1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <string.h> 6 #include <errno.h> 7 8 #include "test.h" 9 10 #include <rte_string_fns.h> 11 #include <rte_mbuf.h> 12 #include <rte_byteorder.h> 13 #include <rte_ip.h> 14 #include <rte_acl.h> 15 #include <rte_common.h> 16 #include <rte_table_acl.h> 17 #include <rte_flow.h> 18 #include <rte_flow_classify.h> 19 20 #include "packet_burst_generator.h" 21 #include "test_flow_classify.h" 22 23 24 #define FLOW_CLASSIFY_MAX_RULE_NUM 100 25 #define MAX_PKT_BURST 32 26 #define NB_SOCKETS 4 27 #define MEMPOOL_CACHE_SIZE 256 28 #define MBUF_SIZE 512 29 #define NB_MBUF 512 30 31 /* test UDP, TCP and SCTP packets */ 32 static struct rte_mempool *mbufpool[NB_SOCKETS]; 33 static struct rte_mbuf *bufs[MAX_PKT_BURST]; 34 35 static struct rte_acl_field_def ipv4_defs[NUM_FIELDS_IPV4] = { 36 /* first input field - always one byte long. */ 37 { 38 .type = RTE_ACL_FIELD_TYPE_BITMASK, 39 .size = sizeof(uint8_t), 40 .field_index = PROTO_FIELD_IPV4, 41 .input_index = PROTO_INPUT_IPV4, 42 .offset = sizeof(struct rte_ether_hdr) + 43 offsetof(struct rte_ipv4_hdr, next_proto_id), 44 }, 45 /* next input field (IPv4 source address) - 4 consecutive bytes. */ 46 { 47 /* rte_flow uses a bit mask for IPv4 addresses */ 48 .type = RTE_ACL_FIELD_TYPE_BITMASK, 49 .size = sizeof(uint32_t), 50 .field_index = SRC_FIELD_IPV4, 51 .input_index = SRC_INPUT_IPV4, 52 .offset = sizeof(struct rte_ether_hdr) + 53 offsetof(struct rte_ipv4_hdr, src_addr), 54 }, 55 /* next input field (IPv4 destination address) - 4 consecutive bytes. */ 56 { 57 /* rte_flow uses a bit mask for IPv4 addresses */ 58 .type = RTE_ACL_FIELD_TYPE_BITMASK, 59 .size = sizeof(uint32_t), 60 .field_index = DST_FIELD_IPV4, 61 .input_index = DST_INPUT_IPV4, 62 .offset = sizeof(struct rte_ether_hdr) + 63 offsetof(struct rte_ipv4_hdr, dst_addr), 64 }, 65 /* 66 * Next 2 fields (src & dst ports) form 4 consecutive bytes. 67 * They share the same input index. 68 */ 69 { 70 /* rte_flow uses a bit mask for protocol ports */ 71 .type = RTE_ACL_FIELD_TYPE_BITMASK, 72 .size = sizeof(uint16_t), 73 .field_index = SRCP_FIELD_IPV4, 74 .input_index = SRCP_DESTP_INPUT_IPV4, 75 .offset = sizeof(struct rte_ether_hdr) + 76 sizeof(struct rte_ipv4_hdr) + 77 offsetof(struct rte_tcp_hdr, src_port), 78 }, 79 { 80 /* rte_flow uses a bit mask for protocol ports */ 81 .type = RTE_ACL_FIELD_TYPE_BITMASK, 82 .size = sizeof(uint16_t), 83 .field_index = DSTP_FIELD_IPV4, 84 .input_index = SRCP_DESTP_INPUT_IPV4, 85 .offset = sizeof(struct rte_ether_hdr) + 86 sizeof(struct rte_ipv4_hdr) + 87 offsetof(struct rte_tcp_hdr, dst_port), 88 }, 89 }; 90 91 /* parameters for rte_flow_classify_validate and rte_flow_classify_create */ 92 93 /* test UDP pattern: 94 * "eth / ipv4 src spec 2.2.2.3 src mask 255.255.255.00 dst spec 2.2.2.7 95 * dst mask 255.255.255.00 / udp src is 32 dst is 33 / end" 96 */ 97 static struct rte_flow_item_ipv4 ipv4_udp_spec_1 = { 98 { 0, 0, 0, 0, 0, 0, IPPROTO_UDP, 0, 99 RTE_IPV4(2, 2, 2, 3), RTE_IPV4(2, 2, 2, 7)} 100 }; 101 static const struct rte_flow_item_ipv4 ipv4_mask_24 = { 102 .hdr = { 103 .next_proto_id = 0xff, 104 .src_addr = 0xffffff00, 105 .dst_addr = 0xffffff00, 106 }, 107 }; 108 static struct rte_flow_item_udp udp_spec_1 = { 109 { 32, 33, 0, 0 } 110 }; 111 112 static struct rte_flow_item eth_item = { RTE_FLOW_ITEM_TYPE_ETH, 113 0, 0, 0 }; 114 static struct rte_flow_item eth_item_bad = { -1, 0, 0, 0 }; 115 116 static struct rte_flow_item ipv4_udp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, 117 &ipv4_udp_spec_1, 0, &ipv4_mask_24}; 118 static struct rte_flow_item ipv4_udp_item_bad = { RTE_FLOW_ITEM_TYPE_IPV4, 119 NULL, 0, NULL}; 120 121 static struct rte_flow_item udp_item_1 = { RTE_FLOW_ITEM_TYPE_UDP, 122 &udp_spec_1, 0, &rte_flow_item_udp_mask}; 123 static struct rte_flow_item udp_item_bad = { RTE_FLOW_ITEM_TYPE_UDP, 124 NULL, 0, NULL}; 125 126 static struct rte_flow_item end_item = { RTE_FLOW_ITEM_TYPE_END, 127 0, 0, 0 }; 128 129 /* test TCP pattern: 130 * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8 131 * dst mask 255.255.255.00 / tcp src is 16 dst is 17 / end" 132 */ 133 static struct rte_flow_item_ipv4 ipv4_tcp_spec_1 = { 134 { 0, 0, 0, 0, 0, 0, IPPROTO_TCP, 0, 135 RTE_IPV4(1, 2, 3, 4), RTE_IPV4(5, 6, 7, 8)} 136 }; 137 138 static struct rte_flow_item_tcp tcp_spec_1 = { 139 { 16, 17, 0, 0, 0, 0, 0, 0, 0} 140 }; 141 142 static struct rte_flow_item ipv4_tcp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, 143 &ipv4_tcp_spec_1, 0, &ipv4_mask_24}; 144 145 static struct rte_flow_item tcp_item_1 = { RTE_FLOW_ITEM_TYPE_TCP, 146 &tcp_spec_1, 0, &rte_flow_item_tcp_mask}; 147 148 /* test SCTP pattern: 149 * "eth / ipv4 src spec 1.2.3.4 src mask 255.255.255.00 dst spec 5.6.7.8 150 * dst mask 255.255.255.00 / sctp src is 16 dst is 17/ end" 151 */ 152 static struct rte_flow_item_ipv4 ipv4_sctp_spec_1 = { 153 { 0, 0, 0, 0, 0, 0, IPPROTO_SCTP, 0, RTE_IPV4(11, 12, 13, 14), 154 RTE_IPV4(15, 16, 17, 18)} 155 }; 156 157 static struct rte_flow_item_sctp sctp_spec_1 = { 158 { 10, 11, 0, 0} 159 }; 160 161 static struct rte_flow_item ipv4_sctp_item_1 = { RTE_FLOW_ITEM_TYPE_IPV4, 162 &ipv4_sctp_spec_1, 0, &ipv4_mask_24}; 163 164 static struct rte_flow_item sctp_item_1 = { RTE_FLOW_ITEM_TYPE_SCTP, 165 &sctp_spec_1, 0, &rte_flow_item_sctp_mask}; 166 167 168 /* test actions: 169 * "actions count / end" 170 */ 171 static struct rte_flow_query_count count = { 172 .reset = 1, 173 .hits_set = 1, 174 .bytes_set = 1, 175 .hits = 0, 176 .bytes = 0, 177 }; 178 static struct rte_flow_action count_action = { RTE_FLOW_ACTION_TYPE_COUNT, 179 &count}; 180 static struct rte_flow_action count_action_bad = { -1, 0}; 181 182 static struct rte_flow_action end_action = { RTE_FLOW_ACTION_TYPE_END, 0}; 183 184 static struct rte_flow_action actions[2]; 185 186 /* test attributes */ 187 static struct rte_flow_attr attr; 188 189 /* test error */ 190 static struct rte_flow_error error; 191 192 /* test pattern */ 193 static struct rte_flow_item pattern[4]; 194 195 /* flow classify data for UDP burst */ 196 static struct rte_flow_classify_ipv4_5tuple_stats udp_ntuple_stats; 197 static struct rte_flow_classify_stats udp_classify_stats = { 198 .stats = (void *)&udp_ntuple_stats 199 }; 200 201 /* flow classify data for TCP burst */ 202 static struct rte_flow_classify_ipv4_5tuple_stats tcp_ntuple_stats; 203 static struct rte_flow_classify_stats tcp_classify_stats = { 204 .stats = (void *)&tcp_ntuple_stats 205 }; 206 207 /* flow classify data for SCTP burst */ 208 static struct rte_flow_classify_ipv4_5tuple_stats sctp_ntuple_stats; 209 static struct rte_flow_classify_stats sctp_classify_stats = { 210 .stats = (void *)&sctp_ntuple_stats 211 }; 212 213 struct flow_classifier_acl *cls; 214 215 struct flow_classifier_acl { 216 struct rte_flow_classifier *cls; 217 } __rte_cache_aligned; 218 219 /* 220 * test functions by passing invalid or 221 * non-workable parameters. 222 */ 223 static int 224 test_invalid_parameters(void) 225 { 226 struct rte_flow_classify_rule *rule; 227 int ret; 228 229 ret = rte_flow_classify_validate(NULL, NULL, NULL, NULL, NULL); 230 if (!ret) { 231 printf("Line %i: rte_flow_classify_validate", 232 __LINE__); 233 printf(" with NULL param should have failed!\n"); 234 return -1; 235 } 236 237 rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL, 238 NULL, NULL); 239 if (rule) { 240 printf("Line %i: flow_classifier_table_entry_add", __LINE__); 241 printf(" with NULL param should have failed!\n"); 242 return -1; 243 } 244 245 ret = rte_flow_classify_table_entry_delete(NULL, NULL); 246 if (!ret) { 247 printf("Line %i: rte_flow_classify_table_entry_delete", 248 __LINE__); 249 printf(" with NULL param should have failed!\n"); 250 return -1; 251 } 252 253 ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL); 254 if (!ret) { 255 printf("Line %i: flow_classifier_query", __LINE__); 256 printf(" with NULL param should have failed!\n"); 257 return -1; 258 } 259 260 rule = rte_flow_classify_table_entry_add(NULL, NULL, NULL, NULL, 261 NULL, &error); 262 if (rule) { 263 printf("Line %i: flow_classify_table_entry_add ", __LINE__); 264 printf("with NULL param should have failed!\n"); 265 return -1; 266 } 267 268 ret = rte_flow_classify_table_entry_delete(NULL, NULL); 269 if (!ret) { 270 printf("Line %i: rte_flow_classify_table_entry_delete", 271 __LINE__); 272 printf("with NULL param should have failed!\n"); 273 return -1; 274 } 275 276 ret = rte_flow_classifier_query(NULL, NULL, 0, NULL, NULL); 277 if (!ret) { 278 printf("Line %i: flow_classifier_query", __LINE__); 279 printf(" with NULL param should have failed!\n"); 280 return -1; 281 } 282 return 0; 283 } 284 285 static int 286 test_valid_parameters(void) 287 { 288 struct rte_flow_classify_rule *rule; 289 int ret; 290 int key_found; 291 292 /* 293 * set up parameters for rte_flow_classify_validate, 294 * rte_flow_classify_table_entry_add and 295 * rte_flow_classify_table_entry_delete 296 */ 297 298 attr.ingress = 1; 299 attr.priority = 1; 300 pattern[0] = eth_item; 301 pattern[1] = ipv4_udp_item_1; 302 pattern[2] = udp_item_1; 303 pattern[3] = end_item; 304 actions[0] = count_action; 305 actions[1] = end_action; 306 307 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 308 actions, &error); 309 if (ret) { 310 printf("Line %i: rte_flow_classify_validate", 311 __LINE__); 312 printf(" should not have failed!\n"); 313 return -1; 314 } 315 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 316 actions, &key_found, &error); 317 318 if (!rule) { 319 printf("Line %i: flow_classify_table_entry_add", __LINE__); 320 printf(" should not have failed!\n"); 321 return -1; 322 } 323 324 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 325 if (ret) { 326 printf("Line %i: rte_flow_classify_table_entry_delete", 327 __LINE__); 328 printf(" should not have failed!\n"); 329 return -1; 330 } 331 return 0; 332 } 333 334 static int 335 test_invalid_patterns(void) 336 { 337 struct rte_flow_classify_rule *rule; 338 int ret; 339 int key_found; 340 341 /* 342 * set up parameters for rte_flow_classify_validate, 343 * rte_flow_classify_table_entry_add and 344 * rte_flow_classify_table_entry_delete 345 */ 346 347 attr.ingress = 1; 348 attr.priority = 1; 349 pattern[0] = eth_item_bad; 350 pattern[1] = ipv4_udp_item_1; 351 pattern[2] = udp_item_1; 352 pattern[3] = end_item; 353 actions[0] = count_action; 354 actions[1] = end_action; 355 356 pattern[0] = eth_item; 357 pattern[1] = ipv4_udp_item_bad; 358 359 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 360 actions, &error); 361 if (!ret) { 362 printf("Line %i: rte_flow_classify_validate", __LINE__); 363 printf(" should have failed!\n"); 364 return -1; 365 } 366 367 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 368 actions, &key_found, &error); 369 if (rule) { 370 printf("Line %i: flow_classify_table_entry_add", __LINE__); 371 printf(" should have failed!\n"); 372 return -1; 373 } 374 375 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 376 if (!ret) { 377 printf("Line %i: rte_flow_classify_table_entry_delete", 378 __LINE__); 379 printf(" should have failed!\n"); 380 return -1; 381 } 382 383 pattern[1] = ipv4_udp_item_1; 384 pattern[2] = udp_item_bad; 385 pattern[3] = end_item; 386 387 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 388 actions, &error); 389 if (!ret) { 390 printf("Line %i: rte_flow_classify_validate", __LINE__); 391 printf(" should have failed!\n"); 392 return -1; 393 } 394 395 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 396 actions, &key_found, &error); 397 if (rule) { 398 printf("Line %i: flow_classify_table_entry_add", __LINE__); 399 printf(" should have failed!\n"); 400 return -1; 401 } 402 403 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 404 if (!ret) { 405 printf("Line %i: rte_flow_classify_table_entry_delete", 406 __LINE__); 407 printf(" should have failed!\n"); 408 return -1; 409 } 410 return 0; 411 } 412 413 static int 414 test_invalid_actions(void) 415 { 416 struct rte_flow_classify_rule *rule; 417 int ret; 418 int key_found; 419 420 /* 421 * set up parameters for rte_flow_classify_validate, 422 * rte_flow_classify_table_entry_add and 423 * rte_flow_classify_table_entry_delete 424 */ 425 426 attr.ingress = 1; 427 attr.priority = 1; 428 pattern[0] = eth_item; 429 pattern[1] = ipv4_udp_item_1; 430 pattern[2] = udp_item_1; 431 pattern[3] = end_item; 432 actions[0] = count_action_bad; 433 actions[1] = end_action; 434 435 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 436 actions, &error); 437 if (!ret) { 438 printf("Line %i: rte_flow_classify_validate", __LINE__); 439 printf(" should have failed!\n"); 440 return -1; 441 } 442 443 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 444 actions, &key_found, &error); 445 if (rule) { 446 printf("Line %i: flow_classify_table_entry_add", __LINE__); 447 printf(" should have failed!\n"); 448 return -1; 449 } 450 451 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 452 if (!ret) { 453 printf("Line %i: rte_flow_classify_table_entry_delete", 454 __LINE__); 455 printf(" should have failed!\n"); 456 return -1; 457 } 458 459 return 0; 460 } 461 462 static int 463 init_ipv4_udp_traffic(struct rte_mempool *mp, 464 struct rte_mbuf **pkts_burst, uint32_t burst_size) 465 { 466 struct rte_ether_hdr pkt_eth_hdr; 467 struct rte_ipv4_hdr pkt_ipv4_hdr; 468 struct rte_udp_hdr pkt_udp_hdr; 469 uint32_t src_addr = IPV4_ADDR(2, 2, 2, 3); 470 uint32_t dst_addr = IPV4_ADDR(2, 2, 2, 7); 471 uint16_t src_port = 32; 472 uint16_t dst_port = 33; 473 uint16_t pktlen; 474 475 static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; 476 static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; 477 478 printf("Set up IPv4 UDP traffic\n"); 479 initialize_eth_header(&pkt_eth_hdr, 480 (struct rte_ether_addr *)src_mac, 481 (struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0); 482 pktlen = (uint16_t)(sizeof(struct rte_ether_hdr)); 483 printf("ETH pktlen %u\n", pktlen); 484 485 pktlen = initialize_ipv4_header(&pkt_ipv4_hdr, src_addr, dst_addr, 486 pktlen); 487 printf("ETH + IPv4 pktlen %u\n", pktlen); 488 489 pktlen = initialize_udp_header(&pkt_udp_hdr, src_port, dst_port, 490 pktlen); 491 printf("ETH + IPv4 + UDP pktlen %u\n\n", pktlen); 492 493 return generate_packet_burst(mp, pkts_burst, &pkt_eth_hdr, 494 0, &pkt_ipv4_hdr, 1, 495 &pkt_udp_hdr, burst_size, 496 PACKET_BURST_GEN_PKT_LEN, 1); 497 } 498 499 static int 500 init_ipv4_tcp_traffic(struct rte_mempool *mp, 501 struct rte_mbuf **pkts_burst, uint32_t burst_size) 502 { 503 struct rte_ether_hdr pkt_eth_hdr; 504 struct rte_ipv4_hdr pkt_ipv4_hdr; 505 struct rte_tcp_hdr pkt_tcp_hdr; 506 uint32_t src_addr = IPV4_ADDR(1, 2, 3, 4); 507 uint32_t dst_addr = IPV4_ADDR(5, 6, 7, 8); 508 uint16_t src_port = 16; 509 uint16_t dst_port = 17; 510 uint16_t pktlen; 511 512 static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; 513 static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; 514 515 printf("Set up IPv4 TCP traffic\n"); 516 initialize_eth_header(&pkt_eth_hdr, 517 (struct rte_ether_addr *)src_mac, 518 (struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0); 519 pktlen = (uint16_t)(sizeof(struct rte_ether_hdr)); 520 printf("ETH pktlen %u\n", pktlen); 521 522 pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr, 523 dst_addr, pktlen, IPPROTO_TCP); 524 printf("ETH + IPv4 pktlen %u\n", pktlen); 525 526 pktlen = initialize_tcp_header(&pkt_tcp_hdr, src_port, dst_port, 527 pktlen); 528 printf("ETH + IPv4 + TCP pktlen %u\n\n", pktlen); 529 530 return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr, 531 0, &pkt_ipv4_hdr, 1, IPPROTO_TCP, 532 &pkt_tcp_hdr, burst_size, 533 PACKET_BURST_GEN_PKT_LEN, 1); 534 } 535 536 static int 537 init_ipv4_sctp_traffic(struct rte_mempool *mp, 538 struct rte_mbuf **pkts_burst, uint32_t burst_size) 539 { 540 struct rte_ether_hdr pkt_eth_hdr; 541 struct rte_ipv4_hdr pkt_ipv4_hdr; 542 struct rte_sctp_hdr pkt_sctp_hdr; 543 uint32_t src_addr = IPV4_ADDR(11, 12, 13, 14); 544 uint32_t dst_addr = IPV4_ADDR(15, 16, 17, 18); 545 uint16_t src_port = 10; 546 uint16_t dst_port = 11; 547 uint16_t pktlen; 548 549 static uint8_t src_mac[] = { 0x00, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF }; 550 static uint8_t dst_mac[] = { 0x00, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA }; 551 552 printf("Set up IPv4 SCTP traffic\n"); 553 initialize_eth_header(&pkt_eth_hdr, 554 (struct rte_ether_addr *)src_mac, 555 (struct rte_ether_addr *)dst_mac, RTE_ETHER_TYPE_IPV4, 0, 0); 556 pktlen = (uint16_t)(sizeof(struct rte_ether_hdr)); 557 printf("ETH pktlen %u\n", pktlen); 558 559 pktlen = initialize_ipv4_header_proto(&pkt_ipv4_hdr, src_addr, 560 dst_addr, pktlen, IPPROTO_SCTP); 561 printf("ETH + IPv4 pktlen %u\n", pktlen); 562 563 pktlen = initialize_sctp_header(&pkt_sctp_hdr, src_port, dst_port, 564 pktlen); 565 printf("ETH + IPv4 + SCTP pktlen %u\n\n", pktlen); 566 567 return generate_packet_burst_proto(mp, pkts_burst, &pkt_eth_hdr, 568 0, &pkt_ipv4_hdr, 1, IPPROTO_SCTP, 569 &pkt_sctp_hdr, burst_size, 570 PACKET_BURST_GEN_PKT_LEN, 1); 571 } 572 573 static int 574 init_mbufpool(void) 575 { 576 int socketid; 577 int ret = 0; 578 unsigned int lcore_id; 579 char s[64]; 580 581 for (lcore_id = 0; lcore_id < RTE_MAX_LCORE; lcore_id++) { 582 if (rte_lcore_is_enabled(lcore_id) == 0) 583 continue; 584 585 socketid = rte_lcore_to_socket_id(lcore_id); 586 if (socketid >= NB_SOCKETS) { 587 printf( 588 "Socket %d of lcore %u is out of range %d\n", 589 socketid, lcore_id, NB_SOCKETS); 590 ret = -1; 591 break; 592 } 593 if (mbufpool[socketid] == NULL) { 594 snprintf(s, sizeof(s), "mbuf_pool_%d", socketid); 595 mbufpool[socketid] = 596 rte_pktmbuf_pool_create(s, NB_MBUF, 597 MEMPOOL_CACHE_SIZE, 0, MBUF_SIZE, 598 socketid); 599 if (mbufpool[socketid]) { 600 printf("Allocated mbuf pool on socket %d\n", 601 socketid); 602 } else { 603 printf("Cannot init mbuf pool on socket %d\n", 604 socketid); 605 ret = -ENOMEM; 606 break; 607 } 608 } 609 } 610 return ret; 611 } 612 613 static int 614 test_query_udp(void) 615 { 616 struct rte_flow_error error; 617 struct rte_flow_classify_rule *rule; 618 int ret; 619 int i; 620 int key_found; 621 622 ret = init_ipv4_udp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); 623 if (ret != MAX_PKT_BURST) { 624 printf("Line %i: init_udp_ipv4_traffic has failed!\n", 625 __LINE__); 626 return -1; 627 } 628 629 for (i = 0; i < MAX_PKT_BURST; i++) 630 bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; 631 632 /* 633 * set up parameters for rte_flow_classify_validate, 634 * rte_flow_classify_table_entry_add and 635 * rte_flow_classify_table_entry_delete 636 */ 637 638 attr.ingress = 1; 639 attr.priority = 1; 640 pattern[0] = eth_item; 641 pattern[1] = ipv4_udp_item_1; 642 pattern[2] = udp_item_1; 643 pattern[3] = end_item; 644 actions[0] = count_action; 645 actions[1] = end_action; 646 647 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 648 actions, &error); 649 if (ret) { 650 printf("Line %i: rte_flow_classify_validate", __LINE__); 651 printf(" should not have failed!\n"); 652 return -1; 653 } 654 655 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 656 actions, &key_found, &error); 657 if (!rule) { 658 printf("Line %i: flow_classify_table_entry_add", __LINE__); 659 printf(" should not have failed!\n"); 660 return -1; 661 } 662 663 ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, 664 rule, &udp_classify_stats); 665 if (ret) { 666 printf("Line %i: flow_classifier_query", __LINE__); 667 printf(" should not have failed!\n"); 668 return -1; 669 } 670 671 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 672 if (ret) { 673 printf("Line %i: rte_flow_classify_table_entry_delete", 674 __LINE__); 675 printf(" should not have failed!\n"); 676 return -1; 677 } 678 return 0; 679 } 680 681 static int 682 test_query_tcp(void) 683 { 684 struct rte_flow_classify_rule *rule; 685 int ret; 686 int i; 687 int key_found; 688 689 ret = init_ipv4_tcp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); 690 if (ret != MAX_PKT_BURST) { 691 printf("Line %i: init_ipv4_tcp_traffic has failed!\n", 692 __LINE__); 693 return -1; 694 } 695 696 for (i = 0; i < MAX_PKT_BURST; i++) 697 bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; 698 699 /* 700 * set up parameters for rte_flow_classify_validate, 701 * rte_flow_classify_table_entry_add and 702 * rte_flow_classify_table_entry_delete 703 */ 704 705 attr.ingress = 1; 706 attr.priority = 1; 707 pattern[0] = eth_item; 708 pattern[1] = ipv4_tcp_item_1; 709 pattern[2] = tcp_item_1; 710 pattern[3] = end_item; 711 actions[0] = count_action; 712 actions[1] = end_action; 713 714 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 715 actions, &error); 716 if (ret) { 717 printf("Line %i: flow_classifier_query", __LINE__); 718 printf(" should not have failed!\n"); 719 return -1; 720 } 721 722 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 723 actions, &key_found, &error); 724 if (!rule) { 725 printf("Line %i: flow_classify_table_entry_add", __LINE__); 726 printf(" should not have failed!\n"); 727 return -1; 728 } 729 730 ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, 731 rule, &tcp_classify_stats); 732 if (ret) { 733 printf("Line %i: flow_classifier_query", __LINE__); 734 printf(" should not have failed!\n"); 735 return -1; 736 } 737 738 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 739 if (ret) { 740 printf("Line %i: rte_flow_classify_table_entry_delete", 741 __LINE__); 742 printf(" should not have failed!\n"); 743 return -1; 744 } 745 return 0; 746 } 747 748 static int 749 test_query_sctp(void) 750 { 751 struct rte_flow_classify_rule *rule; 752 int ret; 753 int i; 754 int key_found; 755 756 ret = init_ipv4_sctp_traffic(mbufpool[0], bufs, MAX_PKT_BURST); 757 if (ret != MAX_PKT_BURST) { 758 printf("Line %i: init_ipv4_tcp_traffic has failed!\n", 759 __LINE__); 760 return -1; 761 } 762 763 for (i = 0; i < MAX_PKT_BURST; i++) 764 bufs[i]->packet_type = RTE_PTYPE_L3_IPV4; 765 766 /* 767 * set up parameters rte_flow_classify_validate, 768 * rte_flow_classify_table_entry_add and 769 * rte_flow_classify_table_entry_delete 770 */ 771 772 attr.ingress = 1; 773 attr.priority = 1; 774 pattern[0] = eth_item; 775 pattern[1] = ipv4_sctp_item_1; 776 pattern[2] = sctp_item_1; 777 pattern[3] = end_item; 778 actions[0] = count_action; 779 actions[1] = end_action; 780 781 ret = rte_flow_classify_validate(cls->cls, &attr, pattern, 782 actions, &error); 783 if (ret) { 784 printf("Line %i: flow_classifier_query", __LINE__); 785 printf(" should not have failed!\n"); 786 return -1; 787 } 788 789 rule = rte_flow_classify_table_entry_add(cls->cls, &attr, pattern, 790 actions, &key_found, &error); 791 if (!rule) { 792 printf("Line %i: flow_classify_table_entry_add", __LINE__); 793 printf(" should not have failed!\n"); 794 return -1; 795 } 796 797 ret = rte_flow_classifier_query(cls->cls, bufs, MAX_PKT_BURST, 798 rule, &sctp_classify_stats); 799 if (ret) { 800 printf("Line %i: flow_classifier_query", __LINE__); 801 printf(" should not have failed!\n"); 802 return -1; 803 } 804 805 ret = rte_flow_classify_table_entry_delete(cls->cls, rule); 806 if (ret) { 807 printf("Line %i: rte_flow_classify_table_entry_delete", 808 __LINE__); 809 printf(" should not have failed!\n"); 810 return -1; 811 } 812 return 0; 813 } 814 815 static int 816 test_flow_classify(void) 817 { 818 struct rte_table_acl_params table_acl_params; 819 struct rte_flow_classify_table_params cls_table_params; 820 struct rte_flow_classifier_params cls_params; 821 int ret; 822 uint32_t size; 823 824 /* Memory allocation */ 825 size = RTE_CACHE_LINE_ROUNDUP(sizeof(struct flow_classifier_acl)); 826 cls = rte_zmalloc(NULL, size, RTE_CACHE_LINE_SIZE); 827 828 cls_params.name = "flow_classifier"; 829 cls_params.socket_id = 0; 830 cls->cls = rte_flow_classifier_create(&cls_params); 831 if (cls->cls == NULL) { 832 printf("Line %i: flow classifier create has failed!\n", 833 __LINE__); 834 rte_free(cls); 835 return TEST_FAILED; 836 } 837 838 /* initialise ACL table params */ 839 table_acl_params.n_rule_fields = RTE_DIM(ipv4_defs); 840 table_acl_params.name = "table_acl_ipv4_5tuple"; 841 table_acl_params.n_rules = FLOW_CLASSIFY_MAX_RULE_NUM; 842 memcpy(table_acl_params.field_format, ipv4_defs, sizeof(ipv4_defs)); 843 844 /* initialise table create params */ 845 cls_table_params.ops = &rte_table_acl_ops; 846 cls_table_params.arg_create = &table_acl_params; 847 cls_table_params.type = RTE_FLOW_CLASSIFY_TABLE_ACL_IP4_5TUPLE; 848 849 ret = rte_flow_classify_table_create(cls->cls, &cls_table_params); 850 if (ret) { 851 printf("Line %i: f_create has failed!\n", __LINE__); 852 rte_flow_classifier_free(cls->cls); 853 rte_free(cls); 854 return TEST_FAILED; 855 } 856 printf("Created table_acl for for IPv4 five tuple packets\n"); 857 858 ret = init_mbufpool(); 859 if (ret) { 860 printf("Line %i: init_mbufpool has failed!\n", __LINE__); 861 return TEST_FAILED; 862 } 863 864 if (test_invalid_parameters() < 0) 865 return TEST_FAILED; 866 if (test_valid_parameters() < 0) 867 return TEST_FAILED; 868 if (test_invalid_patterns() < 0) 869 return TEST_FAILED; 870 if (test_invalid_actions() < 0) 871 return TEST_FAILED; 872 if (test_query_udp() < 0) 873 return TEST_FAILED; 874 if (test_query_tcp() < 0) 875 return TEST_FAILED; 876 if (test_query_sctp() < 0) 877 return TEST_FAILED; 878 879 return TEST_SUCCESS; 880 } 881 882 REGISTER_TEST_COMMAND(flow_classify_autotest, test_flow_classify); 883