1 /* SPDX-License-Identifier: BSD-3-Clause
2 * Copyright(c) 2010-2014 Intel Corporation
3 */
4
5 #include "test.h"
6
7 #include <stdlib.h>
8 #include <stdio.h>
9 #include <string.h>
10 #include <stdint.h>
11 #include <unistd.h>
12 #include <inttypes.h>
13
14 #ifdef RTE_EXEC_ENV_WINDOWS
15 static int
test_red(void)16 test_red(void)
17 {
18 printf("red not supported on Windows, skipping test\n");
19 return TEST_SKIPPED;
20 }
21
22 static int
test_red_perf(void)23 test_red_perf(void)
24 {
25 printf("red_perf not supported on Windows, skipping test\n");
26 return TEST_SKIPPED;
27 }
28
29 static int
test_red_all(void)30 test_red_all(void)
31 {
32 printf("red_all not supported on Windows, skipping test\n");
33 return TEST_SKIPPED;
34 }
35 #else
36
37 #include <sys/time.h>
38 #include <time.h>
39 #include <math.h>
40
41 #include <rte_red.h>
42
43 #ifdef __INTEL_COMPILER
44 #pragma warning(disable:2259) /* conversion may lose significant bits */
45 #pragma warning(disable:181) /* Arg incompatible with format string */
46 #endif
47
48 #define TEST_HZ_PER_KHZ 1000
49 #define TEST_NSEC_MARGIN 500 /**< nanosecond margin when calculating clk freq */
50
51 #define MAX_QEMPTY_TIME_MSEC 50000
52 #define MSEC_PER_SEC 1000 /**< Milli-seconds per second */
53 #define USEC_PER_MSEC 1000 /**< Micro-seconds per milli-second */
54 #define USEC_PER_SEC 1000000 /**< Micro-seconds per second */
55 #define NSEC_PER_SEC (USEC_PER_SEC * 1000) /**< Nano-seconds per second */
56
57 /**< structures for testing rte_red performance and function */
58 struct test_rte_red_config { /**< Test structure for RTE_RED config */
59 struct rte_red_config *rconfig; /**< RTE_RED configuration parameters */
60 uint8_t num_cfg; /**< Number of RTE_RED configs to test */
61 uint8_t *wq_log2; /**< Test wq_log2 value to use */
62 uint32_t min_th; /**< Queue minimum threshold */
63 uint32_t max_th; /**< Queue maximum threshold */
64 uint8_t *maxp_inv; /**< Inverse mark probability */
65 };
66
67 struct test_queue { /**< Test structure for RTE_RED Queues */
68 struct rte_red *rdata; /**< RTE_RED runtime data */
69 uint32_t num_queues; /**< Number of RTE_RED queues to test */
70 uint32_t *qconfig; /**< Configuration of RTE_RED queues for test */
71 uint32_t *q; /**< Queue size */
72 uint32_t q_ramp_up; /**< Num of enqueues to ramp up the queue */
73 uint32_t avg_ramp_up; /**< Average num of enqueues to ramp up the queue */
74 uint32_t avg_tolerance; /**< Tolerance in queue average */
75 double drop_tolerance; /**< Drop tolerance of packets not enqueued */
76 };
77
78 struct test_var { /**< Test variables used for testing RTE_RED */
79 uint32_t wait_usec; /**< Micro second wait interval */
80 uint32_t num_iterations; /**< Number of test iterations */
81 uint32_t num_ops; /**< Number of test operations */
82 uint64_t clk_freq; /**< CPU clock frequency */
83 uint32_t sleep_sec; /**< Seconds to sleep */
84 uint32_t *dropped; /**< Test operations dropped */
85 uint32_t *enqueued; /**< Test operations enqueued */
86 };
87
88 struct test_config { /**< Master test structure for RTE_RED */
89 const char *ifname; /**< Interface name */
90 const char *msg; /**< Test message for display */
91 const char *htxt; /**< Header txt display for result output */
92 struct test_rte_red_config *tconfig; /**< Test structure for RTE_RED config */
93 struct test_queue *tqueue; /**< Test structure for RTE_RED Queues */
94 struct test_var *tvar; /**< Test variables used for testing RTE_RED */
95 uint32_t *tlevel; /**< Queue levels */
96 };
97
98 enum test_result {
99 FAIL = 0,
100 PASS
101 };
102
103 /**< Test structure to define tests to run */
104 struct tests {
105 struct test_config *testcfg;
106 enum test_result (*testfn)(struct test_config *);
107 };
108
109 struct rdtsc_prof {
110 uint64_t clk_start;
111 uint64_t clk_min; /**< min clocks */
112 uint64_t clk_max; /**< max clocks */
113 uint64_t clk_avgc; /**< count to calc average */
114 double clk_avg; /**< cumulative sum to calc average */
115 const char *name;
116 };
117
118 static const uint64_t port_speed_bytes = (10ULL*1000ULL*1000ULL*1000ULL)/8ULL;
119 static double inv_cycles_per_byte = 0;
120 static double pkt_time_usec = 0;
121
init_port_ts(uint64_t cpu_clock)122 static void init_port_ts(uint64_t cpu_clock)
123 {
124 double cycles_per_byte = (double)(cpu_clock) / (double)(port_speed_bytes);
125 inv_cycles_per_byte = 1.0 / cycles_per_byte;
126 pkt_time_usec = 1000000.0 / ((double)port_speed_bytes / (double)RTE_RED_S);
127 }
128
get_port_ts(void)129 static uint64_t get_port_ts(void)
130 {
131 return (uint64_t)((double)rte_rdtsc() * inv_cycles_per_byte);
132 }
133
rdtsc_prof_init(struct rdtsc_prof * p,const char * name)134 static void rdtsc_prof_init(struct rdtsc_prof *p, const char *name)
135 {
136 p->clk_min = (uint64_t)(-1LL);
137 p->clk_max = 0;
138 p->clk_avg = 0;
139 p->clk_avgc = 0;
140 p->name = name;
141 }
142
rdtsc_prof_start(struct rdtsc_prof * p)143 static inline void rdtsc_prof_start(struct rdtsc_prof *p)
144 {
145 p->clk_start = rte_rdtsc_precise();
146 }
147
rdtsc_prof_end(struct rdtsc_prof * p)148 static inline void rdtsc_prof_end(struct rdtsc_prof *p)
149 {
150 uint64_t clk_start = rte_rdtsc() - p->clk_start;
151
152 p->clk_avgc++;
153 p->clk_avg += (double) clk_start;
154
155 if (clk_start > p->clk_max)
156 p->clk_max = clk_start;
157 if (clk_start < p->clk_min)
158 p->clk_min = clk_start;
159 }
160
rdtsc_prof_print(struct rdtsc_prof * p)161 static void rdtsc_prof_print(struct rdtsc_prof *p)
162 {
163 if (p->clk_avgc>0) {
164 printf("RDTSC stats for %s: n=%" PRIu64 ", min=%" PRIu64 ", max=%" PRIu64 ", avg=%.1f\n",
165 p->name,
166 p->clk_avgc,
167 p->clk_min,
168 p->clk_max,
169 (p->clk_avg / ((double) p->clk_avgc)));
170 }
171 }
172
rte_red_get_avg_int(const struct rte_red_config * red_cfg,struct rte_red * red)173 static uint32_t rte_red_get_avg_int(const struct rte_red_config *red_cfg,
174 struct rte_red *red)
175 {
176 /**
177 * scale by 1/n and convert from fixed-point to integer
178 */
179 return red->avg >> (RTE_RED_SCALING + red_cfg->wq_log2);
180 }
181
rte_red_get_avg_float(const struct rte_red_config * red_cfg,struct rte_red * red)182 static double rte_red_get_avg_float(const struct rte_red_config *red_cfg,
183 struct rte_red *red)
184 {
185 /**
186 * scale by 1/n and convert from fixed-point to floating-point
187 */
188 return ldexp((double)red->avg, -(RTE_RED_SCALING + red_cfg->wq_log2));
189 }
190
rte_red_set_avg_int(const struct rte_red_config * red_cfg,struct rte_red * red,uint32_t avg)191 static void rte_red_set_avg_int(const struct rte_red_config *red_cfg,
192 struct rte_red *red,
193 uint32_t avg)
194 {
195 /**
196 * scale by n and convert from integer to fixed-point
197 */
198 red->avg = avg << (RTE_RED_SCALING + red_cfg->wq_log2);
199 }
200
calc_exp_avg_on_empty(double avg,uint32_t n,uint32_t time_diff)201 static double calc_exp_avg_on_empty(double avg, uint32_t n, uint32_t time_diff)
202 {
203 return avg * pow((1.0 - 1.0 / (double)n), (double)time_diff / pkt_time_usec);
204 }
205
calc_drop_rate(uint32_t enqueued,uint32_t dropped)206 static double calc_drop_rate(uint32_t enqueued, uint32_t dropped)
207 {
208 return (double)dropped / ((double)enqueued + (double)dropped);
209 }
210
211 /**
212 * calculate the drop probability
213 */
calc_drop_prob(uint32_t min_th,uint32_t max_th,uint32_t maxp_inv,uint32_t avg)214 static double calc_drop_prob(uint32_t min_th, uint32_t max_th,
215 uint32_t maxp_inv, uint32_t avg)
216 {
217 double drop_prob = 0.0;
218
219 if (avg < min_th) {
220 drop_prob = 0.0;
221 } else if (avg < max_th) {
222 drop_prob = (1.0 / (double)maxp_inv)
223 * ((double)(avg - min_th)
224 / (double)(max_th - min_th));
225 } else {
226 drop_prob = 1.0;
227 }
228 return drop_prob;
229 }
230
231 /**
232 * check if drop rate matches drop probability within tolerance
233 */
check_drop_rate(double * diff,double drop_rate,double drop_prob,double tolerance)234 static int check_drop_rate(double *diff, double drop_rate, double drop_prob, double tolerance)
235 {
236 double abs_diff = 0.0;
237 int ret = 1;
238
239 abs_diff = fabs(drop_rate - drop_prob);
240 if ((int)abs_diff == 0) {
241 *diff = 0.0;
242 } else {
243 *diff = (abs_diff / drop_prob) * 100.0;
244 if (*diff > tolerance) {
245 ret = 0;
246 }
247 }
248 return ret;
249 }
250
251 /**
252 * check if average queue size is within tolerance
253 */
check_avg(double * diff,double avg,double exp_avg,double tolerance)254 static int check_avg(double *diff, double avg, double exp_avg, double tolerance)
255 {
256 double abs_diff = 0.0;
257 int ret = 1;
258
259 abs_diff = fabs(avg - exp_avg);
260 if ((int)abs_diff == 0) {
261 *diff = 0.0;
262 } else {
263 *diff = (abs_diff / exp_avg) * 100.0;
264 if (*diff > tolerance) {
265 ret = 0;
266 }
267 }
268 return ret;
269 }
270
271 /**
272 * initialize the test rte_red config
273 */
274 static enum test_result
test_rte_red_init(struct test_config * tcfg)275 test_rte_red_init(struct test_config *tcfg)
276 {
277 unsigned i = 0;
278
279 tcfg->tvar->clk_freq = rte_get_timer_hz();
280 init_port_ts( tcfg->tvar->clk_freq );
281
282 for (i = 0; i < tcfg->tconfig->num_cfg; i++) {
283 if (rte_red_config_init(&tcfg->tconfig->rconfig[i],
284 (uint16_t)tcfg->tconfig->wq_log2[i],
285 (uint16_t)tcfg->tconfig->min_th,
286 (uint16_t)tcfg->tconfig->max_th,
287 (uint16_t)tcfg->tconfig->maxp_inv[i]) != 0) {
288 return FAIL;
289 }
290 }
291
292 *tcfg->tqueue->q = 0;
293 *tcfg->tvar->dropped = 0;
294 *tcfg->tvar->enqueued = 0;
295 return PASS;
296 }
297
298 /**
299 * enqueue until actual queue size reaches target level
300 */
301 static int
increase_actual_qsize(struct rte_red_config * red_cfg,struct rte_red * red,uint32_t * q,uint32_t level,uint32_t attempts)302 increase_actual_qsize(struct rte_red_config *red_cfg,
303 struct rte_red *red,
304 uint32_t *q,
305 uint32_t level,
306 uint32_t attempts)
307 {
308 uint32_t i = 0;
309
310 for (i = 0; i < attempts; i++) {
311 int ret = 0;
312
313 /**
314 * enqueue
315 */
316 ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts() );
317 if (ret == 0) {
318 if (++(*q) >= level)
319 break;
320 }
321 }
322 /**
323 * check if target actual queue size has been reached
324 */
325 if (*q != level)
326 return -1;
327 /**
328 * success
329 */
330 return 0;
331 }
332
333 /**
334 * enqueue until average queue size reaches target level
335 */
336 static int
increase_average_qsize(struct rte_red_config * red_cfg,struct rte_red * red,uint32_t * q,uint32_t level,uint32_t num_ops)337 increase_average_qsize(struct rte_red_config *red_cfg,
338 struct rte_red *red,
339 uint32_t *q,
340 uint32_t level,
341 uint32_t num_ops)
342 {
343 uint32_t avg = 0;
344 uint32_t i = 0;
345
346 for (i = 0; i < num_ops; i++) {
347 /**
348 * enqueue
349 */
350 rte_red_enqueue(red_cfg, red, *q, get_port_ts());
351 }
352 /**
353 * check if target average queue size has been reached
354 */
355 avg = rte_red_get_avg_int(red_cfg, red);
356 if (avg != level)
357 return -1;
358 /**
359 * success
360 */
361 return 0;
362 }
363
364 /**
365 * setup default values for the functional test structures
366 */
367 static struct rte_red_config ft_wrconfig[1];
368 static struct rte_red ft_rtdata[1];
369 static uint8_t ft_wq_log2[] = {9};
370 static uint8_t ft_maxp_inv[] = {10};
371 static uint32_t ft_qconfig[] = {0, 0, 1, 1};
372 static uint32_t ft_q[] ={0};
373 static uint32_t ft_dropped[] ={0};
374 static uint32_t ft_enqueued[] ={0};
375
376 static struct test_rte_red_config ft_tconfig = {
377 .rconfig = ft_wrconfig,
378 .num_cfg = RTE_DIM(ft_wrconfig),
379 .wq_log2 = ft_wq_log2,
380 .min_th = 32,
381 .max_th = 128,
382 .maxp_inv = ft_maxp_inv,
383 };
384
385 static struct test_queue ft_tqueue = {
386 .rdata = ft_rtdata,
387 .num_queues = RTE_DIM(ft_rtdata),
388 .qconfig = ft_qconfig,
389 .q = ft_q,
390 .q_ramp_up = 1000000,
391 .avg_ramp_up = 1000000,
392 .avg_tolerance = 5, /* 5 percent */
393 .drop_tolerance = 50, /* 50 percent */
394 };
395
396 static struct test_var ft_tvar = {
397 .wait_usec = 10000,
398 .num_iterations = 5,
399 .num_ops = 10000,
400 .clk_freq = 0,
401 .dropped = ft_dropped,
402 .enqueued = ft_enqueued,
403 .sleep_sec = (MAX_QEMPTY_TIME_MSEC / MSEC_PER_SEC) + 2,
404 };
405
406 /**
407 * functional test enqueue/dequeue packets
408 */
enqueue_dequeue_func(struct rte_red_config * red_cfg,struct rte_red * red,uint32_t * q,uint32_t num_ops,uint32_t * enqueued,uint32_t * dropped)409 static void enqueue_dequeue_func(struct rte_red_config *red_cfg,
410 struct rte_red *red,
411 uint32_t *q,
412 uint32_t num_ops,
413 uint32_t *enqueued,
414 uint32_t *dropped)
415 {
416 uint32_t i = 0;
417
418 for (i = 0; i < num_ops; i++) {
419 int ret = 0;
420
421 /**
422 * enqueue
423 */
424 ret = rte_red_enqueue(red_cfg, red, *q, get_port_ts());
425 if (ret == 0)
426 (*enqueued)++;
427 else
428 (*dropped)++;
429 }
430 }
431
432 /**
433 * Test F1: functional test 1
434 */
435 static uint32_t ft1_tlevels[] = {6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144};
436
437 static struct test_config func_test1_config = {
438 .ifname = "functional test 1 interface",
439 .msg = "functional test 1 : use one rte_red configuration,\n"
440 " increase average queue size to various levels,\n"
441 " compare drop rate to drop probability\n\n",
442 .htxt = " "
443 "avg queue size "
444 "enqueued "
445 "dropped "
446 "drop prob % "
447 "drop rate % "
448 "diff % "
449 "tolerance % "
450 "\n",
451 .tconfig = &ft_tconfig,
452 .tqueue = &ft_tqueue,
453 .tvar = &ft_tvar,
454 .tlevel = ft1_tlevels,
455 };
456
func_test1(struct test_config * tcfg)457 static enum test_result func_test1(struct test_config *tcfg)
458 {
459 enum test_result result = PASS;
460 uint32_t i = 0;
461
462 printf("%s", tcfg->msg);
463
464 if (test_rte_red_init(tcfg) != PASS) {
465 result = FAIL;
466 goto out;
467 }
468
469 printf("%s", tcfg->htxt);
470
471 for (i = 0; i < RTE_DIM(ft1_tlevels); i++) {
472 const char *label = NULL;
473 uint32_t avg = 0;
474 double drop_rate = 0.0;
475 double drop_prob = 0.0;
476 double diff = 0.0;
477
478 /**
479 * reset rte_red run-time data
480 */
481 rte_red_rt_data_init(tcfg->tqueue->rdata);
482 *tcfg->tvar->enqueued = 0;
483 *tcfg->tvar->dropped = 0;
484
485 if (increase_actual_qsize(tcfg->tconfig->rconfig,
486 tcfg->tqueue->rdata,
487 tcfg->tqueue->q,
488 tcfg->tlevel[i],
489 tcfg->tqueue->q_ramp_up) != 0) {
490 result = FAIL;
491 goto out;
492 }
493
494 if (increase_average_qsize(tcfg->tconfig->rconfig,
495 tcfg->tqueue->rdata,
496 tcfg->tqueue->q,
497 tcfg->tlevel[i],
498 tcfg->tqueue->avg_ramp_up) != 0) {
499 result = FAIL;
500 goto out;
501 }
502
503 enqueue_dequeue_func(tcfg->tconfig->rconfig,
504 tcfg->tqueue->rdata,
505 tcfg->tqueue->q,
506 tcfg->tvar->num_ops,
507 tcfg->tvar->enqueued,
508 tcfg->tvar->dropped);
509
510 avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
511 if (avg != tcfg->tlevel[i]) {
512 fprintf(stderr, "Fail: avg != level\n");
513 result = FAIL;
514 }
515
516 drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped);
517 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th,
518 *tcfg->tconfig->maxp_inv, tcfg->tlevel[i]);
519 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
520 result = FAIL;
521
522 if (tcfg->tlevel[i] == tcfg->tconfig->min_th)
523 label = "min thresh: ";
524 else if (tcfg->tlevel[i] == tcfg->tconfig->max_th)
525 label = "max thresh: ";
526 else
527 label = " ";
528 printf("%s%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
529 label, avg, *tcfg->tvar->enqueued, *tcfg->tvar->dropped,
530 drop_prob * 100.0, drop_rate * 100.0, diff,
531 (double)tcfg->tqueue->drop_tolerance);
532 }
533 out:
534 return result;
535 }
536
537 /**
538 * Test F2: functional test 2
539 */
540 static uint32_t ft2_tlevel[] = {127};
541 static uint8_t ft2_wq_log2[] = {9, 9, 9, 9, 9, 9, 9, 9, 9, 9};
542 static uint8_t ft2_maxp_inv[] = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100};
543 static struct rte_red_config ft2_rconfig[10];
544
545 static struct test_rte_red_config ft2_tconfig = {
546 .rconfig = ft2_rconfig,
547 .num_cfg = RTE_DIM(ft2_rconfig),
548 .wq_log2 = ft2_wq_log2,
549 .min_th = 32,
550 .max_th = 128,
551 .maxp_inv = ft2_maxp_inv,
552 };
553
554 static struct test_config func_test2_config = {
555 .ifname = "functional test 2 interface",
556 .msg = "functional test 2 : use several RED configurations,\n"
557 " increase average queue size to just below maximum threshold,\n"
558 " compare drop rate to drop probability\n\n",
559 .htxt = "RED config "
560 "avg queue size "
561 "min threshold "
562 "max threshold "
563 "drop prob % "
564 "drop rate % "
565 "diff % "
566 "tolerance % "
567 "\n",
568 .tconfig = &ft2_tconfig,
569 .tqueue = &ft_tqueue,
570 .tvar = &ft_tvar,
571 .tlevel = ft2_tlevel,
572 };
573
func_test2(struct test_config * tcfg)574 static enum test_result func_test2(struct test_config *tcfg)
575 {
576 enum test_result result = PASS;
577 double prev_drop_rate = 1.0;
578 uint32_t i = 0;
579
580 printf("%s", tcfg->msg);
581
582 if (test_rte_red_init(tcfg) != PASS) {
583 result = FAIL;
584 goto out;
585 }
586 rte_red_rt_data_init(tcfg->tqueue->rdata);
587
588 if (increase_actual_qsize(tcfg->tconfig->rconfig,
589 tcfg->tqueue->rdata,
590 tcfg->tqueue->q,
591 *tcfg->tlevel,
592 tcfg->tqueue->q_ramp_up) != 0) {
593 result = FAIL;
594 goto out;
595 }
596
597 if (increase_average_qsize(tcfg->tconfig->rconfig,
598 tcfg->tqueue->rdata,
599 tcfg->tqueue->q,
600 *tcfg->tlevel,
601 tcfg->tqueue->avg_ramp_up) != 0) {
602 result = FAIL;
603 goto out;
604 }
605 printf("%s", tcfg->htxt);
606
607 for (i = 0; i < tcfg->tconfig->num_cfg; i++) {
608 uint32_t avg = 0;
609 double drop_rate = 0.0;
610 double drop_prob = 0.0;
611 double diff = 0.0;
612
613 *tcfg->tvar->dropped = 0;
614 *tcfg->tvar->enqueued = 0;
615
616 enqueue_dequeue_func(&tcfg->tconfig->rconfig[i],
617 tcfg->tqueue->rdata,
618 tcfg->tqueue->q,
619 tcfg->tvar->num_ops,
620 tcfg->tvar->enqueued,
621 tcfg->tvar->dropped);
622
623 avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[i], tcfg->tqueue->rdata);
624 if (avg != *tcfg->tlevel)
625 result = FAIL;
626
627 drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped);
628 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th,
629 tcfg->tconfig->maxp_inv[i], *tcfg->tlevel);
630 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
631 result = FAIL;
632 /**
633 * drop rate should decrease as maxp_inv increases
634 */
635 if (drop_rate > prev_drop_rate)
636 result = FAIL;
637 prev_drop_rate = drop_rate;
638
639 printf("%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
640 i, avg, tcfg->tconfig->min_th, tcfg->tconfig->max_th,
641 drop_prob * 100.0, drop_rate * 100.0, diff,
642 (double)tcfg->tqueue->drop_tolerance);
643 }
644 out:
645 return result;
646 }
647
648 /**
649 * Test F3: functional test 3
650 */
651 static uint32_t ft3_tlevel[] = {1022};
652
653 static struct test_rte_red_config ft3_tconfig = {
654 .rconfig = ft_wrconfig,
655 .num_cfg = RTE_DIM(ft_wrconfig),
656 .wq_log2 = ft_wq_log2,
657 .min_th = 32,
658 .max_th = 1023,
659 .maxp_inv = ft_maxp_inv,
660 };
661
662 static struct test_config func_test3_config = {
663 .ifname = "functional test 3 interface",
664 .msg = "functional test 3 : use one RED configuration,\n"
665 " increase average queue size to target level,\n"
666 " dequeue all packets until queue is empty,\n"
667 " confirm that average queue size is computed correctly while queue is empty\n\n",
668 .htxt = "q avg before "
669 "q avg after "
670 "expected "
671 "difference % "
672 "tolerance % "
673 "result "
674 "\n",
675 .tconfig = &ft3_tconfig,
676 .tqueue = &ft_tqueue,
677 .tvar = &ft_tvar,
678 .tlevel = ft3_tlevel,
679 };
680
func_test3(struct test_config * tcfg)681 static enum test_result func_test3(struct test_config *tcfg)
682 {
683 enum test_result result = PASS;
684 uint32_t i = 0;
685
686 printf("%s", tcfg->msg);
687
688 if (test_rte_red_init(tcfg) != PASS) {
689 result = FAIL;
690 goto out;
691 }
692
693 rte_red_rt_data_init(tcfg->tqueue->rdata);
694
695 if (increase_actual_qsize(tcfg->tconfig->rconfig,
696 tcfg->tqueue->rdata,
697 tcfg->tqueue->q,
698 *tcfg->tlevel,
699 tcfg->tqueue->q_ramp_up) != 0) {
700 result = FAIL;
701 goto out;
702 }
703
704 if (increase_average_qsize(tcfg->tconfig->rconfig,
705 tcfg->tqueue->rdata,
706 tcfg->tqueue->q,
707 *tcfg->tlevel,
708 tcfg->tqueue->avg_ramp_up) != 0) {
709 result = FAIL;
710 goto out;
711 }
712
713 printf("%s", tcfg->htxt);
714
715 for (i = 0; i < tcfg->tvar->num_iterations; i++) {
716 double avg_before = 0;
717 double avg_after = 0;
718 double exp_avg = 0;
719 double diff = 0.0;
720
721 avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
722
723 /**
724 * empty the queue
725 */
726 *tcfg->tqueue->q = 0;
727 rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts());
728
729 rte_delay_us(tcfg->tvar->wait_usec);
730
731 /**
732 * enqueue one packet to recalculate average queue size
733 */
734 if (rte_red_enqueue(tcfg->tconfig->rconfig,
735 tcfg->tqueue->rdata,
736 *tcfg->tqueue->q,
737 get_port_ts()) == 0) {
738 (*tcfg->tqueue->q)++;
739 } else {
740 printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__);
741 result = FAIL;
742 }
743
744 exp_avg = calc_exp_avg_on_empty(avg_before,
745 (1 << *tcfg->tconfig->wq_log2),
746 tcfg->tvar->wait_usec);
747 avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig,
748 tcfg->tqueue->rdata);
749 if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
750 result = FAIL;
751
752 printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
753 avg_before, avg_after, exp_avg, diff,
754 (double)tcfg->tqueue->avg_tolerance,
755 diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail");
756 }
757 out:
758 return result;
759 }
760
761 /**
762 * Test F4: functional test 4
763 */
764 static uint32_t ft4_tlevel[] = {1022};
765 static uint8_t ft4_wq_log2[] = {11};
766
767 static struct test_rte_red_config ft4_tconfig = {
768 .rconfig = ft_wrconfig,
769 .num_cfg = RTE_DIM(ft_wrconfig),
770 .min_th = 32,
771 .max_th = 1023,
772 .wq_log2 = ft4_wq_log2,
773 .maxp_inv = ft_maxp_inv,
774 };
775
776 static struct test_queue ft4_tqueue = {
777 .rdata = ft_rtdata,
778 .num_queues = RTE_DIM(ft_rtdata),
779 .qconfig = ft_qconfig,
780 .q = ft_q,
781 .q_ramp_up = 1000000,
782 .avg_ramp_up = 1000000,
783 .avg_tolerance = 0, /* 0 percent */
784 .drop_tolerance = 50, /* 50 percent */
785 };
786
787 static struct test_config func_test4_config = {
788 .ifname = "functional test 4 interface",
789 .msg = "functional test 4 : use one RED configuration,\n"
790 " increase average queue size to target level,\n"
791 " dequeue all packets until queue is empty,\n"
792 " confirm that average queue size is computed correctly while\n"
793 " queue is empty for more than 50 sec,\n"
794 " (this test takes 52 sec to run)\n\n",
795 .htxt = "q avg before "
796 "q avg after "
797 "expected "
798 "difference % "
799 "tolerance % "
800 "result "
801 "\n",
802 .tconfig = &ft4_tconfig,
803 .tqueue = &ft4_tqueue,
804 .tvar = &ft_tvar,
805 .tlevel = ft4_tlevel,
806 };
807
func_test4(struct test_config * tcfg)808 static enum test_result func_test4(struct test_config *tcfg)
809 {
810 enum test_result result = PASS;
811 uint64_t time_diff = 0;
812 uint64_t start = 0;
813 double avg_before = 0.0;
814 double avg_after = 0.0;
815 double exp_avg = 0.0;
816 double diff = 0.0;
817
818 printf("%s", tcfg->msg);
819
820 if (test_rte_red_init(tcfg) != PASS) {
821 result = FAIL;
822 goto out;
823 }
824
825 rte_red_rt_data_init(tcfg->tqueue->rdata);
826
827 if (increase_actual_qsize(tcfg->tconfig->rconfig,
828 tcfg->tqueue->rdata,
829 tcfg->tqueue->q,
830 *tcfg->tlevel,
831 tcfg->tqueue->q_ramp_up) != 0) {
832 result = FAIL;
833 goto out;
834 }
835
836 if (increase_average_qsize(tcfg->tconfig->rconfig,
837 tcfg->tqueue->rdata,
838 tcfg->tqueue->q,
839 *tcfg->tlevel,
840 tcfg->tqueue->avg_ramp_up) != 0) {
841 result = FAIL;
842 goto out;
843 }
844
845 printf("%s", tcfg->htxt);
846
847 avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
848
849 /**
850 * empty the queue
851 */
852 *tcfg->tqueue->q = 0;
853 rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts());
854
855 /**
856 * record empty time locally
857 */
858 start = rte_rdtsc();
859
860 sleep(tcfg->tvar->sleep_sec);
861
862 /**
863 * enqueue one packet to recalculate average queue size
864 */
865 if (rte_red_enqueue(tcfg->tconfig->rconfig,
866 tcfg->tqueue->rdata,
867 *tcfg->tqueue->q,
868 get_port_ts()) != 0) {
869 result = FAIL;
870 goto out;
871 }
872 (*tcfg->tqueue->q)++;
873
874 /**
875 * calculate how long queue has been empty
876 */
877 time_diff = ((rte_rdtsc() - start) / tcfg->tvar->clk_freq)
878 * MSEC_PER_SEC;
879 if (time_diff < MAX_QEMPTY_TIME_MSEC) {
880 /**
881 * this could happen if sleep was interrupted for some reason
882 */
883 result = FAIL;
884 goto out;
885 }
886
887 /**
888 * confirm that average queue size is now at expected level
889 */
890 exp_avg = 0.0;
891 avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
892 if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
893 result = FAIL;
894
895 printf("%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
896 avg_before, avg_after, exp_avg,
897 diff, (double)tcfg->tqueue->avg_tolerance,
898 diff <= (double)tcfg->tqueue->avg_tolerance ? "pass" : "fail");
899 out:
900 return result;
901 }
902
903 /**
904 * Test F5: functional test 5
905 */
906 static uint32_t ft5_tlevel[] = {127};
907 static uint8_t ft5_wq_log2[] = {9, 8};
908 static uint8_t ft5_maxp_inv[] = {10, 20};
909 static struct rte_red_config ft5_config[2];
910 static struct rte_red ft5_data[4];
911 static uint32_t ft5_q[4];
912 static uint32_t ft5_dropped[] = {0, 0, 0, 0};
913 static uint32_t ft5_enqueued[] = {0, 0, 0, 0};
914
915 static struct test_rte_red_config ft5_tconfig = {
916 .rconfig = ft5_config,
917 .num_cfg = RTE_DIM(ft5_config),
918 .min_th = 32,
919 .max_th = 128,
920 .wq_log2 = ft5_wq_log2,
921 .maxp_inv = ft5_maxp_inv,
922 };
923
924 static struct test_queue ft5_tqueue = {
925 .rdata = ft5_data,
926 .num_queues = RTE_DIM(ft5_data),
927 .qconfig = ft_qconfig,
928 .q = ft5_q,
929 .q_ramp_up = 1000000,
930 .avg_ramp_up = 1000000,
931 .avg_tolerance = 5, /* 10 percent */
932 .drop_tolerance = 50, /* 50 percent */
933 };
934
935 struct test_var ft5_tvar = {
936 .wait_usec = 0,
937 .num_iterations = 15,
938 .num_ops = 10000,
939 .clk_freq = 0,
940 .dropped = ft5_dropped,
941 .enqueued = ft5_enqueued,
942 .sleep_sec = 0,
943 };
944
945 static struct test_config func_test5_config = {
946 .ifname = "functional test 5 interface",
947 .msg = "functional test 5 : use several queues (each with its own run-time data),\n"
948 " use several RED configurations (such that each configuration is shared by multiple queues),\n"
949 " increase average queue size to just below maximum threshold,\n"
950 " compare drop rate to drop probability,\n"
951 " (this is a larger scale version of functional test 2)\n\n",
952 .htxt = "queue "
953 "config "
954 "avg queue size "
955 "min threshold "
956 "max threshold "
957 "drop prob % "
958 "drop rate % "
959 "diff % "
960 "tolerance % "
961 "\n",
962 .tconfig = &ft5_tconfig,
963 .tqueue = &ft5_tqueue,
964 .tvar = &ft5_tvar,
965 .tlevel = ft5_tlevel,
966 };
967
func_test5(struct test_config * tcfg)968 static enum test_result func_test5(struct test_config *tcfg)
969 {
970 enum test_result result = PASS;
971 uint32_t j = 0;
972
973 printf("%s", tcfg->msg);
974
975 if (test_rte_red_init(tcfg) != PASS) {
976 result = FAIL;
977 goto out;
978 }
979
980 printf("%s", tcfg->htxt);
981
982 for (j = 0; j < tcfg->tqueue->num_queues; j++) {
983 rte_red_rt_data_init(&tcfg->tqueue->rdata[j]);
984 tcfg->tqueue->q[j] = 0;
985
986 if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
987 &tcfg->tqueue->rdata[j],
988 &tcfg->tqueue->q[j],
989 *tcfg->tlevel,
990 tcfg->tqueue->q_ramp_up) != 0) {
991 result = FAIL;
992 goto out;
993 }
994
995 if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
996 &tcfg->tqueue->rdata[j],
997 &tcfg->tqueue->q[j],
998 *tcfg->tlevel,
999 tcfg->tqueue->avg_ramp_up) != 0) {
1000 result = FAIL;
1001 goto out;
1002 }
1003 }
1004
1005 for (j = 0; j < tcfg->tqueue->num_queues; j++) {
1006 uint32_t avg = 0;
1007 double drop_rate = 0.0;
1008 double drop_prob = 0.0;
1009 double diff = 0.0;
1010
1011 tcfg->tvar->dropped[j] = 0;
1012 tcfg->tvar->enqueued[j] = 0;
1013
1014 enqueue_dequeue_func(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1015 &tcfg->tqueue->rdata[j],
1016 &tcfg->tqueue->q[j],
1017 tcfg->tvar->num_ops,
1018 &tcfg->tvar->enqueued[j],
1019 &tcfg->tvar->dropped[j]);
1020
1021 avg = rte_red_get_avg_int(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1022 &tcfg->tqueue->rdata[j]);
1023 if (avg != *tcfg->tlevel)
1024 result = FAIL;
1025
1026 drop_rate = calc_drop_rate(tcfg->tvar->enqueued[j],tcfg->tvar->dropped[j]);
1027 drop_prob = calc_drop_prob(tcfg->tconfig->min_th, tcfg->tconfig->max_th,
1028 tcfg->tconfig->maxp_inv[tcfg->tqueue->qconfig[j]],
1029 *tcfg->tlevel);
1030 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
1031 result = FAIL;
1032
1033 printf("%-15u%-15u%-15u%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf\n",
1034 j, tcfg->tqueue->qconfig[j], avg,
1035 tcfg->tconfig->min_th, tcfg->tconfig->max_th,
1036 drop_prob * 100.0, drop_rate * 100.0,
1037 diff, (double)tcfg->tqueue->drop_tolerance);
1038 }
1039 out:
1040 return result;
1041 }
1042
1043 /**
1044 * Test F6: functional test 6
1045 */
1046 static uint32_t ft6_tlevel[] = {1022};
1047 static uint8_t ft6_wq_log2[] = {9, 8};
1048 static uint8_t ft6_maxp_inv[] = {10, 20};
1049 static struct rte_red_config ft6_config[2];
1050 static struct rte_red ft6_data[4];
1051 static uint32_t ft6_q[4];
1052
1053 static struct test_rte_red_config ft6_tconfig = {
1054 .rconfig = ft6_config,
1055 .num_cfg = RTE_DIM(ft6_config),
1056 .min_th = 32,
1057 .max_th = 1023,
1058 .wq_log2 = ft6_wq_log2,
1059 .maxp_inv = ft6_maxp_inv,
1060 };
1061
1062 static struct test_queue ft6_tqueue = {
1063 .rdata = ft6_data,
1064 .num_queues = RTE_DIM(ft6_data),
1065 .qconfig = ft_qconfig,
1066 .q = ft6_q,
1067 .q_ramp_up = 1000000,
1068 .avg_ramp_up = 1000000,
1069 .avg_tolerance = 5, /* 10 percent */
1070 .drop_tolerance = 50, /* 50 percent */
1071 };
1072
1073 static struct test_config func_test6_config = {
1074 .ifname = "functional test 6 interface",
1075 .msg = "functional test 6 : use several queues (each with its own run-time data),\n"
1076 " use several RED configurations (such that each configuration is shared by multiple queues),\n"
1077 " increase average queue size to target level,\n"
1078 " dequeue all packets until queue is empty,\n"
1079 " confirm that average queue size is computed correctly while queue is empty\n"
1080 " (this is a larger scale version of functional test 3)\n\n",
1081 .htxt = "queue "
1082 "config "
1083 "q avg before "
1084 "q avg after "
1085 "expected "
1086 "difference % "
1087 "tolerance % "
1088 "result ""\n",
1089 .tconfig = &ft6_tconfig,
1090 .tqueue = &ft6_tqueue,
1091 .tvar = &ft_tvar,
1092 .tlevel = ft6_tlevel,
1093 };
1094
func_test6(struct test_config * tcfg)1095 static enum test_result func_test6(struct test_config *tcfg)
1096 {
1097 enum test_result result = PASS;
1098 uint32_t j = 0;
1099
1100 printf("%s", tcfg->msg);
1101 if (test_rte_red_init(tcfg) != PASS) {
1102 result = FAIL;
1103 goto out;
1104 }
1105 printf("%s", tcfg->htxt);
1106
1107 for (j = 0; j < tcfg->tqueue->num_queues; j++) {
1108 rte_red_rt_data_init(&tcfg->tqueue->rdata[j]);
1109 tcfg->tqueue->q[j] = 0;
1110
1111 if (increase_actual_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1112 &tcfg->tqueue->rdata[j],
1113 &tcfg->tqueue->q[j],
1114 *tcfg->tlevel,
1115 tcfg->tqueue->q_ramp_up) != 0) {
1116 result = FAIL;
1117 goto out;
1118 }
1119 if (increase_average_qsize(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1120 &tcfg->tqueue->rdata[j],
1121 &tcfg->tqueue->q[j],
1122 *tcfg->tlevel,
1123 tcfg->tqueue->avg_ramp_up) != 0) {
1124 result = FAIL;
1125 goto out;
1126 }
1127 }
1128 for (j = 0; j < tcfg->tqueue->num_queues; j++) {
1129 double avg_before = 0;
1130 double avg_after = 0;
1131 double exp_avg = 0;
1132 double diff = 0.0;
1133
1134 avg_before = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1135 &tcfg->tqueue->rdata[j]);
1136
1137 /**
1138 * empty the queue
1139 */
1140 tcfg->tqueue->q[j] = 0;
1141 rte_red_mark_queue_empty(&tcfg->tqueue->rdata[j], get_port_ts());
1142 rte_delay_us(tcfg->tvar->wait_usec);
1143
1144 /**
1145 * enqueue one packet to recalculate average queue size
1146 */
1147 if (rte_red_enqueue(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1148 &tcfg->tqueue->rdata[j],
1149 tcfg->tqueue->q[j],
1150 get_port_ts()) == 0) {
1151 tcfg->tqueue->q[j]++;
1152 } else {
1153 printf("%s:%d: packet enqueued on empty queue was dropped\n", __func__, __LINE__);
1154 result = FAIL;
1155 }
1156
1157 exp_avg = calc_exp_avg_on_empty(avg_before,
1158 (1 << tcfg->tconfig->wq_log2[tcfg->tqueue->qconfig[j]]),
1159 tcfg->tvar->wait_usec);
1160 avg_after = rte_red_get_avg_float(&tcfg->tconfig->rconfig[tcfg->tqueue->qconfig[j]],
1161 &tcfg->tqueue->rdata[j]);
1162 if (!check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
1163 result = FAIL;
1164
1165 printf("%-15u%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
1166 j, tcfg->tqueue->qconfig[j], avg_before, avg_after,
1167 exp_avg, diff, (double)tcfg->tqueue->avg_tolerance,
1168 diff <= tcfg->tqueue->avg_tolerance ? "pass" : "fail");
1169 }
1170 out:
1171 return result;
1172 }
1173
1174 /**
1175 * setup default values for the performance test structures
1176 */
1177 static struct rte_red_config pt_wrconfig[1];
1178 static struct rte_red pt_rtdata[1];
1179 static uint8_t pt_wq_log2[] = {9};
1180 static uint8_t pt_maxp_inv[] = {10};
1181 static uint32_t pt_qconfig[] = {0};
1182 static uint32_t pt_q[] = {0};
1183 static uint32_t pt_dropped[] = {0};
1184 static uint32_t pt_enqueued[] = {0};
1185
1186 static struct test_rte_red_config pt_tconfig = {
1187 .rconfig = pt_wrconfig,
1188 .num_cfg = RTE_DIM(pt_wrconfig),
1189 .wq_log2 = pt_wq_log2,
1190 .min_th = 32,
1191 .max_th = 128,
1192 .maxp_inv = pt_maxp_inv,
1193 };
1194
1195 static struct test_queue pt_tqueue = {
1196 .rdata = pt_rtdata,
1197 .num_queues = RTE_DIM(pt_rtdata),
1198 .qconfig = pt_qconfig,
1199 .q = pt_q,
1200 .q_ramp_up = 1000000,
1201 .avg_ramp_up = 1000000,
1202 .avg_tolerance = 5, /* 10 percent */
1203 .drop_tolerance = 50, /* 50 percent */
1204 };
1205
1206 /**
1207 * enqueue/dequeue packets
1208 */
enqueue_dequeue_perf(struct rte_red_config * red_cfg,struct rte_red * red,uint32_t * q,uint32_t num_ops,uint32_t * enqueued,uint32_t * dropped,struct rdtsc_prof * prof)1209 static void enqueue_dequeue_perf(struct rte_red_config *red_cfg,
1210 struct rte_red *red,
1211 uint32_t *q,
1212 uint32_t num_ops,
1213 uint32_t *enqueued,
1214 uint32_t *dropped,
1215 struct rdtsc_prof *prof)
1216 {
1217 uint32_t i = 0;
1218
1219 for (i = 0; i < num_ops; i++) {
1220 uint64_t ts = 0;
1221 int ret = 0;
1222 /**
1223 * enqueue
1224 */
1225 ts = get_port_ts();
1226 rdtsc_prof_start(prof);
1227 ret = rte_red_enqueue(red_cfg, red, *q, ts );
1228 rdtsc_prof_end(prof);
1229 if (ret == 0)
1230 (*enqueued)++;
1231 else
1232 (*dropped)++;
1233 }
1234 }
1235
1236 /**
1237 * Setup test structures for tests P1, P2, P3
1238 * performance tests 1, 2 and 3
1239 */
1240 static uint32_t pt1_tlevel[] = {16};
1241 static uint32_t pt2_tlevel[] = {80};
1242 static uint32_t pt3_tlevel[] = {144};
1243
1244 static struct test_var perf1_tvar = {
1245 .wait_usec = 0,
1246 .num_iterations = 15,
1247 .num_ops = 50000000,
1248 .clk_freq = 0,
1249 .dropped = pt_dropped,
1250 .enqueued = pt_enqueued,
1251 .sleep_sec = 0
1252 };
1253
1254 static struct test_config perf1_test1_config = {
1255 .ifname = "performance test 1 interface",
1256 .msg = "performance test 1 : use one RED configuration,\n"
1257 " set actual and average queue sizes to level below min threshold,\n"
1258 " measure enqueue performance\n\n",
1259 .tconfig = &pt_tconfig,
1260 .tqueue = &pt_tqueue,
1261 .tvar = &perf1_tvar,
1262 .tlevel = pt1_tlevel,
1263 };
1264
1265 static struct test_config perf1_test2_config = {
1266 .ifname = "performance test 2 interface",
1267 .msg = "performance test 2 : use one RED configuration,\n"
1268 " set actual and average queue sizes to level in between min and max thresholds,\n"
1269 " measure enqueue performance\n\n",
1270 .tconfig = &pt_tconfig,
1271 .tqueue = &pt_tqueue,
1272 .tvar = &perf1_tvar,
1273 .tlevel = pt2_tlevel,
1274 };
1275
1276 static struct test_config perf1_test3_config = {
1277 .ifname = "performance test 3 interface",
1278 .msg = "performance test 3 : use one RED configuration,\n"
1279 " set actual and average queue sizes to level above max threshold,\n"
1280 " measure enqueue performance\n\n",
1281 .tconfig = &pt_tconfig,
1282 .tqueue = &pt_tqueue,
1283 .tvar = &perf1_tvar,
1284 .tlevel = pt3_tlevel,
1285 };
1286
1287 /**
1288 * Performance test function to measure enqueue performance.
1289 * This runs performance tests 1, 2 and 3
1290 */
perf1_test(struct test_config * tcfg)1291 static enum test_result perf1_test(struct test_config *tcfg)
1292 {
1293 enum test_result result = PASS;
1294 struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL};
1295 uint32_t total = 0;
1296
1297 printf("%s", tcfg->msg);
1298
1299 rdtsc_prof_init(&prof, "enqueue");
1300
1301 if (test_rte_red_init(tcfg) != PASS) {
1302 result = FAIL;
1303 goto out;
1304 }
1305
1306 /**
1307 * set average queue size to target level
1308 */
1309 *tcfg->tqueue->q = *tcfg->tlevel;
1310
1311 /**
1312 * initialize the rte_red run time data structure
1313 */
1314 rte_red_rt_data_init(tcfg->tqueue->rdata);
1315
1316 /**
1317 * set the queue average
1318 */
1319 rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel);
1320 if (rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata)
1321 != *tcfg->tlevel) {
1322 result = FAIL;
1323 goto out;
1324 }
1325
1326 enqueue_dequeue_perf(tcfg->tconfig->rconfig,
1327 tcfg->tqueue->rdata,
1328 tcfg->tqueue->q,
1329 tcfg->tvar->num_ops,
1330 tcfg->tvar->enqueued,
1331 tcfg->tvar->dropped,
1332 &prof);
1333
1334 total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped;
1335
1336 printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total,
1337 *tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0,
1338 *tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0);
1339
1340 rdtsc_prof_print(&prof);
1341 out:
1342 return result;
1343 }
1344
1345 /**
1346 * Setup test structures for tests P4, P5, P6
1347 * performance tests 4, 5 and 6
1348 */
1349 static uint32_t pt4_tlevel[] = {16};
1350 static uint32_t pt5_tlevel[] = {80};
1351 static uint32_t pt6_tlevel[] = {144};
1352
1353 static struct test_var perf2_tvar = {
1354 .wait_usec = 500,
1355 .num_iterations = 10000,
1356 .num_ops = 10000,
1357 .dropped = pt_dropped,
1358 .enqueued = pt_enqueued,
1359 .sleep_sec = 0
1360 };
1361
1362 static struct test_config perf2_test4_config = {
1363 .ifname = "performance test 4 interface",
1364 .msg = "performance test 4 : use one RED configuration,\n"
1365 " set actual and average queue sizes to level below min threshold,\n"
1366 " dequeue all packets until queue is empty,\n"
1367 " measure enqueue performance when queue is empty\n\n",
1368 .htxt = "iteration "
1369 "q avg before "
1370 "q avg after "
1371 "expected "
1372 "difference % "
1373 "tolerance % "
1374 "result ""\n",
1375 .tconfig = &pt_tconfig,
1376 .tqueue = &pt_tqueue,
1377 .tvar = &perf2_tvar,
1378 .tlevel = pt4_tlevel,
1379 };
1380
1381 static struct test_config perf2_test5_config = {
1382 .ifname = "performance test 5 interface",
1383 .msg = "performance test 5 : use one RED configuration,\n"
1384 " set actual and average queue sizes to level in between min and max thresholds,\n"
1385 " dequeue all packets until queue is empty,\n"
1386 " measure enqueue performance when queue is empty\n\n",
1387 .htxt = "iteration "
1388 "q avg before "
1389 "q avg after "
1390 "expected "
1391 "difference "
1392 "tolerance "
1393 "result ""\n",
1394 .tconfig = &pt_tconfig,
1395 .tqueue = &pt_tqueue,
1396 .tvar = &perf2_tvar,
1397 .tlevel = pt5_tlevel,
1398 };
1399
1400 static struct test_config perf2_test6_config = {
1401 .ifname = "performance test 6 interface",
1402 .msg = "performance test 6 : use one RED configuration,\n"
1403 " set actual and average queue sizes to level above max threshold,\n"
1404 " dequeue all packets until queue is empty,\n"
1405 " measure enqueue performance when queue is empty\n\n",
1406 .htxt = "iteration "
1407 "q avg before "
1408 "q avg after "
1409 "expected "
1410 "difference % "
1411 "tolerance % "
1412 "result ""\n",
1413 .tconfig = &pt_tconfig,
1414 .tqueue = &pt_tqueue,
1415 .tvar = &perf2_tvar,
1416 .tlevel = pt6_tlevel,
1417 };
1418
1419 /**
1420 * Performance test function to measure enqueue performance when the
1421 * queue is empty. This runs performance tests 4, 5 and 6
1422 */
perf2_test(struct test_config * tcfg)1423 static enum test_result perf2_test(struct test_config *tcfg)
1424 {
1425 enum test_result result = PASS;
1426 struct rdtsc_prof prof = {0, 0, 0, 0, 0.0, NULL};
1427 uint32_t total = 0;
1428 uint32_t i = 0;
1429
1430 printf("%s", tcfg->msg);
1431
1432 rdtsc_prof_init(&prof, "enqueue");
1433
1434 if (test_rte_red_init(tcfg) != PASS) {
1435 result = FAIL;
1436 goto out;
1437 }
1438
1439 printf("%s", tcfg->htxt);
1440
1441 for (i = 0; i < tcfg->tvar->num_iterations; i++) {
1442 uint32_t count = 0;
1443 uint64_t ts = 0;
1444 double avg_before = 0;
1445 int ret = 0;
1446
1447 /**
1448 * set average queue size to target level
1449 */
1450 *tcfg->tqueue->q = *tcfg->tlevel;
1451 count = (*tcfg->tqueue->rdata).count;
1452
1453 /**
1454 * initialize the rte_red run time data structure
1455 */
1456 rte_red_rt_data_init(tcfg->tqueue->rdata);
1457 (*tcfg->tqueue->rdata).count = count;
1458
1459 /**
1460 * set the queue average
1461 */
1462 rte_red_set_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata, *tcfg->tlevel);
1463 avg_before = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
1464 if ((avg_before < *tcfg->tlevel) || (avg_before > *tcfg->tlevel)) {
1465 result = FAIL;
1466 goto out;
1467 }
1468
1469 /**
1470 * empty the queue
1471 */
1472 *tcfg->tqueue->q = 0;
1473 rte_red_mark_queue_empty(tcfg->tqueue->rdata, get_port_ts());
1474
1475 /**
1476 * wait for specified period of time
1477 */
1478 rte_delay_us(tcfg->tvar->wait_usec);
1479
1480 /**
1481 * measure performance of enqueue operation while queue is empty
1482 */
1483 ts = get_port_ts();
1484 rdtsc_prof_start(&prof);
1485 ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata,
1486 *tcfg->tqueue->q, ts );
1487 rdtsc_prof_end(&prof);
1488
1489 /**
1490 * gather enqueued/dropped statistics
1491 */
1492 if (ret == 0)
1493 (*tcfg->tvar->enqueued)++;
1494 else
1495 (*tcfg->tvar->dropped)++;
1496
1497 /**
1498 * on first and last iteration, confirm that
1499 * average queue size was computed correctly
1500 */
1501 if ((i == 0) || (i == tcfg->tvar->num_iterations - 1)) {
1502 double avg_after = 0;
1503 double exp_avg = 0;
1504 double diff = 0.0;
1505 int ok = 0;
1506
1507 avg_after = rte_red_get_avg_float(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
1508 exp_avg = calc_exp_avg_on_empty(avg_before,
1509 (1 << *tcfg->tconfig->wq_log2),
1510 tcfg->tvar->wait_usec);
1511 if (check_avg(&diff, avg_after, exp_avg, (double)tcfg->tqueue->avg_tolerance))
1512 ok = 1;
1513 printf("%-15u%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15.4lf%-15s\n",
1514 i, avg_before, avg_after, exp_avg, diff,
1515 (double)tcfg->tqueue->avg_tolerance, ok ? "pass" : "fail");
1516 if (!ok) {
1517 result = FAIL;
1518 goto out;
1519 }
1520 }
1521 }
1522 total = *tcfg->tvar->enqueued + *tcfg->tvar->dropped;
1523 printf("\ntotal: %u, enqueued: %u (%.2lf%%), dropped: %u (%.2lf%%)\n", total,
1524 *tcfg->tvar->enqueued, ((double)(*tcfg->tvar->enqueued) / (double)total) * 100.0,
1525 *tcfg->tvar->dropped, ((double)(*tcfg->tvar->dropped) / (double)total) * 100.0);
1526
1527 rdtsc_prof_print(&prof);
1528 out:
1529 return result;
1530 }
1531
1532 /**
1533 * setup default values for overflow test structures
1534 */
1535 static uint32_t avg_max = 0;
1536 static uint32_t avg_max_bits = 0;
1537
1538 static struct rte_red_config ovfl_wrconfig[1];
1539 static struct rte_red ovfl_rtdata[1];
1540 static uint8_t ovfl_maxp_inv[] = {10};
1541 static uint32_t ovfl_qconfig[] = {0, 0, 1, 1};
1542 static uint32_t ovfl_q[] ={0};
1543 static uint32_t ovfl_dropped[] ={0};
1544 static uint32_t ovfl_enqueued[] ={0};
1545 static uint32_t ovfl_tlevel[] = {1023};
1546 static uint8_t ovfl_wq_log2[] = {12};
1547
1548 static struct test_rte_red_config ovfl_tconfig = {
1549 .rconfig = ovfl_wrconfig,
1550 .num_cfg = RTE_DIM(ovfl_wrconfig),
1551 .wq_log2 = ovfl_wq_log2,
1552 .min_th = 32,
1553 .max_th = 1023,
1554 .maxp_inv = ovfl_maxp_inv,
1555 };
1556
1557 static struct test_queue ovfl_tqueue = {
1558 .rdata = ovfl_rtdata,
1559 .num_queues = RTE_DIM(ovfl_rtdata),
1560 .qconfig = ovfl_qconfig,
1561 .q = ovfl_q,
1562 .q_ramp_up = 1000000,
1563 .avg_ramp_up = 1000000,
1564 .avg_tolerance = 5, /* 10 percent */
1565 .drop_tolerance = 50, /* 50 percent */
1566 };
1567
1568 static struct test_var ovfl_tvar = {
1569 .wait_usec = 10000,
1570 .num_iterations = 1,
1571 .num_ops = 10000,
1572 .clk_freq = 0,
1573 .dropped = ovfl_dropped,
1574 .enqueued = ovfl_enqueued,
1575 .sleep_sec = 0
1576 };
1577
ovfl_check_avg(uint32_t avg)1578 static void ovfl_check_avg(uint32_t avg)
1579 {
1580 if (avg > avg_max) {
1581 double avg_log = 0;
1582 uint32_t bits = 0;
1583 avg_max = avg;
1584 avg_log = log(((double)avg_max));
1585 avg_log = avg_log / log(2.0);
1586 bits = (uint32_t)ceil(avg_log);
1587 if (bits > avg_max_bits)
1588 avg_max_bits = bits;
1589 }
1590 }
1591
1592 static struct test_config ovfl_test1_config = {
1593 .ifname = "queue average overflow test interface",
1594 .msg = "overflow test 1 : use one RED configuration,\n"
1595 " increase average queue size to target level,\n"
1596 " check maximum number of bits required to represent avg_s\n\n",
1597 .htxt = "avg queue size "
1598 "wq_log2 "
1599 "fraction bits "
1600 "max queue avg "
1601 "num bits "
1602 "enqueued "
1603 "dropped "
1604 "drop prob % "
1605 "drop rate % "
1606 "\n",
1607 .tconfig = &ovfl_tconfig,
1608 .tqueue = &ovfl_tqueue,
1609 .tvar = &ovfl_tvar,
1610 .tlevel = ovfl_tlevel,
1611 };
1612
ovfl_test1(struct test_config * tcfg)1613 static enum test_result ovfl_test1(struct test_config *tcfg)
1614 {
1615 enum test_result result = PASS;
1616 uint32_t avg = 0;
1617 uint32_t i = 0;
1618 double drop_rate = 0.0;
1619 double drop_prob = 0.0;
1620 double diff = 0.0;
1621 int ret = 0;
1622
1623 printf("%s", tcfg->msg);
1624
1625 if (test_rte_red_init(tcfg) != PASS) {
1626
1627 result = FAIL;
1628 goto out;
1629 }
1630
1631 /**
1632 * reset rte_red run-time data
1633 */
1634 rte_red_rt_data_init(tcfg->tqueue->rdata);
1635
1636 /**
1637 * increase actual queue size
1638 */
1639 for (i = 0; i < tcfg->tqueue->q_ramp_up; i++) {
1640 ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata,
1641 *tcfg->tqueue->q, get_port_ts());
1642
1643 if (ret == 0) {
1644 if (++(*tcfg->tqueue->q) >= *tcfg->tlevel)
1645 break;
1646 }
1647 }
1648
1649 /**
1650 * enqueue
1651 */
1652 for (i = 0; i < tcfg->tqueue->avg_ramp_up; i++) {
1653 ret = rte_red_enqueue(tcfg->tconfig->rconfig, tcfg->tqueue->rdata,
1654 *tcfg->tqueue->q, get_port_ts());
1655 ovfl_check_avg((*tcfg->tqueue->rdata).avg);
1656 avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
1657 if (avg == *tcfg->tlevel) {
1658 if (ret == 0)
1659 (*tcfg->tvar->enqueued)++;
1660 else
1661 (*tcfg->tvar->dropped)++;
1662 }
1663 }
1664
1665 /**
1666 * check if target average queue size has been reached
1667 */
1668 avg = rte_red_get_avg_int(tcfg->tconfig->rconfig, tcfg->tqueue->rdata);
1669 if (avg != *tcfg->tlevel) {
1670 result = FAIL;
1671 goto out;
1672 }
1673
1674 /**
1675 * check drop rate against drop probability
1676 */
1677 drop_rate = calc_drop_rate(*tcfg->tvar->enqueued, *tcfg->tvar->dropped);
1678 drop_prob = calc_drop_prob(tcfg->tconfig->min_th,
1679 tcfg->tconfig->max_th,
1680 *tcfg->tconfig->maxp_inv,
1681 *tcfg->tlevel);
1682 if (!check_drop_rate(&diff, drop_rate, drop_prob, (double)tcfg->tqueue->drop_tolerance))
1683 result = FAIL;
1684
1685 printf("%s", tcfg->htxt);
1686
1687 printf("%-16u%-9u%-15u0x%08x %-10u%-10u%-10u%-13.2lf%-13.2lf\n",
1688 avg, *tcfg->tconfig->wq_log2, RTE_RED_SCALING,
1689 avg_max, avg_max_bits,
1690 *tcfg->tvar->enqueued, *tcfg->tvar->dropped,
1691 drop_prob * 100.0, drop_rate * 100.0);
1692 out:
1693 return result;
1694 }
1695
1696 /**
1697 * define the functional and performance tests to be executed
1698 */
1699 struct tests func_tests[] = {
1700 { &func_test1_config, func_test1 },
1701 { &func_test2_config, func_test2 },
1702 { &func_test3_config, func_test3 },
1703 { &func_test4_config, func_test4 },
1704 { &func_test5_config, func_test5 },
1705 { &func_test6_config, func_test6 },
1706 { &ovfl_test1_config, ovfl_test1 },
1707 };
1708
1709 struct tests func_tests_quick[] = {
1710 { &func_test1_config, func_test1 },
1711 { &func_test2_config, func_test2 },
1712 { &func_test3_config, func_test3 },
1713 /* no test 4 as it takes a lot of time */
1714 { &func_test5_config, func_test5 },
1715 { &func_test6_config, func_test6 },
1716 { &ovfl_test1_config, ovfl_test1 },
1717 };
1718
1719 struct tests perf_tests[] = {
1720 { &perf1_test1_config, perf1_test },
1721 { &perf1_test2_config, perf1_test },
1722 { &perf1_test3_config, perf1_test },
1723 { &perf2_test4_config, perf2_test },
1724 { &perf2_test5_config, perf2_test },
1725 { &perf2_test6_config, perf2_test },
1726 };
1727
1728 /**
1729 * function to execute the required_red tests
1730 */
run_tests(struct tests * test_type,uint32_t test_count,uint32_t * num_tests,uint32_t * num_pass)1731 static void run_tests(struct tests *test_type, uint32_t test_count, uint32_t *num_tests, uint32_t *num_pass)
1732 {
1733 enum test_result result = PASS;
1734 uint32_t i = 0;
1735
1736 for (i = 0; i < test_count; i++) {
1737 printf("\n--------------------------------------------------------------------------------\n");
1738 result = test_type[i].testfn(test_type[i].testcfg);
1739 (*num_tests)++;
1740 if (result == PASS) {
1741 (*num_pass)++;
1742 printf("-------------------------------------<pass>-------------------------------------\n");
1743 } else {
1744 printf("-------------------------------------<fail>-------------------------------------\n");
1745 }
1746 }
1747 return;
1748 }
1749
1750 /**
1751 * check if functions accept invalid parameters
1752 *
1753 * First, all functions will be called without initialized RED
1754 * Then, all of them will be called with NULL/invalid parameters
1755 *
1756 * Some functions are not tested as they are performance-critical and thus
1757 * don't do any parameter checking.
1758 */
1759 static int
test_invalid_parameters(void)1760 test_invalid_parameters(void)
1761 {
1762 struct rte_red_config config;
1763
1764 if (rte_red_rt_data_init(NULL) == 0) {
1765 printf("rte_red_rt_data_init should have failed!\n");
1766 return -1;
1767 }
1768
1769 if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) {
1770 printf("rte_red_config_init should have failed!\n");
1771 return -1;
1772 }
1773
1774 if (rte_red_rt_data_init(NULL) == 0) {
1775 printf("rte_red_rt_data_init should have failed!\n");
1776 return -1;
1777 }
1778
1779 /* NULL config */
1780 if (rte_red_config_init(NULL, 0, 0, 0, 0) == 0) {
1781 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1782 return -1;
1783 }
1784 /* min_threshold == max_threshold */
1785 if (rte_red_config_init(&config, 0, 1, 1, 0) == 0) {
1786 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1787 return -1;
1788 }
1789 /* min_threshold > max_threshold */
1790 if (rte_red_config_init(&config, 0, 2, 1, 0) == 0) {
1791 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1792 return -1;
1793 }
1794 /* wq_log2 > RTE_RED_WQ_LOG2_MAX */
1795 if (rte_red_config_init(&config,
1796 RTE_RED_WQ_LOG2_MAX + 1, 1, 2, 0) == 0) {
1797 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1798 return -1;
1799 }
1800 /* wq_log2 < RTE_RED_WQ_LOG2_MIN */
1801 if (rte_red_config_init(&config,
1802 RTE_RED_WQ_LOG2_MIN - 1, 1, 2, 0) == 0) {
1803 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1804 return -1;
1805 }
1806 /* maxp_inv > RTE_RED_MAXP_INV_MAX */
1807 if (rte_red_config_init(&config,
1808 RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MAX + 1) == 0) {
1809 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1810 return -1;
1811 }
1812 /* maxp_inv < RTE_RED_MAXP_INV_MIN */
1813 if (rte_red_config_init(&config,
1814 RTE_RED_WQ_LOG2_MIN, 1, 2, RTE_RED_MAXP_INV_MIN - 1) == 0) {
1815 printf("%i: rte_red_config_init should have failed!\n", __LINE__);
1816 return -1;
1817 }
1818
1819 return 0;
1820 }
1821
1822 static void
show_stats(const uint32_t num_tests,const uint32_t num_pass)1823 show_stats(const uint32_t num_tests, const uint32_t num_pass)
1824 {
1825 if (num_pass == num_tests)
1826 printf("[total: %u, pass: %u]\n", num_tests, num_pass);
1827 else
1828 printf("[total: %u, pass: %u, fail: %u]\n", num_tests, num_pass,
1829 num_tests - num_pass);
1830 }
1831
1832 static int
tell_the_result(const uint32_t num_tests,const uint32_t num_pass)1833 tell_the_result(const uint32_t num_tests, const uint32_t num_pass)
1834 {
1835 return (num_pass == num_tests) ? 0 : 1;
1836 }
1837
1838 static int
test_red(void)1839 test_red(void)
1840 {
1841 uint32_t num_tests = 0;
1842 uint32_t num_pass = 0;
1843
1844 if (test_invalid_parameters() < 0)
1845 return -1;
1846 run_tests(func_tests_quick, RTE_DIM(func_tests_quick),
1847 &num_tests, &num_pass);
1848 show_stats(num_tests, num_pass);
1849 return tell_the_result(num_tests, num_pass);
1850 }
1851
1852 static int
test_red_perf(void)1853 test_red_perf(void)
1854 {
1855 uint32_t num_tests = 0;
1856 uint32_t num_pass = 0;
1857
1858 run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass);
1859 show_stats(num_tests, num_pass);
1860 return tell_the_result(num_tests, num_pass);
1861 }
1862
1863 static int
test_red_all(void)1864 test_red_all(void)
1865 {
1866 uint32_t num_tests = 0;
1867 uint32_t num_pass = 0;
1868
1869 if (test_invalid_parameters() < 0)
1870 return -1;
1871
1872 run_tests(func_tests, RTE_DIM(func_tests), &num_tests, &num_pass);
1873 run_tests(perf_tests, RTE_DIM(perf_tests), &num_tests, &num_pass);
1874 show_stats(num_tests, num_pass);
1875 return tell_the_result(num_tests, num_pass);
1876 }
1877
1878 #endif /* !RTE_EXEC_ENV_WINDOWS */
1879
1880 REGISTER_TEST_COMMAND(red_autotest, test_red);
1881 REGISTER_TEST_COMMAND(red_perf, test_red_perf);
1882 REGISTER_TEST_COMMAND(red_all, test_red_all);
1883