xref: /dpdk/app/test-crypto-perf/main.c (revision a538d1d2)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <stdio.h>
6 #include <unistd.h>
7 
8 #include <rte_malloc.h>
9 #include <rte_random.h>
10 #include <rte_eal.h>
11 #include <rte_cryptodev.h>
12 #ifdef RTE_CRYPTO_SCHEDULER
13 #include <rte_cryptodev_scheduler.h>
14 #endif
15 
16 #include "cperf.h"
17 #include "cperf_options.h"
18 #include "cperf_test_vector_parsing.h"
19 #include "cperf_test_throughput.h"
20 #include "cperf_test_latency.h"
21 #include "cperf_test_verify.h"
22 #include "cperf_test_pmd_cyclecount.h"
23 
24 static struct {
25 	struct rte_mempool *sess_mp;
26 	struct rte_mempool *priv_mp;
27 } session_pool_socket[RTE_MAX_NUMA_NODES];
28 
29 const char *cperf_test_type_strs[] = {
30 	[CPERF_TEST_TYPE_THROUGHPUT] = "throughput",
31 	[CPERF_TEST_TYPE_LATENCY] = "latency",
32 	[CPERF_TEST_TYPE_VERIFY] = "verify",
33 	[CPERF_TEST_TYPE_PMDCC] = "pmd-cyclecount"
34 };
35 
36 const char *cperf_op_type_strs[] = {
37 	[CPERF_CIPHER_ONLY] = "cipher-only",
38 	[CPERF_AUTH_ONLY] = "auth-only",
39 	[CPERF_CIPHER_THEN_AUTH] = "cipher-then-auth",
40 	[CPERF_AUTH_THEN_CIPHER] = "auth-then-cipher",
41 	[CPERF_AEAD] = "aead",
42 	[CPERF_PDCP] = "pdcp",
43 	[CPERF_DOCSIS] = "docsis",
44 	[CPERF_IPSEC] = "ipsec",
45 	[CPERF_ASYM_MODEX] = "modex"
46 };
47 
48 const struct cperf_test cperf_testmap[] = {
49 		[CPERF_TEST_TYPE_THROUGHPUT] = {
50 				cperf_throughput_test_constructor,
51 				cperf_throughput_test_runner,
52 				cperf_throughput_test_destructor
53 		},
54 		[CPERF_TEST_TYPE_LATENCY] = {
55 				cperf_latency_test_constructor,
56 				cperf_latency_test_runner,
57 				cperf_latency_test_destructor
58 		},
59 		[CPERF_TEST_TYPE_VERIFY] = {
60 				cperf_verify_test_constructor,
61 				cperf_verify_test_runner,
62 				cperf_verify_test_destructor
63 		},
64 		[CPERF_TEST_TYPE_PMDCC] = {
65 				cperf_pmd_cyclecount_test_constructor,
66 				cperf_pmd_cyclecount_test_runner,
67 				cperf_pmd_cyclecount_test_destructor
68 		}
69 };
70 
71 static int
create_asym_op_pool_socket(int32_t socket_id,uint32_t nb_sessions)72 create_asym_op_pool_socket(int32_t socket_id, uint32_t nb_sessions)
73 {
74 	char mp_name[RTE_MEMPOOL_NAMESIZE];
75 	struct rte_mempool *mpool = NULL;
76 
77 	if (session_pool_socket[socket_id].sess_mp == NULL) {
78 		snprintf(mp_name, RTE_MEMPOOL_NAMESIZE, "perf_asym_sess_pool%u",
79 			 socket_id);
80 		mpool = rte_cryptodev_asym_session_pool_create(mp_name,
81 				nb_sessions, 0, 0, socket_id);
82 		if (mpool == NULL) {
83 			printf("Cannot create pool \"%s\" on socket %d\n",
84 			       mp_name, socket_id);
85 			return -ENOMEM;
86 		}
87 		session_pool_socket[socket_id].sess_mp = mpool;
88 	}
89 	return 0;
90 }
91 
92 static int
fill_session_pool_socket(int32_t socket_id,uint32_t session_priv_size,uint32_t nb_sessions)93 fill_session_pool_socket(int32_t socket_id, uint32_t session_priv_size,
94 		uint32_t nb_sessions)
95 {
96 	char mp_name[RTE_MEMPOOL_NAMESIZE];
97 	struct rte_mempool *sess_mp;
98 
99 	if (session_pool_socket[socket_id].priv_mp == NULL) {
100 		snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
101 			"priv_sess_mp_%u", socket_id);
102 
103 		sess_mp = rte_mempool_create(mp_name,
104 					nb_sessions,
105 					session_priv_size,
106 					0, 0, NULL, NULL, NULL,
107 					NULL, socket_id,
108 					0);
109 
110 		if (sess_mp == NULL) {
111 			printf("Cannot create pool \"%s\" on socket %d\n",
112 				mp_name, socket_id);
113 			return -ENOMEM;
114 		}
115 
116 		printf("Allocated pool \"%s\" on socket %d\n",
117 			mp_name, socket_id);
118 		session_pool_socket[socket_id].priv_mp = sess_mp;
119 	}
120 
121 	if (session_pool_socket[socket_id].sess_mp == NULL) {
122 
123 		snprintf(mp_name, RTE_MEMPOOL_NAMESIZE,
124 			"sess_mp_%u", socket_id);
125 
126 		sess_mp = rte_cryptodev_sym_session_pool_create(mp_name,
127 					nb_sessions, 0, 0, 0, socket_id);
128 
129 		if (sess_mp == NULL) {
130 			printf("Cannot create pool \"%s\" on socket %d\n",
131 				mp_name, socket_id);
132 			return -ENOMEM;
133 		}
134 
135 		printf("Allocated pool \"%s\" on socket %d\n",
136 			mp_name, socket_id);
137 		session_pool_socket[socket_id].sess_mp = sess_mp;
138 	}
139 
140 	return 0;
141 }
142 
143 static int
cperf_initialize_cryptodev(struct cperf_options * opts,uint8_t * enabled_cdevs)144 cperf_initialize_cryptodev(struct cperf_options *opts, uint8_t *enabled_cdevs)
145 {
146 	uint8_t enabled_cdev_count = 0, nb_lcores, cdev_id;
147 	uint32_t sessions_needed = 0;
148 	unsigned int i, j;
149 	int ret;
150 
151 	enabled_cdev_count = rte_cryptodev_devices_get(opts->device_type,
152 			enabled_cdevs, RTE_CRYPTO_MAX_DEVS);
153 	if (enabled_cdev_count == 0) {
154 		printf("No crypto devices type %s available\n",
155 				opts->device_type);
156 		return -EINVAL;
157 	}
158 
159 	nb_lcores = rte_lcore_count() - 1;
160 
161 	if (nb_lcores < 1) {
162 		RTE_LOG(ERR, USER1,
163 			"Number of enabled cores need to be higher than 1\n");
164 		return -EINVAL;
165 	}
166 
167 	/*
168 	 * Use less number of devices,
169 	 * if there are more available than cores.
170 	 */
171 	if (enabled_cdev_count > nb_lcores)
172 		enabled_cdev_count = nb_lcores;
173 
174 	/* Create a mempool shared by all the devices */
175 	uint32_t max_sess_size = 0, sess_size;
176 
177 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
178 		sess_size = rte_cryptodev_sym_get_private_session_size(cdev_id);
179 		if (sess_size > max_sess_size)
180 			max_sess_size = sess_size;
181 	}
182 #ifdef RTE_LIB_SECURITY
183 	for (cdev_id = 0; cdev_id < rte_cryptodev_count(); cdev_id++) {
184 		sess_size = rte_security_session_get_size(
185 				rte_cryptodev_get_sec_ctx(cdev_id));
186 		if (sess_size > max_sess_size)
187 			max_sess_size = sess_size;
188 	}
189 #endif
190 	/*
191 	 * Calculate number of needed queue pairs, based on the amount
192 	 * of available number of logical cores and crypto devices.
193 	 * For instance, if there are 4 cores and 2 crypto devices,
194 	 * 2 queue pairs will be set up per device.
195 	 */
196 	opts->nb_qps = (nb_lcores % enabled_cdev_count) ?
197 				(nb_lcores / enabled_cdev_count) + 1 :
198 				nb_lcores / enabled_cdev_count;
199 
200 	for (i = 0; i < enabled_cdev_count &&
201 			i < RTE_CRYPTO_MAX_DEVS; i++) {
202 		cdev_id = enabled_cdevs[i];
203 #ifdef RTE_CRYPTO_SCHEDULER
204 		/*
205 		 * If multi-core scheduler is used, limit the number
206 		 * of queue pairs to 1, as there is no way to know
207 		 * how many cores are being used by the PMD, and
208 		 * how many will be available for the application.
209 		 */
210 		if (!strcmp((const char *)opts->device_type, "crypto_scheduler") &&
211 				rte_cryptodev_scheduler_mode_get(cdev_id) ==
212 				CDEV_SCHED_MODE_MULTICORE)
213 			opts->nb_qps = 1;
214 #endif
215 
216 		struct rte_cryptodev_info cdev_info;
217 		uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
218 		/* range check the socket_id - negative values become big
219 		 * positive ones due to use of unsigned value
220 		 */
221 		if (socket_id >= RTE_MAX_NUMA_NODES)
222 			socket_id = 0;
223 
224 		rte_cryptodev_info_get(cdev_id, &cdev_info);
225 
226 		if (opts->op_type == CPERF_ASYM_MODEX) {
227 			if ((cdev_info.feature_flags &
228 			     RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO) == 0)
229 				continue;
230 		}
231 
232 		if (opts->nb_qps > cdev_info.max_nb_queue_pairs) {
233 			printf("Number of needed queue pairs is higher "
234 				"than the maximum number of queue pairs "
235 				"per device.\n");
236 			printf("Lower the number of cores or increase "
237 				"the number of crypto devices\n");
238 			return -EINVAL;
239 		}
240 		struct rte_cryptodev_config conf = {
241 			.nb_queue_pairs = opts->nb_qps,
242 			.socket_id = socket_id,
243 		};
244 
245 		switch (opts->op_type) {
246 		case CPERF_ASYM_MODEX:
247 			conf.ff_disable |= (RTE_CRYPTODEV_FF_SECURITY |
248 					    RTE_CRYPTODEV_FF_SYMMETRIC_CRYPTO);
249 			break;
250 		case CPERF_CIPHER_ONLY:
251 		case CPERF_AUTH_ONLY:
252 		case CPERF_CIPHER_THEN_AUTH:
253 		case CPERF_AUTH_THEN_CIPHER:
254 		case CPERF_AEAD:
255 			conf.ff_disable |= RTE_CRYPTODEV_FF_SECURITY;
256 			/* Fall through */
257 		case CPERF_PDCP:
258 		case CPERF_DOCSIS:
259 		case CPERF_IPSEC:
260 			/* Fall through */
261 		default:
262 			conf.ff_disable |= RTE_CRYPTODEV_FF_ASYMMETRIC_CRYPTO;
263 		}
264 
265 		struct rte_cryptodev_qp_conf qp_conf = {
266 			.nb_descriptors = opts->nb_descriptors
267 		};
268 
269 		/**
270 		 * Device info specifies the min headroom and tailroom
271 		 * requirement for the crypto PMD. This need to be honoured
272 		 * by the application, while creating mbuf.
273 		 */
274 		if (opts->headroom_sz < cdev_info.min_mbuf_headroom_req) {
275 			/* Update headroom */
276 			opts->headroom_sz = cdev_info.min_mbuf_headroom_req;
277 		}
278 		if (opts->tailroom_sz < cdev_info.min_mbuf_tailroom_req) {
279 			/* Update tailroom */
280 			opts->tailroom_sz = cdev_info.min_mbuf_tailroom_req;
281 		}
282 
283 		/* Update segment size to include headroom & tailroom */
284 		opts->segment_sz += (opts->headroom_sz + opts->tailroom_sz);
285 
286 		uint32_t dev_max_nb_sess = cdev_info.sym.max_nb_sessions;
287 		/*
288 		 * Two sessions objects are required for each session
289 		 * (one for the header, one for the private data)
290 		 */
291 		if (!strcmp((const char *)opts->device_type,
292 					"crypto_scheduler")) {
293 #ifdef RTE_CRYPTO_SCHEDULER
294 			uint32_t nb_slaves =
295 				rte_cryptodev_scheduler_workers_get(cdev_id,
296 								NULL);
297 
298 			sessions_needed = enabled_cdev_count *
299 				opts->nb_qps * nb_slaves;
300 #endif
301 		} else
302 			sessions_needed = enabled_cdev_count * opts->nb_qps;
303 
304 		/*
305 		 * A single session is required per queue pair
306 		 * in each device
307 		 */
308 		if (dev_max_nb_sess != 0 && dev_max_nb_sess < opts->nb_qps) {
309 			RTE_LOG(ERR, USER1,
310 				"Device does not support at least "
311 				"%u sessions\n", opts->nb_qps);
312 			return -ENOTSUP;
313 		}
314 
315 		if (opts->op_type == CPERF_ASYM_MODEX)
316 			ret = create_asym_op_pool_socket(socket_id,
317 							 sessions_needed);
318 		else
319 			ret = fill_session_pool_socket(socket_id, max_sess_size,
320 						       sessions_needed);
321 		if (ret < 0)
322 			return ret;
323 
324 		qp_conf.mp_session = session_pool_socket[socket_id].sess_mp;
325 		qp_conf.mp_session_private =
326 				session_pool_socket[socket_id].priv_mp;
327 
328 		if (opts->op_type == CPERF_ASYM_MODEX) {
329 			qp_conf.mp_session = NULL;
330 			qp_conf.mp_session_private = NULL;
331 		}
332 
333 		ret = rte_cryptodev_configure(cdev_id, &conf);
334 		if (ret < 0) {
335 			printf("Failed to configure cryptodev %u", cdev_id);
336 			return -EINVAL;
337 		}
338 
339 		for (j = 0; j < opts->nb_qps; j++) {
340 			ret = rte_cryptodev_queue_pair_setup(cdev_id, j,
341 				&qp_conf, socket_id);
342 			if (ret < 0) {
343 				printf("Failed to setup queue pair %u on "
344 					"cryptodev %u",	j, cdev_id);
345 				return -EINVAL;
346 			}
347 		}
348 
349 		ret = rte_cryptodev_start(cdev_id);
350 		if (ret < 0) {
351 			printf("Failed to start device %u: error %d\n",
352 					cdev_id, ret);
353 			return -EPERM;
354 		}
355 	}
356 
357 	return enabled_cdev_count;
358 }
359 
360 static int
cperf_verify_devices_capabilities(struct cperf_options * opts,uint8_t * enabled_cdevs,uint8_t nb_cryptodevs)361 cperf_verify_devices_capabilities(struct cperf_options *opts,
362 		uint8_t *enabled_cdevs, uint8_t nb_cryptodevs)
363 {
364 	struct rte_cryptodev_sym_capability_idx cap_idx;
365 	const struct rte_cryptodev_symmetric_capability *capability;
366 	struct rte_cryptodev_asym_capability_idx asym_cap_idx;
367 	const struct rte_cryptodev_asymmetric_xform_capability *asym_capability;
368 
369 
370 	uint8_t i, cdev_id;
371 	int ret;
372 
373 	for (i = 0; i < nb_cryptodevs; i++) {
374 
375 		cdev_id = enabled_cdevs[i];
376 
377 		if (opts->op_type == CPERF_ASYM_MODEX) {
378 			asym_cap_idx.type = RTE_CRYPTO_ASYM_XFORM_MODEX;
379 			asym_capability = rte_cryptodev_asym_capability_get(
380 				cdev_id, &asym_cap_idx);
381 			if (asym_capability == NULL)
382 				return -1;
383 
384 			ret = rte_cryptodev_asym_xform_capability_check_modlen(
385 				asym_capability, opts->modex_data->modulus.len);
386 			if (ret != 0)
387 				return ret;
388 
389 		}
390 
391 		if (opts->op_type == CPERF_AUTH_ONLY ||
392 				opts->op_type == CPERF_CIPHER_THEN_AUTH ||
393 				opts->op_type == CPERF_AUTH_THEN_CIPHER) {
394 
395 			cap_idx.type = RTE_CRYPTO_SYM_XFORM_AUTH;
396 			cap_idx.algo.auth = opts->auth_algo;
397 
398 			capability = rte_cryptodev_sym_capability_get(cdev_id,
399 					&cap_idx);
400 			if (capability == NULL)
401 				return -1;
402 
403 			ret = rte_cryptodev_sym_capability_check_auth(
404 					capability,
405 					opts->auth_key_sz,
406 					opts->digest_sz,
407 					opts->auth_iv_sz);
408 			if (ret != 0)
409 				return ret;
410 		}
411 
412 		if (opts->op_type == CPERF_CIPHER_ONLY ||
413 				opts->op_type == CPERF_CIPHER_THEN_AUTH ||
414 				opts->op_type == CPERF_AUTH_THEN_CIPHER) {
415 
416 			cap_idx.type = RTE_CRYPTO_SYM_XFORM_CIPHER;
417 			cap_idx.algo.cipher = opts->cipher_algo;
418 
419 			capability = rte_cryptodev_sym_capability_get(cdev_id,
420 					&cap_idx);
421 			if (capability == NULL)
422 				return -1;
423 
424 			ret = rte_cryptodev_sym_capability_check_cipher(
425 					capability,
426 					opts->cipher_key_sz,
427 					opts->cipher_iv_sz);
428 			if (ret != 0)
429 				return ret;
430 		}
431 
432 		if (opts->op_type == CPERF_AEAD) {
433 
434 			cap_idx.type = RTE_CRYPTO_SYM_XFORM_AEAD;
435 			cap_idx.algo.aead = opts->aead_algo;
436 
437 			capability = rte_cryptodev_sym_capability_get(cdev_id,
438 					&cap_idx);
439 			if (capability == NULL)
440 				return -1;
441 
442 			ret = rte_cryptodev_sym_capability_check_aead(
443 					capability,
444 					opts->aead_key_sz,
445 					opts->digest_sz,
446 					opts->aead_aad_sz,
447 					opts->aead_iv_sz);
448 			if (ret != 0)
449 				return ret;
450 		}
451 	}
452 
453 	return 0;
454 }
455 
456 static int
cperf_check_test_vector(struct cperf_options * opts,struct cperf_test_vector * test_vec)457 cperf_check_test_vector(struct cperf_options *opts,
458 		struct cperf_test_vector *test_vec)
459 {
460 	if (opts->op_type == CPERF_CIPHER_ONLY) {
461 		if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
462 			if (test_vec->plaintext.data == NULL)
463 				return -1;
464 		} else {
465 			if (test_vec->plaintext.data == NULL)
466 				return -1;
467 			if (test_vec->plaintext.length < opts->max_buffer_size)
468 				return -1;
469 			if (test_vec->ciphertext.data == NULL)
470 				return -1;
471 			if (test_vec->ciphertext.length < opts->max_buffer_size)
472 				return -1;
473 			/* Cipher IV is only required for some algorithms */
474 			if (opts->cipher_iv_sz &&
475 					test_vec->cipher_iv.data == NULL)
476 				return -1;
477 			if (test_vec->cipher_iv.length != opts->cipher_iv_sz)
478 				return -1;
479 			if (test_vec->cipher_key.data == NULL)
480 				return -1;
481 			if (test_vec->cipher_key.length != opts->cipher_key_sz)
482 				return -1;
483 		}
484 	} else if (opts->op_type == CPERF_AUTH_ONLY) {
485 		if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) {
486 			if (test_vec->plaintext.data == NULL)
487 				return -1;
488 			if (test_vec->plaintext.length < opts->max_buffer_size)
489 				return -1;
490 			/* Auth key is only required for some algorithms */
491 			if (opts->auth_key_sz &&
492 					test_vec->auth_key.data == NULL)
493 				return -1;
494 			if (test_vec->auth_key.length != opts->auth_key_sz)
495 				return -1;
496 			if (test_vec->auth_iv.length != opts->auth_iv_sz)
497 				return -1;
498 			/* Auth IV is only required for some algorithms */
499 			if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL)
500 				return -1;
501 			if (test_vec->digest.data == NULL)
502 				return -1;
503 			if (test_vec->digest.length < opts->digest_sz)
504 				return -1;
505 		}
506 
507 	} else if (opts->op_type == CPERF_CIPHER_THEN_AUTH ||
508 			opts->op_type == CPERF_AUTH_THEN_CIPHER) {
509 		if (opts->cipher_algo == RTE_CRYPTO_CIPHER_NULL) {
510 			if (test_vec->plaintext.data == NULL)
511 				return -1;
512 			if (test_vec->plaintext.length < opts->max_buffer_size)
513 				return -1;
514 		} else {
515 			if (test_vec->plaintext.data == NULL)
516 				return -1;
517 			if (test_vec->plaintext.length < opts->max_buffer_size)
518 				return -1;
519 			if (test_vec->ciphertext.data == NULL)
520 				return -1;
521 			if (test_vec->ciphertext.length < opts->max_buffer_size)
522 				return -1;
523 			if (test_vec->cipher_iv.data == NULL)
524 				return -1;
525 			if (test_vec->cipher_iv.length != opts->cipher_iv_sz)
526 				return -1;
527 			if (test_vec->cipher_key.data == NULL)
528 				return -1;
529 			if (test_vec->cipher_key.length != opts->cipher_key_sz)
530 				return -1;
531 		}
532 		if (opts->auth_algo != RTE_CRYPTO_AUTH_NULL) {
533 			if (test_vec->auth_key.data == NULL)
534 				return -1;
535 			if (test_vec->auth_key.length != opts->auth_key_sz)
536 				return -1;
537 			if (test_vec->auth_iv.length != opts->auth_iv_sz)
538 				return -1;
539 			/* Auth IV is only required for some algorithms */
540 			if (opts->auth_iv_sz && test_vec->auth_iv.data == NULL)
541 				return -1;
542 			if (test_vec->digest.data == NULL)
543 				return -1;
544 			if (test_vec->digest.length < opts->digest_sz)
545 				return -1;
546 		}
547 	} else if (opts->op_type == CPERF_AEAD) {
548 		if (test_vec->plaintext.data == NULL)
549 			return -1;
550 		if (test_vec->plaintext.length < opts->max_buffer_size)
551 			return -1;
552 		if (test_vec->ciphertext.data == NULL)
553 			return -1;
554 		if (test_vec->ciphertext.length < opts->max_buffer_size)
555 			return -1;
556 		if (test_vec->aead_key.data == NULL)
557 			return -1;
558 		if (test_vec->aead_key.length != opts->aead_key_sz)
559 			return -1;
560 		if (test_vec->aead_iv.data == NULL)
561 			return -1;
562 		if (test_vec->aead_iv.length != opts->aead_iv_sz)
563 			return -1;
564 		if (test_vec->aad.data == NULL)
565 			return -1;
566 		if (test_vec->aad.length != opts->aead_aad_sz)
567 			return -1;
568 		if (test_vec->digest.data == NULL)
569 			return -1;
570 		if (test_vec->digest.length < opts->digest_sz)
571 			return -1;
572 	}
573 	return 0;
574 }
575 
576 int
main(int argc,char ** argv)577 main(int argc, char **argv)
578 {
579 	struct cperf_options opts = {0};
580 	struct cperf_test_vector *t_vec = NULL;
581 	struct cperf_op_fns op_fns;
582 	void *ctx[RTE_MAX_LCORE] = { };
583 	int nb_cryptodevs = 0;
584 	uint16_t total_nb_qps = 0;
585 	uint8_t cdev_id, i;
586 	uint8_t enabled_cdevs[RTE_CRYPTO_MAX_DEVS] = { 0 };
587 
588 	uint8_t buffer_size_idx = 0;
589 
590 	int ret;
591 	uint32_t lcore_id;
592 
593 	/* Initialise DPDK EAL */
594 	ret = rte_eal_init(argc, argv);
595 	if (ret < 0)
596 		rte_exit(EXIT_FAILURE, "Invalid EAL arguments!\n");
597 	argc -= ret;
598 	argv += ret;
599 
600 	cperf_options_default(&opts);
601 
602 	ret = cperf_options_parse(&opts, argc, argv);
603 	if (ret) {
604 		RTE_LOG(ERR, USER1, "Parsing one or more user options failed\n");
605 		goto err;
606 	}
607 
608 	ret = cperf_options_check(&opts);
609 	if (ret) {
610 		RTE_LOG(ERR, USER1,
611 				"Checking one or more user options failed\n");
612 		goto err;
613 	}
614 
615 	nb_cryptodevs = cperf_initialize_cryptodev(&opts, enabled_cdevs);
616 
617 	if (!opts.silent)
618 		cperf_options_dump(&opts);
619 
620 	if (nb_cryptodevs < 1) {
621 		RTE_LOG(ERR, USER1, "Failed to initialise requested crypto "
622 				"device type\n");
623 		nb_cryptodevs = 0;
624 		goto err;
625 	}
626 
627 	ret = cperf_verify_devices_capabilities(&opts, enabled_cdevs,
628 			nb_cryptodevs);
629 	if (ret) {
630 		RTE_LOG(ERR, USER1, "Crypto device type does not support "
631 				"capabilities requested\n");
632 		goto err;
633 	}
634 
635 	if (opts.test_file != NULL) {
636 		t_vec = cperf_test_vector_get_from_file(&opts);
637 		if (t_vec == NULL) {
638 			RTE_LOG(ERR, USER1,
639 					"Failed to create test vector for"
640 					" specified file\n");
641 			goto err;
642 		}
643 
644 		if (cperf_check_test_vector(&opts, t_vec)) {
645 			RTE_LOG(ERR, USER1, "Incomplete necessary test vectors"
646 					"\n");
647 			goto err;
648 		}
649 	} else {
650 		t_vec = cperf_test_vector_get_dummy(&opts);
651 		if (t_vec == NULL) {
652 			RTE_LOG(ERR, USER1,
653 					"Failed to create test vector for"
654 					" specified algorithms\n");
655 			goto err;
656 		}
657 	}
658 
659 	ret = cperf_get_op_functions(&opts, &op_fns);
660 	if (ret) {
661 		RTE_LOG(ERR, USER1, "Failed to find function ops set for "
662 				"specified algorithms combination\n");
663 		goto err;
664 	}
665 
666 	if (!opts.silent && opts.test != CPERF_TEST_TYPE_THROUGHPUT &&
667 			opts.test != CPERF_TEST_TYPE_LATENCY)
668 		show_test_vector(t_vec);
669 
670 	total_nb_qps = nb_cryptodevs * opts.nb_qps;
671 
672 	i = 0;
673 	uint8_t qp_id = 0, cdev_index = 0;
674 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
675 
676 		if (i == total_nb_qps)
677 			break;
678 
679 		cdev_id = enabled_cdevs[cdev_index];
680 
681 		uint8_t socket_id = rte_cryptodev_socket_id(cdev_id);
682 
683 		ctx[i] = cperf_testmap[opts.test].constructor(
684 				session_pool_socket[socket_id].sess_mp,
685 				session_pool_socket[socket_id].priv_mp,
686 				cdev_id, qp_id,
687 				&opts, t_vec, &op_fns);
688 		if (ctx[i] == NULL) {
689 			RTE_LOG(ERR, USER1, "Test run constructor failed\n");
690 			goto err;
691 		}
692 		qp_id = (qp_id + 1) % opts.nb_qps;
693 		if (qp_id == 0)
694 			cdev_index++;
695 		i++;
696 	}
697 
698 	if (opts.imix_distribution_count != 0) {
699 		uint8_t buffer_size_count = opts.buffer_size_count;
700 		uint16_t distribution_total[buffer_size_count];
701 		uint32_t op_idx;
702 		uint32_t test_average_size = 0;
703 		const uint32_t *buffer_size_list = opts.buffer_size_list;
704 		const uint32_t *imix_distribution_list = opts.imix_distribution_list;
705 
706 		opts.imix_buffer_sizes = rte_malloc(NULL,
707 					sizeof(uint32_t) * opts.pool_sz,
708 					0);
709 		/*
710 		 * Calculate accumulated distribution of
711 		 * probabilities per packet size
712 		 */
713 		distribution_total[0] = imix_distribution_list[0];
714 		for (i = 1; i < buffer_size_count; i++)
715 			distribution_total[i] = imix_distribution_list[i] +
716 				distribution_total[i-1];
717 
718 		/* Calculate a random sequence of packet sizes, based on distribution */
719 		for (op_idx = 0; op_idx < opts.pool_sz; op_idx++) {
720 			uint16_t random_number = rte_rand() %
721 				distribution_total[buffer_size_count - 1];
722 			for (i = 0; i < buffer_size_count; i++)
723 				if (random_number < distribution_total[i])
724 					break;
725 
726 			opts.imix_buffer_sizes[op_idx] = buffer_size_list[i];
727 		}
728 
729 		/* Calculate average buffer size for the IMIX distribution */
730 		for (i = 0; i < buffer_size_count; i++)
731 			test_average_size += buffer_size_list[i] *
732 				imix_distribution_list[i];
733 
734 		opts.test_buffer_size = test_average_size /
735 				distribution_total[buffer_size_count - 1];
736 
737 		i = 0;
738 		RTE_LCORE_FOREACH_WORKER(lcore_id) {
739 
740 			if (i == total_nb_qps)
741 				break;
742 
743 			rte_eal_remote_launch(cperf_testmap[opts.test].runner,
744 				ctx[i], lcore_id);
745 			i++;
746 		}
747 		i = 0;
748 		RTE_LCORE_FOREACH_WORKER(lcore_id) {
749 
750 			if (i == total_nb_qps)
751 				break;
752 			ret |= rte_eal_wait_lcore(lcore_id);
753 			i++;
754 		}
755 
756 		if (ret != EXIT_SUCCESS)
757 			goto err;
758 	} else {
759 
760 		/* Get next size from range or list */
761 		if (opts.inc_buffer_size != 0)
762 			opts.test_buffer_size = opts.min_buffer_size;
763 		else
764 			opts.test_buffer_size = opts.buffer_size_list[0];
765 
766 		while (opts.test_buffer_size <= opts.max_buffer_size) {
767 			i = 0;
768 			RTE_LCORE_FOREACH_WORKER(lcore_id) {
769 
770 				if (i == total_nb_qps)
771 					break;
772 
773 				rte_eal_remote_launch(cperf_testmap[opts.test].runner,
774 					ctx[i], lcore_id);
775 				i++;
776 			}
777 			i = 0;
778 			RTE_LCORE_FOREACH_WORKER(lcore_id) {
779 
780 				if (i == total_nb_qps)
781 					break;
782 				ret |= rte_eal_wait_lcore(lcore_id);
783 				i++;
784 			}
785 
786 			if (ret != EXIT_SUCCESS)
787 				goto err;
788 
789 			/* Get next size from range or list */
790 			if (opts.inc_buffer_size != 0)
791 				opts.test_buffer_size += opts.inc_buffer_size;
792 			else {
793 				if (++buffer_size_idx == opts.buffer_size_count)
794 					break;
795 				opts.test_buffer_size =
796 					opts.buffer_size_list[buffer_size_idx];
797 			}
798 		}
799 	}
800 
801 	i = 0;
802 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
803 
804 		if (i == total_nb_qps)
805 			break;
806 
807 		cperf_testmap[opts.test].destructor(ctx[i]);
808 		i++;
809 	}
810 
811 	for (i = 0; i < nb_cryptodevs &&
812 			i < RTE_CRYPTO_MAX_DEVS; i++) {
813 		rte_cryptodev_stop(enabled_cdevs[i]);
814 		ret = rte_cryptodev_close(enabled_cdevs[i]);
815 		if (ret)
816 			RTE_LOG(ERR, USER1,
817 					"Crypto device close error %d\n", ret);
818 	}
819 
820 	free_test_vector(t_vec, &opts);
821 
822 	printf("\n");
823 	return EXIT_SUCCESS;
824 
825 err:
826 	i = 0;
827 	RTE_LCORE_FOREACH_WORKER(lcore_id) {
828 		if (i == total_nb_qps)
829 			break;
830 
831 		if (ctx[i] && cperf_testmap[opts.test].destructor)
832 			cperf_testmap[opts.test].destructor(ctx[i]);
833 		i++;
834 	}
835 
836 	for (i = 0; i < nb_cryptodevs &&
837 			i < RTE_CRYPTO_MAX_DEVS; i++) {
838 		rte_cryptodev_stop(enabled_cdevs[i]);
839 		ret = rte_cryptodev_close(enabled_cdevs[i]);
840 		if (ret)
841 			RTE_LOG(ERR, USER1,
842 					"Crypto device close error %d\n", ret);
843 
844 	}
845 	rte_free(opts.imix_buffer_sizes);
846 	free_test_vector(t_vec, &opts);
847 
848 	printf("\n");
849 	return EXIT_FAILURE;
850 }
851