1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2018 Ericsson AB
3 */
4
5 #include <stdbool.h>
6
7 #include <rte_cycles.h>
8 #include <eventdev_pmd.h>
9 #include <eventdev_pmd_vdev.h>
10 #include <rte_random.h>
11 #include <rte_ring_elem.h>
12
13 #include "dsw_evdev.h"
14
15 #define EVENTDEV_NAME_DSW_PMD event_dsw
16
17 static int
dsw_port_setup(struct rte_eventdev * dev,uint8_t port_id,const struct rte_event_port_conf * conf)18 dsw_port_setup(struct rte_eventdev *dev, uint8_t port_id,
19 const struct rte_event_port_conf *conf)
20 {
21 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
22 struct dsw_port *port;
23 struct rte_event_ring *in_ring;
24 struct rte_ring *ctl_in_ring;
25 char ring_name[RTE_RING_NAMESIZE];
26
27 port = &dsw->ports[port_id];
28
29 *port = (struct dsw_port) {
30 .id = port_id,
31 .dsw = dsw,
32 .dequeue_depth = conf->dequeue_depth,
33 .enqueue_depth = conf->enqueue_depth,
34 .new_event_threshold = conf->new_event_threshold
35 };
36
37 snprintf(ring_name, sizeof(ring_name), "dsw%d_p%u", dev->data->dev_id,
38 port_id);
39
40 in_ring = rte_event_ring_create(ring_name, DSW_IN_RING_SIZE,
41 dev->data->socket_id,
42 RING_F_SC_DEQ|RING_F_EXACT_SZ);
43
44 if (in_ring == NULL)
45 return -ENOMEM;
46
47 snprintf(ring_name, sizeof(ring_name), "dswctl%d_p%u",
48 dev->data->dev_id, port_id);
49
50 ctl_in_ring = rte_ring_create_elem(ring_name,
51 sizeof(struct dsw_ctl_msg),
52 DSW_CTL_IN_RING_SIZE,
53 dev->data->socket_id,
54 RING_F_SC_DEQ|RING_F_EXACT_SZ);
55
56 if (ctl_in_ring == NULL) {
57 rte_event_ring_free(in_ring);
58 return -ENOMEM;
59 }
60
61 port->in_ring = in_ring;
62 port->ctl_in_ring = ctl_in_ring;
63
64 port->load_update_interval =
65 (DSW_LOAD_UPDATE_INTERVAL * rte_get_timer_hz()) / US_PER_S;
66
67 port->migration_interval =
68 (DSW_MIGRATION_INTERVAL * rte_get_timer_hz()) / US_PER_S;
69
70 dev->data->ports[port_id] = port;
71
72 return 0;
73 }
74
75 static void
dsw_port_def_conf(struct rte_eventdev * dev __rte_unused,uint8_t port_id __rte_unused,struct rte_event_port_conf * port_conf)76 dsw_port_def_conf(struct rte_eventdev *dev __rte_unused,
77 uint8_t port_id __rte_unused,
78 struct rte_event_port_conf *port_conf)
79 {
80 *port_conf = (struct rte_event_port_conf) {
81 .new_event_threshold = 1024,
82 .dequeue_depth = DSW_MAX_PORT_DEQUEUE_DEPTH / 4,
83 .enqueue_depth = DSW_MAX_PORT_ENQUEUE_DEPTH / 4
84 };
85 }
86
87 static void
dsw_port_release(void * p)88 dsw_port_release(void *p)
89 {
90 struct dsw_port *port = p;
91
92 rte_event_ring_free(port->in_ring);
93 rte_ring_free(port->ctl_in_ring);
94 }
95
96 static int
dsw_queue_setup(struct rte_eventdev * dev,uint8_t queue_id,const struct rte_event_queue_conf * conf)97 dsw_queue_setup(struct rte_eventdev *dev, uint8_t queue_id,
98 const struct rte_event_queue_conf *conf)
99 {
100 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
101 struct dsw_queue *queue = &dsw->queues[queue_id];
102
103 if (RTE_EVENT_QUEUE_CFG_ALL_TYPES & conf->event_queue_cfg)
104 return -ENOTSUP;
105
106 /* SINGLE_LINK is better off treated as TYPE_ATOMIC, since it
107 * avoid the "fake" TYPE_PARALLEL flow_id assignment. Since
108 * the queue will only have a single serving port, no
109 * migration will ever happen, so the extra TYPE_ATOMIC
110 * migration overhead is avoided.
111 */
112 if (RTE_EVENT_QUEUE_CFG_SINGLE_LINK & conf->event_queue_cfg)
113 queue->schedule_type = RTE_SCHED_TYPE_ATOMIC;
114 else {
115 if (conf->schedule_type == RTE_SCHED_TYPE_ORDERED)
116 return -ENOTSUP;
117 /* atomic or parallel */
118 queue->schedule_type = conf->schedule_type;
119 }
120
121 queue->num_serving_ports = 0;
122
123 return 0;
124 }
125
126 static void
dsw_queue_def_conf(struct rte_eventdev * dev __rte_unused,uint8_t queue_id __rte_unused,struct rte_event_queue_conf * queue_conf)127 dsw_queue_def_conf(struct rte_eventdev *dev __rte_unused,
128 uint8_t queue_id __rte_unused,
129 struct rte_event_queue_conf *queue_conf)
130 {
131 *queue_conf = (struct rte_event_queue_conf) {
132 .nb_atomic_flows = 4096,
133 .schedule_type = RTE_SCHED_TYPE_ATOMIC,
134 .priority = RTE_EVENT_DEV_PRIORITY_NORMAL
135 };
136 }
137
138 static void
dsw_queue_release(struct rte_eventdev * dev __rte_unused,uint8_t queue_id __rte_unused)139 dsw_queue_release(struct rte_eventdev *dev __rte_unused,
140 uint8_t queue_id __rte_unused)
141 {
142 }
143
144 static void
queue_add_port(struct dsw_queue * queue,uint16_t port_id)145 queue_add_port(struct dsw_queue *queue, uint16_t port_id)
146 {
147 queue->serving_ports[queue->num_serving_ports] = port_id;
148 queue->num_serving_ports++;
149 }
150
151 static bool
queue_remove_port(struct dsw_queue * queue,uint16_t port_id)152 queue_remove_port(struct dsw_queue *queue, uint16_t port_id)
153 {
154 uint16_t i;
155
156 for (i = 0; i < queue->num_serving_ports; i++)
157 if (queue->serving_ports[i] == port_id) {
158 uint16_t last_idx = queue->num_serving_ports - 1;
159 if (i != last_idx)
160 queue->serving_ports[i] =
161 queue->serving_ports[last_idx];
162 queue->num_serving_ports--;
163 return true;
164 }
165 return false;
166 }
167
168 static int
dsw_port_link_unlink(struct rte_eventdev * dev,void * port,const uint8_t queues[],uint16_t num,bool link)169 dsw_port_link_unlink(struct rte_eventdev *dev, void *port,
170 const uint8_t queues[], uint16_t num, bool link)
171 {
172 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
173 struct dsw_port *p = port;
174 uint16_t i;
175 uint16_t count = 0;
176
177 for (i = 0; i < num; i++) {
178 uint8_t qid = queues[i];
179 struct dsw_queue *q = &dsw->queues[qid];
180 if (link) {
181 queue_add_port(q, p->id);
182 count++;
183 } else {
184 bool removed = queue_remove_port(q, p->id);
185 if (removed)
186 count++;
187 }
188 }
189
190 return count;
191 }
192
193 static int
dsw_port_link(struct rte_eventdev * dev,void * port,const uint8_t queues[],const uint8_t priorities[]__rte_unused,uint16_t num)194 dsw_port_link(struct rte_eventdev *dev, void *port, const uint8_t queues[],
195 const uint8_t priorities[] __rte_unused, uint16_t num)
196 {
197 return dsw_port_link_unlink(dev, port, queues, num, true);
198 }
199
200 static int
dsw_port_unlink(struct rte_eventdev * dev,void * port,uint8_t queues[],uint16_t num)201 dsw_port_unlink(struct rte_eventdev *dev, void *port, uint8_t queues[],
202 uint16_t num)
203 {
204 return dsw_port_link_unlink(dev, port, queues, num, false);
205 }
206
207 static void
dsw_info_get(struct rte_eventdev * dev __rte_unused,struct rte_event_dev_info * info)208 dsw_info_get(struct rte_eventdev *dev __rte_unused,
209 struct rte_event_dev_info *info)
210 {
211 *info = (struct rte_event_dev_info) {
212 .driver_name = DSW_PMD_NAME,
213 .max_event_queues = DSW_MAX_QUEUES,
214 .max_event_queue_flows = DSW_MAX_FLOWS,
215 .max_event_queue_priority_levels = 1,
216 .max_event_priority_levels = 1,
217 .max_event_ports = DSW_MAX_PORTS,
218 .max_event_port_dequeue_depth = DSW_MAX_PORT_DEQUEUE_DEPTH,
219 .max_event_port_enqueue_depth = DSW_MAX_PORT_ENQUEUE_DEPTH,
220 .max_num_events = DSW_MAX_EVENTS,
221 .event_dev_cap = RTE_EVENT_DEV_CAP_BURST_MODE|
222 RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED|
223 RTE_EVENT_DEV_CAP_NONSEQ_MODE|
224 RTE_EVENT_DEV_CAP_MULTIPLE_QUEUE_PORT|
225 RTE_EVENT_DEV_CAP_CARRY_FLOW_ID
226 };
227 }
228
229 static int
dsw_configure(const struct rte_eventdev * dev)230 dsw_configure(const struct rte_eventdev *dev)
231 {
232 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
233 const struct rte_event_dev_config *conf = &dev->data->dev_conf;
234 int32_t min_max_in_flight;
235
236 dsw->num_ports = conf->nb_event_ports;
237 dsw->num_queues = conf->nb_event_queues;
238
239 /* Avoid a situation where consumer ports are holding all the
240 * credits, without making use of them.
241 */
242 min_max_in_flight = conf->nb_event_ports * DSW_PORT_MAX_CREDITS;
243
244 dsw->max_inflight = RTE_MAX(conf->nb_events_limit, min_max_in_flight);
245
246 return 0;
247 }
248
249
250 static void
initial_flow_to_port_assignment(struct dsw_evdev * dsw)251 initial_flow_to_port_assignment(struct dsw_evdev *dsw)
252 {
253 uint8_t queue_id;
254 for (queue_id = 0; queue_id < dsw->num_queues; queue_id++) {
255 struct dsw_queue *queue = &dsw->queues[queue_id];
256 uint16_t flow_hash;
257 for (flow_hash = 0; flow_hash < DSW_MAX_FLOWS; flow_hash++) {
258 uint8_t port_idx =
259 rte_rand() % queue->num_serving_ports;
260 uint8_t port_id =
261 queue->serving_ports[port_idx];
262 dsw->queues[queue_id].flow_to_port_map[flow_hash] =
263 port_id;
264 }
265 }
266 }
267
268 static int
dsw_start(struct rte_eventdev * dev)269 dsw_start(struct rte_eventdev *dev)
270 {
271 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
272 uint16_t i;
273 uint64_t now;
274
275 dsw->credits_on_loan = 0;
276
277 initial_flow_to_port_assignment(dsw);
278
279 now = rte_get_timer_cycles();
280 for (i = 0; i < dsw->num_ports; i++) {
281 dsw->ports[i].measurement_start = now;
282 dsw->ports[i].busy_start = now;
283 }
284
285 return 0;
286 }
287
288 static void
dsw_port_drain_buf(uint8_t dev_id,struct rte_event * buf,uint16_t buf_len,eventdev_stop_flush_t flush,void * flush_arg)289 dsw_port_drain_buf(uint8_t dev_id, struct rte_event *buf, uint16_t buf_len,
290 eventdev_stop_flush_t flush, void *flush_arg)
291 {
292 uint16_t i;
293
294 for (i = 0; i < buf_len; i++)
295 flush(dev_id, buf[i], flush_arg);
296 }
297
298 static void
dsw_port_drain_paused(uint8_t dev_id,struct dsw_port * port,eventdev_stop_flush_t flush,void * flush_arg)299 dsw_port_drain_paused(uint8_t dev_id, struct dsw_port *port,
300 eventdev_stop_flush_t flush, void *flush_arg)
301 {
302 dsw_port_drain_buf(dev_id, port->paused_events, port->paused_events_len,
303 flush, flush_arg);
304 }
305
306 static void
dsw_port_drain_out(uint8_t dev_id,struct dsw_evdev * dsw,struct dsw_port * port,eventdev_stop_flush_t flush,void * flush_arg)307 dsw_port_drain_out(uint8_t dev_id, struct dsw_evdev *dsw, struct dsw_port *port,
308 eventdev_stop_flush_t flush, void *flush_arg)
309 {
310 uint16_t dport_id;
311
312 for (dport_id = 0; dport_id < dsw->num_ports; dport_id++)
313 if (dport_id != port->id)
314 dsw_port_drain_buf(dev_id, port->out_buffer[dport_id],
315 port->out_buffer_len[dport_id],
316 flush, flush_arg);
317 }
318
319 static void
dsw_port_drain_in_ring(uint8_t dev_id,struct dsw_port * port,eventdev_stop_flush_t flush,void * flush_arg)320 dsw_port_drain_in_ring(uint8_t dev_id, struct dsw_port *port,
321 eventdev_stop_flush_t flush, void *flush_arg)
322 {
323 struct rte_event ev;
324
325 while (rte_event_ring_dequeue_burst(port->in_ring, &ev, 1, NULL))
326 flush(dev_id, ev, flush_arg);
327 }
328
329 static void
dsw_drain(uint8_t dev_id,struct dsw_evdev * dsw,eventdev_stop_flush_t flush,void * flush_arg)330 dsw_drain(uint8_t dev_id, struct dsw_evdev *dsw,
331 eventdev_stop_flush_t flush, void *flush_arg)
332 {
333 uint16_t port_id;
334
335 if (flush == NULL)
336 return;
337
338 for (port_id = 0; port_id < dsw->num_ports; port_id++) {
339 struct dsw_port *port = &dsw->ports[port_id];
340
341 dsw_port_drain_out(dev_id, dsw, port, flush, flush_arg);
342 dsw_port_drain_paused(dev_id, port, flush, flush_arg);
343 dsw_port_drain_in_ring(dev_id, port, flush, flush_arg);
344 }
345 }
346
347 static void
dsw_stop(struct rte_eventdev * dev)348 dsw_stop(struct rte_eventdev *dev)
349 {
350 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
351 uint8_t dev_id;
352 eventdev_stop_flush_t flush;
353 void *flush_arg;
354
355 dev_id = dev->data->dev_id;
356 flush = dev->dev_ops->dev_stop_flush;
357 flush_arg = dev->data->dev_stop_flush_arg;
358
359 dsw_drain(dev_id, dsw, flush, flush_arg);
360 }
361
362 static int
dsw_close(struct rte_eventdev * dev)363 dsw_close(struct rte_eventdev *dev)
364 {
365 struct dsw_evdev *dsw = dsw_pmd_priv(dev);
366
367 dsw->num_ports = 0;
368 dsw->num_queues = 0;
369
370 return 0;
371 }
372
373 static int
dsw_eth_rx_adapter_caps_get(const struct rte_eventdev * dev __rte_unused,const struct rte_eth_dev * eth_dev __rte_unused,uint32_t * caps)374 dsw_eth_rx_adapter_caps_get(const struct rte_eventdev *dev __rte_unused,
375 const struct rte_eth_dev *eth_dev __rte_unused,
376 uint32_t *caps)
377 {
378 *caps = RTE_EVENT_ETH_RX_ADAPTER_SW_CAP;
379 return 0;
380 }
381
382 static int
dsw_timer_adapter_caps_get(const struct rte_eventdev * dev __rte_unused,uint64_t flags __rte_unused,uint32_t * caps,const struct event_timer_adapter_ops ** ops)383 dsw_timer_adapter_caps_get(const struct rte_eventdev *dev __rte_unused,
384 uint64_t flags __rte_unused, uint32_t *caps,
385 const struct event_timer_adapter_ops **ops)
386 {
387 *caps = 0;
388 *ops = NULL;
389 return 0;
390 }
391
392 static int
dsw_crypto_adapter_caps_get(const struct rte_eventdev * dev __rte_unused,const struct rte_cryptodev * cdev __rte_unused,uint32_t * caps)393 dsw_crypto_adapter_caps_get(const struct rte_eventdev *dev __rte_unused,
394 const struct rte_cryptodev *cdev __rte_unused,
395 uint32_t *caps)
396 {
397 *caps = RTE_EVENT_CRYPTO_ADAPTER_SW_CAP;
398 return 0;
399 }
400
401 static struct eventdev_ops dsw_evdev_ops = {
402 .port_setup = dsw_port_setup,
403 .port_def_conf = dsw_port_def_conf,
404 .port_release = dsw_port_release,
405 .queue_setup = dsw_queue_setup,
406 .queue_def_conf = dsw_queue_def_conf,
407 .queue_release = dsw_queue_release,
408 .port_link = dsw_port_link,
409 .port_unlink = dsw_port_unlink,
410 .dev_infos_get = dsw_info_get,
411 .dev_configure = dsw_configure,
412 .dev_start = dsw_start,
413 .dev_stop = dsw_stop,
414 .dev_close = dsw_close,
415 .eth_rx_adapter_caps_get = dsw_eth_rx_adapter_caps_get,
416 .timer_adapter_caps_get = dsw_timer_adapter_caps_get,
417 .crypto_adapter_caps_get = dsw_crypto_adapter_caps_get,
418 .xstats_get = dsw_xstats_get,
419 .xstats_get_names = dsw_xstats_get_names,
420 .xstats_get_by_name = dsw_xstats_get_by_name
421 };
422
423 static int
dsw_probe(struct rte_vdev_device * vdev)424 dsw_probe(struct rte_vdev_device *vdev)
425 {
426 const char *name;
427 struct rte_eventdev *dev;
428 struct dsw_evdev *dsw;
429
430 name = rte_vdev_device_name(vdev);
431
432 dev = rte_event_pmd_vdev_init(name, sizeof(struct dsw_evdev),
433 rte_socket_id());
434 if (dev == NULL)
435 return -EFAULT;
436
437 dev->dev_ops = &dsw_evdev_ops;
438 dev->enqueue = dsw_event_enqueue;
439 dev->enqueue_burst = dsw_event_enqueue_burst;
440 dev->enqueue_new_burst = dsw_event_enqueue_new_burst;
441 dev->enqueue_forward_burst = dsw_event_enqueue_forward_burst;
442 dev->dequeue = dsw_event_dequeue;
443 dev->dequeue_burst = dsw_event_dequeue_burst;
444 dev->maintain = dsw_event_maintain;
445
446 if (rte_eal_process_type() != RTE_PROC_PRIMARY)
447 return 0;
448
449 dsw = dev->data->dev_private;
450 dsw->data = dev->data;
451
452 event_dev_probing_finish(dev);
453 return 0;
454 }
455
456 static int
dsw_remove(struct rte_vdev_device * vdev)457 dsw_remove(struct rte_vdev_device *vdev)
458 {
459 const char *name;
460
461 name = rte_vdev_device_name(vdev);
462 if (name == NULL)
463 return -EINVAL;
464
465 return rte_event_pmd_vdev_uninit(name);
466 }
467
468 static struct rte_vdev_driver evdev_dsw_pmd_drv = {
469 .probe = dsw_probe,
470 .remove = dsw_remove
471 };
472
473 RTE_PMD_REGISTER_VDEV(EVENTDEV_NAME_DSW_PMD, evdev_dsw_pmd_drv);
474