
1118 	} else {
1119 		/* To no break software that set invalid mode, only display
1120 		 * warning if invalid mode is used.
1121 		 */
1122 		if (rx_mq_mode != ETH_MQ_RX_NONE &&
1123 		    rx_mq_mode != ETH_MQ_RX_VMDQ_ONLY &&
1124 		    rx_mq_mode != ETH_MQ_RX_RSS) {
1125 			/* RSS together with VMDq not supported*/
1126 			PMD_INIT_LOG(ERR, "RX mode %d is not supported.",
1127 				     rx_mq_mode);
1128 			return -EINVAL;
1129 		}
1130 
1131 		if (tx_mq_mode != ETH_MQ_TX_NONE &&
1132 		    tx_mq_mode != ETH_MQ_TX_VMDQ_ONLY) {
1133 			PMD_INIT_LOG(WARNING, "TX mode %d is not supported."
1134 					" Due to txmode is meaningless in this"
1135 					" driver, just ignore.",
1136 					tx_mq_mode);
1137 		}
1138 	}
1139 	return 0;
1140 }
1141 
1142 static int
1143 eth_igb_configure(struct rte_eth_dev *dev)
1144 {
1145 	struct e1000_interrupt *intr =
1146 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
1147 	int ret;
1148 
1149 	PMD_INIT_FUNC_TRACE();
1150 
1151 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
1152 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
1153 
1154 	/* multipe queue mode checking */
1155 	ret  = igb_check_mq_mode(dev);
1156 	if (ret != 0) {
1157 		PMD_DRV_LOG(ERR, "igb_check_mq_mode fails with %d.",
1158 			    ret);
1159 		return ret;
1160 	}
1161 
1162 	intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
1163 	PMD_INIT_FUNC_TRACE();
1164 
1165 	return 0;
1166 }
1167 
1168 static void
1169 eth_igb_rxtx_control(struct rte_eth_dev *dev,
1170 		     bool enable)
1171 {
1172 	struct e1000_hw *hw =
1173 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1174 	uint32_t tctl, rctl;
1175 
1176 	tctl = E1000_READ_REG(hw, E1000_TCTL);
1177 	rctl = E1000_READ_REG(hw, E1000_RCTL);
1178 
1179 	if (enable) {
1180 		/* enable Tx/Rx */
1181 		tctl |= E1000_TCTL_EN;
1182 		rctl |= E1000_RCTL_EN;
1183 	} else {
1184 		/* disable Tx/Rx */
1185 		tctl &= ~E1000_TCTL_EN;
1186 		rctl &= ~E1000_RCTL_EN;
1187 	}
1188 	E1000_WRITE_REG(hw, E1000_TCTL, tctl);
1189 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1190 	E1000_WRITE_FLUSH(hw);
1191 }
1192 
1193 static int
1194 eth_igb_start(struct rte_eth_dev *dev)
1195 {
1196 	struct e1000_hw *hw =
1197 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1198 	struct e1000_adapter *adapter =
1199 		E1000_DEV_PRIVATE(dev->data->dev_private);
1200 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1201 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1202 	int ret, mask;
1203 	uint32_t intr_vector = 0;
1204 	uint32_t ctrl_ext;
1205 	uint32_t *speeds;
1206 	int num_speeds;
1207 	bool autoneg;
1208 
1209 	PMD_INIT_FUNC_TRACE();
1210 
1211 	/* disable uio/vfio intr/eventfd mapping */
1212 	rte_intr_disable(intr_handle);
1213 
1214 	/* Power up the phy. Needed to make the link go Up */
1215 	eth_igb_dev_set_link_up(dev);
1216 
1217 	/*
1218 	 * Packet Buffer Allocation (PBA)
1219 	 * Writing PBA sets the receive portion of the buffer
1220 	 * the remainder is used for the transmit buffer.
1221 	 */
1222 	if (hw->mac.type == e1000_82575) {
1223 		uint32_t pba;
1224 
1225 		pba = E1000_PBA_32K; /* 32K for Rx, 16K for Tx */
1226 		E1000_WRITE_REG(hw, E1000_PBA, pba);
1227 	}
1228 
1229 	/* Put the address into the Receive Address Array */
1230 	e1000_rar_set(hw, hw->mac.addr, 0);
1231 
1232 	/* Initialize the hardware */
1233 	if (igb_hardware_init(hw)) {
1234 		PMD_INIT_LOG(ERR, "Unable to initialize the hardware");
1235 		return -EIO;
1236 	}
1237 	adapter->stopped = 0;
1238 
1239 	E1000_WRITE_REG(hw, E1000_VET,
1240 			RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1241 
1242 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
1243 	/* Set PF Reset Done bit so PF/VF Mail Ops can work */
1244 	ctrl_ext |= E1000_CTRL_EXT_PFRSTD;
1245 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1246 	E1000_WRITE_FLUSH(hw);
1247 
1248 	/* configure PF module if SRIOV enabled */
1249 	igb_pf_host_configure(dev);
1250 
1251 	/* check and configure queue intr-vector mapping */
1252 	if ((rte_intr_cap_multiple(intr_handle) ||
1253 	     !RTE_ETH_DEV_SRIOV(dev).active) &&
1254 	    dev->data->dev_conf.intr_conf.rxq != 0) {
1255 		intr_vector = dev->data->nb_rx_queues;
1256 		if (rte_intr_efd_enable(intr_handle, intr_vector))
1257 			return -1;
1258 	}
1259 
1260 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
1261 		intr_handle->intr_vec =
1262 			rte_zmalloc("intr_vec",
1263 				    dev->data->nb_rx_queues * sizeof(int), 0);
1264 		if (intr_handle->intr_vec == NULL) {
1265 			PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
1266 				     " intr_vec", dev->data->nb_rx_queues);
1267 			return -ENOMEM;
1268 		}
1269 	}
1270 
1271 	/* confiugre msix for rx interrupt */
1272 	eth_igb_configure_msix_intr(dev);
1273 
1274 	/* Configure for OS presence */
1275 	igb_init_manageability(hw);
1276 
1277 	eth_igb_tx_init(dev);
1278 
1279 	/* This can fail when allocating mbufs for descriptor rings */
1280 	ret = eth_igb_rx_init(dev);
1281 	if (ret) {
1282 		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
1283 		igb_dev_clear_queues(dev);
1284 		return ret;
1285 	}
1286 
1287 	e1000_clear_hw_cntrs_base_generic(hw);
1288 
1289 	/*
1290 	 * VLAN Offload Settings
1291 	 */
1292 	mask = ETH_VLAN_STRIP_MASK | ETH_VLAN_FILTER_MASK | \
1293 			ETH_VLAN_EXTEND_MASK;
1294 	ret = eth_igb_vlan_offload_set(dev, mask);
1295 	if (ret) {
1296 		PMD_INIT_LOG(ERR, "Unable to set vlan offload");
1297 		igb_dev_clear_queues(dev);
1298 		return ret;
1299 	}
1300 
1301 	if (dev->data->dev_conf.rxmode.mq_mode == ETH_MQ_RX_VMDQ_ONLY) {
1302 		/* Enable VLAN filter since VMDq always use VLAN filter */
1303 		igb_vmdq_vlan_hw_filter_enable(dev);
1304 	}
1305 
1306 	if ((hw->mac.type == e1000_82576) || (hw->mac.type == e1000_82580) ||
1307 		(hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i210) ||
1308 		(hw->mac.type == e1000_i211)) {
1309 		/* Configure EITR with the maximum possible value (0xFFFF) */
1310 		E1000_WRITE_REG(hw, E1000_EITR(0), 0xFFFF);
1311 	}
1312 
1313 	/* Setup link speed and duplex */
1314 	speeds = &dev->data->dev_conf.link_speeds;
1315 	if (*speeds == ETH_LINK_SPEED_AUTONEG) {
1316 		hw->phy.autoneg_advertised = E1000_ALL_SPEED_DUPLEX;
1317 		hw->mac.autoneg = 1;
1318 	} else {
1319 		num_speeds = 0;
1320 		autoneg = (*speeds & ETH_LINK_SPEED_FIXED) == 0;
1321 
1322 		/* Reset */
1323 		hw->phy.autoneg_advertised = 0;
1324 
1325 		if (*speeds & ~(ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
1326 				ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
1327 				ETH_LINK_SPEED_1G | ETH_LINK_SPEED_FIXED)) {
1328 			num_speeds = -1;
1329 			goto error_invalid_config;
1330 		}
1331 		if (*speeds & ETH_LINK_SPEED_10M_HD) {
1332 			hw->phy.autoneg_advertised |= ADVERTISE_10_HALF;
1333 			num_speeds++;
1334 		}
1335 		if (*speeds & ETH_LINK_SPEED_10M) {
1336 			hw->phy.autoneg_advertised |= ADVERTISE_10_FULL;
1337 			num_speeds++;
1338 		}
1339 		if (*speeds & ETH_LINK_SPEED_100M_HD) {
1340 			hw->phy.autoneg_advertised |= ADVERTISE_100_HALF;
1341 			num_speeds++;
1342 		}
1343 		if (*speeds & ETH_LINK_SPEED_100M) {
1344 			hw->phy.autoneg_advertised |= ADVERTISE_100_FULL;
1345 			num_speeds++;
1346 		}
1347 		if (*speeds & ETH_LINK_SPEED_1G) {
1348 			hw->phy.autoneg_advertised |= ADVERTISE_1000_FULL;
1349 			num_speeds++;
1350 		}
1351 		if (num_speeds == 0 || (!autoneg && (num_speeds > 1)))
1352 			goto error_invalid_config;
1353 
1354 		/* Set/reset the mac.autoneg based on the link speed,
1355 		 * fixed or not
1356 		 */
1357 		if (!autoneg) {
1358 			hw->mac.autoneg = 0;
1359 			hw->mac.forced_speed_duplex =
1360 					hw->phy.autoneg_advertised;
1361 		} else {
1362 			hw->mac.autoneg = 1;
1363 		}
1364 	}
1365 
1366 	e1000_setup_link(hw);
1367 
1368 	if (rte_intr_allow_others(intr_handle)) {
1369 		/* check if lsc interrupt is enabled */
1370 		if (dev->data->dev_conf.intr_conf.lsc != 0)
1371 			eth_igb_lsc_interrupt_setup(dev, TRUE);
1372 		else
1373 			eth_igb_lsc_interrupt_setup(dev, FALSE);
1374 	} else {
1375 		rte_intr_callback_unregister(intr_handle,
1376 					     eth_igb_interrupt_handler,
1377 					     (void *)dev);
1378 		if (dev->data->dev_conf.intr_conf.lsc != 0)
1379 			PMD_INIT_LOG(INFO, "lsc won't enable because of"
1380 				     " no intr multiplex");
1381 	}
1382 
1383 	/* check if rxq interrupt is enabled */
1384 	if (dev->data->dev_conf.intr_conf.rxq != 0 &&
1385 	    rte_intr_dp_is_en(intr_handle))
1386 		eth_igb_rxq_interrupt_setup(dev);
1387 
1388 	/* enable uio/vfio intr/eventfd mapping */
1389 	rte_intr_enable(intr_handle);
1390 
1391 	/* resume enabled intr since hw reset */
1392 	igb_intr_enable(dev);
1393 
1394 	/* restore all types filter */
1395 	igb_filter_restore(dev);
1396 
1397 	eth_igb_rxtx_control(dev, true);
1398 	eth_igb_link_update(dev, 0);
1399 
1400 	PMD_INIT_LOG(DEBUG, "<<");
1401 
1402 	return 0;
1403 
1404 error_invalid_config:
1405 	PMD_INIT_LOG(ERR, "Invalid advertised speeds (%u) for port %u",
1406 		     dev->data->dev_conf.link_speeds, dev->data->port_id);
1407 	igb_dev_clear_queues(dev);
1408 	return -EINVAL;
1409 }
1410 
1411 /*********************************************************************
1412  *
1413  *  This routine disables all traffic on the adapter by issuing a
1414  *  global reset on the MAC.
1415  *
1416  **********************************************************************/
1417 static int
1418 eth_igb_stop(struct rte_eth_dev *dev)
1419 {
1420 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1421 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1422 	struct rte_eth_link link;
1423 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1424 	struct e1000_adapter *adapter =
1425 		E1000_DEV_PRIVATE(dev->data->dev_private);
1426 
1427 	if (adapter->stopped)
1428 		return 0;
1429 
1430 	eth_igb_rxtx_control(dev, false);
1431 
1432 	igb_intr_disable(dev);
1433 
1434 	/* disable intr eventfd mapping */
1435 	rte_intr_disable(intr_handle);
1436 
1437 	igb_pf_reset_hw(hw);
1438 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1439 
1440 	/* Set bit for Go Link disconnect if PHY reset is not blocked */
1441 	if (hw->mac.type >= e1000_82580 &&
1442 	    (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1443 		uint32_t phpm_reg;
1444 
1445 		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1446 		phpm_reg |= E1000_82580_PM_GO_LINKD;
1447 		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1448 	}
1449 
1450 	/* Power down the phy. Needed to make the link go Down */
1451 	eth_igb_dev_set_link_down(dev);
1452 
1453 	igb_dev_clear_queues(dev);
1454 
1455 	/* clear the recorded link status */
1456 	memset(&link, 0, sizeof(link));
1457 	rte_eth_linkstatus_set(dev, &link);
1458 
1459 	if (!rte_intr_allow_others(intr_handle))
1460 		/* resume to the default handler */
1461 		rte_intr_callback_register(intr_handle,
1462 					   eth_igb_interrupt_handler,
1463 					   (void *)dev);
1464 
1465 	/* Clean datapath event and queue/vec mapping */
1466 	rte_intr_efd_disable(intr_handle);
1467 	if (intr_handle->intr_vec != NULL) {
1468 		rte_free(intr_handle->intr_vec);
1469 		intr_handle->intr_vec = NULL;
1470 	}
1471 
1472 	adapter->stopped = true;
1473 	dev->data->dev_started = 0;
1474 
1475 	return 0;
1476 }
1477 
1478 static int
1479 eth_igb_dev_set_link_up(struct rte_eth_dev *dev)
1480 {
1481 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1482 
1483 	if (hw->phy.media_type == e1000_media_type_copper)
1484 		e1000_power_up_phy(hw);
1485 	else
1486 		e1000_power_up_fiber_serdes_link(hw);
1487 
1488 	return 0;
1489 }
1490 
1491 static int
1492 eth_igb_dev_set_link_down(struct rte_eth_dev *dev)
1493 {
1494 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1495 
1496 	if (hw->phy.media_type == e1000_media_type_copper)
1497 		e1000_power_down_phy(hw);
1498 	else
1499 		e1000_shutdown_fiber_serdes_link(hw);
1500 
1501 	return 0;
1502 }
1503 
1504 static int
1505 eth_igb_close(struct rte_eth_dev *dev)
1506 {
1507 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1508 	struct rte_eth_link link;
1509 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
1510 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
1511 	struct e1000_filter_info *filter_info =
1512 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
1513 	int ret;
1514 
1515 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
1516 		return 0;
1517 
1518 	ret = eth_igb_stop(dev);
1519 
1520 	e1000_phy_hw_reset(hw);
1521 	igb_release_manageability(hw);
1522 	igb_hw_control_release(hw);
1523 
1524 	/* Clear bit for Go Link disconnect if PHY reset is not blocked */
1525 	if (hw->mac.type >= e1000_82580 &&
1526 	    (e1000_check_reset_block(hw) != E1000_BLK_PHY_RESET)) {
1527 		uint32_t phpm_reg;
1528 
1529 		phpm_reg = E1000_READ_REG(hw, E1000_82580_PHY_POWER_MGMT);
1530 		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1531 		E1000_WRITE_REG(hw, E1000_82580_PHY_POWER_MGMT, phpm_reg);
1532 	}
1533 
1534 	igb_dev_free_queues(dev);
1535 
1536 	if (intr_handle->intr_vec) {
1537 		rte_free(intr_handle->intr_vec);
1538 		intr_handle->intr_vec = NULL;
1539 	}
1540 
1541 	memset(&link, 0, sizeof(link));
1542 	rte_eth_linkstatus_set(dev, &link);
1543 
1544 	/* Reset any pending lock */
1545 	igb_reset_swfw_lock(hw);
1546 
1547 	/* uninitialize PF if max_vfs not zero */
1548 	igb_pf_host_uninit(dev);
1549 
1550 	rte_intr_callback_unregister(intr_handle,
1551 				     eth_igb_interrupt_handler, dev);
1552 
1553 	/* clear the SYN filter info */
1554 	filter_info->syn_info = 0;
1555 
1556 	/* clear the ethertype filters info */
1557 	filter_info->ethertype_mask = 0;
1558 	memset(filter_info->ethertype_filters, 0,
1559 		E1000_MAX_ETQF_FILTERS * sizeof(struct igb_ethertype_filter));
1560 
1561 	/* clear the rss filter info */
1562 	memset(&filter_info->rss_info, 0,
1563 		sizeof(struct igb_rte_flow_rss_conf));
1564 
1565 	/* remove all ntuple filters of the device */
1566 	igb_ntuple_filter_uninit(dev);
1567 
1568 	/* remove all flex filters of the device */
1569 	igb_flex_filter_uninit(dev);
1570 
1571 	/* clear all the filters list */
1572 	igb_filterlist_flush(dev);
1573 
1574 	return ret;
1575 }
1576 
1577 /*
1578  * Reset PF device.
1579  */
1580 static int
1581 eth_igb_reset(struct rte_eth_dev *dev)
1582 {
1583 	int ret;
1584 
1585 	/* When a DPDK PMD PF begin to reset PF port, it should notify all
1586 	 * its VF to make them align with it. The detailed notification
1587 	 * mechanism is PMD specific and is currently not implemented.
1588 	 * To avoid unexpected behavior in VF, currently reset of PF with
1589 	 * SR-IOV activation is not supported. It might be supported later.
1590 	 */
1591 	if (dev->data->sriov.active)
1592 		return -ENOTSUP;
1593 
1594 	ret = eth_igb_dev_uninit(dev);
1595 	if (ret)
1596 		return ret;
1597 
1598 	ret = eth_igb_dev_init(dev);
1599 
1600 	return ret;
1601 }
1602 
1603 
1604 static int
1605 igb_get_rx_buffer_size(struct e1000_hw *hw)
1606 {
1607 	uint32_t rx_buf_size;
1608 	if (hw->mac.type == e1000_82576) {
1609 		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xffff) << 10;
1610 	} else if (hw->mac.type == e1000_82580 || hw->mac.type == e1000_i350) {
1611 		/* PBS needs to be translated according to a lookup table */
1612 		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0xf);
1613 		rx_buf_size = (uint32_t) e1000_rxpbs_adjust_82580(rx_buf_size);
1614 		rx_buf_size = (rx_buf_size << 10);
1615 	} else if (hw->mac.type == e1000_i210 || hw->mac.type == e1000_i211) {
1616 		rx_buf_size = (E1000_READ_REG(hw, E1000_RXPBS) & 0x3f) << 10;
1617 	} else {
1618 		rx_buf_size = (E1000_READ_REG(hw, E1000_PBA) & 0xffff) << 10;
1619 	}
1620 
1621 	return rx_buf_size;
1622 }
1623 
1624 /*********************************************************************
1625  *
1626  *  Initialize the hardware
1627  *
1628  **********************************************************************/
1629 static int
1630 igb_hardware_init(struct e1000_hw *hw)
1631 {
1632 	uint32_t rx_buf_size;
1633 	int diag;
1634 
1635 	/* Let the firmware know the OS is in control */
1636 	igb_hw_control_acquire(hw);
1637 
1638 	/*
1639 	 * These parameters control the automatic generation (Tx) and
1640 	 * response (Rx) to Ethernet PAUSE frames.
1641 	 * - High water mark should allow for at least two standard size (1518)
1642 	 *   frames to be received after sending an XOFF.
1643 	 * - Low water mark works best when it is very near the high water mark.
1644 	 *   This allows the receiver to restart by sending XON when it has
1645 	 *   drained a bit. Here we use an arbitrary value of 1500 which will
1646 	 *   restart after one full frame is pulled from the buffer. There
1647 	 *   could be several smaller frames in the buffer and if so they will
1648 	 *   not trigger the XON until their total number reduces the buffer
1649 	 *   by 1500.
1650 	 * - The pause time is fairly large at 1000 x 512ns = 512 usec.
1651 	 */
1652 	rx_buf_size = igb_get_rx_buffer_size(hw);
1653 
1654 	hw->fc.high_water = rx_buf_size - (RTE_ETHER_MAX_LEN * 2);
1655 	hw->fc.low_water = hw->fc.high_water - 1500;
1656 	hw->fc.pause_time = IGB_FC_PAUSE_TIME;
1657 	hw->fc.send_xon = 1;
1658 
1659 	/* Set Flow control, use the tunable location if sane */
1660 	if ((igb_fc_setting != e1000_fc_none) && (igb_fc_setting < 4))
1661 		hw->fc.requested_mode = igb_fc_setting;
1662 	else
1663 		hw->fc.requested_mode = e1000_fc_none;
1664 
1665 	/* Issue a global reset */
1666 	igb_pf_reset_hw(hw);
1667 	E1000_WRITE_REG(hw, E1000_WUC, 0);
1668 
1669 	diag = e1000_init_hw(hw);
1670 	if (diag < 0)
1671 		return diag;
1672 
1673 	E1000_WRITE_REG(hw, E1000_VET,
1674 			RTE_ETHER_TYPE_VLAN << 16 | RTE_ETHER_TYPE_VLAN);
1675 	e1000_get_phy_info(hw);
1676 	e1000_check_for_link(hw);
1677 
1678 	return 0;
1679 }
1680 
1681 /* This function is based on igb_update_stats_counters() in igb/if_igb.c */
1682 static void
1683 igb_read_stats_registers(struct e1000_hw *hw, struct e1000_hw_stats *stats)
1684 {
1685 	int pause_frames;
1686 
1687 	uint64_t old_gprc  = stats->gprc;
1688 	uint64_t old_gptc  = stats->gptc;
1689 	uint64_t old_tpr   = stats->tpr;
1690 	uint64_t old_tpt   = stats->tpt;
1691 	uint64_t old_rpthc = stats->rpthc;
1692 	uint64_t old_hgptc = stats->hgptc;
1693 
1694 	if(hw->phy.media_type == e1000_media_type_copper ||
1695 	    (E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU)) {
1696 		stats->symerrs +=
1697 		    E1000_READ_REG(hw,E1000_SYMERRS);
1698 		stats->sec += E1000_READ_REG(hw, E1000_SEC);
1699 	}
1700 
1701 	stats->crcerrs += E1000_READ_REG(hw, E1000_CRCERRS);
1702 	stats->mpc += E1000_READ_REG(hw, E1000_MPC);
1703 	stats->scc += E1000_READ_REG(hw, E1000_SCC);
1704 	stats->ecol += E1000_READ_REG(hw, E1000_ECOL);
1705 
1706 	stats->mcc += E1000_READ_REG(hw, E1000_MCC);
1707 	stats->latecol += E1000_READ_REG(hw, E1000_LATECOL);
1708 	stats->colc += E1000_READ_REG(hw, E1000_COLC);
1709 	stats->dc += E1000_READ_REG(hw, E1000_DC);
1710 	stats->rlec += E1000_READ_REG(hw, E1000_RLEC);
1711 	stats->xonrxc += E1000_READ_REG(hw, E1000_XONRXC);
1712 	stats->xontxc += E1000_READ_REG(hw, E1000_XONTXC);
1713 	/*
1714 	** For watchdog management we need to know if we have been
1715 	** paused during the last interval, so capture that here.
1716 	*/
1717 	pause_frames = E1000_READ_REG(hw, E1000_XOFFRXC);
1718 	stats->xoffrxc += pause_frames;
1719 	stats->xofftxc += E1000_READ_REG(hw, E1000_XOFFTXC);
1720 	stats->fcruc += E1000_READ_REG(hw, E1000_FCRUC);
1721 	stats->prc64 += E1000_READ_REG(hw, E1000_PRC64);
1722 	stats->prc127 += E1000_READ_REG(hw, E1000_PRC127);
1723 	stats->prc255 += E1000_READ_REG(hw, E1000_PRC255);
1724 	stats->prc511 += E1000_READ_REG(hw, E1000_PRC511);
1725 	stats->prc1023 += E1000_READ_REG(hw, E1000_PRC1023);
1726 	stats->prc1522 += E1000_READ_REG(hw, E1000_PRC1522);
1727 	stats->gprc += E1000_READ_REG(hw, E1000_GPRC);
1728 	stats->bprc += E1000_READ_REG(hw, E1000_BPRC);
1729 	stats->mprc += E1000_READ_REG(hw, E1000_MPRC);
1730 	stats->gptc += E1000_READ_REG(hw, E1000_GPTC);
1731 
1732 	/* For the 64-bit byte counters the low dword must be read first. */
1733 	/* Both registers clear on the read of the high dword */
1734 
1735 	/* Workaround CRC bytes included in size, take away 4 bytes/packet */
1736 	stats->gorc += E1000_READ_REG(hw, E1000_GORCL);
1737 	stats->gorc += ((uint64_t)E1000_READ_REG(hw, E1000_GORCH) << 32);
1738 	stats->gorc -= (stats->gprc - old_gprc) * RTE_ETHER_CRC_LEN;
1739 	stats->gotc += E1000_READ_REG(hw, E1000_GOTCL);
1740 	stats->gotc += ((uint64_t)E1000_READ_REG(hw, E1000_GOTCH) << 32);
1741 	stats->gotc -= (stats->gptc - old_gptc) * RTE_ETHER_CRC_LEN;
1742 
1743 	stats->rnbc += E1000_READ_REG(hw, E1000_RNBC);
1744 	stats->ruc += E1000_READ_REG(hw, E1000_RUC);
1745 	stats->rfc += E1000_READ_REG(hw, E1000_RFC);
1746 	stats->roc += E1000_READ_REG(hw, E1000_ROC);
1747 	stats->rjc += E1000_READ_REG(hw, E1000_RJC);
1748 
1749 	stats->tpr += E1000_READ_REG(hw, E1000_TPR);
1750 	stats->tpt += E1000_READ_REG(hw, E1000_TPT);
1751 
1752 	stats->tor += E1000_READ_REG(hw, E1000_TORL);
1753 	stats->tor += ((uint64_t)E1000_READ_REG(hw, E1000_TORH) << 32);
1754 	stats->tor -= (stats->tpr - old_tpr) * RTE_ETHER_CRC_LEN;
1755 	stats->tot += E1000_READ_REG(hw, E1000_TOTL);
1756 	stats->tot += ((uint64_t)E1000_READ_REG(hw, E1000_TOTH) << 32);
1757 	stats->tot -= (stats->tpt - old_tpt) * RTE_ETHER_CRC_LEN;
1758 
1759 	stats->ptc64 += E1000_READ_REG(hw, E1000_PTC64);
1760 	stats->ptc127 += E1000_READ_REG(hw, E1000_PTC127);
1761 	stats->ptc255 += E1000_READ_REG(hw, E1000_PTC255);
1762 	stats->ptc511 += E1000_READ_REG(hw, E1000_PTC511);
1763 	stats->ptc1023 += E1000_READ_REG(hw, E1000_PTC1023);
1764 	stats->ptc1522 += E1000_READ_REG(hw, E1000_PTC1522);
1765 	stats->mptc += E1000_READ_REG(hw, E1000_MPTC);
1766 	stats->bptc += E1000_READ_REG(hw, E1000_BPTC);
1767 
1768 	/* Interrupt Counts */
1769 
1770 	stats->iac += E1000_READ_REG(hw, E1000_IAC);
1771 	stats->icrxptc += E1000_READ_REG(hw, E1000_ICRXPTC);
1772 	stats->icrxatc += E1000_READ_REG(hw, E1000_ICRXATC);
1773 	stats->ictxptc += E1000_READ_REG(hw, E1000_ICTXPTC);
1774 	stats->ictxatc += E1000_READ_REG(hw, E1000_ICTXATC);
1775 	stats->ictxqec += E1000_READ_REG(hw, E1000_ICTXQEC);
1776 	stats->ictxqmtc += E1000_READ_REG(hw, E1000_ICTXQMTC);
1777 	stats->icrxdmtc += E1000_READ_REG(hw, E1000_ICRXDMTC);
1778 	stats->icrxoc += E1000_READ_REG(hw, E1000_ICRXOC);
1779 
1780 	/* Host to Card Statistics */
1781 
1782 	stats->cbtmpc += E1000_READ_REG(hw, E1000_CBTMPC);
1783 	stats->htdpmc += E1000_READ_REG(hw, E1000_HTDPMC);
1784 	stats->cbrdpc += E1000_READ_REG(hw, E1000_CBRDPC);
1785 	stats->cbrmpc += E1000_READ_REG(hw, E1000_CBRMPC);
1786 	stats->rpthc += E1000_READ_REG(hw, E1000_RPTHC);
1787 	stats->hgptc += E1000_READ_REG(hw, E1000_HGPTC);
1788 	stats->htcbdpc += E1000_READ_REG(hw, E1000_HTCBDPC);
1789 	stats->hgorc += E1000_READ_REG(hw, E1000_HGORCL);
1790 	stats->hgorc += ((uint64_t)E1000_READ_REG(hw, E1000_HGORCH) << 32);
1791 	stats->hgorc -= (stats->rpthc - old_rpthc) * RTE_ETHER_CRC_LEN;
1792 	stats->hgotc += E1000_READ_REG(hw, E1000_HGOTCL);
1793 	stats->hgotc += ((uint64_t)E1000_READ_REG(hw, E1000_HGOTCH) << 32);
1794 	stats->hgotc -= (stats->hgptc - old_hgptc) * RTE_ETHER_CRC_LEN;
1795 	stats->lenerrs += E1000_READ_REG(hw, E1000_LENERRS);
1796 	stats->scvpc += E1000_READ_REG(hw, E1000_SCVPC);
1797 	stats->hrmpc += E1000_READ_REG(hw, E1000_HRMPC);
1798 
1799 	stats->algnerrc += E1000_READ_REG(hw, E1000_ALGNERRC);
1800 	stats->rxerrc += E1000_READ_REG(hw, E1000_RXERRC);
1801 	stats->tncrs += E1000_READ_REG(hw, E1000_TNCRS);
1802 	stats->cexterr += E1000_READ_REG(hw, E1000_CEXTERR);
1803 	stats->tsctc += E1000_READ_REG(hw, E1000_TSCTC);
1804 	stats->tsctfc += E1000_READ_REG(hw, E1000_TSCTFC);
1805 }
1806 
1807 static int
1808 eth_igb_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
1809 {
1810 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1811 	struct e1000_hw_stats *stats =
1812 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1813 
1814 	igb_read_stats_registers(hw, stats);
1815 
1816 	if (rte_stats == NULL)
1817 		return -EINVAL;
1818 
1819 	/* Rx Errors */
1820 	rte_stats->imissed = stats->mpc;
1821 	rte_stats->ierrors = stats->crcerrs + stats->rlec +
1822 	                     stats->rxerrc + stats->algnerrc + stats->cexterr;
1823 
1824 	/* Tx Errors */
1825 	rte_stats->oerrors = stats->ecol + stats->latecol;
1826 
1827 	rte_stats->ipackets = stats->gprc;
1828 	rte_stats->opackets = stats->gptc;
1829 	rte_stats->ibytes   = stats->gorc;
1830 	rte_stats->obytes   = stats->gotc;
1831 	return 0;
1832 }
1833 
1834 static int
1835 eth_igb_stats_reset(struct rte_eth_dev *dev)
1836 {
1837 	struct e1000_hw_stats *hw_stats =
1838 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1839 
1840 	/* HW registers are cleared on read */
1841 	eth_igb_stats_get(dev, NULL);
1842 
1843 	/* Reset software totals */
1844 	memset(hw_stats, 0, sizeof(*hw_stats));
1845 
1846 	return 0;
1847 }
1848 
1849 static int
1850 eth_igb_xstats_reset(struct rte_eth_dev *dev)
1851 {
1852 	struct e1000_hw_stats *stats =
1853 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1854 
1855 	/* HW registers are cleared on read */
1856 	eth_igb_xstats_get(dev, NULL, IGB_NB_XSTATS);
1857 
1858 	/* Reset software totals */
1859 	memset(stats, 0, sizeof(*stats));
1860 
1861 	return 0;
1862 }
1863 
1864 static int eth_igb_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
1865 	struct rte_eth_xstat_name *xstats_names,
1866 	__rte_unused unsigned int size)
1867 {
1868 	unsigned i;
1869 
1870 	if (xstats_names == NULL)
1871 		return IGB_NB_XSTATS;
1872 
1873 	/* Note: limit checked in rte_eth_xstats_names() */
1874 
1875 	for (i = 0; i < IGB_NB_XSTATS; i++) {
1876 		strlcpy(xstats_names[i].name, rte_igb_stats_strings[i].name,
1877 			sizeof(xstats_names[i].name));
1878 	}
1879 
1880 	return IGB_NB_XSTATS;
1881 }
1882 
1883 static int eth_igb_xstats_get_names_by_id(struct rte_eth_dev *dev,
1884 		const uint64_t *ids, struct rte_eth_xstat_name *xstats_names,
1885 		unsigned int limit)
1886 {
1887 	unsigned int i;
1888 
1889 	if (!ids) {
1890 		if (xstats_names == NULL)
1891 			return IGB_NB_XSTATS;
1892 
1893 		for (i = 0; i < IGB_NB_XSTATS; i++)
1894 			strlcpy(xstats_names[i].name,
1895 				rte_igb_stats_strings[i].name,
1896 				sizeof(xstats_names[i].name));
1897 
1898 		return IGB_NB_XSTATS;
1899 
1900 	} else {
1901 		struct rte_eth_xstat_name xstats_names_copy[IGB_NB_XSTATS];
1902 
1903 		eth_igb_xstats_get_names_by_id(dev, NULL, xstats_names_copy,
1904 				IGB_NB_XSTATS);
1905 
1906 		for (i = 0; i < limit; i++) {
1907 			if (ids[i] >= IGB_NB_XSTATS) {
1908 				PMD_INIT_LOG(ERR, "id value isn't valid");
1909 				return -1;
1910 			}
1911 			strcpy(xstats_names[i].name,
1912 					xstats_names_copy[ids[i]].name);
1913 		}
1914 		return limit;
1915 	}
1916 }
1917 
1918 static int
1919 eth_igb_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
1920 		   unsigned n)
1921 {
1922 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1923 	struct e1000_hw_stats *hw_stats =
1924 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1925 	unsigned i;
1926 
1927 	if (n < IGB_NB_XSTATS)
1928 		return IGB_NB_XSTATS;
1929 
1930 	igb_read_stats_registers(hw, hw_stats);
1931 
1932 	/* If this is a reset xstats is NULL, and we have cleared the
1933 	 * registers by reading them.
1934 	 */
1935 	if (!xstats)
1936 		return 0;
1937 
1938 	/* Extended stats */
1939 	for (i = 0; i < IGB_NB_XSTATS; i++) {
1940 		xstats[i].id = i;
1941 		xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
1942 			rte_igb_stats_strings[i].offset);
1943 	}
1944 
1945 	return IGB_NB_XSTATS;
1946 }
1947 
1948 static int
1949 eth_igb_xstats_get_by_id(struct rte_eth_dev *dev, const uint64_t *ids,
1950 		uint64_t *values, unsigned int n)
1951 {
1952 	unsigned int i;
1953 
1954 	if (!ids) {
1955 		struct e1000_hw *hw =
1956 			E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
1957 		struct e1000_hw_stats *hw_stats =
1958 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
1959 
1960 		if (n < IGB_NB_XSTATS)
1961 			return IGB_NB_XSTATS;
1962 
1963 		igb_read_stats_registers(hw, hw_stats);
1964 
1965 		/* If this is a reset xstats is NULL, and we have cleared the
1966 		 * registers by reading them.
1967 		 */
1968 		if (!values)
1969 			return 0;
1970 
1971 		/* Extended stats */
1972 		for (i = 0; i < IGB_NB_XSTATS; i++)
1973 			values[i] = *(uint64_t *)(((char *)hw_stats) +
1974 					rte_igb_stats_strings[i].offset);
1975 
1976 		return IGB_NB_XSTATS;
1977 
1978 	} else {
1979 		uint64_t values_copy[IGB_NB_XSTATS];
1980 
1981 		eth_igb_xstats_get_by_id(dev, NULL, values_copy,
1982 				IGB_NB_XSTATS);
1983 
1984 		for (i = 0; i < n; i++) {
1985 			if (ids[i] >= IGB_NB_XSTATS) {
1986 				PMD_INIT_LOG(ERR, "id value isn't valid");
1987 				return -1;
1988 			}
1989 			values[i] = values_copy[ids[i]];
1990 		}
1991 		return n;
1992 	}
1993 }
1994 
1995 static void
1996 igbvf_read_stats_registers(struct e1000_hw *hw, struct e1000_vf_stats *hw_stats)
1997 {
1998 	/* Good Rx packets, include VF loopback */
1999 	UPDATE_VF_STAT(E1000_VFGPRC,
2000 	    hw_stats->last_gprc, hw_stats->gprc);
2001 
2002 	/* Good Rx octets, include VF loopback */
2003 	UPDATE_VF_STAT(E1000_VFGORC,
2004 	    hw_stats->last_gorc, hw_stats->gorc);
2005 
2006 	/* Good Tx packets, include VF loopback */
2007 	UPDATE_VF_STAT(E1000_VFGPTC,
2008 	    hw_stats->last_gptc, hw_stats->gptc);
2009 
2010 	/* Good Tx octets, include VF loopback */
2011 	UPDATE_VF_STAT(E1000_VFGOTC,
2012 	    hw_stats->last_gotc, hw_stats->gotc);
2013 
2014 	/* Rx Multicst packets */
2015 	UPDATE_VF_STAT(E1000_VFMPRC,
2016 	    hw_stats->last_mprc, hw_stats->mprc);
2017 
2018 	/* Good Rx loopback packets */
2019 	UPDATE_VF_STAT(E1000_VFGPRLBC,
2020 	    hw_stats->last_gprlbc, hw_stats->gprlbc);
2021 
2022 	/* Good Rx loopback octets */
2023 	UPDATE_VF_STAT(E1000_VFGORLBC,
2024 	    hw_stats->last_gorlbc, hw_stats->gorlbc);
2025 
2026 	/* Good Tx loopback packets */
2027 	UPDATE_VF_STAT(E1000_VFGPTLBC,
2028 	    hw_stats->last_gptlbc, hw_stats->gptlbc);
2029 
2030 	/* Good Tx loopback octets */
2031 	UPDATE_VF_STAT(E1000_VFGOTLBC,
2032 	    hw_stats->last_gotlbc, hw_stats->gotlbc);
2033 }
2034 
2035 static int eth_igbvf_xstats_get_names(__rte_unused struct rte_eth_dev *dev,
2036 				     struct rte_eth_xstat_name *xstats_names,
2037 				     __rte_unused unsigned limit)
2038 {
2039 	unsigned i;
2040 
2041 	if (xstats_names != NULL)
2042 		for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2043 			strlcpy(xstats_names[i].name,
2044 				rte_igbvf_stats_strings[i].name,
2045 				sizeof(xstats_names[i].name));
2046 		}
2047 	return IGBVF_NB_XSTATS;
2048 }
2049 
2050 static int
2051 eth_igbvf_xstats_get(struct rte_eth_dev *dev, struct rte_eth_xstat *xstats,
2052 		     unsigned n)
2053 {
2054 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2055 	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2056 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2057 	unsigned i;
2058 
2059 	if (n < IGBVF_NB_XSTATS)
2060 		return IGBVF_NB_XSTATS;
2061 
2062 	igbvf_read_stats_registers(hw, hw_stats);
2063 
2064 	if (!xstats)
2065 		return 0;
2066 
2067 	for (i = 0; i < IGBVF_NB_XSTATS; i++) {
2068 		xstats[i].id = i;
2069 		xstats[i].value = *(uint64_t *)(((char *)hw_stats) +
2070 			rte_igbvf_stats_strings[i].offset);
2071 	}
2072 
2073 	return IGBVF_NB_XSTATS;
2074 }
2075 
2076 static int
2077 eth_igbvf_stats_get(struct rte_eth_dev *dev, struct rte_eth_stats *rte_stats)
2078 {
2079 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2080 	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats *)
2081 			  E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2082 
2083 	igbvf_read_stats_registers(hw, hw_stats);
2084 
2085 	if (rte_stats == NULL)
2086 		return -EINVAL;
2087 
2088 	rte_stats->ipackets = hw_stats->gprc;
2089 	rte_stats->ibytes = hw_stats->gorc;
2090 	rte_stats->opackets = hw_stats->gptc;
2091 	rte_stats->obytes = hw_stats->gotc;
2092 	return 0;
2093 }
2094 
2095 static int
2096 eth_igbvf_stats_reset(struct rte_eth_dev *dev)
2097 {
2098 	struct e1000_vf_stats *hw_stats = (struct e1000_vf_stats*)
2099 			E1000_DEV_PRIVATE_TO_STATS(dev->data->dev_private);
2100 
2101 	/* Sync HW register to the last stats */
2102 	eth_igbvf_stats_get(dev, NULL);
2103 
2104 	/* reset HW current stats*/
2105 	memset(&hw_stats->gprc, 0, sizeof(*hw_stats) -
2106 	       offsetof(struct e1000_vf_stats, gprc));
2107 
2108 	return 0;
2109 }
2110 
2111 static int
2112 eth_igb_fw_version_get(struct rte_eth_dev *dev, char *fw_version,
2113 		       size_t fw_size)
2114 {
2115 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2116 	struct e1000_fw_version fw;
2117 	int ret;
2118 
2119 	e1000_get_fw_version(hw, &fw);
2120 
2121 	switch (hw->mac.type) {
2122 	case e1000_i210:
2123 	case e1000_i211:
2124 		if (!(e1000_get_flash_presence_i210(hw))) {
2125 			ret = snprintf(fw_version, fw_size,
2126 				 "%2d.%2d-%d",
2127 				 fw.invm_major, fw.invm_minor,
2128 				 fw.invm_img_type);
2129 			break;
2130 		}
2131 		/* fall through */
2132 	default:
2133 		/* if option rom is valid, display its version too */
2134 		if (fw.or_valid) {
2135 			ret = snprintf(fw_version, fw_size,
2136 				 "%d.%d, 0x%08x, %d.%d.%d",
2137 				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2138 				 fw.or_major, fw.or_build, fw.or_patch);
2139 		/* no option rom */
2140 		} else {
2141 			if (fw.etrack_id != 0X0000) {
2142 				ret = snprintf(fw_version, fw_size,
2143 					 "%d.%d, 0x%08x",
2144 					 fw.eep_major, fw.eep_minor,
2145 					 fw.etrack_id);
2146 			} else {
2147 				ret = snprintf(fw_version, fw_size,
2148 					 "%d.%d.%d",
2149 					 fw.eep_major, fw.eep_minor,
2150 					 fw.eep_build);
2151 			}
2152 		}
2153 		break;
2154 	}
2155 	if (ret < 0)
2156 		return -EINVAL;
2157 
2158 	ret += 1; /* add the size of '\0' */
2159 	if (fw_size < (size_t)ret)
2160 		return ret;
2161 	else
2162 		return 0;
2163 }
2164 
2165 static int
2166 eth_igb_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2167 {
2168 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2169 
2170 	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2171 	dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2172 	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2173 	dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2174 	dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2175 				    dev_info->rx_queue_offload_capa;
2176 	dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2177 	dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2178 				    dev_info->tx_queue_offload_capa;
2179 
2180 	switch (hw->mac.type) {
2181 	case e1000_82575:
2182 		dev_info->max_rx_queues = 4;
2183 		dev_info->max_tx_queues = 4;
2184 		dev_info->max_vmdq_pools = 0;
2185 		break;
2186 
2187 	case e1000_82576:
2188 		dev_info->max_rx_queues = 16;
2189 		dev_info->max_tx_queues = 16;
2190 		dev_info->max_vmdq_pools = ETH_8_POOLS;
2191 		dev_info->vmdq_queue_num = 16;
2192 		break;
2193 
2194 	case e1000_82580:
2195 		dev_info->max_rx_queues = 8;
2196 		dev_info->max_tx_queues = 8;
2197 		dev_info->max_vmdq_pools = ETH_8_POOLS;
2198 		dev_info->vmdq_queue_num = 8;
2199 		break;
2200 
2201 	case e1000_i350:
2202 		dev_info->max_rx_queues = 8;
2203 		dev_info->max_tx_queues = 8;
2204 		dev_info->max_vmdq_pools = ETH_8_POOLS;
2205 		dev_info->vmdq_queue_num = 8;
2206 		break;
2207 
2208 	case e1000_i354:
2209 		dev_info->max_rx_queues = 8;
2210 		dev_info->max_tx_queues = 8;
2211 		break;
2212 
2213 	case e1000_i210:
2214 		dev_info->max_rx_queues = 4;
2215 		dev_info->max_tx_queues = 4;
2216 		dev_info->max_vmdq_pools = 0;
2217 		break;
2218 
2219 	case e1000_i211:
2220 		dev_info->max_rx_queues = 2;
2221 		dev_info->max_tx_queues = 2;
2222 		dev_info->max_vmdq_pools = 0;
2223 		break;
2224 
2225 	default:
2226 		/* Should not happen */
2227 		return -EINVAL;
2228 	}
2229 	dev_info->hash_key_size = IGB_HKEY_MAX_INDEX * sizeof(uint32_t);
2230 	dev_info->reta_size = ETH_RSS_RETA_SIZE_128;
2231 	dev_info->flow_type_rss_offloads = IGB_RSS_OFFLOAD_ALL;
2232 
2233 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
2234 		.rx_thresh = {
2235 			.pthresh = IGB_DEFAULT_RX_PTHRESH,
2236 			.hthresh = IGB_DEFAULT_RX_HTHRESH,
2237 			.wthresh = IGB_DEFAULT_RX_WTHRESH,
2238 		},
2239 		.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2240 		.rx_drop_en = 0,
2241 		.offloads = 0,
2242 	};
2243 
2244 	dev_info->default_txconf = (struct rte_eth_txconf) {
2245 		.tx_thresh = {
2246 			.pthresh = IGB_DEFAULT_TX_PTHRESH,
2247 			.hthresh = IGB_DEFAULT_TX_HTHRESH,
2248 			.wthresh = IGB_DEFAULT_TX_WTHRESH,
2249 		},
2250 		.offloads = 0,
2251 	};
2252 
2253 	dev_info->rx_desc_lim = rx_desc_lim;
2254 	dev_info->tx_desc_lim = tx_desc_lim;
2255 
2256 	dev_info->speed_capa = ETH_LINK_SPEED_10M_HD | ETH_LINK_SPEED_10M |
2257 			ETH_LINK_SPEED_100M_HD | ETH_LINK_SPEED_100M |
2258 			ETH_LINK_SPEED_1G;
2259 
2260 	dev_info->max_mtu = dev_info->max_rx_pktlen - E1000_ETH_OVERHEAD;
2261 	dev_info->min_mtu = RTE_ETHER_MIN_MTU;
2262 
2263 	return 0;
2264 }
2265 
2266 static const uint32_t *
2267 eth_igb_supported_ptypes_get(struct rte_eth_dev *dev)
2268 {
2269 	static const uint32_t ptypes[] = {
2270 		/* refers to igb_rxd_pkt_info_to_pkt_type() */
2271 		RTE_PTYPE_L2_ETHER,
2272 		RTE_PTYPE_L3_IPV4,
2273 		RTE_PTYPE_L3_IPV4_EXT,
2274 		RTE_PTYPE_L3_IPV6,
2275 		RTE_PTYPE_L3_IPV6_EXT,
2276 		RTE_PTYPE_L4_TCP,
2277 		RTE_PTYPE_L4_UDP,
2278 		RTE_PTYPE_L4_SCTP,
2279 		RTE_PTYPE_TUNNEL_IP,
2280 		RTE_PTYPE_INNER_L3_IPV6,
2281 		RTE_PTYPE_INNER_L3_IPV6_EXT,
2282 		RTE_PTYPE_INNER_L4_TCP,
2283 		RTE_PTYPE_INNER_L4_UDP,
2284 		RTE_PTYPE_UNKNOWN
2285 	};
2286 
2287 	if (dev->rx_pkt_burst == eth_igb_recv_pkts ||
2288 	    dev->rx_pkt_burst == eth_igb_recv_scattered_pkts)
2289 		return ptypes;
2290 	return NULL;
2291 }
2292 
2293 static int
2294 eth_igbvf_infos_get(struct rte_eth_dev *dev, struct rte_eth_dev_info *dev_info)
2295 {
2296 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2297 
2298 	dev_info->min_rx_bufsize = 256; /* See BSIZE field of RCTL register. */
2299 	dev_info->max_rx_pktlen  = 0x3FFF; /* See RLPML register. */
2300 	dev_info->max_mac_addrs = hw->mac.rar_entry_count;
2301 	dev_info->tx_offload_capa = DEV_TX_OFFLOAD_VLAN_INSERT |
2302 				DEV_TX_OFFLOAD_IPV4_CKSUM  |
2303 				DEV_TX_OFFLOAD_UDP_CKSUM   |
2304 				DEV_TX_OFFLOAD_TCP_CKSUM   |
2305 				DEV_TX_OFFLOAD_SCTP_CKSUM  |
2306 				DEV_TX_OFFLOAD_TCP_TSO;
2307 	switch (hw->mac.type) {
2308 	case e1000_vfadapt:
2309 		dev_info->max_rx_queues = 2;
2310 		dev_info->max_tx_queues = 2;
2311 		break;
2312 	case e1000_vfadapt_i350:
2313 		dev_info->max_rx_queues = 1;
2314 		dev_info->max_tx_queues = 1;
2315 		break;
2316 	default:
2317 		/* Should not happen */
2318 		return -EINVAL;
2319 	}
2320 
2321 	dev_info->rx_queue_offload_capa = igb_get_rx_queue_offloads_capa(dev);
2322 	dev_info->rx_offload_capa = igb_get_rx_port_offloads_capa(dev) |
2323 				    dev_info->rx_queue_offload_capa;
2324 	dev_info->tx_queue_offload_capa = igb_get_tx_queue_offloads_capa(dev);
2325 	dev_info->tx_offload_capa = igb_get_tx_port_offloads_capa(dev) |
2326 				    dev_info->tx_queue_offload_capa;
2327 
2328 	dev_info->default_rxconf = (struct rte_eth_rxconf) {
2329 		.rx_thresh = {
2330 			.pthresh = IGB_DEFAULT_RX_PTHRESH,
2331 			.hthresh = IGB_DEFAULT_RX_HTHRESH,
2332 			.wthresh = IGB_DEFAULT_RX_WTHRESH,
2333 		},
2334 		.rx_free_thresh = IGB_DEFAULT_RX_FREE_THRESH,
2335 		.rx_drop_en = 0,
2336 		.offloads = 0,
2337 	};
2338 
2339 	dev_info->default_txconf = (struct rte_eth_txconf) {
2340 		.tx_thresh = {
2341 			.pthresh = IGB_DEFAULT_TX_PTHRESH,
2342 			.hthresh = IGB_DEFAULT_TX_HTHRESH,
2343 			.wthresh = IGB_DEFAULT_TX_WTHRESH,
2344 		},
2345 		.offloads = 0,
2346 	};
2347 
2348 	dev_info->rx_desc_lim = rx_desc_lim;
2349 	dev_info->tx_desc_lim = tx_desc_lim;
2350 
2351 	return 0;
2352 }
2353 
2354 /* return 0 means link status changed, -1 means not changed */
2355 static int
2356 eth_igb_link_update(struct rte_eth_dev *dev, int wait_to_complete)
2357 {
2358 	struct e1000_hw *hw =
2359 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2360 	struct rte_eth_link link;
2361 	int link_check, count;
2362 
2363 	link_check = 0;
2364 	hw->mac.get_link_status = 1;
2365 
2366 	/* possible wait-to-complete in up to 9 seconds */
2367 	for (count = 0; count < IGB_LINK_UPDATE_CHECK_TIMEOUT; count ++) {
2368 		/* Read the real link status */
2369 		switch (hw->phy.media_type) {
2370 		case e1000_media_type_copper:
2371 			/* Do the work to read phy */
2372 			e1000_check_for_link(hw);
2373 			link_check = !hw->mac.get_link_status;
2374 			break;
2375 
2376 		case e1000_media_type_fiber:
2377 			e1000_check_for_link(hw);
2378 			link_check = (E1000_READ_REG(hw, E1000_STATUS) &
2379 				      E1000_STATUS_LU);
2380 			break;
2381 
2382 		case e1000_media_type_internal_serdes:
2383 			e1000_check_for_link(hw);
2384 			link_check = hw->mac.serdes_has_link;
2385 			break;
2386 
2387 		/* VF device is type_unknown */
2388 		case e1000_media_type_unknown:
2389 			eth_igbvf_link_update(hw);
2390 			link_check = !hw->mac.get_link_status;
2391 			break;
2392 
2393 		default:
2394 			break;
2395 		}
2396 		if (link_check || wait_to_complete == 0)
2397 			break;
2398 		rte_delay_ms(IGB_LINK_UPDATE_CHECK_INTERVAL);
2399 	}
2400 	memset(&link, 0, sizeof(link));
2401 
2402 	/* Now we check if a transition has happened */
2403 	if (link_check) {
2404 		uint16_t duplex, speed;
2405 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
2406 		link.link_duplex = (duplex == FULL_DUPLEX) ?
2407 				ETH_LINK_FULL_DUPLEX :
2408 				ETH_LINK_HALF_DUPLEX;
2409 		link.link_speed = speed;
2410 		link.link_status = ETH_LINK_UP;
2411 		link.link_autoneg = !(dev->data->dev_conf.link_speeds &
2412 				ETH_LINK_SPEED_FIXED);
2413 	} else if (!link_check) {
2414 		link.link_speed = 0;
2415 		link.link_duplex = ETH_LINK_HALF_DUPLEX;
2416 		link.link_status = ETH_LINK_DOWN;
2417 		link.link_autoneg = ETH_LINK_FIXED;
2418 	}
2419 
2420 	return rte_eth_linkstatus_set(dev, &link);
2421 }
2422 
2423 /*
2424  * igb_hw_control_acquire sets CTRL_EXT:DRV_LOAD bit.
2425  * For ASF and Pass Through versions of f/w this means
2426  * that the driver is loaded.
2427  */
2428 static void
2429 igb_hw_control_acquire(struct e1000_hw *hw)
2430 {
2431 	uint32_t ctrl_ext;
2432 
2433 	/* Let firmware know the driver has taken over */
2434 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2435 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2436 }
2437 
2438 /*
2439  * igb_hw_control_release resets CTRL_EXT:DRV_LOAD bit.
2440  * For ASF and Pass Through versions of f/w this means that the
2441  * driver is no longer loaded.
2442  */
2443 static void
2444 igb_hw_control_release(struct e1000_hw *hw)
2445 {
2446 	uint32_t ctrl_ext;
2447 
2448 	/* Let firmware taken over control of h/w */
2449 	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
2450 	E1000_WRITE_REG(hw, E1000_CTRL_EXT,
2451 			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2452 }
2453 
2454 /*
2455  * Bit of a misnomer, what this really means is
2456  * to enable OS management of the system... aka
2457  * to disable special hardware management features.
2458  */
2459 static void
2460 igb_init_manageability(struct e1000_hw *hw)
2461 {
2462 	if (e1000_enable_mng_pass_thru(hw)) {
2463 		uint32_t manc2h = E1000_READ_REG(hw, E1000_MANC2H);
2464 		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2465 
2466 		/* disable hardware interception of ARP */
2467 		manc &= ~(E1000_MANC_ARP_EN);
2468 
2469 		/* enable receiving management packets to the host */
2470 		manc |= E1000_MANC_EN_MNG2HOST;
2471 		manc2h |= 1 << 5;  /* Mng Port 623 */
2472 		manc2h |= 1 << 6;  /* Mng Port 664 */
2473 		E1000_WRITE_REG(hw, E1000_MANC2H, manc2h);
2474 		E1000_WRITE_REG(hw, E1000_MANC, manc);
2475 	}
2476 }
2477 
2478 static void
2479 igb_release_manageability(struct e1000_hw *hw)
2480 {
2481 	if (e1000_enable_mng_pass_thru(hw)) {
2482 		uint32_t manc = E1000_READ_REG(hw, E1000_MANC);
2483 
2484 		manc |= E1000_MANC_ARP_EN;
2485 		manc &= ~E1000_MANC_EN_MNG2HOST;
2486 
2487 		E1000_WRITE_REG(hw, E1000_MANC, manc);
2488 	}
2489 }
2490 
2491 static int
2492 eth_igb_promiscuous_enable(struct rte_eth_dev *dev)
2493 {
2494 	struct e1000_hw *hw =
2495 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2496 	uint32_t rctl;
2497 
2498 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2499 	rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2500 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2501 
2502 	return 0;
2503 }
2504 
2505 static int
2506 eth_igb_promiscuous_disable(struct rte_eth_dev *dev)
2507 {
2508 	struct e1000_hw *hw =
2509 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2510 	uint32_t rctl;
2511 
2512 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2513 	rctl &= (~E1000_RCTL_UPE);
2514 	if (dev->data->all_multicast == 1)
2515 		rctl |= E1000_RCTL_MPE;
2516 	else
2517 		rctl &= (~E1000_RCTL_MPE);
2518 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2519 
2520 	return 0;
2521 }
2522 
2523 static int
2524 eth_igb_allmulticast_enable(struct rte_eth_dev *dev)
2525 {
2526 	struct e1000_hw *hw =
2527 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2528 	uint32_t rctl;
2529 
2530 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2531 	rctl |= E1000_RCTL_MPE;
2532 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2533 
2534 	return 0;
2535 }
2536 
2537 static int
2538 eth_igb_allmulticast_disable(struct rte_eth_dev *dev)
2539 {
2540 	struct e1000_hw *hw =
2541 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2542 	uint32_t rctl;
2543 
2544 	if (dev->data->promiscuous == 1)
2545 		return 0; /* must remain in all_multicast mode */
2546 	rctl = E1000_READ_REG(hw, E1000_RCTL);
2547 	rctl &= (~E1000_RCTL_MPE);
2548 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
2549 
2550 	return 0;
2551 }
2552 
2553 static int
2554 eth_igb_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
2555 {
2556 	struct e1000_hw *hw =
2557 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2558 	struct e1000_vfta * shadow_vfta =
2559 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2560 	uint32_t vfta;
2561 	uint32_t vid_idx;
2562 	uint32_t vid_bit;
2563 
2564 	vid_idx = (uint32_t) ((vlan_id >> E1000_VFTA_ENTRY_SHIFT) &
2565 			      E1000_VFTA_ENTRY_MASK);
2566 	vid_bit = (uint32_t) (1 << (vlan_id & E1000_VFTA_ENTRY_BIT_SHIFT_MASK));
2567 	vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, vid_idx);
2568 	if (on)
2569 		vfta |= vid_bit;
2570 	else
2571 		vfta &= ~vid_bit;
2572 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, vid_idx, vfta);
2573 
2574 	/* update local VFTA copy */
2575 	shadow_vfta->vfta[vid_idx] = vfta;
2576 
2577 	return 0;
2578 }
2579 
2580 static int
2581 eth_igb_vlan_tpid_set(struct rte_eth_dev *dev,
2582 		      enum rte_vlan_type vlan_type,
2583 		      uint16_t tpid)
2584 {
2585 	struct e1000_hw *hw =
2586 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2587 	uint32_t reg, qinq;
2588 
2589 	qinq = E1000_READ_REG(hw, E1000_CTRL_EXT);
2590 	qinq &= E1000_CTRL_EXT_EXT_VLAN;
2591 
2592 	/* only outer TPID of double VLAN can be configured*/
2593 	if (qinq && vlan_type == ETH_VLAN_TYPE_OUTER) {
2594 		reg = E1000_READ_REG(hw, E1000_VET);
2595 		reg = (reg & (~E1000_VET_VET_EXT)) |
2596 			((uint32_t)tpid << E1000_VET_VET_EXT_SHIFT);
2597 		E1000_WRITE_REG(hw, E1000_VET, reg);
2598 
2599 		return 0;
2600 	}
2601 
2602 	/* all other TPID values are read-only*/
2603 	PMD_DRV_LOG(ERR, "Not supported");
2604 
2605 	return -ENOTSUP;
2606 }
2607 
2608 static void
2609 igb_vlan_hw_filter_disable(struct rte_eth_dev *dev)
2610 {
2611 	struct e1000_hw *hw =
2612 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2613 	uint32_t reg;
2614 
2615 	/* Filter Table Disable */
2616 	reg = E1000_READ_REG(hw, E1000_RCTL);
2617 	reg &= ~E1000_RCTL_CFIEN;
2618 	reg &= ~E1000_RCTL_VFE;
2619 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
2620 }
2621 
2622 static void
2623 igb_vlan_hw_filter_enable(struct rte_eth_dev *dev)
2624 {
2625 	struct e1000_hw *hw =
2626 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2627 	struct e1000_vfta * shadow_vfta =
2628 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
2629 	uint32_t reg;
2630 	int i;
2631 
2632 	/* Filter Table Enable, CFI not used for packet acceptance */
2633 	reg = E1000_READ_REG(hw, E1000_RCTL);
2634 	reg &= ~E1000_RCTL_CFIEN;
2635 	reg |= E1000_RCTL_VFE;
2636 	E1000_WRITE_REG(hw, E1000_RCTL, reg);
2637 
2638 	/* restore VFTA table */
2639 	for (i = 0; i < IGB_VFTA_SIZE; i++)
2640 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, i, shadow_vfta->vfta[i]);
2641 }
2642 
2643 static void
2644 igb_vlan_hw_strip_disable(struct rte_eth_dev *dev)
2645 {
2646 	struct e1000_hw *hw =
2647 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2648 	uint32_t reg;
2649 
2650 	/* VLAN Mode Disable */
2651 	reg = E1000_READ_REG(hw, E1000_CTRL);
2652 	reg &= ~E1000_CTRL_VME;
2653 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2654 }
2655 
2656 static void
2657 igb_vlan_hw_strip_enable(struct rte_eth_dev *dev)
2658 {
2659 	struct e1000_hw *hw =
2660 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2661 	uint32_t reg;
2662 
2663 	/* VLAN Mode Enable */
2664 	reg = E1000_READ_REG(hw, E1000_CTRL);
2665 	reg |= E1000_CTRL_VME;
2666 	E1000_WRITE_REG(hw, E1000_CTRL, reg);
2667 }
2668 
2669 static void
2670 igb_vlan_hw_extend_disable(struct rte_eth_dev *dev)
2671 {
2672 	struct e1000_hw *hw =
2673 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2674 	uint32_t reg;
2675 
2676 	/* CTRL_EXT: Extended VLAN */
2677 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2678 	reg &= ~E1000_CTRL_EXT_EXTEND_VLAN;
2679 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2680 
2681 	/* Update maximum packet length */
2682 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2683 		E1000_WRITE_REG(hw, E1000_RLPML,
2684 				dev->data->dev_conf.rxmode.max_rx_pkt_len);
2685 }
2686 
2687 static void
2688 igb_vlan_hw_extend_enable(struct rte_eth_dev *dev)
2689 {
2690 	struct e1000_hw *hw =
2691 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2692 	uint32_t reg;
2693 
2694 	/* CTRL_EXT: Extended VLAN */
2695 	reg = E1000_READ_REG(hw, E1000_CTRL_EXT);
2696 	reg |= E1000_CTRL_EXT_EXTEND_VLAN;
2697 	E1000_WRITE_REG(hw, E1000_CTRL_EXT, reg);
2698 
2699 	/* Update maximum packet length */
2700 	if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_JUMBO_FRAME)
2701 		E1000_WRITE_REG(hw, E1000_RLPML,
2702 			dev->data->dev_conf.rxmode.max_rx_pkt_len +
2703 						VLAN_TAG_SIZE);
2704 }
2705 
2706 static int
2707 eth_igb_vlan_offload_set(struct rte_eth_dev *dev, int mask)
2708 {
2709 	struct rte_eth_rxmode *rxmode;
2710 
2711 	rxmode = &dev->data->dev_conf.rxmode;
2712 	if(mask & ETH_VLAN_STRIP_MASK){
2713 		if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_STRIP)
2714 			igb_vlan_hw_strip_enable(dev);
2715 		else
2716 			igb_vlan_hw_strip_disable(dev);
2717 	}
2718 
2719 	if(mask & ETH_VLAN_FILTER_MASK){
2720 		if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_FILTER)
2721 			igb_vlan_hw_filter_enable(dev);
2722 		else
2723 			igb_vlan_hw_filter_disable(dev);
2724 	}
2725 
2726 	if(mask & ETH_VLAN_EXTEND_MASK){
2727 		if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
2728 			igb_vlan_hw_extend_enable(dev);
2729 		else
2730 			igb_vlan_hw_extend_disable(dev);
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 
2737 /**
2738  * It enables the interrupt mask and then enable the interrupt.
2739  *
2740  * @param dev
2741  *  Pointer to struct rte_eth_dev.
2742  * @param on
2743  *  Enable or Disable
2744  *
2745  * @return
2746  *  - On success, zero.
2747  *  - On failure, a negative value.
2748  */
2749 static int
2750 eth_igb_lsc_interrupt_setup(struct rte_eth_dev *dev, uint8_t on)
2751 {
2752 	struct e1000_interrupt *intr =
2753 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2754 
2755 	if (on)
2756 		intr->mask |= E1000_ICR_LSC;
2757 	else
2758 		intr->mask &= ~E1000_ICR_LSC;
2759 
2760 	return 0;
2761 }
2762 
2763 /* It clears the interrupt causes and enables the interrupt.
2764  * It will be called once only during nic initialized.
2765  *
2766  * @param dev
2767  *  Pointer to struct rte_eth_dev.
2768  *
2769  * @return
2770  *  - On success, zero.
2771  *  - On failure, a negative value.
2772  */
2773 static int eth_igb_rxq_interrupt_setup(struct rte_eth_dev *dev)
2774 {
2775 	uint32_t mask, regval;
2776 	int ret;
2777 	struct e1000_hw *hw =
2778 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2779 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2780 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
2781 	int misc_shift = rte_intr_allow_others(intr_handle) ? 1 : 0;
2782 	struct rte_eth_dev_info dev_info;
2783 
2784 	memset(&dev_info, 0, sizeof(dev_info));
2785 	ret = eth_igb_infos_get(dev, &dev_info);
2786 	if (ret != 0)
2787 		return ret;
2788 
2789 	mask = (0xFFFFFFFF >> (32 - dev_info.max_rx_queues)) << misc_shift;
2790 	regval = E1000_READ_REG(hw, E1000_EIMS);
2791 	E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
2792 
2793 	return 0;
2794 }
2795 
2796 /*
2797  * It reads ICR and gets interrupt causes, check it and set a bit flag
2798  * to update link status.
2799  *
2800  * @param dev
2801  *  Pointer to struct rte_eth_dev.
2802  *
2803  * @return
2804  *  - On success, zero.
2805  *  - On failure, a negative value.
2806  */
2807 static int
2808 eth_igb_interrupt_get_status(struct rte_eth_dev *dev)
2809 {
2810 	uint32_t icr;
2811 	struct e1000_hw *hw =
2812 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2813 	struct e1000_interrupt *intr =
2814 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2815 
2816 	igb_intr_disable(dev);
2817 
2818 	/* read-on-clear nic registers here */
2819 	icr = E1000_READ_REG(hw, E1000_ICR);
2820 
2821 	intr->flags = 0;
2822 	if (icr & E1000_ICR_LSC) {
2823 		intr->flags |= E1000_FLAG_NEED_LINK_UPDATE;
2824 	}
2825 
2826 	if (icr & E1000_ICR_VMMB)
2827 		intr->flags |= E1000_FLAG_MAILBOX;
2828 
2829 	return 0;
2830 }
2831 
2832 /*
2833  * It executes link_update after knowing an interrupt is prsent.
2834  *
2835  * @param dev
2836  *  Pointer to struct rte_eth_dev.
2837  *
2838  * @return
2839  *  - On success, zero.
2840  *  - On failure, a negative value.
2841  */
2842 static int
2843 eth_igb_interrupt_action(struct rte_eth_dev *dev,
2844 			 struct rte_intr_handle *intr_handle)
2845 {
2846 	struct e1000_hw *hw =
2847 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2848 	struct e1000_interrupt *intr =
2849 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2850 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
2851 	struct rte_eth_link link;
2852 	int ret;
2853 
2854 	if (intr->flags & E1000_FLAG_MAILBOX) {
2855 		igb_pf_mbx_process(dev);
2856 		intr->flags &= ~E1000_FLAG_MAILBOX;
2857 	}
2858 
2859 	igb_intr_enable(dev);
2860 	rte_intr_ack(intr_handle);
2861 
2862 	if (intr->flags & E1000_FLAG_NEED_LINK_UPDATE) {
2863 		intr->flags &= ~E1000_FLAG_NEED_LINK_UPDATE;
2864 
2865 		/* set get_link_status to check register later */
2866 		hw->mac.get_link_status = 1;
2867 		ret = eth_igb_link_update(dev, 0);
2868 
2869 		/* check if link has changed */
2870 		if (ret < 0)
2871 			return 0;
2872 
2873 		rte_eth_linkstatus_get(dev, &link);
2874 		if (link.link_status) {
2875 			PMD_INIT_LOG(INFO,
2876 				     " Port %d: Link Up - speed %u Mbps - %s",
2877 				     dev->data->port_id,
2878 				     (unsigned)link.link_speed,
2879 				     link.link_duplex == ETH_LINK_FULL_DUPLEX ?
2880 				     "full-duplex" : "half-duplex");
2881 		} else {
2882 			PMD_INIT_LOG(INFO, " Port %d: Link Down",
2883 				     dev->data->port_id);
2884 		}
2885 
2886 		PMD_INIT_LOG(DEBUG, "PCI Address: " PCI_PRI_FMT,
2887 			     pci_dev->addr.domain,
2888 			     pci_dev->addr.bus,
2889 			     pci_dev->addr.devid,
2890 			     pci_dev->addr.function);
2891 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_LSC, NULL);
2892 	}
2893 
2894 	return 0;
2895 }
2896 
2897 /**
2898  * Interrupt handler which shall be registered at first.
2899  *
2900  * @param handle
2901  *  Pointer to interrupt handle.
2902  * @param param
2903  *  The address of parameter (struct rte_eth_dev *) regsitered before.
2904  *
2905  * @return
2906  *  void
2907  */
2908 static void
2909 eth_igb_interrupt_handler(void *param)
2910 {
2911 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2912 
2913 	eth_igb_interrupt_get_status(dev);
2914 	eth_igb_interrupt_action(dev, dev->intr_handle);
2915 }
2916 
2917 static int
2918 eth_igbvf_interrupt_get_status(struct rte_eth_dev *dev)
2919 {
2920 	uint32_t eicr;
2921 	struct e1000_hw *hw =
2922 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2923 	struct e1000_interrupt *intr =
2924 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2925 
2926 	igbvf_intr_disable(hw);
2927 
2928 	/* read-on-clear nic registers here */
2929 	eicr = E1000_READ_REG(hw, E1000_EICR);
2930 	intr->flags = 0;
2931 
2932 	if (eicr == E1000_VTIVAR_MISC_MAILBOX)
2933 		intr->flags |= E1000_FLAG_MAILBOX;
2934 
2935 	return 0;
2936 }
2937 
2938 void igbvf_mbx_process(struct rte_eth_dev *dev)
2939 {
2940 	struct e1000_hw *hw =
2941 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2942 	struct e1000_mbx_info *mbx = &hw->mbx;
2943 	u32 in_msg = 0;
2944 
2945 	/* peek the message first */
2946 	in_msg = E1000_READ_REG(hw, E1000_VMBMEM(0));
2947 
2948 	/* PF reset VF event */
2949 	if (in_msg == E1000_PF_CONTROL_MSG) {
2950 		/* dummy mbx read to ack pf */
2951 		if (mbx->ops.read(hw, &in_msg, 1, 0))
2952 			return;
2953 		rte_eth_dev_callback_process(dev, RTE_ETH_EVENT_INTR_RESET,
2954 					     NULL);
2955 	}
2956 }
2957 
2958 static int
2959 eth_igbvf_interrupt_action(struct rte_eth_dev *dev, struct rte_intr_handle *intr_handle)
2960 {
2961 	struct e1000_interrupt *intr =
2962 		E1000_DEV_PRIVATE_TO_INTR(dev->data->dev_private);
2963 
2964 	if (intr->flags & E1000_FLAG_MAILBOX) {
2965 		igbvf_mbx_process(dev);
2966 		intr->flags &= ~E1000_FLAG_MAILBOX;
2967 	}
2968 
2969 	igbvf_intr_enable(dev);
2970 	rte_intr_ack(intr_handle);
2971 
2972 	return 0;
2973 }
2974 
2975 static void
2976 eth_igbvf_interrupt_handler(void *param)
2977 {
2978 	struct rte_eth_dev *dev = (struct rte_eth_dev *)param;
2979 
2980 	eth_igbvf_interrupt_get_status(dev);
2981 	eth_igbvf_interrupt_action(dev, dev->intr_handle);
2982 }
2983 
2984 static int
2985 eth_igb_led_on(struct rte_eth_dev *dev)
2986 {
2987 	struct e1000_hw *hw;
2988 
2989 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2990 	return e1000_led_on(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
2991 }
2992 
2993 static int
2994 eth_igb_led_off(struct rte_eth_dev *dev)
2995 {
2996 	struct e1000_hw *hw;
2997 
2998 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
2999 	return e1000_led_off(hw) == E1000_SUCCESS ? 0 : -ENOTSUP;
3000 }
3001 
3002 static int
3003 eth_igb_flow_ctrl_get(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3004 {
3005 	struct e1000_hw *hw;
3006 	uint32_t ctrl;
3007 	int tx_pause;
3008 	int rx_pause;
3009 
3010 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3011 	fc_conf->pause_time = hw->fc.pause_time;
3012 	fc_conf->high_water = hw->fc.high_water;
3013 	fc_conf->low_water = hw->fc.low_water;
3014 	fc_conf->send_xon = hw->fc.send_xon;
3015 	fc_conf->autoneg = hw->mac.autoneg;
3016 
3017 	/*
3018 	 * Return rx_pause and tx_pause status according to actual setting of
3019 	 * the TFCE and RFCE bits in the CTRL register.
3020 	 */
3021 	ctrl = E1000_READ_REG(hw, E1000_CTRL);
3022 	if (ctrl & E1000_CTRL_TFCE)
3023 		tx_pause = 1;
3024 	else
3025 		tx_pause = 0;
3026 
3027 	if (ctrl & E1000_CTRL_RFCE)
3028 		rx_pause = 1;
3029 	else
3030 		rx_pause = 0;
3031 
3032 	if (rx_pause && tx_pause)
3033 		fc_conf->mode = RTE_FC_FULL;
3034 	else if (rx_pause)
3035 		fc_conf->mode = RTE_FC_RX_PAUSE;
3036 	else if (tx_pause)
3037 		fc_conf->mode = RTE_FC_TX_PAUSE;
3038 	else
3039 		fc_conf->mode = RTE_FC_NONE;
3040 
3041 	return 0;
3042 }
3043 
3044 static int
3045 eth_igb_flow_ctrl_set(struct rte_eth_dev *dev, struct rte_eth_fc_conf *fc_conf)
3046 {
3047 	struct e1000_hw *hw;
3048 	int err;
3049 	enum e1000_fc_mode rte_fcmode_2_e1000_fcmode[] = {
3050 		e1000_fc_none,
3051 		e1000_fc_rx_pause,
3052 		e1000_fc_tx_pause,
3053 		e1000_fc_full
3054 	};
3055 	uint32_t rx_buf_size;
3056 	uint32_t max_high_water;
3057 	uint32_t rctl;
3058 	uint32_t ctrl;
3059 
3060 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3061 	if (fc_conf->autoneg != hw->mac.autoneg)
3062 		return -ENOTSUP;
3063 	rx_buf_size = igb_get_rx_buffer_size(hw);
3064 	PMD_INIT_LOG(DEBUG, "Rx packet buffer size = 0x%x", rx_buf_size);
3065 
3066 	/* At least reserve one Ethernet frame for watermark */
3067 	max_high_water = rx_buf_size - RTE_ETHER_MAX_LEN;
3068 	if ((fc_conf->high_water > max_high_water) ||
3069 	    (fc_conf->high_water < fc_conf->low_water)) {
3070 		PMD_INIT_LOG(ERR, "e1000 incorrect high/low water value");
3071 		PMD_INIT_LOG(ERR, "high water must <=  0x%x", max_high_water);
3072 		return -EINVAL;
3073 	}
3074 
3075 	hw->fc.requested_mode = rte_fcmode_2_e1000_fcmode[fc_conf->mode];
3076 	hw->fc.pause_time     = fc_conf->pause_time;
3077 	hw->fc.high_water     = fc_conf->high_water;
3078 	hw->fc.low_water      = fc_conf->low_water;
3079 	hw->fc.send_xon	      = fc_conf->send_xon;
3080 
3081 	err = e1000_setup_link_generic(hw);
3082 	if (err == E1000_SUCCESS) {
3083 
3084 		/* check if we want to forward MAC frames - driver doesn't have native
3085 		 * capability to do that, so we'll write the registers ourselves */
3086 
3087 		rctl = E1000_READ_REG(hw, E1000_RCTL);
3088 
3089 		/* set or clear MFLCN.PMCF bit depending on configuration */
3090 		if (fc_conf->mac_ctrl_frame_fwd != 0)
3091 			rctl |= E1000_RCTL_PMCF;
3092 		else
3093 			rctl &= ~E1000_RCTL_PMCF;
3094 
3095 		E1000_WRITE_REG(hw, E1000_RCTL, rctl);
3096 
3097 		/*
3098 		 * check if we want to change flow control mode - driver doesn't have native
3099 		 * capability to do that, so we'll write the registers ourselves
3100 		 */
3101 		ctrl = E1000_READ_REG(hw, E1000_CTRL);
3102 
3103 		/*
3104 		 * set or clear E1000_CTRL_RFCE and E1000_CTRL_TFCE bits depending
3105 		 * on configuration
3106 		 */
3107 		switch (fc_conf->mode) {
3108 		case RTE_FC_NONE:
3109 			ctrl &= ~E1000_CTRL_RFCE & ~E1000_CTRL_TFCE;
3110 			break;
3111 		case RTE_FC_RX_PAUSE:
3112 			ctrl |= E1000_CTRL_RFCE;
3113 			ctrl &= ~E1000_CTRL_TFCE;
3114 			break;
3115 		case RTE_FC_TX_PAUSE:
3116 			ctrl |= E1000_CTRL_TFCE;
3117 			ctrl &= ~E1000_CTRL_RFCE;
3118 			break;
3119 		case RTE_FC_FULL:
3120 			ctrl |= E1000_CTRL_RFCE | E1000_CTRL_TFCE;
3121 			break;
3122 		default:
3123 			PMD_INIT_LOG(ERR, "invalid flow control mode");
3124 			return -EINVAL;
3125 		}
3126 
3127 		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
3128 
3129 		E1000_WRITE_FLUSH(hw);
3130 
3131 		return 0;
3132 	}
3133 
3134 	PMD_INIT_LOG(ERR, "e1000_setup_link_generic = 0x%x", err);
3135 	return -EIO;
3136 }
3137 
3138 #define E1000_RAH_POOLSEL_SHIFT      (18)
3139 static int
3140 eth_igb_rar_set(struct rte_eth_dev *dev, struct rte_ether_addr *mac_addr,
3141 		uint32_t index, uint32_t pool)
3142 {
3143 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3144 	uint32_t rah;
3145 
3146 	e1000_rar_set(hw, mac_addr->addr_bytes, index);
3147 	rah = E1000_READ_REG(hw, E1000_RAH(index));
3148 	rah |= (0x1 << (E1000_RAH_POOLSEL_SHIFT + pool));
3149 	E1000_WRITE_REG(hw, E1000_RAH(index), rah);
3150 	return 0;
3151 }
3152 
3153 static void
3154 eth_igb_rar_clear(struct rte_eth_dev *dev, uint32_t index)
3155 {
3156 	uint8_t addr[RTE_ETHER_ADDR_LEN];
3157 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3158 
3159 	memset(addr, 0, sizeof(addr));
3160 
3161 	e1000_rar_set(hw, addr, index);
3162 }
3163 
3164 static int
3165 eth_igb_default_mac_addr_set(struct rte_eth_dev *dev,
3166 				struct rte_ether_addr *addr)
3167 {
3168 	eth_igb_rar_clear(dev, 0);
3169 	eth_igb_rar_set(dev, (void *)addr, 0, 0);
3170 
3171 	return 0;
3172 }
3173 /*
3174  * Virtual Function operations
3175  */
3176 static void
3177 igbvf_intr_disable(struct e1000_hw *hw)
3178 {
3179 	PMD_INIT_FUNC_TRACE();
3180 
3181 	/* Clear interrupt mask to stop from interrupts being generated */
3182 	E1000_WRITE_REG(hw, E1000_EIMC, 0xFFFF);
3183 
3184 	E1000_WRITE_FLUSH(hw);
3185 }
3186 
3187 static void
3188 igbvf_stop_adapter(struct rte_eth_dev *dev)
3189 {
3190 	u32 reg_val;
3191 	u16 i;
3192 	struct rte_eth_dev_info dev_info;
3193 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3194 	int ret;
3195 
3196 	memset(&dev_info, 0, sizeof(dev_info));
3197 	ret = eth_igbvf_infos_get(dev, &dev_info);
3198 	if (ret != 0)
3199 		return;
3200 
3201 	/* Clear interrupt mask to stop from interrupts being generated */
3202 	igbvf_intr_disable(hw);
3203 
3204 	/* Clear any pending interrupts, flush previous writes */
3205 	E1000_READ_REG(hw, E1000_EICR);
3206 
3207 	/* Disable the transmit unit.  Each queue must be disabled. */
3208 	for (i = 0; i < dev_info.max_tx_queues; i++)
3209 		E1000_WRITE_REG(hw, E1000_TXDCTL(i), E1000_TXDCTL_SWFLSH);
3210 
3211 	/* Disable the receive unit by stopping each queue */
3212 	for (i = 0; i < dev_info.max_rx_queues; i++) {
3213 		reg_val = E1000_READ_REG(hw, E1000_RXDCTL(i));
3214 		reg_val &= ~E1000_RXDCTL_QUEUE_ENABLE;
3215 		E1000_WRITE_REG(hw, E1000_RXDCTL(i), reg_val);
3216 		while (E1000_READ_REG(hw, E1000_RXDCTL(i)) & E1000_RXDCTL_QUEUE_ENABLE)
3217 			;
3218 	}
3219 
3220 	/* flush all queues disables */
3221 	E1000_WRITE_FLUSH(hw);
3222 	msec_delay(2);
3223 }
3224 
3225 static int eth_igbvf_link_update(struct e1000_hw *hw)
3226 {
3227 	struct e1000_mbx_info *mbx = &hw->mbx;
3228 	struct e1000_mac_info *mac = &hw->mac;
3229 	int ret_val = E1000_SUCCESS;
3230 
3231 	PMD_INIT_LOG(DEBUG, "e1000_check_for_link_vf");
3232 
3233 	/*
3234 	 * We only want to run this if there has been a rst asserted.
3235 	 * in this case that could mean a link change, device reset,
3236 	 * or a virtual function reset
3237 	 */
3238 
3239 	/* If we were hit with a reset or timeout drop the link */
3240 	if (!e1000_check_for_rst(hw, 0) || !mbx->timeout)
3241 		mac->get_link_status = TRUE;
3242 
3243 	if (!mac->get_link_status)
3244 		goto out;
3245 
3246 	/* if link status is down no point in checking to see if pf is up */
3247 	if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
3248 		goto out;
3249 
3250 	/* if we passed all the tests above then the link is up and we no
3251 	 * longer need to check for link */
3252 	mac->get_link_status = FALSE;
3253 
3254 out:
3255 	return ret_val;
3256 }
3257 
3258 
3259 static int
3260 igbvf_dev_configure(struct rte_eth_dev *dev)
3261 {
3262 	struct rte_eth_conf* conf = &dev->data->dev_conf;
3263 
3264 	PMD_INIT_LOG(DEBUG, "Configured Virtual Function port id: %d",
3265 		     dev->data->port_id);
3266 
3267 	if (dev->data->dev_conf.rxmode.mq_mode & ETH_MQ_RX_RSS_FLAG)
3268 		dev->data->dev_conf.rxmode.offloads |= DEV_RX_OFFLOAD_RSS_HASH;
3269 
3270 	/*
3271 	 * VF has no ability to enable/disable HW CRC
3272 	 * Keep the persistent behavior the same as Host PF
3273 	 */
3274 #ifndef RTE_LIBRTE_E1000_PF_DISABLE_STRIP_CRC
3275 	if (conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC) {
3276 		PMD_INIT_LOG(NOTICE, "VF can't disable HW CRC Strip");
3277 		conf->rxmode.offloads &= ~DEV_RX_OFFLOAD_KEEP_CRC;
3278 	}
3279 #else
3280 	if (!(conf->rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)) {
3281 		PMD_INIT_LOG(NOTICE, "VF can't enable HW CRC Strip");
3282 		conf->rxmode.offloads |= DEV_RX_OFFLOAD_KEEP_CRC;
3283 	}
3284 #endif
3285 
3286 	return 0;
3287 }
3288 
3289 static int
3290 igbvf_dev_start(struct rte_eth_dev *dev)
3291 {
3292 	struct e1000_hw *hw =
3293 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3294 	struct e1000_adapter *adapter =
3295 		E1000_DEV_PRIVATE(dev->data->dev_private);
3296 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3297 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3298 	int ret;
3299 	uint32_t intr_vector = 0;
3300 
3301 	PMD_INIT_FUNC_TRACE();
3302 
3303 	hw->mac.ops.reset_hw(hw);
3304 	adapter->stopped = 0;
3305 
3306 	/* Set all vfta */
3307 	igbvf_set_vfta_all(dev,1);
3308 
3309 	eth_igbvf_tx_init(dev);
3310 
3311 	/* This can fail when allocating mbufs for descriptor rings */
3312 	ret = eth_igbvf_rx_init(dev);
3313 	if (ret) {
3314 		PMD_INIT_LOG(ERR, "Unable to initialize RX hardware");
3315 		igb_dev_clear_queues(dev);
3316 		return ret;
3317 	}
3318 
3319 	/* check and configure queue intr-vector mapping */
3320 	if (rte_intr_cap_multiple(intr_handle) &&
3321 	    dev->data->dev_conf.intr_conf.rxq) {
3322 		intr_vector = dev->data->nb_rx_queues;
3323 		ret = rte_intr_efd_enable(intr_handle, intr_vector);
3324 		if (ret)
3325 			return ret;
3326 	}
3327 
3328 	if (rte_intr_dp_is_en(intr_handle) && !intr_handle->intr_vec) {
3329 		intr_handle->intr_vec =
3330 			rte_zmalloc("intr_vec",
3331 				    dev->data->nb_rx_queues * sizeof(int), 0);
3332 		if (!intr_handle->intr_vec) {
3333 			PMD_INIT_LOG(ERR, "Failed to allocate %d rx_queues"
3334 				     " intr_vec", dev->data->nb_rx_queues);
3335 			return -ENOMEM;
3336 		}
3337 	}
3338 
3339 	eth_igbvf_configure_msix_intr(dev);
3340 
3341 	/* enable uio/vfio intr/eventfd mapping */
3342 	rte_intr_enable(intr_handle);
3343 
3344 	/* resume enabled intr since hw reset */
3345 	igbvf_intr_enable(dev);
3346 
3347 	return 0;
3348 }
3349 
3350 static int
3351 igbvf_dev_stop(struct rte_eth_dev *dev)
3352 {
3353 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3354 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
3355 	struct e1000_adapter *adapter =
3356 		E1000_DEV_PRIVATE(dev->data->dev_private);
3357 
3358 	if (adapter->stopped)
3359 		return 0;
3360 
3361 	PMD_INIT_FUNC_TRACE();
3362 
3363 	igbvf_stop_adapter(dev);
3364 
3365 	/*
3366 	  * Clear what we set, but we still keep shadow_vfta to
3367 	  * restore after device starts
3368 	  */
3369 	igbvf_set_vfta_all(dev,0);
3370 
3371 	igb_dev_clear_queues(dev);
3372 
3373 	/* disable intr eventfd mapping */
3374 	rte_intr_disable(intr_handle);
3375 
3376 	/* Clean datapath event and queue/vec mapping */
3377 	rte_intr_efd_disable(intr_handle);
3378 	if (intr_handle->intr_vec) {
3379 		rte_free(intr_handle->intr_vec);
3380 		intr_handle->intr_vec = NULL;
3381 	}
3382 
3383 	adapter->stopped = true;
3384 	dev->data->dev_started = 0;
3385 
3386 	return 0;
3387 }
3388 
3389 static int
3390 igbvf_dev_close(struct rte_eth_dev *dev)
3391 {
3392 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3393 	struct rte_ether_addr addr;
3394 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
3395 	int ret;
3396 
3397 	PMD_INIT_FUNC_TRACE();
3398 
3399 	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
3400 		return 0;
3401 
3402 	e1000_reset_hw(hw);
3403 
3404 	ret = igbvf_dev_stop(dev);
3405 	if (ret != 0)
3406 		return ret;
3407 
3408 	igb_dev_free_queues(dev);
3409 
3410 	/**
3411 	 * reprogram the RAR with a zero mac address,
3412 	 * to ensure that the VF traffic goes to the PF
3413 	 * after stop, close and detach of the VF.
3414 	 **/
3415 
3416 	memset(&addr, 0, sizeof(addr));
3417 	igbvf_default_mac_addr_set(dev, &addr);
3418 
3419 	rte_intr_callback_unregister(&pci_dev->intr_handle,
3420 				     eth_igbvf_interrupt_handler,
3421 				     (void *)dev);
3422 
3423 	return 0;
3424 }
3425 
3426 static int
3427 igbvf_promiscuous_enable(struct rte_eth_dev *dev)
3428 {
3429 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3430 
3431 	/* Set both unicast and multicast promisc */
3432 	e1000_promisc_set_vf(hw, e1000_promisc_enabled);
3433 
3434 	return 0;
3435 }
3436 
3437 static int
3438 igbvf_promiscuous_disable(struct rte_eth_dev *dev)
3439 {
3440 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3441 
3442 	/* If in allmulticast mode leave multicast promisc */
3443 	if (dev->data->all_multicast == 1)
3444 		e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3445 	else
3446 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3447 
3448 	return 0;
3449 }
3450 
3451 static int
3452 igbvf_allmulticast_enable(struct rte_eth_dev *dev)
3453 {
3454 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3455 
3456 	/* In promiscuous mode multicast promisc already set */
3457 	if (dev->data->promiscuous == 0)
3458 		e1000_promisc_set_vf(hw, e1000_promisc_multicast);
3459 
3460 	return 0;
3461 }
3462 
3463 static int
3464 igbvf_allmulticast_disable(struct rte_eth_dev *dev)
3465 {
3466 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3467 
3468 	/* In promiscuous mode leave multicast promisc enabled */
3469 	if (dev->data->promiscuous == 0)
3470 		e1000_promisc_set_vf(hw, e1000_promisc_disabled);
3471 
3472 	return 0;
3473 }
3474 
3475 static int igbvf_set_vfta(struct e1000_hw *hw, uint16_t vid, bool on)
3476 {
3477 	struct e1000_mbx_info *mbx = &hw->mbx;
3478 	uint32_t msgbuf[2];
3479 	s32 err;
3480 
3481 	/* After set vlan, vlan strip will also be enabled in igb driver*/
3482 	msgbuf[0] = E1000_VF_SET_VLAN;
3483 	msgbuf[1] = vid;
3484 	/* Setting the 8 bit field MSG INFO to TRUE indicates "add" */
3485 	if (on)
3486 		msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
3487 
3488 	err = mbx->ops.write_posted(hw, msgbuf, 2, 0);
3489 	if (err)
3490 		goto mbx_err;
3491 
3492 	err = mbx->ops.read_posted(hw, msgbuf, 2, 0);
3493 	if (err)
3494 		goto mbx_err;
3495 
3496 	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
3497 	if (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK))
3498 		err = -EINVAL;
3499 
3500 mbx_err:
3501 	return err;
3502 }
3503 
3504 static void igbvf_set_vfta_all(struct rte_eth_dev *dev, bool on)
3505 {
3506 	struct e1000_hw *hw =
3507 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3508 	struct e1000_vfta * shadow_vfta =
3509 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3510 	int i = 0, j = 0, vfta = 0, mask = 1;
3511 
3512 	for (i = 0; i < IGB_VFTA_SIZE; i++){
3513 		vfta = shadow_vfta->vfta[i];
3514 		if(vfta){
3515 			mask = 1;
3516 			for (j = 0; j < 32; j++){
3517 				if(vfta & mask)
3518 					igbvf_set_vfta(hw,
3519 						(uint16_t)((i<<5)+j), on);
3520 				mask<<=1;
3521 			}
3522 		}
3523 	}
3524 
3525 }
3526 
3527 static int
3528 igbvf_vlan_filter_set(struct rte_eth_dev *dev, uint16_t vlan_id, int on)
3529 {
3530 	struct e1000_hw *hw =
3531 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3532 	struct e1000_vfta * shadow_vfta =
3533 		E1000_DEV_PRIVATE_TO_VFTA(dev->data->dev_private);
3534 	uint32_t vid_idx = 0;
3535 	uint32_t vid_bit = 0;
3536 	int ret = 0;
3537 
3538 	PMD_INIT_FUNC_TRACE();
3539 
3540 	/*vind is not used in VF driver, set to 0, check ixgbe_set_vfta_vf*/
3541 	ret = igbvf_set_vfta(hw, vlan_id, !!on);
3542 	if(ret){
3543 		PMD_INIT_LOG(ERR, "Unable to set VF vlan");
3544 		return ret;
3545 	}
3546 	vid_idx = (uint32_t) ((vlan_id >> 5) & 0x7F);
3547 	vid_bit = (uint32_t) (1 << (vlan_id & 0x1F));
3548 
3549 	/*Save what we set and retore it after device reset*/
3550 	if (on)
3551 		shadow_vfta->vfta[vid_idx] |= vid_bit;
3552 	else
3553 		shadow_vfta->vfta[vid_idx] &= ~vid_bit;
3554 
3555 	return 0;
3556 }
3557 
3558 static int
3559 igbvf_default_mac_addr_set(struct rte_eth_dev *dev, struct rte_ether_addr *addr)
3560 {
3561 	struct e1000_hw *hw =
3562 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3563 
3564 	/* index is not used by rar_set() */
3565 	hw->mac.ops.rar_set(hw, (void *)addr, 0);
3566 	return 0;
3567 }
3568 
3569 
3570 static int
3571 eth_igb_rss_reta_update(struct rte_eth_dev *dev,
3572 			struct rte_eth_rss_reta_entry64 *reta_conf,
3573 			uint16_t reta_size)
3574 {
3575 	uint8_t i, j, mask;
3576 	uint32_t reta, r;
3577 	uint16_t idx, shift;
3578 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3579 
3580 	if (reta_size != ETH_RSS_RETA_SIZE_128) {
3581 		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3582 			"(%d) doesn't match the number hardware can supported "
3583 			"(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3584 		return -EINVAL;
3585 	}
3586 
3587 	for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3588 		idx = i / RTE_RETA_GROUP_SIZE;
3589 		shift = i % RTE_RETA_GROUP_SIZE;
3590 		mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3591 						IGB_4_BIT_MASK);
3592 		if (!mask)
3593 			continue;
3594 		if (mask == IGB_4_BIT_MASK)
3595 			r = 0;
3596 		else
3597 			r = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3598 		for (j = 0, reta = 0; j < IGB_4_BIT_WIDTH; j++) {
3599 			if (mask & (0x1 << j))
3600 				reta |= reta_conf[idx].reta[shift + j] <<
3601 							(CHAR_BIT * j);
3602 			else
3603 				reta |= r & (IGB_8_BIT_MASK << (CHAR_BIT * j));
3604 		}
3605 		E1000_WRITE_REG(hw, E1000_RETA(i >> 2), reta);
3606 	}
3607 
3608 	return 0;
3609 }
3610 
3611 static int
3612 eth_igb_rss_reta_query(struct rte_eth_dev *dev,
3613 		       struct rte_eth_rss_reta_entry64 *reta_conf,
3614 		       uint16_t reta_size)
3615 {
3616 	uint8_t i, j, mask;
3617 	uint32_t reta;
3618 	uint16_t idx, shift;
3619 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3620 
3621 	if (reta_size != ETH_RSS_RETA_SIZE_128) {
3622 		PMD_DRV_LOG(ERR, "The size of hash lookup table configured "
3623 			"(%d) doesn't match the number hardware can supported "
3624 			"(%d)", reta_size, ETH_RSS_RETA_SIZE_128);
3625 		return -EINVAL;
3626 	}
3627 
3628 	for (i = 0; i < reta_size; i += IGB_4_BIT_WIDTH) {
3629 		idx = i / RTE_RETA_GROUP_SIZE;
3630 		shift = i % RTE_RETA_GROUP_SIZE;
3631 		mask = (uint8_t)((reta_conf[idx].mask >> shift) &
3632 						IGB_4_BIT_MASK);
3633 		if (!mask)
3634 			continue;
3635 		reta = E1000_READ_REG(hw, E1000_RETA(i >> 2));
3636 		for (j = 0; j < IGB_4_BIT_WIDTH; j++) {
3637 			if (mask & (0x1 << j))
3638 				reta_conf[idx].reta[shift + j] =
3639 					((reta >> (CHAR_BIT * j)) &
3640 						IGB_8_BIT_MASK);
3641 		}
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 int
3648 eth_igb_syn_filter_set(struct rte_eth_dev *dev,
3649 			struct rte_eth_syn_filter *filter,
3650 			bool add)
3651 {
3652 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3653 	struct e1000_filter_info *filter_info =
3654 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3655 	uint32_t synqf, rfctl;
3656 
3657 	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3658 		return -EINVAL;
3659 
3660 	synqf = E1000_READ_REG(hw, E1000_SYNQF(0));
3661 
3662 	if (add) {
3663 		if (synqf & E1000_SYN_FILTER_ENABLE)
3664 			return -EINVAL;
3665 
3666 		synqf = (uint32_t)(((filter->queue << E1000_SYN_FILTER_QUEUE_SHIFT) &
3667 			E1000_SYN_FILTER_QUEUE) | E1000_SYN_FILTER_ENABLE);
3668 
3669 		rfctl = E1000_READ_REG(hw, E1000_RFCTL);
3670 		if (filter->hig_pri)
3671 			rfctl |= E1000_RFCTL_SYNQFP;
3672 		else
3673 			rfctl &= ~E1000_RFCTL_SYNQFP;
3674 
3675 		E1000_WRITE_REG(hw, E1000_RFCTL, rfctl);
3676 	} else {
3677 		if (!(synqf & E1000_SYN_FILTER_ENABLE))
3678 			return -ENOENT;
3679 		synqf = 0;
3680 	}
3681 
3682 	filter_info->syn_info = synqf;
3683 	E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
3684 	E1000_WRITE_FLUSH(hw);
3685 	return 0;
3686 }
3687 
3688 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_2tuple_filter_info*/
3689 static inline int
3690 ntuple_filter_to_2tuple(struct rte_eth_ntuple_filter *filter,
3691 			struct e1000_2tuple_filter_info *filter_info)
3692 {
3693 	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM)
3694 		return -EINVAL;
3695 	if (filter->priority > E1000_2TUPLE_MAX_PRI)
3696 		return -EINVAL;  /* filter index is out of range. */
3697 	if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
3698 		return -EINVAL;  /* flags is invalid. */
3699 
3700 	switch (filter->dst_port_mask) {
3701 	case UINT16_MAX:
3702 		filter_info->dst_port_mask = 0;
3703 		filter_info->dst_port = filter->dst_port;
3704 		break;
3705 	case 0:
3706 		filter_info->dst_port_mask = 1;
3707 		break;
3708 	default:
3709 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
3710 		return -EINVAL;
3711 	}
3712 
3713 	switch (filter->proto_mask) {
3714 	case UINT8_MAX:
3715 		filter_info->proto_mask = 0;
3716 		filter_info->proto = filter->proto;
3717 		break;
3718 	case 0:
3719 		filter_info->proto_mask = 1;
3720 		break;
3721 	default:
3722 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
3723 		return -EINVAL;
3724 	}
3725 
3726 	filter_info->priority = (uint8_t)filter->priority;
3727 	if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
3728 		filter_info->tcp_flags = filter->tcp_flags;
3729 	else
3730 		filter_info->tcp_flags = 0;
3731 
3732 	return 0;
3733 }
3734 
3735 static inline struct e1000_2tuple_filter *
3736 igb_2tuple_filter_lookup(struct e1000_2tuple_filter_list *filter_list,
3737 			struct e1000_2tuple_filter_info *key)
3738 {
3739 	struct e1000_2tuple_filter *it;
3740 
3741 	TAILQ_FOREACH(it, filter_list, entries) {
3742 		if (memcmp(key, &it->filter_info,
3743 			sizeof(struct e1000_2tuple_filter_info)) == 0) {
3744 			return it;
3745 		}
3746 	}
3747 	return NULL;
3748 }
3749 
3750 /* inject a igb 2tuple filter to HW */
3751 static inline void
3752 igb_inject_2uple_filter(struct rte_eth_dev *dev,
3753 			   struct e1000_2tuple_filter *filter)
3754 {
3755 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3756 	uint32_t ttqf = E1000_TTQF_DISABLE_MASK;
3757 	uint32_t imir, imir_ext = E1000_IMIREXT_SIZE_BP;
3758 	int i;
3759 
3760 	i = filter->index;
3761 	imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
3762 	if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
3763 		imir |= E1000_IMIR_PORT_BP;
3764 	else
3765 		imir &= ~E1000_IMIR_PORT_BP;
3766 
3767 	imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
3768 
3769 	ttqf |= E1000_TTQF_QUEUE_ENABLE;
3770 	ttqf |= (uint32_t)(filter->queue << E1000_TTQF_QUEUE_SHIFT);
3771 	ttqf |= (uint32_t)(filter->filter_info.proto &
3772 						E1000_TTQF_PROTOCOL_MASK);
3773 	if (filter->filter_info.proto_mask == 0)
3774 		ttqf &= ~E1000_TTQF_MASK_ENABLE;
3775 
3776 	/* tcp flags bits setting. */
3777 	if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
3778 		if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
3779 			imir_ext |= E1000_IMIREXT_CTRL_URG;
3780 		if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
3781 			imir_ext |= E1000_IMIREXT_CTRL_ACK;
3782 		if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
3783 			imir_ext |= E1000_IMIREXT_CTRL_PSH;
3784 		if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
3785 			imir_ext |= E1000_IMIREXT_CTRL_RST;
3786 		if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
3787 			imir_ext |= E1000_IMIREXT_CTRL_SYN;
3788 		if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
3789 			imir_ext |= E1000_IMIREXT_CTRL_FIN;
3790 	} else {
3791 		imir_ext |= E1000_IMIREXT_CTRL_BP;
3792 	}
3793 	E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
3794 	E1000_WRITE_REG(hw, E1000_TTQF(i), ttqf);
3795 	E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
3796 }
3797 
3798 /*
3799  * igb_add_2tuple_filter - add a 2tuple filter
3800  *
3801  * @param
3802  * dev: Pointer to struct rte_eth_dev.
3803  * ntuple_filter: ponter to the filter that will be added.
3804  *
3805  * @return
3806  *    - On success, zero.
3807  *    - On failure, a negative value.
3808  */
3809 static int
3810 igb_add_2tuple_filter(struct rte_eth_dev *dev,
3811 			struct rte_eth_ntuple_filter *ntuple_filter)
3812 {
3813 	struct e1000_filter_info *filter_info =
3814 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3815 	struct e1000_2tuple_filter *filter;
3816 	int i, ret;
3817 
3818 	filter = rte_zmalloc("e1000_2tuple_filter",
3819 			sizeof(struct e1000_2tuple_filter), 0);
3820 	if (filter == NULL)
3821 		return -ENOMEM;
3822 
3823 	ret = ntuple_filter_to_2tuple(ntuple_filter,
3824 				      &filter->filter_info);
3825 	if (ret < 0) {
3826 		rte_free(filter);
3827 		return ret;
3828 	}
3829 	if (igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3830 					 &filter->filter_info) != NULL) {
3831 		PMD_DRV_LOG(ERR, "filter exists.");
3832 		rte_free(filter);
3833 		return -EEXIST;
3834 	}
3835 	filter->queue = ntuple_filter->queue;
3836 
3837 	/*
3838 	 * look for an unused 2tuple filter index,
3839 	 * and insert the filter to list.
3840 	 */
3841 	for (i = 0; i < E1000_MAX_TTQF_FILTERS; i++) {
3842 		if (!(filter_info->twotuple_mask & (1 << i))) {
3843 			filter_info->twotuple_mask |= 1 << i;
3844 			filter->index = i;
3845 			TAILQ_INSERT_TAIL(&filter_info->twotuple_list,
3846 					  filter,
3847 					  entries);
3848 			break;
3849 		}
3850 	}
3851 	if (i >= E1000_MAX_TTQF_FILTERS) {
3852 		PMD_DRV_LOG(ERR, "2tuple filters are full.");
3853 		rte_free(filter);
3854 		return -ENOSYS;
3855 	}
3856 
3857 	igb_inject_2uple_filter(dev, filter);
3858 	return 0;
3859 }
3860 
3861 int
3862 igb_delete_2tuple_filter(struct rte_eth_dev *dev,
3863 			struct e1000_2tuple_filter *filter)
3864 {
3865 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3866 	struct e1000_filter_info *filter_info =
3867 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3868 
3869 	filter_info->twotuple_mask &= ~(1 << filter->index);
3870 	TAILQ_REMOVE(&filter_info->twotuple_list, filter, entries);
3871 	rte_free(filter);
3872 
3873 	E1000_WRITE_REG(hw, E1000_TTQF(filter->index), E1000_TTQF_DISABLE_MASK);
3874 	E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
3875 	E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
3876 	return 0;
3877 }
3878 
3879 /*
3880  * igb_remove_2tuple_filter - remove a 2tuple filter
3881  *
3882  * @param
3883  * dev: Pointer to struct rte_eth_dev.
3884  * ntuple_filter: ponter to the filter that will be removed.
3885  *
3886  * @return
3887  *    - On success, zero.
3888  *    - On failure, a negative value.
3889  */
3890 static int
3891 igb_remove_2tuple_filter(struct rte_eth_dev *dev,
3892 			struct rte_eth_ntuple_filter *ntuple_filter)
3893 {
3894 	struct e1000_filter_info *filter_info =
3895 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3896 	struct e1000_2tuple_filter_info filter_2tuple;
3897 	struct e1000_2tuple_filter *filter;
3898 	int ret;
3899 
3900 	memset(&filter_2tuple, 0, sizeof(struct e1000_2tuple_filter_info));
3901 	ret = ntuple_filter_to_2tuple(ntuple_filter,
3902 				      &filter_2tuple);
3903 	if (ret < 0)
3904 		return ret;
3905 
3906 	filter = igb_2tuple_filter_lookup(&filter_info->twotuple_list,
3907 					 &filter_2tuple);
3908 	if (filter == NULL) {
3909 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
3910 		return -ENOENT;
3911 	}
3912 
3913 	igb_delete_2tuple_filter(dev, filter);
3914 
3915 	return 0;
3916 }
3917 
3918 /* inject a igb flex filter to HW */
3919 static inline void
3920 igb_inject_flex_filter(struct rte_eth_dev *dev,
3921 			   struct e1000_flex_filter *filter)
3922 {
3923 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3924 	uint32_t wufc, queueing;
3925 	uint32_t reg_off;
3926 	uint8_t i, j = 0;
3927 
3928 	wufc = E1000_READ_REG(hw, E1000_WUFC);
3929 	if (filter->index < E1000_MAX_FHFT)
3930 		reg_off = E1000_FHFT(filter->index);
3931 	else
3932 		reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3933 
3934 	E1000_WRITE_REG(hw, E1000_WUFC, wufc | E1000_WUFC_FLEX_HQ |
3935 			(E1000_WUFC_FLX0 << filter->index));
3936 	queueing = filter->filter_info.len |
3937 		(filter->queue << E1000_FHFT_QUEUEING_QUEUE_SHIFT) |
3938 		(filter->filter_info.priority <<
3939 			E1000_FHFT_QUEUEING_PRIO_SHIFT);
3940 	E1000_WRITE_REG(hw, reg_off + E1000_FHFT_QUEUEING_OFFSET,
3941 			queueing);
3942 
3943 	for (i = 0; i < E1000_FLEX_FILTERS_MASK_SIZE; i++) {
3944 		E1000_WRITE_REG(hw, reg_off,
3945 				filter->filter_info.dwords[j]);
3946 		reg_off += sizeof(uint32_t);
3947 		E1000_WRITE_REG(hw, reg_off,
3948 				filter->filter_info.dwords[++j]);
3949 		reg_off += sizeof(uint32_t);
3950 		E1000_WRITE_REG(hw, reg_off,
3951 			(uint32_t)filter->filter_info.mask[i]);
3952 		reg_off += sizeof(uint32_t) * 2;
3953 		++j;
3954 	}
3955 }
3956 
3957 static inline struct e1000_flex_filter *
3958 eth_igb_flex_filter_lookup(struct e1000_flex_filter_list *filter_list,
3959 			struct e1000_flex_filter_info *key)
3960 {
3961 	struct e1000_flex_filter *it;
3962 
3963 	TAILQ_FOREACH(it, filter_list, entries) {
3964 		if (memcmp(key, &it->filter_info,
3965 			sizeof(struct e1000_flex_filter_info)) == 0)
3966 			return it;
3967 	}
3968 
3969 	return NULL;
3970 }
3971 
3972 /* remove a flex byte filter
3973  * @param
3974  * dev: Pointer to struct rte_eth_dev.
3975  * filter: the pointer of the filter will be removed.
3976  */
3977 void
3978 igb_remove_flex_filter(struct rte_eth_dev *dev,
3979 			struct e1000_flex_filter *filter)
3980 {
3981 	struct e1000_filter_info *filter_info =
3982 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
3983 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
3984 	uint32_t wufc, i;
3985 	uint32_t reg_off;
3986 
3987 	wufc = E1000_READ_REG(hw, E1000_WUFC);
3988 	if (filter->index < E1000_MAX_FHFT)
3989 		reg_off = E1000_FHFT(filter->index);
3990 	else
3991 		reg_off = E1000_FHFT_EXT(filter->index - E1000_MAX_FHFT);
3992 
3993 	for (i = 0; i < E1000_FHFT_SIZE_IN_DWD; i++)
3994 		E1000_WRITE_REG(hw, reg_off + i * sizeof(uint32_t), 0);
3995 
3996 	E1000_WRITE_REG(hw, E1000_WUFC, wufc &
3997 		(~(E1000_WUFC_FLX0 << filter->index)));
3998 
3999 	filter_info->flex_mask &= ~(1 << filter->index);
4000 	TAILQ_REMOVE(&filter_info->flex_list, filter, entries);
4001 	rte_free(filter);
4002 }
4003 
4004 int
4005 eth_igb_add_del_flex_filter(struct rte_eth_dev *dev,
4006 			struct igb_flex_filter *filter,
4007 			bool add)
4008 {
4009 	struct e1000_filter_info *filter_info =
4010 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4011 	struct e1000_flex_filter *flex_filter, *it;
4012 	uint32_t mask;
4013 	uint8_t shift, i;
4014 
4015 	flex_filter = rte_zmalloc("e1000_flex_filter",
4016 			sizeof(struct e1000_flex_filter), 0);
4017 	if (flex_filter == NULL)
4018 		return -ENOMEM;
4019 
4020 	flex_filter->filter_info.len = filter->len;
4021 	flex_filter->filter_info.priority = filter->priority;
4022 	memcpy(flex_filter->filter_info.dwords, filter->bytes, filter->len);
4023 	for (i = 0; i < RTE_ALIGN(filter->len, CHAR_BIT) / CHAR_BIT; i++) {
4024 		mask = 0;
4025 		/* reverse bits in flex filter's mask*/
4026 		for (shift = 0; shift < CHAR_BIT; shift++) {
4027 			if (filter->mask[i] & (0x01 << shift))
4028 				mask |= (0x80 >> shift);
4029 		}
4030 		flex_filter->filter_info.mask[i] = mask;
4031 	}
4032 
4033 	it = eth_igb_flex_filter_lookup(&filter_info->flex_list,
4034 				&flex_filter->filter_info);
4035 	if (it == NULL && !add) {
4036 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
4037 		rte_free(flex_filter);
4038 		return -ENOENT;
4039 	}
4040 	if (it != NULL && add) {
4041 		PMD_DRV_LOG(ERR, "filter exists.");
4042 		rte_free(flex_filter);
4043 		return -EEXIST;
4044 	}
4045 
4046 	if (add) {
4047 		flex_filter->queue = filter->queue;
4048 		/*
4049 		 * look for an unused flex filter index
4050 		 * and insert the filter into the list.
4051 		 */
4052 		for (i = 0; i < E1000_MAX_FLEX_FILTERS; i++) {
4053 			if (!(filter_info->flex_mask & (1 << i))) {
4054 				filter_info->flex_mask |= 1 << i;
4055 				flex_filter->index = i;
4056 				TAILQ_INSERT_TAIL(&filter_info->flex_list,
4057 					flex_filter,
4058 					entries);
4059 				break;
4060 			}
4061 		}
4062 		if (i >= E1000_MAX_FLEX_FILTERS) {
4063 			PMD_DRV_LOG(ERR, "flex filters are full.");
4064 			rte_free(flex_filter);
4065 			return -ENOSYS;
4066 		}
4067 
4068 		igb_inject_flex_filter(dev, flex_filter);
4069 
4070 	} else {
4071 		igb_remove_flex_filter(dev, it);
4072 		rte_free(flex_filter);
4073 	}
4074 
4075 	return 0;
4076 }
4077 
4078 /* translate elements in struct rte_eth_ntuple_filter to struct e1000_5tuple_filter_info*/
4079 static inline int
4080 ntuple_filter_to_5tuple_82576(struct rte_eth_ntuple_filter *filter,
4081 			struct e1000_5tuple_filter_info *filter_info)
4082 {
4083 	if (filter->queue >= IGB_MAX_RX_QUEUE_NUM_82576)
4084 		return -EINVAL;
4085 	if (filter->priority > E1000_2TUPLE_MAX_PRI)
4086 		return -EINVAL;  /* filter index is out of range. */
4087 	if (filter->tcp_flags > RTE_NTUPLE_TCP_FLAGS_MASK)
4088 		return -EINVAL;  /* flags is invalid. */
4089 
4090 	switch (filter->dst_ip_mask) {
4091 	case UINT32_MAX:
4092 		filter_info->dst_ip_mask = 0;
4093 		filter_info->dst_ip = filter->dst_ip;
4094 		break;
4095 	case 0:
4096 		filter_info->dst_ip_mask = 1;
4097 		break;
4098 	default:
4099 		PMD_DRV_LOG(ERR, "invalid dst_ip mask.");
4100 		return -EINVAL;
4101 	}
4102 
4103 	switch (filter->src_ip_mask) {
4104 	case UINT32_MAX:
4105 		filter_info->src_ip_mask = 0;
4106 		filter_info->src_ip = filter->src_ip;
4107 		break;
4108 	case 0:
4109 		filter_info->src_ip_mask = 1;
4110 		break;
4111 	default:
4112 		PMD_DRV_LOG(ERR, "invalid src_ip mask.");
4113 		return -EINVAL;
4114 	}
4115 
4116 	switch (filter->dst_port_mask) {
4117 	case UINT16_MAX:
4118 		filter_info->dst_port_mask = 0;
4119 		filter_info->dst_port = filter->dst_port;
4120 		break;
4121 	case 0:
4122 		filter_info->dst_port_mask = 1;
4123 		break;
4124 	default:
4125 		PMD_DRV_LOG(ERR, "invalid dst_port mask.");
4126 		return -EINVAL;
4127 	}
4128 
4129 	switch (filter->src_port_mask) {
4130 	case UINT16_MAX:
4131 		filter_info->src_port_mask = 0;
4132 		filter_info->src_port = filter->src_port;
4133 		break;
4134 	case 0:
4135 		filter_info->src_port_mask = 1;
4136 		break;
4137 	default:
4138 		PMD_DRV_LOG(ERR, "invalid src_port mask.");
4139 		return -EINVAL;
4140 	}
4141 
4142 	switch (filter->proto_mask) {
4143 	case UINT8_MAX:
4144 		filter_info->proto_mask = 0;
4145 		filter_info->proto = filter->proto;
4146 		break;
4147 	case 0:
4148 		filter_info->proto_mask = 1;
4149 		break;
4150 	default:
4151 		PMD_DRV_LOG(ERR, "invalid protocol mask.");
4152 		return -EINVAL;
4153 	}
4154 
4155 	filter_info->priority = (uint8_t)filter->priority;
4156 	if (filter->flags & RTE_NTUPLE_FLAGS_TCP_FLAG)
4157 		filter_info->tcp_flags = filter->tcp_flags;
4158 	else
4159 		filter_info->tcp_flags = 0;
4160 
4161 	return 0;
4162 }
4163 
4164 static inline struct e1000_5tuple_filter *
4165 igb_5tuple_filter_lookup_82576(struct e1000_5tuple_filter_list *filter_list,
4166 			struct e1000_5tuple_filter_info *key)
4167 {
4168 	struct e1000_5tuple_filter *it;
4169 
4170 	TAILQ_FOREACH(it, filter_list, entries) {
4171 		if (memcmp(key, &it->filter_info,
4172 			sizeof(struct e1000_5tuple_filter_info)) == 0) {
4173 			return it;
4174 		}
4175 	}
4176 	return NULL;
4177 }
4178 
4179 /* inject a igb 5-tuple filter to HW */
4180 static inline void
4181 igb_inject_5tuple_filter_82576(struct rte_eth_dev *dev,
4182 			   struct e1000_5tuple_filter *filter)
4183 {
4184 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4185 	uint32_t ftqf = E1000_FTQF_VF_BP | E1000_FTQF_MASK;
4186 	uint32_t spqf, imir, imir_ext = E1000_IMIREXT_SIZE_BP;
4187 	uint8_t i;
4188 
4189 	i = filter->index;
4190 	ftqf |= filter->filter_info.proto & E1000_FTQF_PROTOCOL_MASK;
4191 	if (filter->filter_info.src_ip_mask == 0) /* 0b means compare. */
4192 		ftqf &= ~E1000_FTQF_MASK_SOURCE_ADDR_BP;
4193 	if (filter->filter_info.dst_ip_mask == 0)
4194 		ftqf &= ~E1000_FTQF_MASK_DEST_ADDR_BP;
4195 	if (filter->filter_info.src_port_mask == 0)
4196 		ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
4197 	if (filter->filter_info.proto_mask == 0)
4198 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP;
4199 	ftqf |= (filter->queue << E1000_FTQF_QUEUE_SHIFT) &
4200 		E1000_FTQF_QUEUE_MASK;
4201 	ftqf |= E1000_FTQF_QUEUE_ENABLE;
4202 	E1000_WRITE_REG(hw, E1000_FTQF(i), ftqf);
4203 	E1000_WRITE_REG(hw, E1000_DAQF(i), filter->filter_info.dst_ip);
4204 	E1000_WRITE_REG(hw, E1000_SAQF(i), filter->filter_info.src_ip);
4205 
4206 	spqf = filter->filter_info.src_port & E1000_SPQF_SRCPORT;
4207 	E1000_WRITE_REG(hw, E1000_SPQF(i), spqf);
4208 
4209 	imir = (uint32_t)(filter->filter_info.dst_port & E1000_IMIR_DSTPORT);
4210 	if (filter->filter_info.dst_port_mask == 1) /* 1b means not compare. */
4211 		imir |= E1000_IMIR_PORT_BP;
4212 	else
4213 		imir &= ~E1000_IMIR_PORT_BP;
4214 	imir |= filter->filter_info.priority << E1000_IMIR_PRIORITY_SHIFT;
4215 
4216 	/* tcp flags bits setting. */
4217 	if (filter->filter_info.tcp_flags & RTE_NTUPLE_TCP_FLAGS_MASK) {
4218 		if (filter->filter_info.tcp_flags & RTE_TCP_URG_FLAG)
4219 			imir_ext |= E1000_IMIREXT_CTRL_URG;
4220 		if (filter->filter_info.tcp_flags & RTE_TCP_ACK_FLAG)
4221 			imir_ext |= E1000_IMIREXT_CTRL_ACK;
4222 		if (filter->filter_info.tcp_flags & RTE_TCP_PSH_FLAG)
4223 			imir_ext |= E1000_IMIREXT_CTRL_PSH;
4224 		if (filter->filter_info.tcp_flags & RTE_TCP_RST_FLAG)
4225 			imir_ext |= E1000_IMIREXT_CTRL_RST;
4226 		if (filter->filter_info.tcp_flags & RTE_TCP_SYN_FLAG)
4227 			imir_ext |= E1000_IMIREXT_CTRL_SYN;
4228 		if (filter->filter_info.tcp_flags & RTE_TCP_FIN_FLAG)
4229 			imir_ext |= E1000_IMIREXT_CTRL_FIN;
4230 	} else {
4231 		imir_ext |= E1000_IMIREXT_CTRL_BP;
4232 	}
4233 	E1000_WRITE_REG(hw, E1000_IMIR(i), imir);
4234 	E1000_WRITE_REG(hw, E1000_IMIREXT(i), imir_ext);
4235 }
4236 
4237 /*
4238  * igb_add_5tuple_filter_82576 - add a 5tuple filter
4239  *
4240  * @param
4241  * dev: Pointer to struct rte_eth_dev.
4242  * ntuple_filter: ponter to the filter that will be added.
4243  *
4244  * @return
4245  *    - On success, zero.
4246  *    - On failure, a negative value.
4247  */
4248 static int
4249 igb_add_5tuple_filter_82576(struct rte_eth_dev *dev,
4250 			struct rte_eth_ntuple_filter *ntuple_filter)
4251 {
4252 	struct e1000_filter_info *filter_info =
4253 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4254 	struct e1000_5tuple_filter *filter;
4255 	uint8_t i;
4256 	int ret;
4257 
4258 	filter = rte_zmalloc("e1000_5tuple_filter",
4259 			sizeof(struct e1000_5tuple_filter), 0);
4260 	if (filter == NULL)
4261 		return -ENOMEM;
4262 
4263 	ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4264 					    &filter->filter_info);
4265 	if (ret < 0) {
4266 		rte_free(filter);
4267 		return ret;
4268 	}
4269 
4270 	if (igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4271 					 &filter->filter_info) != NULL) {
4272 		PMD_DRV_LOG(ERR, "filter exists.");
4273 		rte_free(filter);
4274 		return -EEXIST;
4275 	}
4276 	filter->queue = ntuple_filter->queue;
4277 
4278 	/*
4279 	 * look for an unused 5tuple filter index,
4280 	 * and insert the filter to list.
4281 	 */
4282 	for (i = 0; i < E1000_MAX_FTQF_FILTERS; i++) {
4283 		if (!(filter_info->fivetuple_mask & (1 << i))) {
4284 			filter_info->fivetuple_mask |= 1 << i;
4285 			filter->index = i;
4286 			TAILQ_INSERT_TAIL(&filter_info->fivetuple_list,
4287 					  filter,
4288 					  entries);
4289 			break;
4290 		}
4291 	}
4292 	if (i >= E1000_MAX_FTQF_FILTERS) {
4293 		PMD_DRV_LOG(ERR, "5tuple filters are full.");
4294 		rte_free(filter);
4295 		return -ENOSYS;
4296 	}
4297 
4298 	igb_inject_5tuple_filter_82576(dev, filter);
4299 	return 0;
4300 }
4301 
4302 int
4303 igb_delete_5tuple_filter_82576(struct rte_eth_dev *dev,
4304 				struct e1000_5tuple_filter *filter)
4305 {
4306 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4307 	struct e1000_filter_info *filter_info =
4308 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4309 
4310 	filter_info->fivetuple_mask &= ~(1 << filter->index);
4311 	TAILQ_REMOVE(&filter_info->fivetuple_list, filter, entries);
4312 	rte_free(filter);
4313 
4314 	E1000_WRITE_REG(hw, E1000_FTQF(filter->index),
4315 			E1000_FTQF_VF_BP | E1000_FTQF_MASK);
4316 	E1000_WRITE_REG(hw, E1000_DAQF(filter->index), 0);
4317 	E1000_WRITE_REG(hw, E1000_SAQF(filter->index), 0);
4318 	E1000_WRITE_REG(hw, E1000_SPQF(filter->index), 0);
4319 	E1000_WRITE_REG(hw, E1000_IMIR(filter->index), 0);
4320 	E1000_WRITE_REG(hw, E1000_IMIREXT(filter->index), 0);
4321 	return 0;
4322 }
4323 
4324 /*
4325  * igb_remove_5tuple_filter_82576 - remove a 5tuple filter
4326  *
4327  * @param
4328  * dev: Pointer to struct rte_eth_dev.
4329  * ntuple_filter: ponter to the filter that will be removed.
4330  *
4331  * @return
4332  *    - On success, zero.
4333  *    - On failure, a negative value.
4334  */
4335 static int
4336 igb_remove_5tuple_filter_82576(struct rte_eth_dev *dev,
4337 				struct rte_eth_ntuple_filter *ntuple_filter)
4338 {
4339 	struct e1000_filter_info *filter_info =
4340 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4341 	struct e1000_5tuple_filter_info filter_5tuple;
4342 	struct e1000_5tuple_filter *filter;
4343 	int ret;
4344 
4345 	memset(&filter_5tuple, 0, sizeof(struct e1000_5tuple_filter_info));
4346 	ret = ntuple_filter_to_5tuple_82576(ntuple_filter,
4347 					    &filter_5tuple);
4348 	if (ret < 0)
4349 		return ret;
4350 
4351 	filter = igb_5tuple_filter_lookup_82576(&filter_info->fivetuple_list,
4352 					 &filter_5tuple);
4353 	if (filter == NULL) {
4354 		PMD_DRV_LOG(ERR, "filter doesn't exist.");
4355 		return -ENOENT;
4356 	}
4357 
4358 	igb_delete_5tuple_filter_82576(dev, filter);
4359 
4360 	return 0;
4361 }
4362 
4363 static int
4364 eth_igb_mtu_set(struct rte_eth_dev *dev, uint16_t mtu)
4365 {
4366 	uint32_t rctl;
4367 	struct e1000_hw *hw;
4368 	struct rte_eth_dev_info dev_info;
4369 	uint32_t frame_size = mtu + E1000_ETH_OVERHEAD;
4370 	int ret;
4371 
4372 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4373 
4374 #ifdef RTE_LIBRTE_82571_SUPPORT
4375 	/* XXX: not bigger than max_rx_pktlen */
4376 	if (hw->mac.type == e1000_82571)
4377 		return -ENOTSUP;
4378 #endif
4379 	ret = eth_igb_infos_get(dev, &dev_info);
4380 	if (ret != 0)
4381 		return ret;
4382 
4383 	/* check that mtu is within the allowed range */
4384 	if (mtu < RTE_ETHER_MIN_MTU ||
4385 			frame_size > dev_info.max_rx_pktlen)
4386 		return -EINVAL;
4387 
4388 	/*
4389 	 * If device is started, refuse mtu that requires the support of
4390 	 * scattered packets when this feature has not been enabled before.
4391 	 */
4392 	if (dev->data->dev_started && !dev->data->scattered_rx &&
4393 	    frame_size > dev->data->min_rx_buf_size - RTE_PKTMBUF_HEADROOM) {
4394 		PMD_INIT_LOG(ERR, "Stop port first.");
4395 		return -EINVAL;
4396 	}
4397 
4398 	rctl = E1000_READ_REG(hw, E1000_RCTL);
4399 
4400 	/* switch to jumbo mode if needed */
4401 	if (frame_size > E1000_ETH_MAX_LEN) {
4402 		dev->data->dev_conf.rxmode.offloads |=
4403 			DEV_RX_OFFLOAD_JUMBO_FRAME;
4404 		rctl |= E1000_RCTL_LPE;
4405 	} else {
4406 		dev->data->dev_conf.rxmode.offloads &=
4407 			~DEV_RX_OFFLOAD_JUMBO_FRAME;
4408 		rctl &= ~E1000_RCTL_LPE;
4409 	}
4410 	E1000_WRITE_REG(hw, E1000_RCTL, rctl);
4411 
4412 	/* update max frame size */
4413 	dev->data->dev_conf.rxmode.max_rx_pkt_len = frame_size;
4414 
4415 	E1000_WRITE_REG(hw, E1000_RLPML,
4416 			dev->data->dev_conf.rxmode.max_rx_pkt_len);
4417 
4418 	return 0;
4419 }
4420 
4421 /*
4422  * igb_add_del_ntuple_filter - add or delete a ntuple filter
4423  *
4424  * @param
4425  * dev: Pointer to struct rte_eth_dev.
4426  * ntuple_filter: Pointer to struct rte_eth_ntuple_filter
4427  * add: if true, add filter, if false, remove filter
4428  *
4429  * @return
4430  *    - On success, zero.
4431  *    - On failure, a negative value.
4432  */
4433 int
4434 igb_add_del_ntuple_filter(struct rte_eth_dev *dev,
4435 			struct rte_eth_ntuple_filter *ntuple_filter,
4436 			bool add)
4437 {
4438 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4439 	int ret;
4440 
4441 	switch (ntuple_filter->flags) {
4442 	case RTE_5TUPLE_FLAGS:
4443 	case (RTE_5TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4444 		if (hw->mac.type != e1000_82576)
4445 			return -ENOTSUP;
4446 		if (add)
4447 			ret = igb_add_5tuple_filter_82576(dev,
4448 							  ntuple_filter);
4449 		else
4450 			ret = igb_remove_5tuple_filter_82576(dev,
4451 							     ntuple_filter);
4452 		break;
4453 	case RTE_2TUPLE_FLAGS:
4454 	case (RTE_2TUPLE_FLAGS | RTE_NTUPLE_FLAGS_TCP_FLAG):
4455 		if (hw->mac.type != e1000_82580 && hw->mac.type != e1000_i350 &&
4456 			hw->mac.type != e1000_i210 &&
4457 			hw->mac.type != e1000_i211)
4458 			return -ENOTSUP;
4459 		if (add)
4460 			ret = igb_add_2tuple_filter(dev, ntuple_filter);
4461 		else
4462 			ret = igb_remove_2tuple_filter(dev, ntuple_filter);
4463 		break;
4464 	default:
4465 		ret = -EINVAL;
4466 		break;
4467 	}
4468 
4469 	return ret;
4470 }
4471 
4472 static inline int
4473 igb_ethertype_filter_lookup(struct e1000_filter_info *filter_info,
4474 			uint16_t ethertype)
4475 {
4476 	int i;
4477 
4478 	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4479 		if (filter_info->ethertype_filters[i].ethertype == ethertype &&
4480 		    (filter_info->ethertype_mask & (1 << i)))
4481 			return i;
4482 	}
4483 	return -1;
4484 }
4485 
4486 static inline int
4487 igb_ethertype_filter_insert(struct e1000_filter_info *filter_info,
4488 			uint16_t ethertype, uint32_t etqf)
4489 {
4490 	int i;
4491 
4492 	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
4493 		if (!(filter_info->ethertype_mask & (1 << i))) {
4494 			filter_info->ethertype_mask |= 1 << i;
4495 			filter_info->ethertype_filters[i].ethertype = ethertype;
4496 			filter_info->ethertype_filters[i].etqf = etqf;
4497 			return i;
4498 		}
4499 	}
4500 	return -1;
4501 }
4502 
4503 int
4504 igb_ethertype_filter_remove(struct e1000_filter_info *filter_info,
4505 			uint8_t idx)
4506 {
4507 	if (idx >= E1000_MAX_ETQF_FILTERS)
4508 		return -1;
4509 	filter_info->ethertype_mask &= ~(1 << idx);
4510 	filter_info->ethertype_filters[idx].ethertype = 0;
4511 	filter_info->ethertype_filters[idx].etqf = 0;
4512 	return idx;
4513 }
4514 
4515 
4516 int
4517 igb_add_del_ethertype_filter(struct rte_eth_dev *dev,
4518 			struct rte_eth_ethertype_filter *filter,
4519 			bool add)
4520 {
4521 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4522 	struct e1000_filter_info *filter_info =
4523 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
4524 	uint32_t etqf = 0;
4525 	int ret;
4526 
4527 	if (filter->ether_type == RTE_ETHER_TYPE_IPV4 ||
4528 		filter->ether_type == RTE_ETHER_TYPE_IPV6) {
4529 		PMD_DRV_LOG(ERR, "unsupported ether_type(0x%04x) in"
4530 			" ethertype filter.", filter->ether_type);
4531 		return -EINVAL;
4532 	}
4533 
4534 	if (filter->flags & RTE_ETHTYPE_FLAGS_MAC) {
4535 		PMD_DRV_LOG(ERR, "mac compare is unsupported.");
4536 		return -EINVAL;
4537 	}
4538 	if (filter->flags & RTE_ETHTYPE_FLAGS_DROP) {
4539 		PMD_DRV_LOG(ERR, "drop option is unsupported.");
4540 		return -EINVAL;
4541 	}
4542 
4543 	ret = igb_ethertype_filter_lookup(filter_info, filter->ether_type);
4544 	if (ret >= 0 && add) {
4545 		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter exists.",
4546 			    filter->ether_type);
4547 		return -EEXIST;
4548 	}
4549 	if (ret < 0 && !add) {
4550 		PMD_DRV_LOG(ERR, "ethertype (0x%04x) filter doesn't exist.",
4551 			    filter->ether_type);
4552 		return -ENOENT;
4553 	}
4554 
4555 	if (add) {
4556 		etqf |= E1000_ETQF_FILTER_ENABLE | E1000_ETQF_QUEUE_ENABLE;
4557 		etqf |= (uint32_t)(filter->ether_type & E1000_ETQF_ETHERTYPE);
4558 		etqf |= filter->queue << E1000_ETQF_QUEUE_SHIFT;
4559 		ret = igb_ethertype_filter_insert(filter_info,
4560 				filter->ether_type, etqf);
4561 		if (ret < 0) {
4562 			PMD_DRV_LOG(ERR, "ethertype filters are full.");
4563 			return -ENOSYS;
4564 		}
4565 	} else {
4566 		ret = igb_ethertype_filter_remove(filter_info, (uint8_t)ret);
4567 		if (ret < 0)
4568 			return -ENOSYS;
4569 	}
4570 	E1000_WRITE_REG(hw, E1000_ETQF(ret), etqf);
4571 	E1000_WRITE_FLUSH(hw);
4572 
4573 	return 0;
4574 }
4575 
4576 static int
4577 eth_igb_flow_ops_get(struct rte_eth_dev *dev __rte_unused,
4578 		     const struct rte_flow_ops **ops)
4579 {
4580 	*ops = &igb_flow_ops;
4581 	return 0;
4582 }
4583 
4584 static int
4585 eth_igb_set_mc_addr_list(struct rte_eth_dev *dev,
4586 			 struct rte_ether_addr *mc_addr_set,
4587 			 uint32_t nb_mc_addr)
4588 {
4589 	struct e1000_hw *hw;
4590 
4591 	hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4592 	e1000_update_mc_addr_list(hw, (u8 *)mc_addr_set, nb_mc_addr);
4593 	return 0;
4594 }
4595 
4596 static uint64_t
4597 igb_read_systime_cyclecounter(struct rte_eth_dev *dev)
4598 {
4599 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4600 	uint64_t systime_cycles;
4601 
4602 	switch (hw->mac.type) {
4603 	case e1000_i210:
4604 	case e1000_i211:
4605 		/*
4606 		 * Need to read System Time Residue Register to be able
4607 		 * to read the other two registers.
4608 		 */
4609 		E1000_READ_REG(hw, E1000_SYSTIMR);
4610 		/* SYSTIMEL stores ns and SYSTIMEH stores seconds. */
4611 		systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4612 		systime_cycles += (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4613 				* NSEC_PER_SEC;
4614 		break;
4615 	case e1000_82580:
4616 	case e1000_i350:
4617 	case e1000_i354:
4618 		/*
4619 		 * Need to read System Time Residue Register to be able
4620 		 * to read the other two registers.
4621 		 */
4622 		E1000_READ_REG(hw, E1000_SYSTIMR);
4623 		systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4624 		/* Only the 8 LSB are valid. */
4625 		systime_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_SYSTIMH)
4626 				& 0xff) << 32;
4627 		break;
4628 	default:
4629 		systime_cycles = (uint64_t)E1000_READ_REG(hw, E1000_SYSTIML);
4630 		systime_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_SYSTIMH)
4631 				<< 32;
4632 		break;
4633 	}
4634 
4635 	return systime_cycles;
4636 }
4637 
4638 static uint64_t
4639 igb_read_rx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4640 {
4641 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4642 	uint64_t rx_tstamp_cycles;
4643 
4644 	switch (hw->mac.type) {
4645 	case e1000_i210:
4646 	case e1000_i211:
4647 		/* RXSTMPL stores ns and RXSTMPH stores seconds. */
4648 		rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4649 		rx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4650 				* NSEC_PER_SEC;
4651 		break;
4652 	case e1000_82580:
4653 	case e1000_i350:
4654 	case e1000_i354:
4655 		rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4656 		/* Only the 8 LSB are valid. */
4657 		rx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_RXSTMPH)
4658 				& 0xff) << 32;
4659 		break;
4660 	default:
4661 		rx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPL);
4662 		rx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_RXSTMPH)
4663 				<< 32;
4664 		break;
4665 	}
4666 
4667 	return rx_tstamp_cycles;
4668 }
4669 
4670 static uint64_t
4671 igb_read_tx_tstamp_cyclecounter(struct rte_eth_dev *dev)
4672 {
4673 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4674 	uint64_t tx_tstamp_cycles;
4675 
4676 	switch (hw->mac.type) {
4677 	case e1000_i210:
4678 	case e1000_i211:
4679 		/* RXSTMPL stores ns and RXSTMPH stores seconds. */
4680 		tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4681 		tx_tstamp_cycles += (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4682 				* NSEC_PER_SEC;
4683 		break;
4684 	case e1000_82580:
4685 	case e1000_i350:
4686 	case e1000_i354:
4687 		tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4688 		/* Only the 8 LSB are valid. */
4689 		tx_tstamp_cycles |= (uint64_t)(E1000_READ_REG(hw, E1000_TXSTMPH)
4690 				& 0xff) << 32;
4691 		break;
4692 	default:
4693 		tx_tstamp_cycles = (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPL);
4694 		tx_tstamp_cycles |= (uint64_t)E1000_READ_REG(hw, E1000_TXSTMPH)
4695 				<< 32;
4696 		break;
4697 	}
4698 
4699 	return tx_tstamp_cycles;
4700 }
4701 
4702 static void
4703 igb_start_timecounters(struct rte_eth_dev *dev)
4704 {
4705 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4706 	struct e1000_adapter *adapter = dev->data->dev_private;
4707 	uint32_t incval = 1;
4708 	uint32_t shift = 0;
4709 	uint64_t mask = E1000_CYCLECOUNTER_MASK;
4710 
4711 	switch (hw->mac.type) {
4712 	case e1000_82580:
4713 	case e1000_i350:
4714 	case e1000_i354:
4715 		/* 32 LSB bits + 8 MSB bits = 40 bits */
4716 		mask = (1ULL << 40) - 1;
4717 		/* fall-through */
4718 	case e1000_i210:
4719 	case e1000_i211:
4720 		/*
4721 		 * Start incrementing the register
4722 		 * used to timestamp PTP packets.
4723 		 */
4724 		E1000_WRITE_REG(hw, E1000_TIMINCA, incval);
4725 		break;
4726 	case e1000_82576:
4727 		incval = E1000_INCVALUE_82576;
4728 		shift = IGB_82576_TSYNC_SHIFT;
4729 		E1000_WRITE_REG(hw, E1000_TIMINCA,
4730 				E1000_INCPERIOD_82576 | incval);
4731 		break;
4732 	default:
4733 		/* Not supported */
4734 		return;
4735 	}
4736 
4737 	memset(&adapter->systime_tc, 0, sizeof(struct rte_timecounter));
4738 	memset(&adapter->rx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4739 	memset(&adapter->tx_tstamp_tc, 0, sizeof(struct rte_timecounter));
4740 
4741 	adapter->systime_tc.cc_mask = mask;
4742 	adapter->systime_tc.cc_shift = shift;
4743 	adapter->systime_tc.nsec_mask = (1ULL << shift) - 1;
4744 
4745 	adapter->rx_tstamp_tc.cc_mask = mask;
4746 	adapter->rx_tstamp_tc.cc_shift = shift;
4747 	adapter->rx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4748 
4749 	adapter->tx_tstamp_tc.cc_mask = mask;
4750 	adapter->tx_tstamp_tc.cc_shift = shift;
4751 	adapter->tx_tstamp_tc.nsec_mask = (1ULL << shift) - 1;
4752 }
4753 
4754 static int
4755 igb_timesync_adjust_time(struct rte_eth_dev *dev, int64_t delta)
4756 {
4757 	struct e1000_adapter *adapter = dev->data->dev_private;
4758 
4759 	adapter->systime_tc.nsec += delta;
4760 	adapter->rx_tstamp_tc.nsec += delta;
4761 	adapter->tx_tstamp_tc.nsec += delta;
4762 
4763 	return 0;
4764 }
4765 
4766 static int
4767 igb_timesync_write_time(struct rte_eth_dev *dev, const struct timespec *ts)
4768 {
4769 	uint64_t ns;
4770 	struct e1000_adapter *adapter = dev->data->dev_private;
4771 
4772 	ns = rte_timespec_to_ns(ts);
4773 
4774 	/* Set the timecounters to a new value. */
4775 	adapter->systime_tc.nsec = ns;
4776 	adapter->rx_tstamp_tc.nsec = ns;
4777 	adapter->tx_tstamp_tc.nsec = ns;
4778 
4779 	return 0;
4780 }
4781 
4782 static int
4783 igb_timesync_read_time(struct rte_eth_dev *dev, struct timespec *ts)
4784 {
4785 	uint64_t ns, systime_cycles;
4786 	struct e1000_adapter *adapter = dev->data->dev_private;
4787 
4788 	systime_cycles = igb_read_systime_cyclecounter(dev);
4789 	ns = rte_timecounter_update(&adapter->systime_tc, systime_cycles);
4790 	*ts = rte_ns_to_timespec(ns);
4791 
4792 	return 0;
4793 }
4794 
4795 static int
4796 igb_timesync_enable(struct rte_eth_dev *dev)
4797 {
4798 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4799 	uint32_t tsync_ctl;
4800 	uint32_t tsauxc;
4801 
4802 	/* Stop the timesync system time. */
4803 	E1000_WRITE_REG(hw, E1000_TIMINCA, 0x0);
4804 	/* Reset the timesync system time value. */
4805 	switch (hw->mac.type) {
4806 	case e1000_82580:
4807 	case e1000_i350:
4808 	case e1000_i354:
4809 	case e1000_i210:
4810 	case e1000_i211:
4811 		E1000_WRITE_REG(hw, E1000_SYSTIMR, 0x0);
4812 		/* fall-through */
4813 	case e1000_82576:
4814 		E1000_WRITE_REG(hw, E1000_SYSTIML, 0x0);
4815 		E1000_WRITE_REG(hw, E1000_SYSTIMH, 0x0);
4816 		break;
4817 	default:
4818 		/* Not supported. */
4819 		return -ENOTSUP;
4820 	}
4821 
4822 	/* Enable system time for it isn't on by default. */
4823 	tsauxc = E1000_READ_REG(hw, E1000_TSAUXC);
4824 	tsauxc &= ~E1000_TSAUXC_DISABLE_SYSTIME;
4825 	E1000_WRITE_REG(hw, E1000_TSAUXC, tsauxc);
4826 
4827 	igb_start_timecounters(dev);
4828 
4829 	/* Enable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4830 	E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588),
4831 			(RTE_ETHER_TYPE_1588 |
4832 			 E1000_ETQF_FILTER_ENABLE |
4833 			 E1000_ETQF_1588));
4834 
4835 	/* Enable timestamping of received PTP packets. */
4836 	tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4837 	tsync_ctl |= E1000_TSYNCRXCTL_ENABLED;
4838 	E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4839 
4840 	/* Enable Timestamping of transmitted PTP packets. */
4841 	tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4842 	tsync_ctl |= E1000_TSYNCTXCTL_ENABLED;
4843 	E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4844 
4845 	return 0;
4846 }
4847 
4848 static int
4849 igb_timesync_disable(struct rte_eth_dev *dev)
4850 {
4851 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4852 	uint32_t tsync_ctl;
4853 
4854 	/* Disable timestamping of transmitted PTP packets. */
4855 	tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4856 	tsync_ctl &= ~E1000_TSYNCTXCTL_ENABLED;
4857 	E1000_WRITE_REG(hw, E1000_TSYNCTXCTL, tsync_ctl);
4858 
4859 	/* Disable timestamping of received PTP packets. */
4860 	tsync_ctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4861 	tsync_ctl &= ~E1000_TSYNCRXCTL_ENABLED;
4862 	E1000_WRITE_REG(hw, E1000_TSYNCRXCTL, tsync_ctl);
4863 
4864 	/* Disable L2 filtering of IEEE1588/802.1AS Ethernet frame types. */
4865 	E1000_WRITE_REG(hw, E1000_ETQF(E1000_ETQF_FILTER_1588), 0);
4866 
4867 	/* Stop incrementating the System Time registers. */
4868 	E1000_WRITE_REG(hw, E1000_TIMINCA, 0);
4869 
4870 	return 0;
4871 }
4872 
4873 static int
4874 igb_timesync_read_rx_timestamp(struct rte_eth_dev *dev,
4875 			       struct timespec *timestamp,
4876 			       uint32_t flags __rte_unused)
4877 {
4878 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4879 	struct e1000_adapter *adapter = dev->data->dev_private;
4880 	uint32_t tsync_rxctl;
4881 	uint64_t rx_tstamp_cycles;
4882 	uint64_t ns;
4883 
4884 	tsync_rxctl = E1000_READ_REG(hw, E1000_TSYNCRXCTL);
4885 	if ((tsync_rxctl & E1000_TSYNCRXCTL_VALID) == 0)
4886 		return -EINVAL;
4887 
4888 	rx_tstamp_cycles = igb_read_rx_tstamp_cyclecounter(dev);
4889 	ns = rte_timecounter_update(&adapter->rx_tstamp_tc, rx_tstamp_cycles);
4890 	*timestamp = rte_ns_to_timespec(ns);
4891 
4892 	return  0;
4893 }
4894 
4895 static int
4896 igb_timesync_read_tx_timestamp(struct rte_eth_dev *dev,
4897 			       struct timespec *timestamp)
4898 {
4899 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4900 	struct e1000_adapter *adapter = dev->data->dev_private;
4901 	uint32_t tsync_txctl;
4902 	uint64_t tx_tstamp_cycles;
4903 	uint64_t ns;
4904 
4905 	tsync_txctl = E1000_READ_REG(hw, E1000_TSYNCTXCTL);
4906 	if ((tsync_txctl & E1000_TSYNCTXCTL_VALID) == 0)
4907 		return -EINVAL;
4908 
4909 	tx_tstamp_cycles = igb_read_tx_tstamp_cyclecounter(dev);
4910 	ns = rte_timecounter_update(&adapter->tx_tstamp_tc, tx_tstamp_cycles);
4911 	*timestamp = rte_ns_to_timespec(ns);
4912 
4913 	return  0;
4914 }
4915 
4916 static int
4917 eth_igb_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4918 {
4919 	int count = 0;
4920 	int g_ind = 0;
4921 	const struct reg_info *reg_group;
4922 
4923 	while ((reg_group = igb_regs[g_ind++]))
4924 		count += igb_reg_group_count(reg_group);
4925 
4926 	return count;
4927 }
4928 
4929 static int
4930 igbvf_get_reg_length(struct rte_eth_dev *dev __rte_unused)
4931 {
4932 	int count = 0;
4933 	int g_ind = 0;
4934 	const struct reg_info *reg_group;
4935 
4936 	while ((reg_group = igbvf_regs[g_ind++]))
4937 		count += igb_reg_group_count(reg_group);
4938 
4939 	return count;
4940 }
4941 
4942 static int
4943 eth_igb_get_regs(struct rte_eth_dev *dev,
4944 	struct rte_dev_reg_info *regs)
4945 {
4946 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4947 	uint32_t *data = regs->data;
4948 	int g_ind = 0;
4949 	int count = 0;
4950 	const struct reg_info *reg_group;
4951 
4952 	if (data == NULL) {
4953 		regs->length = eth_igb_get_reg_length(dev);
4954 		regs->width = sizeof(uint32_t);
4955 		return 0;
4956 	}
4957 
4958 	/* Support only full register dump */
4959 	if ((regs->length == 0) ||
4960 	    (regs->length == (uint32_t)eth_igb_get_reg_length(dev))) {
4961 		regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4962 			hw->device_id;
4963 		while ((reg_group = igb_regs[g_ind++]))
4964 			count += igb_read_regs_group(dev, &data[count],
4965 							reg_group);
4966 		return 0;
4967 	}
4968 
4969 	return -ENOTSUP;
4970 }
4971 
4972 static int
4973 igbvf_get_regs(struct rte_eth_dev *dev,
4974 	struct rte_dev_reg_info *regs)
4975 {
4976 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
4977 	uint32_t *data = regs->data;
4978 	int g_ind = 0;
4979 	int count = 0;
4980 	const struct reg_info *reg_group;
4981 
4982 	if (data == NULL) {
4983 		regs->length = igbvf_get_reg_length(dev);
4984 		regs->width = sizeof(uint32_t);
4985 		return 0;
4986 	}
4987 
4988 	/* Support only full register dump */
4989 	if ((regs->length == 0) ||
4990 	    (regs->length == (uint32_t)igbvf_get_reg_length(dev))) {
4991 		regs->version = hw->mac.type << 24 | hw->revision_id << 16 |
4992 			hw->device_id;
4993 		while ((reg_group = igbvf_regs[g_ind++]))
4994 			count += igb_read_regs_group(dev, &data[count],
4995 							reg_group);
4996 		return 0;
4997 	}
4998 
4999 	return -ENOTSUP;
5000 }
5001 
5002 static int
5003 eth_igb_get_eeprom_length(struct rte_eth_dev *dev)
5004 {
5005 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5006 
5007 	/* Return unit is byte count */
5008 	return hw->nvm.word_size * 2;
5009 }
5010 
5011 static int
5012 eth_igb_get_eeprom(struct rte_eth_dev *dev,
5013 	struct rte_dev_eeprom_info *in_eeprom)
5014 {
5015 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5016 	struct e1000_nvm_info *nvm = &hw->nvm;
5017 	uint16_t *data = in_eeprom->data;
5018 	int first, length;
5019 
5020 	first = in_eeprom->offset >> 1;
5021 	length = in_eeprom->length >> 1;
5022 	if ((first >= hw->nvm.word_size) ||
5023 	    ((first + length) >= hw->nvm.word_size))
5024 		return -EINVAL;
5025 
5026 	in_eeprom->magic = hw->vendor_id |
5027 		((uint32_t)hw->device_id << 16);
5028 
5029 	if ((nvm->ops.read) == NULL)
5030 		return -ENOTSUP;
5031 
5032 	return nvm->ops.read(hw, first, length, data);
5033 }
5034 
5035 static int
5036 eth_igb_set_eeprom(struct rte_eth_dev *dev,
5037 	struct rte_dev_eeprom_info *in_eeprom)
5038 {
5039 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5040 	struct e1000_nvm_info *nvm = &hw->nvm;
5041 	uint16_t *data = in_eeprom->data;
5042 	int first, length;
5043 
5044 	first = in_eeprom->offset >> 1;
5045 	length = in_eeprom->length >> 1;
5046 	if ((first >= hw->nvm.word_size) ||
5047 	    ((first + length) >= hw->nvm.word_size))
5048 		return -EINVAL;
5049 
5050 	in_eeprom->magic = (uint32_t)hw->vendor_id |
5051 		((uint32_t)hw->device_id << 16);
5052 
5053 	if ((nvm->ops.write) == NULL)
5054 		return -ENOTSUP;
5055 	return nvm->ops.write(hw,  first, length, data);
5056 }
5057 
5058 static int
5059 eth_igb_get_module_info(struct rte_eth_dev *dev,
5060 			struct rte_eth_dev_module_info *modinfo)
5061 {
5062 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5063 
5064 	uint32_t status = 0;
5065 	uint16_t sff8472_rev, addr_mode;
5066 	bool page_swap = false;
5067 
5068 	if (hw->phy.media_type == e1000_media_type_copper ||
5069 	    hw->phy.media_type == e1000_media_type_unknown)
5070 		return -EOPNOTSUPP;
5071 
5072 	/* Check whether we support SFF-8472 or not */
5073 	status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
5074 	if (status)
5075 		return -EIO;
5076 
5077 	/* addressing mode is not supported */
5078 	status = e1000_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
5079 	if (status)
5080 		return -EIO;
5081 
5082 	/* addressing mode is not supported */
5083 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
5084 		PMD_DRV_LOG(ERR,
5085 			    "Address change required to access page 0xA2, "
5086 			    "but not supported. Please report the module "
5087 			    "type to the driver maintainers.\n");
5088 		page_swap = true;
5089 	}
5090 
5091 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
5092 		/* We have an SFP, but it does not support SFF-8472 */
5093 		modinfo->type = RTE_ETH_MODULE_SFF_8079;
5094 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8079_LEN;
5095 	} else {
5096 		/* We have an SFP which supports a revision of SFF-8472 */
5097 		modinfo->type = RTE_ETH_MODULE_SFF_8472;
5098 		modinfo->eeprom_len = RTE_ETH_MODULE_SFF_8472_LEN;
5099 	}
5100 
5101 	return 0;
5102 }
5103 
5104 static int
5105 eth_igb_get_module_eeprom(struct rte_eth_dev *dev,
5106 			  struct rte_dev_eeprom_info *info)
5107 {
5108 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5109 
5110 	uint32_t status = 0;
5111 	uint16_t dataword[RTE_ETH_MODULE_SFF_8472_LEN / 2 + 1];
5112 	u16 first_word, last_word;
5113 	int i = 0;
5114 
5115 	first_word = info->offset >> 1;
5116 	last_word = (info->offset + info->length - 1) >> 1;
5117 
5118 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
5119 	for (i = 0; i < last_word - first_word + 1; i++) {
5120 		status = e1000_read_phy_reg_i2c(hw, (first_word + i) * 2,
5121 						&dataword[i]);
5122 		if (status) {
5123 			/* Error occurred while reading module */
5124 			return -EIO;
5125 		}
5126 
5127 		dataword[i] = rte_be_to_cpu_16(dataword[i]);
5128 	}
5129 
5130 	memcpy(info->data, (u8 *)dataword + (info->offset & 1), info->length);
5131 
5132 	return 0;
5133 }
5134 
5135 static int
5136 eth_igb_rx_queue_intr_disable(struct rte_eth_dev *dev, uint16_t queue_id)
5137 {
5138 	struct e1000_hw *hw =
5139 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5140 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5141 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5142 	uint32_t vec = E1000_MISC_VEC_ID;
5143 
5144 	if (rte_intr_allow_others(intr_handle))
5145 		vec = E1000_RX_VEC_START;
5146 
5147 	uint32_t mask = 1 << (queue_id + vec);
5148 
5149 	E1000_WRITE_REG(hw, E1000_EIMC, mask);
5150 	E1000_WRITE_FLUSH(hw);
5151 
5152 	return 0;
5153 }
5154 
5155 static int
5156 eth_igb_rx_queue_intr_enable(struct rte_eth_dev *dev, uint16_t queue_id)
5157 {
5158 	struct e1000_hw *hw =
5159 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5160 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5161 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5162 	uint32_t vec = E1000_MISC_VEC_ID;
5163 
5164 	if (rte_intr_allow_others(intr_handle))
5165 		vec = E1000_RX_VEC_START;
5166 
5167 	uint32_t mask = 1 << (queue_id + vec);
5168 	uint32_t regval;
5169 
5170 	regval = E1000_READ_REG(hw, E1000_EIMS);
5171 	E1000_WRITE_REG(hw, E1000_EIMS, regval | mask);
5172 	E1000_WRITE_FLUSH(hw);
5173 
5174 	rte_intr_ack(intr_handle);
5175 
5176 	return 0;
5177 }
5178 
5179 static void
5180 eth_igb_write_ivar(struct e1000_hw *hw, uint8_t  msix_vector,
5181 		   uint8_t index, uint8_t offset)
5182 {
5183 	uint32_t val = E1000_READ_REG_ARRAY(hw, E1000_IVAR0, index);
5184 
5185 	/* clear bits */
5186 	val &= ~((uint32_t)0xFF << offset);
5187 
5188 	/* write vector and valid bit */
5189 	val |= (msix_vector | E1000_IVAR_VALID) << offset;
5190 
5191 	E1000_WRITE_REG_ARRAY(hw, E1000_IVAR0, index, val);
5192 }
5193 
5194 static void
5195 eth_igb_assign_msix_vector(struct e1000_hw *hw, int8_t direction,
5196 			   uint8_t queue, uint8_t msix_vector)
5197 {
5198 	uint32_t tmp = 0;
5199 
5200 	if (hw->mac.type == e1000_82575) {
5201 		if (direction == 0)
5202 			tmp = E1000_EICR_RX_QUEUE0 << queue;
5203 		else if (direction == 1)
5204 			tmp = E1000_EICR_TX_QUEUE0 << queue;
5205 		E1000_WRITE_REG(hw, E1000_MSIXBM(msix_vector), tmp);
5206 	} else if (hw->mac.type == e1000_82576) {
5207 		if ((direction == 0) || (direction == 1))
5208 			eth_igb_write_ivar(hw, msix_vector, queue & 0x7,
5209 					   ((queue & 0x8) << 1) +
5210 					   8 * direction);
5211 	} else if ((hw->mac.type == e1000_82580) ||
5212 			(hw->mac.type == e1000_i350) ||
5213 			(hw->mac.type == e1000_i354) ||
5214 			(hw->mac.type == e1000_i210) ||
5215 			(hw->mac.type == e1000_i211)) {
5216 		if ((direction == 0) || (direction == 1))
5217 			eth_igb_write_ivar(hw, msix_vector,
5218 					   queue >> 1,
5219 					   ((queue & 0x1) << 4) +
5220 					   8 * direction);
5221 	}
5222 }
5223 
5224 /* Sets up the hardware to generate MSI-X interrupts properly
5225  * @hw
5226  *  board private structure
5227  */
5228 static void
5229 eth_igb_configure_msix_intr(struct rte_eth_dev *dev)
5230 {
5231 	int queue_id;
5232 	uint32_t tmpval, regval, intr_mask;
5233 	struct e1000_hw *hw =
5234 		E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5235 	uint32_t vec = E1000_MISC_VEC_ID;
5236 	uint32_t base = E1000_MISC_VEC_ID;
5237 	uint32_t misc_shift = 0;
5238 	struct rte_pci_device *pci_dev = RTE_ETH_DEV_TO_PCI(dev);
5239 	struct rte_intr_handle *intr_handle = &pci_dev->intr_handle;
5240 
5241 	/* won't configure msix register if no mapping is done
5242 	 * between intr vector and event fd
5243 	 */
5244 	if (!rte_intr_dp_is_en(intr_handle))
5245 		return;
5246 
5247 	if (rte_intr_allow_others(intr_handle)) {
5248 		vec = base = E1000_RX_VEC_START;
5249 		misc_shift = 1;
5250 	}
5251 
5252 	/* set interrupt vector for other causes */
5253 	if (hw->mac.type == e1000_82575) {
5254 		tmpval = E1000_READ_REG(hw, E1000_CTRL_EXT);
5255 		/* enable MSI-X PBA support */
5256 		tmpval |= E1000_CTRL_EXT_PBA_CLR;
5257 
5258 		/* Auto-Mask interrupts upon ICR read */
5259 		tmpval |= E1000_CTRL_EXT_EIAME;
5260 		tmpval |= E1000_CTRL_EXT_IRCA;
5261 
5262 		E1000_WRITE_REG(hw, E1000_CTRL_EXT, tmpval);
5263 
5264 		/* enable msix_other interrupt */
5265 		E1000_WRITE_REG_ARRAY(hw, E1000_MSIXBM(0), 0, E1000_EIMS_OTHER);
5266 		regval = E1000_READ_REG(hw, E1000_EIAC);
5267 		E1000_WRITE_REG(hw, E1000_EIAC, regval | E1000_EIMS_OTHER);
5268 		regval = E1000_READ_REG(hw, E1000_EIAM);
5269 		E1000_WRITE_REG(hw, E1000_EIMS, regval | E1000_EIMS_OTHER);
5270 	} else if ((hw->mac.type == e1000_82576) ||
5271 			(hw->mac.type == e1000_82580) ||
5272 			(hw->mac.type == e1000_i350) ||
5273 			(hw->mac.type == e1000_i354) ||
5274 			(hw->mac.type == e1000_i210) ||
5275 			(hw->mac.type == e1000_i211)) {
5276 		/* turn on MSI-X capability first */
5277 		E1000_WRITE_REG(hw, E1000_GPIE, E1000_GPIE_MSIX_MODE |
5278 					E1000_GPIE_PBA | E1000_GPIE_EIAME |
5279 					E1000_GPIE_NSICR);
5280 		intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5281 			misc_shift;
5282 
5283 		if (dev->data->dev_conf.intr_conf.lsc != 0)
5284 			intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5285 
5286 		regval = E1000_READ_REG(hw, E1000_EIAC);
5287 		E1000_WRITE_REG(hw, E1000_EIAC, regval | intr_mask);
5288 
5289 		/* enable msix_other interrupt */
5290 		regval = E1000_READ_REG(hw, E1000_EIMS);
5291 		E1000_WRITE_REG(hw, E1000_EIMS, regval | intr_mask);
5292 		tmpval = (IGB_MSIX_OTHER_INTR_VEC | E1000_IVAR_VALID) << 8;
5293 		E1000_WRITE_REG(hw, E1000_IVAR_MISC, tmpval);
5294 	}
5295 
5296 	/* use EIAM to auto-mask when MSI-X interrupt
5297 	 * is asserted, this saves a register write for every interrupt
5298 	 */
5299 	intr_mask = RTE_LEN2MASK(intr_handle->nb_efd, uint32_t) <<
5300 		misc_shift;
5301 
5302 	if (dev->data->dev_conf.intr_conf.lsc != 0)
5303 		intr_mask |= (1 << IGB_MSIX_OTHER_INTR_VEC);
5304 
5305 	regval = E1000_READ_REG(hw, E1000_EIAM);
5306 	E1000_WRITE_REG(hw, E1000_EIAM, regval | intr_mask);
5307 
5308 	for (queue_id = 0; queue_id < dev->data->nb_rx_queues; queue_id++) {
5309 		eth_igb_assign_msix_vector(hw, 0, queue_id, vec);
5310 		intr_handle->intr_vec[queue_id] = vec;
5311 		if (vec < base + intr_handle->nb_efd - 1)
5312 			vec++;
5313 	}
5314 
5315 	E1000_WRITE_FLUSH(hw);
5316 }
5317 
5318 /* restore n-tuple filter */
5319 static inline void
5320 igb_ntuple_filter_restore(struct rte_eth_dev *dev)
5321 {
5322 	struct e1000_filter_info *filter_info =
5323 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5324 	struct e1000_5tuple_filter *p_5tuple;
5325 	struct e1000_2tuple_filter *p_2tuple;
5326 
5327 	TAILQ_FOREACH(p_5tuple, &filter_info->fivetuple_list, entries) {
5328 		igb_inject_5tuple_filter_82576(dev, p_5tuple);
5329 	}
5330 
5331 	TAILQ_FOREACH(p_2tuple, &filter_info->twotuple_list, entries) {
5332 		igb_inject_2uple_filter(dev, p_2tuple);
5333 	}
5334 }
5335 
5336 /* restore SYN filter */
5337 static inline void
5338 igb_syn_filter_restore(struct rte_eth_dev *dev)
5339 {
5340 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5341 	struct e1000_filter_info *filter_info =
5342 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5343 	uint32_t synqf;
5344 
5345 	synqf = filter_info->syn_info;
5346 
5347 	if (synqf & E1000_SYN_FILTER_ENABLE) {
5348 		E1000_WRITE_REG(hw, E1000_SYNQF(0), synqf);
5349 		E1000_WRITE_FLUSH(hw);
5350 	}
5351 }
5352 
5353 /* restore ethernet type filter */
5354 static inline void
5355 igb_ethertype_filter_restore(struct rte_eth_dev *dev)
5356 {
5357 	struct e1000_hw *hw = E1000_DEV_PRIVATE_TO_HW(dev->data->dev_private);
5358 	struct e1000_filter_info *filter_info =
5359 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5360 	int i;
5361 
5362 	for (i = 0; i < E1000_MAX_ETQF_FILTERS; i++) {
5363 		if (filter_info->ethertype_mask & (1 << i)) {
5364 			E1000_WRITE_REG(hw, E1000_ETQF(i),
5365 				filter_info->ethertype_filters[i].etqf);
5366 			E1000_WRITE_FLUSH(hw);
5367 		}
5368 	}
5369 }
5370 
5371 /* restore flex byte filter */
5372 static inline void
5373 igb_flex_filter_restore(struct rte_eth_dev *dev)
5374 {
5375 	struct e1000_filter_info *filter_info =
5376 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5377 	struct e1000_flex_filter *flex_filter;
5378 
5379 	TAILQ_FOREACH(flex_filter, &filter_info->flex_list, entries) {
5380 		igb_inject_flex_filter(dev, flex_filter);
5381 	}
5382 }
5383 
5384 /* restore rss filter */
5385 static inline void
5386 igb_rss_filter_restore(struct rte_eth_dev *dev)
5387 {
5388 	struct e1000_filter_info *filter_info =
5389 		E1000_DEV_PRIVATE_TO_FILTER_INFO(dev->data->dev_private);
5390 
5391 	if (filter_info->rss_info.conf.queue_num)
5392 		igb_config_rss_filter(dev, &filter_info->rss_info, TRUE);
5393 }
5394 
5395 /* restore all types filter */
5396 static int
5397 igb_filter_restore(struct rte_eth_dev *dev)
5398 {
5399 	igb_ntuple_filter_restore(dev);
5400 	igb_ethertype_filter_restore(dev);
5401 	igb_syn_filter_restore(dev);
5402 	igb_flex_filter_restore(dev);
5403 	igb_rss_filter_restore(dev);
5404 
5405 	return 0;
5406 }
5407 
5408 RTE_PMD_REGISTER_PCI(net_e1000_igb, rte_igb_pmd);
5409 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb, pci_id_igb_map);
5410 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb, "* igb_uio | uio_pci_generic | vfio-pci");
5411 RTE_PMD_REGISTER_PCI(net_e1000_igb_vf, rte_igbvf_pmd);
5412 RTE_PMD_REGISTER_PCI_TABLE(net_e1000_igb_vf, pci_id_igbvf_map);
5413 RTE_PMD_REGISTER_KMOD_DEP(net_e1000_igb_vf, "* igb_uio | vfio-pci");
5414