1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <string.h> 6 #include <errno.h> 7 8 #include "test.h" 9 10 #include <rte_string_fns.h> 11 #include <rte_mbuf.h> 12 #include <rte_byteorder.h> 13 #include <rte_ip.h> 14 #include <rte_acl.h> 15 #include <rte_common.h> 16 #include <rte_table_acl.h> 17 #include <rte_flow.h> 18 #include <rte_flow_classify.h> 19 20 #include "packet_burst_generator.h" 21 #include "test_flow_classify.h" 22 23 24 #define FLOW_CLASSIFY_MAX_RULE_NUM 100 25 #define MAX_PKT_BURST 32 26 #define NB_SOCKETS 1 27 #define MEMPOOL_CACHE_SIZE 256 28 #define MBUF_SIZE 512 29 #define NB_MBUF 512 30 31 /* test UDP, TCP and SCTP packets */ 32 static struct rte_mempool *mbufpool[NB_SOCKETS]; 33 static struct rte_mbuf *bufs[MAX_PKT_BURST]; 34 35 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 36 /* first input field - always one byte long. */ 37 { 38 .type = RTE_ACL_FIELD_TYPE_BITMASK, 39 .size = sizeof(uint8_t), 40 .field_index = PROTO_FIELD_IPV4, 41 .input_index = PROTO_INPUT_IPV4, 42 .offset = sizeof(struct ether_hdr) + 43 offsetof(struct ipv4_hdr, next_proto_id), 44 }, 45 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 46 { 47 /* rte_flow uses a bit mask for IPv4 addresses */ 48 .type = RTE_ACL_FIELD_TYPE_BITMASK, 49 .size = sizeof(uint32_t), 50 .field_index = SRC_FIELD_IPV4, 51 .input_index = SRC_INPUT_IPV4, 52 .offset = sizeof(struct ether_hdr) + 53 offsetof(struct ipv4_hdr, src_addr), 54 }, 55 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 56 { 57 /* rte_flow uses a bit mask for IPv4 addresses */ 58 .type = RTE_ACL_FIELD_TYPE_BITMASK, 59 .size = sizeof(uint32_t), 60 .field_index = DST_FIELD_IPV4, 61 .input_index = DST_INPUT_IPV4, 62 .offset = sizeof(struct ether_hdr) + 63 offsetof(struct ipv4_hdr, dst_addr), 64 }, 65 /* 66 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 67 * They share the same input index. 68 */ 69 { 70 /* rte_flow uses a bit mask for protocol ports */ 71 .type = RTE_ACL_FIELD_TYPE_BITMASK, 72 .size = sizeof(uint16_t), 73 .field_index = SRCP_FIELD_IPV4, 74 .input_index = SRCP_DESTP_INPUT_IPV4, 75 .offset = sizeof(struct ether_hdr) + 76 sizeof(struct ipv4_hdr) + 77 offsetof(struct tcp_hdr, src_port), 78 }, 79 { 80 /* rte_flow uses a bit mask for protocol ports */ 81 .type = RTE_ACL_FIELD_TYPE_BITMASK, 82 .size = sizeof(uint16_t), 83 .field_index = DSTP_FIELD_IPV4, 84 .input_index = SRCP_DESTP_INPUT_IPV4, 85 .offset = sizeof(struct ether_hdr) + 86 sizeof(struct ipv4_hdr) + 87 offsetof(struct tcp_hdr, dst_port), 88 }, 89 }; 90 91 /* parameters for rte_flow_classify_validate and rte_flow_classify_create */ 92 93 /* test UDP pattern: 94 * "eth / ipv4 src spec 2.2.2.3 src mask 255.255.255.00 dst spec 2.2.2.7 95 * dst mask 255.255.255.00 / udp src is 32 dst is 33 / end" 96 */ 97 static struct rte_flow_item_ipv4 ipv4_udp_spec_1 = { 98 { 0, 0, 0, 0, 0, 0, IPPROTO_UDP, 0, IPv4(2, 2, 2, 3), IPv4(2, 2, 2, 7)} 99 }; 100 static const struct rte_flow_item_ipv4 ipv4_mask_24 = { 101 .hdr = { 102 .next_proto_id = 0xff, 103 .src_addr = 0xffffff00, 104 .dst_addr = 0xffffff00, 105 }, 106 }; 107 static struct rte_flow_item_udp udp_spec_1 = { 108 { 32, 33, 0, 0 } 109 }; 110 111 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 112 0, 0, 0 }; 113 static struct rte_flow_item eth_item_bad = { -1, 0, 0, 0 }; 114 115 static struct rte_flow_item ipv4_udp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, 116 &ipv4_udp_spec_1, 0, &ipv4_mask_24}; 117 static struct rte_flow_item ipv4_udp_item_bad = { RTE_FLOW_ITEM_TYPE_IPV4, 118 NULL, 0, NULL}; 119 120 static struct rte_flow_item udp_item_1 = { RTE_FLOW_ITEM_TYPE_UDP, 121 &udp_spec_1, 0, &rte_flow_item_udp_mask}; 122 static struct rte_flow_item udp_item_bad = { RTE_FLOW_ITEM_TYPE_UDP, 123 NULL, 0, NULL}; 124 125 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 126 0, 0, 0 }; 127 static struct rte_flow_item end_item_bad = { -1, 0, 0, 0 }; 128 129 /* test TCP pattern: 130 * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8 131 * dst mask 255.255.255.00 / tcp src is 16 dst is 17 / end" 132 */ 133 static struct rte_flow_item_ipv4 ipv4_tcp_spec_1 = { 134 { 0, 0, 0, 0, 0, 0, IPPROTO_TCP, 0, IPv4(1, 2, 3, 4), IPv4(5, 6, 7, 8)} 135 }; 136 137 static struct rte_flow_item_tcp tcp_spec_1 = { 138 { 16, 17, 0, 0, 0, 0, 0, 0, 0} 139 }; 140 141 static struct rte_flow_item ipv4_tcp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, 142 &ipv4_tcp_spec_1, 0, &ipv4_mask_24}; 143 144 static struct rte_flow_item tcp_item_1 = { RTE_FLOW_ITEM_TYPE_TCP, 145 &tcp_spec_1, 0, &rte_flow_item_tcp_mask}; 146 147 /* test SCTP pattern: 148 * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8 149 * dst mask 255.255.255.00 / sctp src is 16 dst is 17/ end" 150 */ 151 static struct rte_flow_item_ipv4 ipv4_sctp_spec_1 = { 152 { 0, 0, 0, 0, 0, 0, IPPROTO_SCTP, 0, IPv4(11, 12, 13, 14), 153 IPv4(15, 16, 17, 18)} 154 }; 155 156 static struct rte_flow_item_sctp sctp_spec_1 = { 157 { 10, 11, 0, 0} 158 }; 159 160 static struct rte_flow_item ipv4_sctp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, 161 &ipv4_sctp_spec_1, 0, &ipv4_mask_24}; 162 163 static struct rte_flow_item sctp_item_1 = { RTE_FLOW_ITEM_TYPE_SCTP, 164 &sctp_spec_1, 0, &rte_flow_item_sctp_mask}; 165 166 167 /* test actions: 168 * "actions count / end" 169 */ 170 static struct rte_flow_query_count count = { 171 .reset = 1, 172 .hits_set = 1, 173 .bytes_set = 1, 174 .hits = 0, 175 .bytes = 0, 176 }; 177 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 178 &count}; 179 static struct rte_flow_action count_action_bad = { -1, 0}; 180 181 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 182 static struct rte_flow_action end_action_bad = { -1, 0}; 183 184 static struct rte_flow_action actions[2]; 185 186 /* test attributes */ 187 static struct rte_flow_attr attr; 188 189 /* test error */ 190 static struct rte_flow_error error; 191 192 /* test pattern */ 193 static struct rte_flow_item pattern[4]; 194 195 /* flow classify data for UDP burst */ 196 static struct rte_flow_classify_ipv4_5tuple_stats udp_ntuple_stats; 197 static struct rte_flow_classify_stats udp_classify_stats = { 198 .stats = (void *)&udp_ntuple_stats 199 }; 200 201 /* flow classify data for TCP burst */ 202 static struct rte_flow_classify_ipv4_5tuple_stats tcp_ntuple_stats; 203 static struct rte_flow_classify_stats tcp_classify_stats = { 204 .stats = (void *)&tcp_ntuple_stats 205 }; 206 207 /* flow classify data for SCTP burst */ 208 static struct rte_flow_classify_ipv4_5tuple_stats sctp_ntuple_stats; 209 static struct rte_flow_classify_stats sctp_classify_stats = { 210 .stats = (void *)&sctp_ntuple_stats 211 }; 212 213 struct flow_classifier_acl *cls; 214 215 struct flow_classifier_acl { 216 struct rte_flow_classifier *cls; 217 } __rte_cache_aligned; 218 219 /* 220 * test functions by passing invalid or 221 * non-workable parameters. 222 */ 223 static int 224 test_invalid_parameters(void) 225 { 226 struct rte_flow_classify_rule *rule; 227 int ret; 228 229 ret = rte_flow_classify_validate(NULL, NULL, NULL, NULL, NULL); 230 if (!ret) { 231 printf("Line %i: rte_flow_classify_validate", 232 __LINE__); 233 printf(" with NULL param should have failed!\n"); 234 return -1; 235 } 236 237 rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL, 238 NULL, NULL); 239 if (rule) { 240 printf("Line %i: flow_classifier_table_entry_add", __LINE__); 241 printf(" with NULL param should have failed!\n"); 242 return -1; 243 } 244 245 ret = rte_flow_classify_table_entry_delete(NULL, NULL); 246 if (!ret) { 247 printf("Line %i: rte_flow_classify_table_entry_delete", 248 __LINE__); 249 printf(" with NULL param should have failed!\n"); 250 return -1; 251 } 252 253 ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL); 254 if (!ret) { 255 printf("Line %i: flow_classifier_query", __LINE__); 256 printf(" with NULL param should have failed!\n"); 257 return -1; 258 } 259 260 rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL, 261 NULL, &error); 262 if (rule) { 263 printf("Line %i: flow_classify_table_entry_add ", __LINE__); 264 printf("with NULL param should have failed!\n"); 265 return -1; 266 } 267 268 ret = rte_flow_classify_table_entry_delete(NULL, NULL); 269 if (!ret) { 270 printf("Line %i: rte_flow_classify_table_entry_delete", 271 __LINE__); 272 printf("with NULL param should have failed!\n"); 273 return -1; 274 } 275 276 ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL); 277 if (!ret) { 278 printf("Line %i: flow_classifier_query", __LINE__); 279 printf(" with NULL param should have failed!\n"); 280 return -1; 281 } 282 return 0; 283 } 284 285 static int 286 test_valid_parameters(void) 287 { 288 struct rte_flow_classify_rule *rule; 289 int ret; 290 int key_found; 291 292 /* 293 * set up parameters for rte_flow_classify_validate, 294 * rte_flow_classify_table_entry_add and 295 * rte_flow_classify_table_entry_delete 296 */ 297 298 attr.ingress = 1; 299 attr.priority = 1; 300 pattern[0] = eth_item; 301 pattern[1] = ipv4_udp_item_1; 302 pattern[2] = udp_item_1; 303 pattern[3] = end_item; 304 actions[0] = count_action; 305 actions[1] = end_action; 306 307 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 308 actions, &error); 309 if (ret) { 310 printf("Line %i: rte_flow_classify_validate", 311 __LINE__); 312 printf(" should not have failed!\n"); 313 return -1; 314 } 315 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 316 actions, &key_found, &error); 317 318 if (!rule) { 319 printf("Line %i: flow_classify_table_entry_add", __LINE__); 320 printf(" should not have failed!\n"); 321 return -1; 322 } 323 324 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 325 if (ret) { 326 printf("Line %i: rte_flow_classify_table_entry_delete", 327 __LINE__); 328 printf(" should not have failed!\n"); 329 return -1; 330 } 331 return 0; 332 } 333 334 static int 335 test_invalid_patterns(void) 336 { 337 struct rte_flow_classify_rule *rule; 338 int ret; 339 int key_found; 340 341 /* 342 * set up parameters for rte_flow_classify_validate, 343 * rte_flow_classify_table_entry_add and 344 * rte_flow_classify_table_entry_delete 345 */ 346 347 attr.ingress = 1; 348 attr.priority = 1; 349 pattern[0] = eth_item_bad; 350 pattern[1] = ipv4_udp_item_1; 351 pattern[2] = udp_item_1; 352 pattern[3] = end_item; 353 actions[0] = count_action; 354 actions[1] = end_action; 355 356 pattern[0] = eth_item; 357 pattern[1] = ipv4_udp_item_bad; 358 359 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 360 actions, &error); 361 if (!ret) { 362 printf("Line %i: rte_flow_classify_validate", __LINE__); 363 printf(" should have failed!\n"); 364 return -1; 365 } 366 367 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 368 actions, &key_found, &error); 369 if (rule) { 370 printf("Line %i: flow_classify_table_entry_add", __LINE__); 371 printf(" should have failed!\n"); 372 return -1; 373 } 374 375 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 376 if (!ret) { 377 printf("Line %i: rte_flow_classify_table_entry_delete", 378 __LINE__); 379 printf(" should have failed!\n"); 380 return -1; 381 } 382 383 pattern[1] = ipv4_udp_item_1; 384 pattern[2] = udp_item_bad; 385 pattern[3] = end_item_bad; 386 387 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 388 actions, &error); 389 if (!ret) { 390 printf("Line %i: rte_flow_classify_validate", __LINE__); 391 printf(" should have failed!\n"); 392 return -1; 393 } 394 395 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 396 actions, &key_found, &error); 397 if (rule) { 398 printf("Line %i: flow_classify_table_entry_add", __LINE__); 399 printf(" should have failed!\n"); 400 return -1; 401 } 402 403 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 404 if (!ret) { 405 printf("Line %i: rte_flow_classify_table_entry_delete", 406 __LINE__); 407 printf(" should have failed!\n"); 408 return -1; 409 } 410 return 0; 411 } 412 413 static int 414 test_invalid_actions(void) 415 { 416 struct rte_flow_classify_rule *rule; 417 int ret; 418 int key_found; 419 420 /* 421 * set up parameters for rte_flow_classify_validate, 422 * rte_flow_classify_table_entry_add and 423 * rte_flow_classify_table_entry_delete 424 */ 425 426 attr.ingress = 1; 427 attr.priority = 1; 428 pattern[0] = eth_item; 429 pattern[1] = ipv4_udp_item_1; 430 pattern[2] = udp_item_1; 431 pattern[3] = end_item; 432 actions[0] = count_action_bad; 433 actions[1] = end_action; 434 435 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 436 actions, &error); 437 if (!ret) { 438 printf("Line %i: rte_flow_classify_validate", __LINE__); 439 printf(" should have failed!\n"); 440 return -1; 441 } 442 443 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 444 actions, &key_found, &error); 445 if (rule) { 446 printf("Line %i: flow_classify_table_entry_add", __LINE__); 447 printf(" should have failed!\n"); 448 return -1; 449 } 450 451 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 452 if (!ret) { 453 printf("Line %i: rte_flow_classify_table_entry_delete", 454 __LINE__); 455 printf(" should have failed!\n"); 456 return -1; 457 } 458 459 actions[0] = count_action; 460 actions[1] = end_action_bad; 461 462 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 463 actions, &error); 464 if (!ret) { 465 printf("Line %i: rte_flow_classify_validate", __LINE__); 466 printf(" should have failed!\n"); 467 return -1; 468 } 469 470 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 471 actions, &key_found, &error); 472 if (rule) { 473 printf("Line %i: flow_classify_table_entry_add", __LINE__); 474 printf(" should have failed!\n"); 475 return -1; 476 } 477 478 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 479 if (!ret) { 480 printf("Line %i: rte_flow_classify_table_entry_delete", 481 __LINE__); 482 printf("should have failed!\n"); 483 return -1; 484 } 485 return 0; 486 } 487 488 static int 489 init_ipv4_udp_traffic(struct rte_mempool *mp, 490 struct rte_mbuf **pkts_burst, uint32_t burst_size) 491 { 492 struct ether_hdr pkt_eth_hdr; 493 struct ipv4_hdr pkt_ipv4_hdr; 494 struct udp_hdr pkt_udp_hdr; 495 uint32_t src_addr = IPV4_ADDR(2, 2, 2, 3); 496 uint32_t dst_addr = IPV4_ADDR(2, 2, 2, 7); 497 uint16_t src_port = 32; 498 uint16_t dst_port = 33; 499 uint16_t pktlen; 500 501 static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; 502 static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; 503 504 printf("Set up IPv4 UDP traffic\n"); 505 initialize_eth_header(&pkt_eth_hdr, 506 (struct ether_addr *)src_mac, 507 (struct ether_addr *)dst_mac, ETHER_TYPE_IPv4, 0, 0); 508 pktlen = (uint16_t)(sizeof(struct ether_hdr)); 509 printf("ETH pktlen %u\n", pktlen); 510 511 pktlen = initialize_ipv4_header(&pkt_ipv4_hdr, src_addr, dst_addr, 512 pktlen); 513 printf("ETH + IPv4 pktlen %u\n", pktlen); 514 515 pktlen = initialize_udp_header(&pkt_udp_hdr, src_port, dst_port, 516 pktlen); 517 printf("ETH + IPv4 + UDP pktlen %u\n\n", pktlen); 518 519 return generate_packet_burst(mp, pkts_burst, &pkt_eth_hdr, 520 0, &pkt_ipv4_hdr, 1, 521 &pkt_udp_hdr, burst_size, 522 PACKET_BURST_GEN_PKT_LEN, 1); 523 } 524 525 static int 526 init_ipv4_tcp_traffic(struct rte_mempool *mp, 527 struct rte_mbuf **pkts_burst, uint32_t burst_size) 528 { 529 struct ether_hdr pkt_eth_hdr; 530 struct ipv4_hdr pkt_ipv4_hdr; 531 struct tcp_hdr pkt_tcp_hdr; 532 uint32_t src_addr = IPV4_ADDR(1, 2, 3, 4); 533 uint32_t dst_addr = IPV4_ADDR(5, 6, 7, 8); 534 uint16_t src_port = 16; 535 uint16_t dst_port = 17; 536 uint16_t pktlen; 537 538 static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; 539 static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; 540 541 printf("Set up IPv4 TCP traffic\n"); 542 initialize_eth_header(&pkt_eth_hdr, 543 (struct ether_addr *)src_mac, 544 (struct ether_addr *)dst_mac, ETHER_TYPE_IPv4, 0, 0); 545 pktlen = (uint16_t)(sizeof(struct ether_hdr)); 546 printf("ETH pktlen %u\n", pktlen); 547 548 pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr, 549 dst_addr, pktlen, IPPROTO_TCP); 550 printf("ETH + IPv4 pktlen %u\n", pktlen); 551 552 pktlen = initialize_tcp_header(&pkt_tcp_hdr, src_port, dst_port, 553 pktlen); 554 printf("ETH + IPv4 + TCP pktlen %u\n\n", pktlen); 555 556 return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr, 557 0, &pkt_ipv4_hdr, 1, IPPROTO_TCP, 558 &pkt_tcp_hdr, burst_size, 559 PACKET_BURST_GEN_PKT_LEN, 1); 560 } 561 562 static int 563 init_ipv4_sctp_traffic(struct rte_mempool *mp, 564 struct rte_mbuf **pkts_burst, uint32_t burst_size) 565 { 566 struct ether_hdr pkt_eth_hdr; 567 struct ipv4_hdr pkt_ipv4_hdr; 568 struct sctp_hdr pkt_sctp_hdr; 569 uint32_t src_addr = IPV4_ADDR(11, 12, 13, 14); 570 uint32_t dst_addr = IPV4_ADDR(15, 16, 17, 18); 571 uint16_t src_port = 10; 572 uint16_t dst_port = 11; 573 uint16_t pktlen; 574 575 static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; 576 static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; 577 578 printf("Set up IPv4 SCTP traffic\n"); 579 initialize_eth_header(&pkt_eth_hdr, 580 (struct ether_addr *)src_mac, 581 (struct ether_addr *)dst_mac, ETHER_TYPE_IPv4, 0, 0); 582 pktlen = (uint16_t)(sizeof(struct ether_hdr)); 583 printf("ETH pktlen %u\n", pktlen); 584 585 pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr, 586 dst_addr, pktlen, IPPROTO_SCTP); 587 printf("ETH + IPv4 pktlen %u\n", pktlen); 588 589 pktlen = initialize_sctp_header(&pkt_sctp_hdr, src_port, dst_port, 590 pktlen); 591 printf("ETH + IPv4 + SCTP pktlen %u\n\n", pktlen); 592 593 return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr, 594 0, &pkt_ipv4_hdr, 1, IPPROTO_SCTP, 595 &pkt_sctp_hdr, burst_size, 596 PACKET_BURST_GEN_PKT_LEN, 1); 597 } 598 599 static int 600 init_mbufpool(void) 601 { 602 int socketid; 603 int ret = 0; 604 unsigned int lcore_id; 605 char s[64]; 606 607 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 608 if (rte_lcore_is_enabled(lcore_id) == 0) 609 continue; 610 611 socketid = rte_lcore_to_socket_id(lcore_id); 612 if (socketid >= NB_SOCKETS) { 613 printf( 614 "Socket %d of lcore %u is out of range %d\n", 615 socketid, lcore_id, NB_SOCKETS); 616 ret = -1; 617 break; 618 } 619 if (mbufpool[socketid] == NULL) { 620 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 621 mbufpool[socketid] = 622 rte_pktmbuf_pool_create(s, NB_MBUF, 623 MEMPOOL_CACHE_SIZE, 0, MBUF_SIZE, 624 socketid); 625 if (mbufpool[socketid]) { 626 printf("Allocated mbuf pool on socket %d\n", 627 socketid); 628 } else { 629 printf("Cannot init mbuf pool on socket %d\n", 630 socketid); 631 ret = -ENOMEM; 632 break; 633 } 634 } 635 } 636 return ret; 637 } 638 639 static int 640 test_query_udp(void) 641 { 642 struct rte_flow_error error; 643 struct rte_flow_classify_rule *rule; 644 int ret; 645 int i; 646 int key_found; 647 648 ret = init_ipv4_udp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); 649 if (ret != MAX_PKT_BURST) { 650 printf("Line %i: init_udp_ipv4_traffic has failed!\n", 651 __LINE__); 652 return -1; 653 } 654 655 for (i = 0; i < MAX_PKT_BURST; i++) 656 bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; 657 658 /* 659 * set up parameters for rte_flow_classify_validate, 660 * rte_flow_classify_table_entry_add and 661 * rte_flow_classify_table_entry_delete 662 */ 663 664 attr.ingress = 1; 665 attr.priority = 1; 666 pattern[0] = eth_item; 667 pattern[1] = ipv4_udp_item_1; 668 pattern[2] = udp_item_1; 669 pattern[3] = end_item; 670 actions[0] = count_action; 671 actions[1] = end_action; 672 673 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 674 actions, &error); 675 if (ret) { 676 printf("Line %i: rte_flow_classify_validate", __LINE__); 677 printf(" should not have failed!\n"); 678 return -1; 679 } 680 681 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 682 actions, &key_found, &error); 683 if (!rule) { 684 printf("Line %i: flow_classify_table_entry_add", __LINE__); 685 printf(" should not have failed!\n"); 686 return -1; 687 } 688 689 ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, 690 rule, &udp_classify_stats); 691 if (ret) { 692 printf("Line %i: flow_classifier_query", __LINE__); 693 printf(" should not have failed!\n"); 694 return -1; 695 } 696 697 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 698 if (ret) { 699 printf("Line %i: rte_flow_classify_table_entry_delete", 700 __LINE__); 701 printf(" should not have failed!\n"); 702 return -1; 703 } 704 return 0; 705 } 706 707 static int 708 test_query_tcp(void) 709 { 710 struct rte_flow_classify_rule *rule; 711 int ret; 712 int i; 713 int key_found; 714 715 ret = init_ipv4_tcp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); 716 if (ret != MAX_PKT_BURST) { 717 printf("Line %i: init_ipv4_tcp_traffic has failed!\n", 718 __LINE__); 719 return -1; 720 } 721 722 for (i = 0; i < MAX_PKT_BURST; i++) 723 bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; 724 725 /* 726 * set up parameters for rte_flow_classify_validate, 727 * rte_flow_classify_table_entry_add and 728 * rte_flow_classify_table_entry_delete 729 */ 730 731 attr.ingress = 1; 732 attr.priority = 1; 733 pattern[0] = eth_item; 734 pattern[1] = ipv4_tcp_item_1; 735 pattern[2] = tcp_item_1; 736 pattern[3] = end_item; 737 actions[0] = count_action; 738 actions[1] = end_action; 739 740 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 741 actions, &error); 742 if (ret) { 743 printf("Line %i: flow_classifier_query", __LINE__); 744 printf(" should not have failed!\n"); 745 return -1; 746 } 747 748 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 749 actions, &key_found, &error); 750 if (!rule) { 751 printf("Line %i: flow_classify_table_entry_add", __LINE__); 752 printf(" should not have failed!\n"); 753 return -1; 754 } 755 756 ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, 757 rule, &tcp_classify_stats); 758 if (ret) { 759 printf("Line %i: flow_classifier_query", __LINE__); 760 printf(" should not have failed!\n"); 761 return -1; 762 } 763 764 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 765 if (ret) { 766 printf("Line %i: rte_flow_classify_table_entry_delete", 767 __LINE__); 768 printf(" should not have failed!\n"); 769 return -1; 770 } 771 return 0; 772 } 773 774 static int 775 test_query_sctp(void) 776 { 777 struct rte_flow_classify_rule *rule; 778 int ret; 779 int i; 780 int key_found; 781 782 ret = init_ipv4_sctp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); 783 if (ret != MAX_PKT_BURST) { 784 printf("Line %i: init_ipv4_tcp_traffic has failed!\n", 785 __LINE__); 786 return -1; 787 } 788 789 for (i = 0; i < MAX_PKT_BURST; i++) 790 bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; 791 792 /* 793 * set up parameters rte_flow_classify_validate, 794 * rte_flow_classify_table_entry_add and 795 * rte_flow_classify_table_entry_delete 796 */ 797 798 attr.ingress = 1; 799 attr.priority = 1; 800 pattern[0] = eth_item; 801 pattern[1] = ipv4_sctp_item_1; 802 pattern[2] = sctp_item_1; 803 pattern[3] = end_item; 804 actions[0] = count_action; 805 actions[1] = end_action; 806 807 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 808 actions, &error); 809 if (ret) { 810 printf("Line %i: flow_classifier_query", __LINE__); 811 printf(" should not have failed!\n"); 812 return -1; 813 } 814 815 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 816 actions, &key_found, &error); 817 if (!rule) { 818 printf("Line %i: flow_classify_table_entry_add", __LINE__); 819 printf(" should not have failed!\n"); 820 return -1; 821 } 822 823 ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, 824 rule, &sctp_classify_stats); 825 if (ret) { 826 printf("Line %i: flow_classifier_query", __LINE__); 827 printf(" should not have failed!\n"); 828 return -1; 829 } 830 831 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 832 if (ret) { 833 printf("Line %i: rte_flow_classify_table_entry_delete", 834 __LINE__); 835 printf(" should not have failed!\n"); 836 return -1; 837 } 838 return 0; 839 } 840 841 static int 842 test_flow_classify(void) 843 { 844 struct rte_table_acl_params table_acl_params; 845 struct rte_flow_classify_table_params cls_table_params; 846 struct rte_flow_classifier_params cls_params; 847 int ret; 848 uint32_t size; 849 850 /* Memory allocation */ 851 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 852 cls = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 853 854 cls_params.name = "flow_classifier"; 855 cls_params.socket_id = 0; 856 cls->cls = rte_flow_classifier_create(&cls_params); 857 858 /* initialise ACL table params */ 859 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 860 table_acl_params.name = "table_acl_ipv4_5tuple"; 861 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 862 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 863 864 /* initialise table create params */ 865 cls_table_params.ops = &rte_table_acl_ops; 866 cls_table_params.arg_create = &table_acl_params; 867 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 868 869 ret = rte_flow_classify_table_create(cls->cls, &cls_table_params); 870 if (ret) { 871 printf("Line %i: f_create has failed!\n", __LINE__); 872 rte_flow_classifier_free(cls->cls); 873 rte_free(cls); 874 return TEST_FAILED; 875 } 876 printf("Created table_acl for for IPv4 five tuple packets\n"); 877 878 ret = init_mbufpool(); 879 if (ret) { 880 printf("Line %i: init_mbufpool has failed!\n", __LINE__); 881 return TEST_FAILED; 882 } 883 884 if (test_invalid_parameters() < 0) 885 return TEST_FAILED; 886 if (test_valid_parameters() < 0) 887 return TEST_FAILED; 888 if (test_invalid_patterns() < 0) 889 return TEST_FAILED; 890 if (test_invalid_actions() < 0) 891 return TEST_FAILED; 892 if (test_query_udp() < 0) 893 return TEST_FAILED; 894 if (test_query_tcp() < 0) 895 return TEST_FAILED; 896 if (test_query_sctp() < 0) 897 return TEST_FAILED; 898 899 return TEST_SUCCESS; 900 } 901 902 REGISTER_TEST_COMMAND(flow_classify_autotest, test_flow_classify); 903