1 /*- 2 * BSD LICENSE 3 * 4 * Copyright(c) 2010-2014 Intel Corporation. All rights reserved. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * * Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * * Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in 15 * the documentation and/or other materials provided with the 16 * distribution. 17 * * Neither the name of Intel Corporation nor the names of its 18 * contributors may be used to endorse or promote products derived 19 * from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 */ 33 34 #include <stdlib.h> 35 #include <stdio.h> 36 #include <string.h> 37 #include <stdint.h> 38 #include <unistd.h> 39 #include <inttypes.h> 40 #include <sys/time.h> 41 #include <time.h> 42 #include <math.h> 43 44 #include "test.h" 45 46 #include <rte_red.h> 47 48 #ifdef __INTEL_COMPILER 49 #pragma warning(disable:2259) /* conversion may lose significant bits */ 50 #pragma warning(disable:181) /* Arg incompatible with format string */ 51 #endif 52 53 #define TEST_HZ_PER_KHZ 1000 54 #define TEST_NSEC_MARGIN 500 /**< nanosecond margin when calculating clk freq */ 55 56 #define MAX_QEMPTY_TIME_MSEC 50000 57 #define MSEC_PER_SEC 1000 /**< Milli-seconds per second */ 58 #define USEC_PER_MSEC 1000 /**< Micro-seconds per milli-second */ 59 #define USEC_PER_SEC 1000000 /**< Micro-seconds per second */ 60 #define NSEC_PER_SEC (USEC_PER_SEC * 1000) /**< Nano-seconds per second */ 61 62 /**< structures for testing rte_red performance and function */ 63 struct test_rte_red_config { /**< Test structure for RTE_RED config */ 64 struct rte_red_config *rconfig; /**< RTE_RED configuration parameters */ 65 uint8_t num_cfg; /**< Number of RTE_RED configs to test */ 66 uint8_t *wq_log2; /**< Test wq_log2 value to use */ 67 uint32_t min_th; /**< Queue minimum threshold */ 68 uint32_t max_th; /**< Queue maximum threshold */ 69 uint8_t *maxp_inv; /**< Inverse mark probability */ 70 }; 71 72 struct test_queue { /**< Test structure for RTE_RED Queues */ 73 struct rte_red *rdata; /**< RTE_RED runtime data */ 74 uint32_t num_queues; /**< Number of RTE_RED queues to test */ 75 uint32_t *qconfig; /**< Configuration of RTE_RED queues for test */ 76 uint32_t *q; /**< Queue size */ 77 uint32_t q_ramp_up; /**< Num of enqueues to ramp up the queue */ 78 uint32_t avg_ramp_up; /**< Average num of enqueues to ramp up the queue */ 79 uint32_t avg_tolerance; /**< Tolerance in queue average */ 80 double drop_tolerance; /**< Drop tolerance of packets not enqueued */ 81 }; 82 83 struct test_var { /**< Test variables used for testing RTE_RED */ 84 uint32_t wait_usec; /**< Micro second wait interval */ 85 uint32_t num_iterations; /**< Number of test iterations */ 86 uint32_t num_ops; /**< Number of test operations */ 87 uint64_t clk_freq; /**< CPU clock frequency */ 88 uint32_t sleep_sec; /**< Seconds to sleep */ 89 uint32_t *dropped; /**< Test operations dropped */ 90 uint32_t *enqueued; /**< Test operations enqueued */ 91 }; 92 93 struct test_config { /**< Master test structure for RTE_RED */ 94 const char *ifname; /**< Interface name */ 95 const char *msg; /**< Test message for display */ 96 const char *htxt; /**< Header txt display for result output */ 97 struct test_rte_red_config *tconfig; /**< Test structure for RTE_RED config */ 98 struct test_queue *tqueue; /**< Test structure for RTE_RED Queues */ 99 struct test_var *tvar; /**< Test variables used for testing RTE_RED */ 100 uint32_t *tlevel; /**< Queue levels */ 101 }; 102 103 enum test_result { 104 FAIL = 0, 105 PASS 106 }; 107 108 /**< Test structure to define tests to run */ 109 struct tests { 110 struct test_config *testcfg; 111 enum test_result (*testfn)(struct test_config *); 112 }; 113 114 struct rdtsc_prof { 115 uint64_t clk_start; 116 uint64_t clk_min; /**< min clocks */ 117 uint64_t clk_max; /**< max clocks */ 118 uint64_t clk_avgc; /**< count to calc average */ 119 double clk_avg; /**< cumulative sum to calc average */ 120 const char *name; 121 }; 122 123 static const uint64_t port_speed_bytes = (10ULL*1000ULL*1000ULL*1000ULL)/8ULL; 124 static double inv_cycles_per_byte = 0; 125 static double pkt_time_usec = 0; 126 127 static void init_port_ts(uint64_t cpu_clock) 128 { 129 double cycles_per_byte = (double)(cpu_clock) / (double)(port_speed_bytes); 130 inv_cycles_per_byte = 1.0 / cycles_per_byte; 131 pkt_time_usec = 1000000.0 / ((double)port_speed_bytes / (double)RTE_RED_S); 132 } 133 134 static uint64_t get_port_ts(void) 135 { 136 return (uint64_t)((double)rte_rdtsc() * inv_cycles_per_byte); 137 } 138 139 static void rdtsc_prof_init(struct rdtsc_prof *p, const char *name) 140 { 141 p->clk_min = (uint64_t)(-1LL); 142 p->clk_max = 0; 143 p->clk_avg = 0; 144 p->clk_avgc = 0; 145 p->name = name; 146 } 147 148 static inline void rdtsc_prof_start(struct rdtsc_prof *p) 149 { 150 p->clk_start = rte_rdtsc_precise(); 151 } 152 153 static inline void rdtsc_prof_end(struct rdtsc_prof *p) 154 { 155 uint64_t clk_start = rte_rdtsc() - p->clk_start; 156 157 p->clk_avgc++; 158 p->clk_avg += (double) clk_start; 159 160 if (clk_start > p->clk_max) 161 p->clk_max = clk_start; 162 if (clk_start < p->clk_min) 163 p->clk_min = clk_start; 164 } 165 166 static void rdtsc_prof_print(struct rdtsc_prof *p) 167 { 168 if (p->clk_avgc>0) { 169 printf("RDTSC stats for %s: n=%" PRIu64 ", min=%" PRIu64 ", max=%" PRIu64 ", avg=%.1f\n", 170 p->name, 171 p->clk_avgc, 172 p->clk_min, 173 p->clk_max, 174 (p->clk_avg / ((double) p->clk_avgc))); 175 } 176 } 177 178 static uint32_t rte_red_get_avg_int(const struct rte_red_config *red_cfg, 179 struct rte_red *red) 180 { 181 /** 182 * scale by 1/n and convert from fixed-point to integer 183 */ 184 return red->avg >> (RTE_RED_SCALING + red_cfg->wq_log2); 185 } 186 187 static double rte_red_get_avg_float(const struct rte_red_config *red_cfg, 188 struct rte_red *red) 189 { 190 /** 191 * scale by 1/n and convert from fixed-point to floating-point 192 */ 193 return ldexp((double)red->avg, -(RTE_RED_SCALING + red_cfg->wq_log2)); 194 } 195 196 static void rte_red_set_avg_int(const struct rte_red_config *red_cfg, 197 struct rte_red *red, 198 uint32_t avg) 199 { 200 /** 201 * scale by n and convert from integer to fixed-point 202 */ 203 red->avg = avg << (RTE_RED_SCALING + red_cfg->wq_log2); 204 } 205 206 static double calc_exp_avg_on_empty(double avg, uint32_t n, uint32_t time_diff) 207 { 208 return avg * pow((1.0 - 1.0 / (double)n), (double)time_diff / pkt_time_usec); 209 } 210 211 static double calc_drop_rate(uint32_t enqueued, uint32_t dropped) 212 { 213 return (double)dropped / ((double)enqueued + (double)dropped); 214 } 215 216 /** 217 * calculate the drop probability 218 */ 219 static double calc_drop_prob(uint32_t min_th, uint32_t max_th, 220 uint32_t maxp_inv, uint32_t avg) 221 { 222 double drop_prob = 0.0; 223 224 if (avg < min_th) { 225 drop_prob = 0.0; 226 } else if (avg < max_th) { 227 drop_prob = (1.0 / (double)maxp_inv) 228 * ((double)(avg - min_th) 229 / (double)(max_th - min_th)); 230 } else { 231 drop_prob = 1.0; 232 } 233 return drop_prob; 234 } 235 236 /** 237 * check if drop rate matches drop probability within tolerance 238 */ 239 static int check_drop_rate(double *diff, double drop_rate, double drop_prob, double tolerance) 240 { 241 double abs_diff = 0.0; 242 int ret = 1; 243 244 abs_diff = fabs(drop_rate - drop_prob); 245 if ((int)abs_diff == 0) { 246 *diff = 0.0; 247 } else { 248 *diff = (abs_diff / drop_prob) * 100.0; 249 if (*diff > tolerance) { 250 ret = 0; 251 } 252 } 253 return ret; 254 } 255 256 /** 257 * check if average queue size is within tolerance 258 */ 259 static int check_avg(double *diff, double avg, double exp_avg, double tolerance) 260 { 261 double abs_diff = 0.0; 262 int ret = 1; 263 264 abs_diff = fabs(avg - exp_avg); 265 if ((int)abs_diff == 0) { 266 *diff = 0.0; 267 } else { 268 *diff = (abs_diff / exp_avg) * 100.0; 269 if (*diff > tolerance) { 270 ret = 0; 271 } 272 } 273 return ret; 274 } 275 276 /** 277 * initialize the test rte_red config 278 */ 279 static enum test_result 280 test_rte_red_init(struct test_config *tcfg) 281 { 282 unsigned i = 0; 283 284 tcfg->tvar->clk_freq = rte_get_timer_hz(); 285 init_port_ts( tcfg->tvar->clk_freq ); 286 287 for (i = 0; i < tcfg->tconfig->num_cfg; i++) { 288 if (rte_red_config_init(&tcfg->tconfig->rconfig[i], 289 (uint16_t)tcfg->tconfig->wq_log2[i], 290 (uint16_t)tcfg->tconfig->min_th, 291 (uint16_t)tcfg->tconfig->max_th, 292 (uint16_t)tcfg->tconfig->maxp_inv[i]) != 0) { 293 return FAIL; 294 } 295 } 296 297 *tcfg->tqueue->q = 0; 298 *tcfg->tvar->dropped = 0; 299 *tcfg->tvar->enqueued = 0; 300 return PASS; 301 } 302 303 /** 304 * enqueue until actual queue size reaches target level 305 */ 306 static int 307 increase_actual_qsize(struct rte_red_config *red_cfg, 308 struct rte_red *red, 309 uint32_t *q, 310 uint32_t level, 311 uint32_t attempts) 312 { 313 uint32_t i = 0; 314 315 for (i = 0; i < attempts; i++) { 316 int ret = 0; 317 318 /** 319 * enqueue 320 */ 321 ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts() ); 322 if (ret == 0) { 323 if (++(*q) >= level) 324 break; 325 } 326 } 327 /** 328 * check if target actual queue size has been reached 329 */ 330 if (*q != level) 331 return -1; 332 /** 333 * success 334 */ 335 return 0; 336 } 337 338 /** 339 * enqueue until average queue size reaches target level 340 */ 341 static int 342 increase_average_qsize(struct rte_red_config *red_cfg, 343 struct rte_red *red, 344 uint32_t *q, 345 uint32_t level, 346 uint32_t num_ops) 347 { 348 uint32_t avg = 0; 349 uint32_t i = 0; 350 351 for (i = 0; i < num_ops; i++) { 352 /** 353 * enqueue 354 */ 355 rte_red_enqueue(red_cfg, red, *q, get_port_ts()); 356 } 357 /** 358 * check if target average queue size has been reached 359 */ 360 avg = rte_red_get_avg_int(red_cfg, red); 361 if (avg != level) 362 return -1; 363 /** 364 * success 365 */ 366 return 0; 367 } 368 369 /** 370 * setup default values for the functional test structures 371 */ 372 static struct rte_red_config ft_wrconfig[1]; 373 static struct rte_red ft_rtdata[1]; 374 static uint8_t ft_wq_log2[] = {9}; 375 static uint8_t ft_maxp_inv[] = {10}; 376 static uint32_t ft_qconfig[] = {0, 0, 1, 1}; 377 static uint32_t ft_q[] ={0}; 378 static uint32_t ft_dropped[] ={0}; 379 static uint32_t ft_enqueued[] ={0}; 380 381 static struct test_rte_red_config ft_tconfig = { 382 .rconfig = ft_wrconfig, 383 .num_cfg = RTE_DIM(ft_wrconfig), 384 .wq_log2 = ft_wq_log2, 385 .min_th = 32, 386 .max_th = 128, 387 .maxp_inv = ft_maxp_inv, 388 }; 389 390 static struct test_queue ft_tqueue = { 391 .rdata = ft_rtdata, 392 .num_queues = RTE_DIM(ft_rtdata), 393 .qconfig = ft_qconfig, 394 .q = ft_q, 395 .q_ramp_up = 1000000, 396 .avg_ramp_up = 1000000, 397 .avg_tolerance = 5, /* 5 percent */ 398 .drop_tolerance = 50, /* 50 percent */ 399 }; 400 401 static struct test_var ft_tvar = { 402 .wait_usec = 10000, 403 .num_iterations = 5, 404 .num_ops = 10000, 405 .clk_freq = 0, 406 .dropped = ft_dropped, 407 .enqueued = ft_enqueued, 408 .sleep_sec = (MAX_QEMPTY_TIME_MSEC / MSEC_PER_SEC) + 2, 409 }; 410 411 /** 412 * functional test enqueue/dequeue packets 413 */ 414 static void enqueue_dequeue_func(struct rte_red_config *red_cfg, 415 struct rte_red *red, 416 uint32_t *q, 417 uint32_t num_ops, 418 uint32_t *enqueued, 419 uint32_t *dropped) 420 { 421 uint32_t i = 0; 422 423 for (i = 0; i < num_ops; i++) { 424 int ret = 0; 425 426 /** 427 * enqueue 428 */ 429 ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts()); 430 if (ret == 0) 431 (*enqueued)++; 432 else 433 (*dropped)++; 434 } 435 } 436 437 /** 438 * Test F1: functional test 1 439 */ 440 static uint32_t ft1_tlevels[] = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144}; 441 442 static struct test_config func_test1_config = { 443 .ifname = "functional test 1 interface", 444 .msg = "functional test 1 : use one rte_red configuration,\n" 445 " increase average queue size to various levels,\n" 446 " compare drop rate to drop probability\n\n", 447 .htxt = " " 448 "avg queue size " 449 "enqueued " 450 "dropped " 451 "drop prob % " 452 "drop rate % " 453 "diff % " 454 "tolerance % " 455 "\n", 456 .tconfig = &ft_tconfig, 457 .tqueue = &ft_tqueue, 458 .tvar = &ft_tvar, 459 .tlevel = ft1_tlevels, 460 }; 461 462 static enum test_result func_test1(struct test_config *tcfg) 463 { 464 enum test_result result = PASS; 465 uint32_t i = 0; 466 467 printf("%s", tcfg->msg); 468 469 if (test_rte_red_init(tcfg) != PASS) { 470 result = FAIL; 471 goto out; 472 } 473 474 printf("%s", tcfg->htxt); 475 476 for (i = 0; i < RTE_DIM(ft1_tlevels); i++) { 477 const char *label = NULL; 478 uint32_t avg = 0; 479 double drop_rate = 0.0; 480 double drop_prob = 0.0; 481 double diff = 0.0; 482 483 /** 484 * reset rte_red run-time data 485 */ 486 rte_red_rt_data_init(tcfg->tqueue->rdata); 487 *tcfg->tvar->enqueued = 0; 488 *tcfg->tvar->dropped = 0; 489 490 if (increase_actual_qsize(tcfg->tconfig->rconfig, 491 tcfg->tqueue->rdata, 492 tcfg->tqueue->q, 493 tcfg->tlevel[i], 494 tcfg->tqueue->q_ramp_up) != 0) { 495 result = FAIL; 496 goto out; 497 } 498 499 if (increase_average_qsize(tcfg->tconfig->rconfig, 500 tcfg->tqueue->rdata, 501 tcfg->tqueue->q, 502 tcfg->tlevel[i], 503 tcfg->tqueue->avg_ramp_up) != 0) { 504 result = FAIL; 505 goto out; 506 } 507 508 enqueue_dequeue_func(tcfg->tconfig->rconfig, 509 tcfg->tqueue->rdata, 510 tcfg->tqueue->q, 511 tcfg->tvar->num_ops, 512 tcfg->tvar->enqueued, 513 tcfg->tvar->dropped); 514 515 avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 516 if (avg != tcfg->tlevel[i]) { 517 fprintf(stderr, "Fail: avg != level\n"); 518 result = FAIL; 519 } 520 521 drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped); 522 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, 523 *tcfg->tconfig->maxp_inv, tcfg->tlevel[i]); 524 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) 525 result = FAIL; 526 527 if (tcfg->tlevel[i] == tcfg->tconfig->min_th) 528 label = "min thresh: "; 529 else if (tcfg->tlevel[i] == tcfg->tconfig->max_th) 530 label = "max thresh: "; 531 else 532 label = " "; 533 printf("%s%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n", 534 label, avg, *tcfg->tvar->enqueued, *tcfg->tvar->dropped, 535 drop_prob * 100.0, drop_rate * 100.0, diff, 536 (double)tcfg->tqueue->drop_tolerance); 537 } 538 out: 539 return result; 540 } 541 542 /** 543 * Test F2: functional test 2 544 */ 545 static uint32_t ft2_tlevel[] = {127}; 546 static uint8_t ft2_wq_log2[] = {9, 9, 9, 9, 9, 9, 9, 9, 9, 9}; 547 static uint8_t ft2_maxp_inv[] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}; 548 static struct rte_red_config ft2_rconfig[10]; 549 550 static struct test_rte_red_config ft2_tconfig = { 551 .rconfig = ft2_rconfig, 552 .num_cfg = RTE_DIM(ft2_rconfig), 553 .wq_log2 = ft2_wq_log2, 554 .min_th = 32, 555 .max_th = 128, 556 .maxp_inv = ft2_maxp_inv, 557 }; 558 559 static struct test_config func_test2_config = { 560 .ifname = "functional test 2 interface", 561 .msg = "functional test 2 : use several RED configurations,\n" 562 " increase average queue size to just below maximum threshold,\n" 563 " compare drop rate to drop probability\n\n", 564 .htxt = "RED config " 565 "avg queue size " 566 "min threshold " 567 "max threshold " 568 "drop prob % " 569 "drop rate % " 570 "diff % " 571 "tolerance % " 572 "\n", 573 .tconfig = &ft2_tconfig, 574 .tqueue = &ft_tqueue, 575 .tvar = &ft_tvar, 576 .tlevel = ft2_tlevel, 577 }; 578 579 static enum test_result func_test2(struct test_config *tcfg) 580 { 581 enum test_result result = PASS; 582 double prev_drop_rate = 1.0; 583 uint32_t i = 0; 584 585 printf("%s", tcfg->msg); 586 587 if (test_rte_red_init(tcfg) != PASS) { 588 result = FAIL; 589 goto out; 590 } 591 rte_red_rt_data_init(tcfg->tqueue->rdata); 592 593 if (increase_actual_qsize(tcfg->tconfig->rconfig, 594 tcfg->tqueue->rdata, 595 tcfg->tqueue->q, 596 *tcfg->tlevel, 597 tcfg->tqueue->q_ramp_up) != 0) { 598 result = FAIL; 599 goto out; 600 } 601 602 if (increase_average_qsize(tcfg->tconfig->rconfig, 603 tcfg->tqueue->rdata, 604 tcfg->tqueue->q, 605 *tcfg->tlevel, 606 tcfg->tqueue->avg_ramp_up) != 0) { 607 result = FAIL; 608 goto out; 609 } 610 printf("%s", tcfg->htxt); 611 612 for (i = 0; i < tcfg->tconfig->num_cfg; i++) { 613 uint32_t avg = 0; 614 double drop_rate = 0.0; 615 double drop_prob = 0.0; 616 double diff = 0.0; 617 618 *tcfg->tvar->dropped = 0; 619 *tcfg->tvar->enqueued = 0; 620 621 enqueue_dequeue_func(&tcfg->tconfig->rconfig[i], 622 tcfg->tqueue->rdata, 623 tcfg->tqueue->q, 624 tcfg->tvar->num_ops, 625 tcfg->tvar->enqueued, 626 tcfg->tvar->dropped); 627 628 avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[i], tcfg->tqueue->rdata); 629 if (avg != *tcfg->tlevel) 630 result = FAIL; 631 632 drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped); 633 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, 634 tcfg->tconfig->maxp_inv[i], *tcfg->tlevel); 635 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) 636 result = FAIL; 637 /** 638 * drop rate should decrease as maxp_inv increases 639 */ 640 if (drop_rate > prev_drop_rate) 641 result = FAIL; 642 prev_drop_rate = drop_rate; 643 644 printf("%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n", 645 i, avg, tcfg->tconfig->min_th, tcfg->tconfig->max_th, 646 drop_prob * 100.0, drop_rate * 100.0, diff, 647 (double)tcfg->tqueue->drop_tolerance); 648 } 649 out: 650 return result; 651 } 652 653 /** 654 * Test F3: functional test 3 655 */ 656 static uint32_t ft3_tlevel[] = {1022}; 657 658 static struct test_rte_red_config ft3_tconfig = { 659 .rconfig = ft_wrconfig, 660 .num_cfg = RTE_DIM(ft_wrconfig), 661 .wq_log2 = ft_wq_log2, 662 .min_th = 32, 663 .max_th = 1023, 664 .maxp_inv = ft_maxp_inv, 665 }; 666 667 static struct test_config func_test3_config = { 668 .ifname = "functional test 3 interface", 669 .msg = "functional test 3 : use one RED configuration,\n" 670 " increase average queue size to target level,\n" 671 " dequeue all packets until queue is empty,\n" 672 " confirm that average queue size is computed correctly while queue is empty\n\n", 673 .htxt = "q avg before " 674 "q avg after " 675 "expected " 676 "difference % " 677 "tolerance % " 678 "result " 679 "\n", 680 .tconfig = &ft3_tconfig, 681 .tqueue = &ft_tqueue, 682 .tvar = &ft_tvar, 683 .tlevel = ft3_tlevel, 684 }; 685 686 static enum test_result func_test3(struct test_config *tcfg) 687 { 688 enum test_result result = PASS; 689 uint32_t i = 0; 690 691 printf("%s", tcfg->msg); 692 693 if (test_rte_red_init(tcfg) != PASS) { 694 result = FAIL; 695 goto out; 696 } 697 698 rte_red_rt_data_init(tcfg->tqueue->rdata); 699 700 if (increase_actual_qsize(tcfg->tconfig->rconfig, 701 tcfg->tqueue->rdata, 702 tcfg->tqueue->q, 703 *tcfg->tlevel, 704 tcfg->tqueue->q_ramp_up) != 0) { 705 result = FAIL; 706 goto out; 707 } 708 709 if (increase_average_qsize(tcfg->tconfig->rconfig, 710 tcfg->tqueue->rdata, 711 tcfg->tqueue->q, 712 *tcfg->tlevel, 713 tcfg->tqueue->avg_ramp_up) != 0) { 714 result = FAIL; 715 goto out; 716 } 717 718 printf("%s", tcfg->htxt); 719 720 for (i = 0; i < tcfg->tvar->num_iterations; i++) { 721 double avg_before = 0; 722 double avg_after = 0; 723 double exp_avg = 0; 724 double diff = 0.0; 725 726 avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 727 728 /** 729 * empty the queue 730 */ 731 *tcfg->tqueue->q = 0; 732 rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts()); 733 734 rte_delay_us(tcfg->tvar->wait_usec); 735 736 /** 737 * enqueue one packet to recalculate average queue size 738 */ 739 if (rte_red_enqueue(tcfg->tconfig->rconfig, 740 tcfg->tqueue->rdata, 741 *tcfg->tqueue->q, 742 get_port_ts()) == 0) { 743 (*tcfg->tqueue->q)++; 744 } else { 745 printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__); 746 result = FAIL; 747 } 748 749 exp_avg = calc_exp_avg_on_empty(avg_before, 750 (1 << *tcfg->tconfig->wq_log2), 751 tcfg->tvar->wait_usec); 752 avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, 753 tcfg->tqueue->rdata); 754 if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) 755 result = FAIL; 756 757 printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", 758 avg_before, avg_after, exp_avg, diff, 759 (double)tcfg->tqueue->avg_tolerance, 760 diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail"); 761 } 762 out: 763 return result; 764 } 765 766 /** 767 * Test F4: functional test 4 768 */ 769 static uint32_t ft4_tlevel[] = {1022}; 770 static uint8_t ft4_wq_log2[] = {11}; 771 772 static struct test_rte_red_config ft4_tconfig = { 773 .rconfig = ft_wrconfig, 774 .num_cfg = RTE_DIM(ft_wrconfig), 775 .min_th = 32, 776 .max_th = 1023, 777 .wq_log2 = ft4_wq_log2, 778 .maxp_inv = ft_maxp_inv, 779 }; 780 781 static struct test_queue ft4_tqueue = { 782 .rdata = ft_rtdata, 783 .num_queues = RTE_DIM(ft_rtdata), 784 .qconfig = ft_qconfig, 785 .q = ft_q, 786 .q_ramp_up = 1000000, 787 .avg_ramp_up = 1000000, 788 .avg_tolerance = 0, /* 0 percent */ 789 .drop_tolerance = 50, /* 50 percent */ 790 }; 791 792 static struct test_config func_test4_config = { 793 .ifname = "functional test 4 interface", 794 .msg = "functional test 4 : use one RED configuration,\n" 795 " increase average queue size to target level,\n" 796 " dequeue all packets until queue is empty,\n" 797 " confirm that average queue size is computed correctly while\n" 798 " queue is empty for more than 50 sec,\n" 799 " (this test takes 52 sec to run)\n\n", 800 .htxt = "q avg before " 801 "q avg after " 802 "expected " 803 "difference % " 804 "tolerance % " 805 "result " 806 "\n", 807 .tconfig = &ft4_tconfig, 808 .tqueue = &ft4_tqueue, 809 .tvar = &ft_tvar, 810 .tlevel = ft4_tlevel, 811 }; 812 813 static enum test_result func_test4(struct test_config *tcfg) 814 { 815 enum test_result result = PASS; 816 uint64_t time_diff = 0; 817 uint64_t start = 0; 818 double avg_before = 0.0; 819 double avg_after = 0.0; 820 double exp_avg = 0.0; 821 double diff = 0.0; 822 823 printf("%s", tcfg->msg); 824 825 if (test_rte_red_init(tcfg) != PASS) { 826 result = FAIL; 827 goto out; 828 } 829 830 rte_red_rt_data_init(tcfg->tqueue->rdata); 831 832 if (increase_actual_qsize(tcfg->tconfig->rconfig, 833 tcfg->tqueue->rdata, 834 tcfg->tqueue->q, 835 *tcfg->tlevel, 836 tcfg->tqueue->q_ramp_up) != 0) { 837 result = FAIL; 838 goto out; 839 } 840 841 if (increase_average_qsize(tcfg->tconfig->rconfig, 842 tcfg->tqueue->rdata, 843 tcfg->tqueue->q, 844 *tcfg->tlevel, 845 tcfg->tqueue->avg_ramp_up) != 0) { 846 result = FAIL; 847 goto out; 848 } 849 850 printf("%s", tcfg->htxt); 851 852 avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 853 854 /** 855 * empty the queue 856 */ 857 *tcfg->tqueue->q = 0; 858 rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts()); 859 860 /** 861 * record empty time locally 862 */ 863 start = rte_rdtsc(); 864 865 sleep(tcfg->tvar->sleep_sec); 866 867 /** 868 * enqueue one packet to recalculate average queue size 869 */ 870 if (rte_red_enqueue(tcfg->tconfig->rconfig, 871 tcfg->tqueue->rdata, 872 *tcfg->tqueue->q, 873 get_port_ts()) != 0) { 874 result = FAIL; 875 goto out; 876 } 877 (*tcfg->tqueue->q)++; 878 879 /** 880 * calculate how long queue has been empty 881 */ 882 time_diff = ((rte_rdtsc() - start) / tcfg->tvar->clk_freq) 883 * MSEC_PER_SEC; 884 if (time_diff < MAX_QEMPTY_TIME_MSEC) { 885 /** 886 * this could happen if sleep was interrupted for some reason 887 */ 888 result = FAIL; 889 goto out; 890 } 891 892 /** 893 * confirm that average queue size is now at expected level 894 */ 895 exp_avg = 0.0; 896 avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 897 if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) 898 result = FAIL; 899 900 printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", 901 avg_before, avg_after, exp_avg, 902 diff, (double)tcfg->tqueue->avg_tolerance, 903 diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail"); 904 out: 905 return result; 906 } 907 908 /** 909 * Test F5: functional test 5 910 */ 911 static uint32_t ft5_tlevel[] = {127}; 912 static uint8_t ft5_wq_log2[] = {9, 8}; 913 static uint8_t ft5_maxp_inv[] = {10, 20}; 914 static struct rte_red_config ft5_config[2]; 915 static struct rte_red ft5_data[4]; 916 static uint32_t ft5_q[4]; 917 static uint32_t ft5_dropped[] = {0, 0, 0, 0}; 918 static uint32_t ft5_enqueued[] = {0, 0, 0, 0}; 919 920 static struct test_rte_red_config ft5_tconfig = { 921 .rconfig = ft5_config, 922 .num_cfg = RTE_DIM(ft5_config), 923 .min_th = 32, 924 .max_th = 128, 925 .wq_log2 = ft5_wq_log2, 926 .maxp_inv = ft5_maxp_inv, 927 }; 928 929 static struct test_queue ft5_tqueue = { 930 .rdata = ft5_data, 931 .num_queues = RTE_DIM(ft5_data), 932 .qconfig = ft_qconfig, 933 .q = ft5_q, 934 .q_ramp_up = 1000000, 935 .avg_ramp_up = 1000000, 936 .avg_tolerance = 5, /* 10 percent */ 937 .drop_tolerance = 50, /* 50 percent */ 938 }; 939 940 struct test_var ft5_tvar = { 941 .wait_usec = 0, 942 .num_iterations = 15, 943 .num_ops = 10000, 944 .clk_freq = 0, 945 .dropped = ft5_dropped, 946 .enqueued = ft5_enqueued, 947 .sleep_sec = 0, 948 }; 949 950 static struct test_config func_test5_config = { 951 .ifname = "functional test 5 interface", 952 .msg = "functional test 5 : use several queues (each with its own run-time data),\n" 953 " use several RED configurations (such that each configuration is shared by multiple queues),\n" 954 " increase average queue size to just below maximum threshold,\n" 955 " compare drop rate to drop probability,\n" 956 " (this is a larger scale version of functional test 2)\n\n", 957 .htxt = "queue " 958 "config " 959 "avg queue size " 960 "min threshold " 961 "max threshold " 962 "drop prob % " 963 "drop rate % " 964 "diff % " 965 "tolerance % " 966 "\n", 967 .tconfig = &ft5_tconfig, 968 .tqueue = &ft5_tqueue, 969 .tvar = &ft5_tvar, 970 .tlevel = ft5_tlevel, 971 }; 972 973 static enum test_result func_test5(struct test_config *tcfg) 974 { 975 enum test_result result = PASS; 976 uint32_t j = 0; 977 978 printf("%s", tcfg->msg); 979 980 if (test_rte_red_init(tcfg) != PASS) { 981 result = FAIL; 982 goto out; 983 } 984 985 printf("%s", tcfg->htxt); 986 987 for (j = 0; j < tcfg->tqueue->num_queues; j++) { 988 rte_red_rt_data_init(&tcfg->tqueue->rdata[j]); 989 tcfg->tqueue->q[j] = 0; 990 991 if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 992 &tcfg->tqueue->rdata[j], 993 &tcfg->tqueue->q[j], 994 *tcfg->tlevel, 995 tcfg->tqueue->q_ramp_up) != 0) { 996 result = FAIL; 997 goto out; 998 } 999 1000 if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1001 &tcfg->tqueue->rdata[j], 1002 &tcfg->tqueue->q[j], 1003 *tcfg->tlevel, 1004 tcfg->tqueue->avg_ramp_up) != 0) { 1005 result = FAIL; 1006 goto out; 1007 } 1008 } 1009 1010 for (j = 0; j < tcfg->tqueue->num_queues; j++) { 1011 uint32_t avg = 0; 1012 double drop_rate = 0.0; 1013 double drop_prob = 0.0; 1014 double diff = 0.0; 1015 1016 tcfg->tvar->dropped[j] = 0; 1017 tcfg->tvar->enqueued[j] = 0; 1018 1019 enqueue_dequeue_func(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1020 &tcfg->tqueue->rdata[j], 1021 &tcfg->tqueue->q[j], 1022 tcfg->tvar->num_ops, 1023 &tcfg->tvar->enqueued[j], 1024 &tcfg->tvar->dropped[j]); 1025 1026 avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1027 &tcfg->tqueue->rdata[j]); 1028 if (avg != *tcfg->tlevel) 1029 result = FAIL; 1030 1031 drop_rate = calc_drop_rate(tcfg->tvar->enqueued[j],tcfg->tvar->dropped[j]); 1032 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th, 1033 tcfg->tconfig->maxp_inv[tcfg->tqueue->qconfig[j]], 1034 *tcfg->tlevel); 1035 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) 1036 result = FAIL; 1037 1038 printf("%-15u%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n", 1039 j, tcfg->tqueue->qconfig[j], avg, 1040 tcfg->tconfig->min_th, tcfg->tconfig->max_th, 1041 drop_prob * 100.0, drop_rate * 100.0, 1042 diff, (double)tcfg->tqueue->drop_tolerance); 1043 } 1044 out: 1045 return result; 1046 } 1047 1048 /** 1049 * Test F6: functional test 6 1050 */ 1051 static uint32_t ft6_tlevel[] = {1022}; 1052 static uint8_t ft6_wq_log2[] = {9, 8}; 1053 static uint8_t ft6_maxp_inv[] = {10, 20}; 1054 static struct rte_red_config ft6_config[2]; 1055 static struct rte_red ft6_data[4]; 1056 static uint32_t ft6_q[4]; 1057 1058 static struct test_rte_red_config ft6_tconfig = { 1059 .rconfig = ft6_config, 1060 .num_cfg = RTE_DIM(ft6_config), 1061 .min_th = 32, 1062 .max_th = 1023, 1063 .wq_log2 = ft6_wq_log2, 1064 .maxp_inv = ft6_maxp_inv, 1065 }; 1066 1067 static struct test_queue ft6_tqueue = { 1068 .rdata = ft6_data, 1069 .num_queues = RTE_DIM(ft6_data), 1070 .qconfig = ft_qconfig, 1071 .q = ft6_q, 1072 .q_ramp_up = 1000000, 1073 .avg_ramp_up = 1000000, 1074 .avg_tolerance = 5, /* 10 percent */ 1075 .drop_tolerance = 50, /* 50 percent */ 1076 }; 1077 1078 static struct test_config func_test6_config = { 1079 .ifname = "functional test 6 interface", 1080 .msg = "functional test 6 : use several queues (each with its own run-time data),\n" 1081 " use several RED configurations (such that each configuration is sharte_red by multiple queues),\n" 1082 " increase average queue size to target level,\n" 1083 " dequeue all packets until queue is empty,\n" 1084 " confirm that average queue size is computed correctly while queue is empty\n" 1085 " (this is a larger scale version of functional test 3)\n\n", 1086 .htxt = "queue " 1087 "config " 1088 "q avg before " 1089 "q avg after " 1090 "expected " 1091 "difference % " 1092 "tolerance % " 1093 "result ""\n", 1094 .tconfig = &ft6_tconfig, 1095 .tqueue = &ft6_tqueue, 1096 .tvar = &ft_tvar, 1097 .tlevel = ft6_tlevel, 1098 }; 1099 1100 static enum test_result func_test6(struct test_config *tcfg) 1101 { 1102 enum test_result result = PASS; 1103 uint32_t j = 0; 1104 1105 printf("%s", tcfg->msg); 1106 if (test_rte_red_init(tcfg) != PASS) { 1107 result = FAIL; 1108 goto out; 1109 } 1110 printf("%s", tcfg->htxt); 1111 1112 for (j = 0; j < tcfg->tqueue->num_queues; j++) { 1113 rte_red_rt_data_init(&tcfg->tqueue->rdata[j]); 1114 tcfg->tqueue->q[j] = 0; 1115 1116 if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1117 &tcfg->tqueue->rdata[j], 1118 &tcfg->tqueue->q[j], 1119 *tcfg->tlevel, 1120 tcfg->tqueue->q_ramp_up) != 0) { 1121 result = FAIL; 1122 goto out; 1123 } 1124 if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1125 &tcfg->tqueue->rdata[j], 1126 &tcfg->tqueue->q[j], 1127 *tcfg->tlevel, 1128 tcfg->tqueue->avg_ramp_up) != 0) { 1129 result = FAIL; 1130 goto out; 1131 } 1132 } 1133 for (j = 0; j < tcfg->tqueue->num_queues; j++) { 1134 double avg_before = 0; 1135 double avg_after = 0; 1136 double exp_avg = 0; 1137 double diff = 0.0; 1138 1139 avg_before = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1140 &tcfg->tqueue->rdata[j]); 1141 1142 /** 1143 * empty the queue 1144 */ 1145 tcfg->tqueue->q[j] = 0; 1146 rte_red_mark_queue_empty(&tcfg->tqueue->rdata[j], get_port_ts()); 1147 rte_delay_us(tcfg->tvar->wait_usec); 1148 1149 /** 1150 * enqueue one packet to recalculate average queue size 1151 */ 1152 if (rte_red_enqueue(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1153 &tcfg->tqueue->rdata[j], 1154 tcfg->tqueue->q[j], 1155 get_port_ts()) == 0) { 1156 tcfg->tqueue->q[j]++; 1157 } else { 1158 printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__); 1159 result = FAIL; 1160 } 1161 1162 exp_avg = calc_exp_avg_on_empty(avg_before, 1163 (1 << tcfg->tconfig->wq_log2[tcfg->tqueue->qconfig[j]]), 1164 tcfg->tvar->wait_usec); 1165 avg_after = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]], 1166 &tcfg->tqueue->rdata[j]); 1167 if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) 1168 result = FAIL; 1169 1170 printf("%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", 1171 j, tcfg->tqueue->qconfig[j], avg_before, avg_after, 1172 exp_avg, diff, (double)tcfg->tqueue->avg_tolerance, 1173 diff <= tcfg->tqueue->avg_tolerance ? "pass" : "fail"); 1174 } 1175 out: 1176 return result; 1177 } 1178 1179 /** 1180 * setup default values for the performance test structures 1181 */ 1182 static struct rte_red_config pt_wrconfig[1]; 1183 static struct rte_red pt_rtdata[1]; 1184 static uint8_t pt_wq_log2[] = {9}; 1185 static uint8_t pt_maxp_inv[] = {10}; 1186 static uint32_t pt_qconfig[] = {0}; 1187 static uint32_t pt_q[] = {0}; 1188 static uint32_t pt_dropped[] = {0}; 1189 static uint32_t pt_enqueued[] = {0}; 1190 1191 static struct test_rte_red_config pt_tconfig = { 1192 .rconfig = pt_wrconfig, 1193 .num_cfg = RTE_DIM(pt_wrconfig), 1194 .wq_log2 = pt_wq_log2, 1195 .min_th = 32, 1196 .max_th = 128, 1197 .maxp_inv = pt_maxp_inv, 1198 }; 1199 1200 static struct test_queue pt_tqueue = { 1201 .rdata = pt_rtdata, 1202 .num_queues = RTE_DIM(pt_rtdata), 1203 .qconfig = pt_qconfig, 1204 .q = pt_q, 1205 .q_ramp_up = 1000000, 1206 .avg_ramp_up = 1000000, 1207 .avg_tolerance = 5, /* 10 percent */ 1208 .drop_tolerance = 50, /* 50 percent */ 1209 }; 1210 1211 /** 1212 * enqueue/dequeue packets 1213 */ 1214 static void enqueue_dequeue_perf(struct rte_red_config *red_cfg, 1215 struct rte_red *red, 1216 uint32_t *q, 1217 uint32_t num_ops, 1218 uint32_t *enqueued, 1219 uint32_t *dropped, 1220 struct rdtsc_prof *prof) 1221 { 1222 uint32_t i = 0; 1223 1224 for (i = 0; i < num_ops; i++) { 1225 uint64_t ts = 0; 1226 int ret = 0; 1227 /** 1228 * enqueue 1229 */ 1230 ts = get_port_ts(); 1231 rdtsc_prof_start(prof); 1232 ret = rte_red_enqueue(red_cfg, red, *q, ts ); 1233 rdtsc_prof_end(prof); 1234 if (ret == 0) 1235 (*enqueued)++; 1236 else 1237 (*dropped)++; 1238 } 1239 } 1240 1241 /** 1242 * Setup test structures for tests P1, P2, P3 1243 * performance tests 1, 2 and 3 1244 */ 1245 static uint32_t pt1_tlevel[] = {16}; 1246 static uint32_t pt2_tlevel[] = {80}; 1247 static uint32_t pt3_tlevel[] = {144}; 1248 1249 static struct test_var perf1_tvar = { 1250 .wait_usec = 0, 1251 .num_iterations = 15, 1252 .num_ops = 50000000, 1253 .clk_freq = 0, 1254 .dropped = pt_dropped, 1255 .enqueued = pt_enqueued, 1256 .sleep_sec = 0 1257 }; 1258 1259 static struct test_config perf1_test1_config = { 1260 .ifname = "performance test 1 interface", 1261 .msg = "performance test 1 : use one RED configuration,\n" 1262 " set actual and average queue sizes to level below min threshold,\n" 1263 " measure enqueue performance\n\n", 1264 .tconfig = &pt_tconfig, 1265 .tqueue = &pt_tqueue, 1266 .tvar = &perf1_tvar, 1267 .tlevel = pt1_tlevel, 1268 }; 1269 1270 static struct test_config perf1_test2_config = { 1271 .ifname = "performance test 2 interface", 1272 .msg = "performance test 2 : use one RED configuration,\n" 1273 " set actual and average queue sizes to level in between min and max thresholds,\n" 1274 " measure enqueue performance\n\n", 1275 .tconfig = &pt_tconfig, 1276 .tqueue = &pt_tqueue, 1277 .tvar = &perf1_tvar, 1278 .tlevel = pt2_tlevel, 1279 }; 1280 1281 static struct test_config perf1_test3_config = { 1282 .ifname = "performance test 3 interface", 1283 .msg = "performance test 3 : use one RED configuration,\n" 1284 " set actual and average queue sizes to level above max threshold,\n" 1285 " measure enqueue performance\n\n", 1286 .tconfig = &pt_tconfig, 1287 .tqueue = &pt_tqueue, 1288 .tvar = &perf1_tvar, 1289 .tlevel = pt3_tlevel, 1290 }; 1291 1292 /** 1293 * Performance test function to measure enqueue performance. 1294 * This runs performance tests 1, 2 and 3 1295 */ 1296 static enum test_result perf1_test(struct test_config *tcfg) 1297 { 1298 enum test_result result = PASS; 1299 struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL}; 1300 uint32_t total = 0; 1301 1302 printf("%s", tcfg->msg); 1303 1304 rdtsc_prof_init(&prof, "enqueue"); 1305 1306 if (test_rte_red_init(tcfg) != PASS) { 1307 result = FAIL; 1308 goto out; 1309 } 1310 1311 /** 1312 * set average queue size to target level 1313 */ 1314 *tcfg->tqueue->q = *tcfg->tlevel; 1315 1316 /** 1317 * initialize the rte_red run time data structure 1318 */ 1319 rte_red_rt_data_init(tcfg->tqueue->rdata); 1320 1321 /** 1322 * set the queue average 1323 */ 1324 rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel); 1325 if (rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata) 1326 != *tcfg->tlevel) { 1327 result = FAIL; 1328 goto out; 1329 } 1330 1331 enqueue_dequeue_perf(tcfg->tconfig->rconfig, 1332 tcfg->tqueue->rdata, 1333 tcfg->tqueue->q, 1334 tcfg->tvar->num_ops, 1335 tcfg->tvar->enqueued, 1336 tcfg->tvar->dropped, 1337 &prof); 1338 1339 total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped; 1340 1341 printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total, 1342 *tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0, 1343 *tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0); 1344 1345 rdtsc_prof_print(&prof); 1346 out: 1347 return result; 1348 } 1349 1350 /** 1351 * Setup test structures for tests P4, P5, P6 1352 * performance tests 4, 5 and 6 1353 */ 1354 static uint32_t pt4_tlevel[] = {16}; 1355 static uint32_t pt5_tlevel[] = {80}; 1356 static uint32_t pt6_tlevel[] = {144}; 1357 1358 static struct test_var perf2_tvar = { 1359 .wait_usec = 500, 1360 .num_iterations = 10000, 1361 .num_ops = 10000, 1362 .dropped = pt_dropped, 1363 .enqueued = pt_enqueued, 1364 .sleep_sec = 0 1365 }; 1366 1367 static struct test_config perf2_test4_config = { 1368 .ifname = "performance test 4 interface", 1369 .msg = "performance test 4 : use one RED configuration,\n" 1370 " set actual and average queue sizes to level below min threshold,\n" 1371 " dequeue all packets until queue is empty,\n" 1372 " measure enqueue performance when queue is empty\n\n", 1373 .htxt = "iteration " 1374 "q avg before " 1375 "q avg after " 1376 "expected " 1377 "difference % " 1378 "tolerance % " 1379 "result ""\n", 1380 .tconfig = &pt_tconfig, 1381 .tqueue = &pt_tqueue, 1382 .tvar = &perf2_tvar, 1383 .tlevel = pt4_tlevel, 1384 }; 1385 1386 static struct test_config perf2_test5_config = { 1387 .ifname = "performance test 5 interface", 1388 .msg = "performance test 5 : use one RED configuration,\n" 1389 " set actual and average queue sizes to level in between min and max thresholds,\n" 1390 " dequeue all packets until queue is empty,\n" 1391 " measure enqueue performance when queue is empty\n\n", 1392 .htxt = "iteration " 1393 "q avg before " 1394 "q avg after " 1395 "expected " 1396 "difference " 1397 "tolerance " 1398 "result ""\n", 1399 .tconfig = &pt_tconfig, 1400 .tqueue = &pt_tqueue, 1401 .tvar = &perf2_tvar, 1402 .tlevel = pt5_tlevel, 1403 }; 1404 1405 static struct test_config perf2_test6_config = { 1406 .ifname = "performance test 6 interface", 1407 .msg = "performance test 6 : use one RED configuration,\n" 1408 " set actual and average queue sizes to level above max threshold,\n" 1409 " dequeue all packets until queue is empty,\n" 1410 " measure enqueue performance when queue is empty\n\n", 1411 .htxt = "iteration " 1412 "q avg before " 1413 "q avg after " 1414 "expected " 1415 "difference % " 1416 "tolerance % " 1417 "result ""\n", 1418 .tconfig = &pt_tconfig, 1419 .tqueue = &pt_tqueue, 1420 .tvar = &perf2_tvar, 1421 .tlevel = pt6_tlevel, 1422 }; 1423 1424 /** 1425 * Performance test function to measure enqueue performance when the 1426 * queue is empty. This runs performance tests 4, 5 and 6 1427 */ 1428 static enum test_result perf2_test(struct test_config *tcfg) 1429 { 1430 enum test_result result = PASS; 1431 struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL}; 1432 uint32_t total = 0; 1433 uint32_t i = 0; 1434 1435 printf("%s", tcfg->msg); 1436 1437 rdtsc_prof_init(&prof, "enqueue"); 1438 1439 if (test_rte_red_init(tcfg) != PASS) { 1440 result = FAIL; 1441 goto out; 1442 } 1443 1444 printf("%s", tcfg->htxt); 1445 1446 for (i = 0; i < tcfg->tvar->num_iterations; i++) { 1447 uint32_t count = 0; 1448 uint64_t ts = 0; 1449 double avg_before = 0; 1450 int ret = 0; 1451 1452 /** 1453 * set average queue size to target level 1454 */ 1455 *tcfg->tqueue->q = *tcfg->tlevel; 1456 count = (*tcfg->tqueue->rdata).count; 1457 1458 /** 1459 * initialize the rte_red run time data structure 1460 */ 1461 rte_red_rt_data_init(tcfg->tqueue->rdata); 1462 (*tcfg->tqueue->rdata).count = count; 1463 1464 /** 1465 * set the queue average 1466 */ 1467 rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel); 1468 avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 1469 if ((avg_before < *tcfg->tlevel) || (avg_before > *tcfg->tlevel)) { 1470 result = FAIL; 1471 goto out; 1472 } 1473 1474 /** 1475 * empty the queue 1476 */ 1477 *tcfg->tqueue->q = 0; 1478 rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts()); 1479 1480 /** 1481 * wait for specified period of time 1482 */ 1483 rte_delay_us(tcfg->tvar->wait_usec); 1484 1485 /** 1486 * measure performance of enqueue operation while queue is empty 1487 */ 1488 ts = get_port_ts(); 1489 rdtsc_prof_start(&prof); 1490 ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, 1491 *tcfg->tqueue->q, ts ); 1492 rdtsc_prof_end(&prof); 1493 1494 /** 1495 * gather enqueued/dropped statistics 1496 */ 1497 if (ret == 0) 1498 (*tcfg->tvar->enqueued)++; 1499 else 1500 (*tcfg->tvar->dropped)++; 1501 1502 /** 1503 * on first and last iteration, confirm that 1504 * average queue size was computed correctly 1505 */ 1506 if ((i == 0) || (i == tcfg->tvar->num_iterations - 1)) { 1507 double avg_after = 0; 1508 double exp_avg = 0; 1509 double diff = 0.0; 1510 int ok = 0; 1511 1512 avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 1513 exp_avg = calc_exp_avg_on_empty(avg_before, 1514 (1 << *tcfg->tconfig->wq_log2), 1515 tcfg->tvar->wait_usec); 1516 if (check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance)) 1517 ok = 1; 1518 printf("%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n", 1519 i, avg_before, avg_after, exp_avg, diff, 1520 (double)tcfg->tqueue->avg_tolerance, ok ? "pass" : "fail"); 1521 if (!ok) { 1522 result = FAIL; 1523 goto out; 1524 } 1525 } 1526 } 1527 total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped; 1528 printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total, 1529 *tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0, 1530 *tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0); 1531 1532 rdtsc_prof_print(&prof); 1533 out: 1534 return result; 1535 } 1536 1537 /** 1538 * setup default values for overflow test structures 1539 */ 1540 static uint32_t avg_max = 0; 1541 static uint32_t avg_max_bits = 0; 1542 1543 static struct rte_red_config ovfl_wrconfig[1]; 1544 static struct rte_red ovfl_rtdata[1]; 1545 static uint8_t ovfl_maxp_inv[] = {10}; 1546 static uint32_t ovfl_qconfig[] = {0, 0, 1, 1}; 1547 static uint32_t ovfl_q[] ={0}; 1548 static uint32_t ovfl_dropped[] ={0}; 1549 static uint32_t ovfl_enqueued[] ={0}; 1550 static uint32_t ovfl_tlevel[] = {1023}; 1551 static uint8_t ovfl_wq_log2[] = {12}; 1552 1553 static struct test_rte_red_config ovfl_tconfig = { 1554 .rconfig = ovfl_wrconfig, 1555 .num_cfg = RTE_DIM(ovfl_wrconfig), 1556 .wq_log2 = ovfl_wq_log2, 1557 .min_th = 32, 1558 .max_th = 1023, 1559 .maxp_inv = ovfl_maxp_inv, 1560 }; 1561 1562 static struct test_queue ovfl_tqueue = { 1563 .rdata = ovfl_rtdata, 1564 .num_queues = RTE_DIM(ovfl_rtdata), 1565 .qconfig = ovfl_qconfig, 1566 .q = ovfl_q, 1567 .q_ramp_up = 1000000, 1568 .avg_ramp_up = 1000000, 1569 .avg_tolerance = 5, /* 10 percent */ 1570 .drop_tolerance = 50, /* 50 percent */ 1571 }; 1572 1573 static struct test_var ovfl_tvar = { 1574 .wait_usec = 10000, 1575 .num_iterations = 1, 1576 .num_ops = 10000, 1577 .clk_freq = 0, 1578 .dropped = ovfl_dropped, 1579 .enqueued = ovfl_enqueued, 1580 .sleep_sec = 0 1581 }; 1582 1583 static void ovfl_check_avg(uint32_t avg) 1584 { 1585 if (avg > avg_max) { 1586 double avg_log = 0; 1587 uint32_t bits = 0; 1588 avg_max = avg; 1589 avg_log = log(((double)avg_max)); 1590 avg_log = avg_log / log(2.0); 1591 bits = (uint32_t)ceil(avg_log); 1592 if (bits > avg_max_bits) 1593 avg_max_bits = bits; 1594 } 1595 } 1596 1597 static struct test_config ovfl_test1_config = { 1598 .ifname = "queue avergage overflow test interface", 1599 .msg = "overflow test 1 : use one RED configuration,\n" 1600 " increase average queue size to target level,\n" 1601 " check maximum number of bits requirte_red to represent avg_s\n\n", 1602 .htxt = "avg queue size " 1603 "wq_log2 " 1604 "fraction bits " 1605 "max queue avg " 1606 "num bits " 1607 "enqueued " 1608 "dropped " 1609 "drop prob % " 1610 "drop rate % " 1611 "\n", 1612 .tconfig = &ovfl_tconfig, 1613 .tqueue = &ovfl_tqueue, 1614 .tvar = &ovfl_tvar, 1615 .tlevel = ovfl_tlevel, 1616 }; 1617 1618 static enum test_result ovfl_test1(struct test_config *tcfg) 1619 { 1620 enum test_result result = PASS; 1621 uint32_t avg = 0; 1622 uint32_t i = 0; 1623 double drop_rate = 0.0; 1624 double drop_prob = 0.0; 1625 double diff = 0.0; 1626 int ret = 0; 1627 1628 printf("%s", tcfg->msg); 1629 1630 if (test_rte_red_init(tcfg) != PASS) { 1631 1632 result = FAIL; 1633 goto out; 1634 } 1635 1636 /** 1637 * reset rte_red run-time data 1638 */ 1639 rte_red_rt_data_init(tcfg->tqueue->rdata); 1640 1641 /** 1642 * increase actual queue size 1643 */ 1644 for (i = 0; i < tcfg->tqueue->q_ramp_up; i++) { 1645 ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, 1646 *tcfg->tqueue->q, get_port_ts()); 1647 1648 if (ret == 0) { 1649 if (++(*tcfg->tqueue->q) >= *tcfg->tlevel) 1650 break; 1651 } 1652 } 1653 1654 /** 1655 * enqueue 1656 */ 1657 for (i = 0; i < tcfg->tqueue->avg_ramp_up; i++) { 1658 ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, 1659 *tcfg->tqueue->q, get_port_ts()); 1660 ovfl_check_avg((*tcfg->tqueue->rdata).avg); 1661 avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 1662 if (avg == *tcfg->tlevel) { 1663 if (ret == 0) 1664 (*tcfg->tvar->enqueued)++; 1665 else 1666 (*tcfg->tvar->dropped)++; 1667 } 1668 } 1669 1670 /** 1671 * check if target average queue size has been reached 1672 */ 1673 avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata); 1674 if (avg != *tcfg->tlevel) { 1675 result = FAIL; 1676 goto out; 1677 } 1678 1679 /** 1680 * check drop rate against drop probability 1681 */ 1682 drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped); 1683 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, 1684 tcfg->tconfig->max_th, 1685 *tcfg->tconfig->maxp_inv, 1686 *tcfg->tlevel); 1687 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance)) 1688 result = FAIL; 1689 1690 printf("%s", tcfg->htxt); 1691 1692 printf("%-16u%-9u%-15u0x%08x %-10u%-10u%-10u%-13.2lf%-13.2lf\n", 1693 avg, *tcfg->tconfig->wq_log2, RTE_RED_SCALING, 1694 avg_max, avg_max_bits, 1695 *tcfg->tvar->enqueued, *tcfg->tvar->dropped, 1696 drop_prob * 100.0, drop_rate * 100.0); 1697 out: 1698 return result; 1699 } 1700 1701 /** 1702 * define the functional and performance tests to be executed 1703 */ 1704 struct tests func_tests[] = { 1705 { &func_test1_config, func_test1 }, 1706 { &func_test2_config, func_test2 }, 1707 { &func_test3_config, func_test3 }, 1708 { &func_test4_config, func_test4 }, 1709 { &func_test5_config, func_test5 }, 1710 { &func_test6_config, func_test6 }, 1711 { &ovfl_test1_config, ovfl_test1 }, 1712 }; 1713 1714 struct tests func_tests_quick[] = { 1715 { &func_test1_config, func_test1 }, 1716 { &func_test2_config, func_test2 }, 1717 { &func_test3_config, func_test3 }, 1718 /* no test 4 as it takes a lot of time */ 1719 { &func_test5_config, func_test5 }, 1720 { &func_test6_config, func_test6 }, 1721 { &ovfl_test1_config, ovfl_test1 }, 1722 }; 1723 1724 struct tests perf_tests[] = { 1725 { &perf1_test1_config, perf1_test }, 1726 { &perf1_test2_config, perf1_test }, 1727 { &perf1_test3_config, perf1_test }, 1728 { &perf2_test4_config, perf2_test }, 1729 { &perf2_test5_config, perf2_test }, 1730 { &perf2_test6_config, perf2_test }, 1731 }; 1732 1733 /** 1734 * function to execute the required_red tests 1735 */ 1736 static void run_tests(struct tests *test_type, uint32_t test_count, uint32_t *num_tests, uint32_t *num_pass) 1737 { 1738 enum test_result result = PASS; 1739 uint32_t i = 0; 1740 1741 for (i = 0; i < test_count; i++) { 1742 printf("\n--------------------------------------------------------------------------------\n"); 1743 result = test_type[i].testfn(test_type[i].testcfg); 1744 (*num_tests)++; 1745 if (result == PASS) { 1746 (*num_pass)++; 1747 printf("-------------------------------------<pass>-------------------------------------\n"); 1748 } else { 1749 printf("-------------------------------------<fail>-------------------------------------\n"); 1750 } 1751 } 1752 return; 1753 } 1754 1755 /** 1756 * check if functions accept invalid parameters 1757 * 1758 * First, all functions will be called without initialized RED 1759 * Then, all of them will be called with NULL/invalid parameters 1760 * 1761 * Some functions are not tested as they are performance-critical and thus 1762 * don't do any parameter checking. 1763 */ 1764 static int 1765 test_invalid_parameters(void) 1766 { 1767 struct rte_red_config config; 1768 1769 if (rte_red_rt_data_init(NULL) == 0) { 1770 printf("rte_red_rt_data_init should have failed!\n"); 1771 return -1; 1772 } 1773 1774 if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) { 1775 printf("rte_red_config_init should have failed!\n"); 1776 return -1; 1777 } 1778 1779 if (rte_red_rt_data_init(NULL) == 0) { 1780 printf("rte_red_rt_data_init should have failed!\n"); 1781 return -1; 1782 } 1783 1784 /* NULL config */ 1785 if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) { 1786 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1787 return -1; 1788 } 1789 /* min_treshold == max_treshold */ 1790 if (rte_red_config_init(&config, 0, 1, 1, 0) == 0) { 1791 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1792 return -1; 1793 } 1794 /* min_treshold > max_treshold */ 1795 if (rte_red_config_init(&config, 0, 2, 1, 0) == 0) { 1796 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1797 return -1; 1798 } 1799 /* wq_log2 > RTE_RED_WQ_LOG2_MAX */ 1800 if (rte_red_config_init(&config, 1801 RTE_RED_WQ_LOG2_MAX + 1, 1, 2, 0) == 0) { 1802 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1803 return -1; 1804 } 1805 /* wq_log2 < RTE_RED_WQ_LOG2_MIN */ 1806 if (rte_red_config_init(&config, 1807 RTE_RED_WQ_LOG2_MIN - 1, 1, 2, 0) == 0) { 1808 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1809 return -1; 1810 } 1811 /* maxp_inv > RTE_RED_MAXP_INV_MAX */ 1812 if (rte_red_config_init(&config, 1813 RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MAX + 1) == 0) { 1814 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1815 return -1; 1816 } 1817 /* maxp_inv < RTE_RED_MAXP_INV_MIN */ 1818 if (rte_red_config_init(&config, 1819 RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MIN - 1) == 0) { 1820 printf("%i: rte_red_config_init should have failed!\n", __LINE__); 1821 return -1; 1822 } 1823 1824 return 0; 1825 } 1826 1827 static void 1828 show_stats(const uint32_t num_tests, const uint32_t num_pass) 1829 { 1830 if (num_pass == num_tests) 1831 printf("[total: %u, pass: %u]\n", num_tests, num_pass); 1832 else 1833 printf("[total: %u, pass: %u, fail: %u]\n", num_tests, num_pass, 1834 num_tests - num_pass); 1835 } 1836 1837 static int 1838 tell_the_result(const uint32_t num_tests, const uint32_t num_pass) 1839 { 1840 return (num_pass == num_tests) ? 0 : 1; 1841 } 1842 1843 static int 1844 test_red(void) 1845 { 1846 uint32_t num_tests = 0; 1847 uint32_t num_pass = 0; 1848 1849 if (test_invalid_parameters() < 0) 1850 return -1; 1851 run_tests(func_tests_quick, RTE_DIM(func_tests_quick), 1852 &num_tests, &num_pass); 1853 show_stats(num_tests, num_pass); 1854 return tell_the_result(num_tests, num_pass); 1855 } 1856 1857 static int 1858 test_red_perf(void) 1859 { 1860 uint32_t num_tests = 0; 1861 uint32_t num_pass = 0; 1862 1863 run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass); 1864 show_stats(num_tests, num_pass); 1865 return tell_the_result(num_tests, num_pass); 1866 } 1867 1868 static int 1869 test_red_all(void) 1870 { 1871 uint32_t num_tests = 0; 1872 uint32_t num_pass = 0; 1873 1874 if (test_invalid_parameters() < 0) 1875 return -1; 1876 1877 run_tests(func_tests, RTE_DIM(func_tests), &num_tests, &num_pass); 1878 run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass); 1879 show_stats(num_tests, num_pass); 1880 return tell_the_result(num_tests, num_pass); 1881 } 1882 1883 REGISTER_TEST_COMMAND(red_autotest, test_red); 1884 REGISTER_TEST_COMMAND(red_perf, test_red_perf); 1885 REGISTER_TEST_COMMAND(red_all, test_red_all); 1886