1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file lowers exception-related instructions and setjmp/longjmp
12 /// function calls in order to use Emscripten's JavaScript try and catch
13 /// mechanism.
14 ///
15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
16 /// try and catch syntax and relevant exception-related libraries implemented
17 /// in JavaScript glue code that will be produced by Emscripten. This is similar
18 /// to the current Emscripten asm.js exception handling in fastcomp. For
19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
20 /// (Location: https://github.com/kripken/emscripten-fastcomp)
21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
23 /// lib/Target/JSBackend/JSBackend.cpp
24 /// lib/Target/JSBackend/CallHandlers.h
25 ///
26 /// * Exception handling
27 /// This pass lowers invokes and landingpads into library functions in JS glue
28 /// code. Invokes are lowered into function wrappers called invoke wrappers that
29 /// exist in JS side, which wraps the original function call with JS try-catch.
30 /// If an exception occurred, cxa_throw() function in JS side sets some
31 /// variables (see below) so we can check whether an exception occurred from
32 /// wasm code and handle it appropriately.
33 ///
34 /// * Setjmp-longjmp handling
35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
36 /// The idea is that each block with a setjmp is broken up into two parts: the
37 /// part containing setjmp and the part right after the setjmp. The latter part
38 /// is either reached from the setjmp, or later from a longjmp. To handle the
39 /// longjmp, all calls that might longjmp are also called using invoke wrappers
40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
41 /// we can check / whether a longjmp occurred from wasm code. Each block with a
42 /// function call that might longjmp is also split up after the longjmp call.
43 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
44 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
45 /// We assume setjmp-longjmp handling always run after EH handling, which means
46 /// we don't expect any exception-related instructions when SjLj runs.
47 /// FIXME Currently this scheme does not support indirect call of setjmp,
48 /// because of the limitation of the scheme itself. fastcomp does not support it
49 /// either.
50 ///
51 /// In detail, this pass does following things:
52 ///
53 /// 1) Assumes the existence of global variables: __THREW__, __threwValue
54 ///    __THREW__ and __threwValue will be set in invoke wrappers
55 ///    in JS glue code. For what invoke wrappers are, refer to 3). These
56 ///    variables are used for both exceptions and setjmp/longjmps.
57 ///    __THREW__ indicates whether an exception or a longjmp occurred or not. 0
58 ///    means nothing occurred, 1 means an exception occurred, and other numbers
59 ///    mean a longjmp occurred. In the case of longjmp, __threwValue variable
60 ///    indicates the corresponding setjmp buffer the longjmp corresponds to.
61 ///
62 /// * Exception handling
63 ///
64 /// 2) We assume the existence of setThrew and setTempRet0/getTempRet0 functions
65 ///    at link time.
66 ///    The global variables in 1) will exist in wasm address space,
67 ///    but their values should be set in JS code, so these functions
68 ///    as interfaces to JS glue code. These functions are equivalent to the
69 ///    following JS functions, which actually exist in asm.js version of JS
70 ///    library.
71 ///
72 ///    function setThrew(threw, value) {
73 ///      if (__THREW__ == 0) {
74 ///        __THREW__ = threw;
75 ///        __threwValue = value;
76 ///      }
77 ///    }
78 //
79 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
80 ///
81 ///    In exception handling, getTempRet0 indicates the type of an exception
82 ///    caught, and in setjmp/longjmp, it means the second argument to longjmp
83 ///    function.
84 ///
85 /// 3) Lower
86 ///      invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
87 ///    into
88 ///      __THREW__ = 0;
89 ///      call @__invoke_SIG(func, arg1, arg2)
90 ///      %__THREW__.val = __THREW__;
91 ///      __THREW__ = 0;
92 ///      if (%__THREW__.val == 1)
93 ///        goto %lpad
94 ///      else
95 ///         goto %invoke.cont
96 ///    SIG is a mangled string generated based on the LLVM IR-level function
97 ///    signature. After LLVM IR types are lowered to the target wasm types,
98 ///    the names for these wrappers will change based on wasm types as well,
99 ///    as in invoke_vi (function takes an int and returns void). The bodies of
100 ///    these wrappers will be generated in JS glue code, and inside those
101 ///    wrappers we use JS try-catch to generate actual exception effects. It
102 ///    also calls the original callee function. An example wrapper in JS code
103 ///    would look like this:
104 ///      function invoke_vi(index,a1) {
105 ///        try {
106 ///          Module["dynCall_vi"](index,a1); // This calls original callee
107 ///        } catch(e) {
108 ///          if (typeof e !== 'number' && e !== 'longjmp') throw e;
109 ///          asm["setThrew"](1, 0); // setThrew is called here
110 ///        }
111 ///      }
112 ///    If an exception is thrown, __THREW__ will be set to true in a wrapper,
113 ///    so we can jump to the right BB based on this value.
114 ///
115 /// 4) Lower
116 ///      %val = landingpad catch c1 catch c2 catch c3 ...
117 ///      ... use %val ...
118 ///    into
119 ///      %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
120 ///      %val = {%fmc, getTempRet0()}
121 ///      ... use %val ...
122 ///    Here N is a number calculated based on the number of clauses.
123 ///    setTempRet0 is called from __cxa_find_matching_catch() in JS glue code.
124 ///
125 /// 5) Lower
126 ///      resume {%a, %b}
127 ///    into
128 ///      call @__resumeException(%a)
129 ///    where __resumeException() is a function in JS glue code.
130 ///
131 /// 6) Lower
132 ///      call @llvm.eh.typeid.for(type) (intrinsic)
133 ///    into
134 ///      call @llvm_eh_typeid_for(type)
135 ///    llvm_eh_typeid_for function will be generated in JS glue code.
136 ///
137 /// * Setjmp / Longjmp handling
138 ///
139 /// In case calls to longjmp() exists
140 ///
141 /// 1) Lower
142 ///      longjmp(buf, value)
143 ///    into
144 ///      emscripten_longjmp_jmpbuf(buf, value)
145 ///    emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
146 ///
147 /// In case calls to setjmp() exists
148 ///
149 /// 2) In the function entry that calls setjmp, initialize setjmpTable and
150 ///    sejmpTableSize as follows:
151 ///      setjmpTableSize = 4;
152 ///      setjmpTable = (int *) malloc(40);
153 ///      setjmpTable[0] = 0;
154 ///    setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
155 ///    code.
156 ///
157 /// 3) Lower
158 ///      setjmp(buf)
159 ///    into
160 ///      setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
161 ///      setjmpTableSize = getTempRet0();
162 ///    For each dynamic setjmp call, setjmpTable stores its ID (a number which
163 ///    is incrementally assigned from 0) and its label (a unique number that
164 ///    represents each callsite of setjmp). When we need more entries in
165 ///    setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
166 ///    return the new table address, and assign the new table size in
167 ///    setTempRet0(). saveSetjmp also stores the setjmp's ID into the buffer
168 ///    buf. A BB with setjmp is split into two after setjmp call in order to
169 ///    make the post-setjmp BB the possible destination of longjmp BB.
170 ///
171 ///
172 /// 4) Lower every call that might longjmp into
173 ///      __THREW__ = 0;
174 ///      call @__invoke_SIG(func, arg1, arg2)
175 ///      %__THREW__.val = __THREW__;
176 ///      __THREW__ = 0;
177 ///      if (%__THREW__.val != 0 & __threwValue != 0) {
178 ///        %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
179 ///                            setjmpTableSize);
180 ///        if (%label == 0)
181 ///          emscripten_longjmp(%__THREW__.val, __threwValue);
182 ///        setTempRet0(__threwValue);
183 ///      } else {
184 ///        %label = -1;
185 ///      }
186 ///      longjmp_result = getTempRet0();
187 ///      switch label {
188 ///        label 1: goto post-setjmp BB 1
189 ///        label 2: goto post-setjmp BB 2
190 ///        ...
191 ///        default: goto splitted next BB
192 ///      }
193 ///    testSetjmp examines setjmpTable to see if there is a matching setjmp
194 ///    call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
195 ///    will be the address of matching jmp_buf buffer and __threwValue be the
196 ///    second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
197 ///    stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
198 ///    each setjmp callsite. Label 0 means this longjmp buffer does not
199 ///    correspond to one of the setjmp callsites in this function, so in this
200 ///    case we just chain the longjmp to the caller. (Here we call
201 ///    emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
202 ///    emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
203 ///    emscripten_longjmp takes an int. Both of them will eventually be lowered
204 ///    to emscripten_longjmp in s2wasm, but here we need two signatures - we
205 ///    can't translate an int value to a jmp_buf.)
206 ///    Label -1 means no longjmp occurred. Otherwise we jump to the right
207 ///    post-setjmp BB based on the label.
208 ///
209 ///===----------------------------------------------------------------------===//
210 
211 #include "WebAssembly.h"
212 #include "llvm/IR/CallSite.h"
213 #include "llvm/IR/Dominators.h"
214 #include "llvm/IR/IRBuilder.h"
215 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
216 #include "llvm/Transforms/Utils/SSAUpdater.h"
217 
218 using namespace llvm;
219 
220 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
221 
222 static cl::list<std::string>
223     EHWhitelist("emscripten-cxx-exceptions-whitelist",
224                 cl::desc("The list of function names in which Emscripten-style "
225                          "exception handling is enabled (see emscripten "
226                          "EMSCRIPTEN_CATCHING_WHITELIST options)"),
227                 cl::CommaSeparated);
228 
229 namespace {
230 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
231   static const char *ResumeFName;
232   static const char *EHTypeIDFName;
233   static const char *EmLongjmpFName;
234   static const char *EmLongjmpJmpbufFName;
235   static const char *SaveSetjmpFName;
236   static const char *TestSetjmpFName;
237   static const char *FindMatchingCatchPrefix;
238   static const char *InvokePrefix;
239 
240   bool EnableEH;   // Enable exception handling
241   bool EnableSjLj; // Enable setjmp/longjmp handling
242 
243   GlobalVariable *ThrewGV;
244   GlobalVariable *ThrewValueGV;
245   Function *GetTempRet0Func;
246   Function *SetTempRet0Func;
247   Function *ResumeF;
248   Function *EHTypeIDF;
249   Function *EmLongjmpF;
250   Function *EmLongjmpJmpbufF;
251   Function *SaveSetjmpF;
252   Function *TestSetjmpF;
253 
254   // __cxa_find_matching_catch_N functions.
255   // Indexed by the number of clauses in an original landingpad instruction.
256   DenseMap<int, Function *> FindMatchingCatches;
257   // Map of <function signature string, invoke_ wrappers>
258   StringMap<Function *> InvokeWrappers;
259   // Set of whitelisted function names for exception handling
260   std::set<std::string> EHWhitelistSet;
261 
getPassName() const262   StringRef getPassName() const override {
263     return "WebAssembly Lower Emscripten Exceptions";
264   }
265 
266   bool runEHOnFunction(Function &F);
267   bool runSjLjOnFunction(Function &F);
268   Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
269 
270   template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
271   void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
272                       Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
273                       Value *&LongjmpResult, BasicBlock *&EndBB);
274   template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
275 
areAllExceptionsAllowed() const276   bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
277   bool canLongjmp(Module &M, const Value *Callee) const;
278 
279   void rebuildSSA(Function &F);
280 
281 public:
282   static char ID;
283 
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)284   WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
285       : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj),
286         ThrewGV(nullptr), ThrewValueGV(nullptr), GetTempRet0Func(nullptr),
287         SetTempRet0Func(nullptr), ResumeF(nullptr), EHTypeIDF(nullptr),
288         EmLongjmpF(nullptr), EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr),
289         TestSetjmpF(nullptr) {
290     EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
291   }
292   bool runOnModule(Module &M) override;
293 
getAnalysisUsage(AnalysisUsage & AU) const294   void getAnalysisUsage(AnalysisUsage &AU) const override {
295     AU.addRequired<DominatorTreeWrapperPass>();
296   }
297 };
298 } // End anonymous namespace
299 
300 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
301 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
302     "llvm_eh_typeid_for";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
304     "emscripten_longjmp";
305 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
306     "emscripten_longjmp_jmpbuf";
307 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
308 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
309 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
310     "__cxa_find_matching_catch_";
311 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
312 
313 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
314 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
315                 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
316                 false, false)
317 
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)318 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
319                                                          bool EnableSjLj) {
320   return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
321 }
322 
canThrow(const Value * V)323 static bool canThrow(const Value *V) {
324   if (const auto *F = dyn_cast<const Function>(V)) {
325     // Intrinsics cannot throw
326     if (F->isIntrinsic())
327       return false;
328     StringRef Name = F->getName();
329     // leave setjmp and longjmp (mostly) alone, we process them properly later
330     if (Name == "setjmp" || Name == "longjmp")
331       return false;
332     return !F->doesNotThrow();
333   }
334   // not a function, so an indirect call - can throw, we can't tell
335   return true;
336 }
337 
338 // Get a global variable with the given name.  If it doesn't exist declare it,
339 // which will generate an import and asssumes that it will exist at link time.
getGlobalVariableI32(Module & M,IRBuilder<> & IRB,const char * Name)340 static GlobalVariable *getGlobalVariableI32(Module &M, IRBuilder<> &IRB,
341                                             const char *Name) {
342   if (M.getNamedGlobal(Name))
343     report_fatal_error(Twine("variable name is reserved: ") + Name);
344 
345   return new GlobalVariable(M, IRB.getInt32Ty(), false,
346                             GlobalValue::ExternalLinkage, nullptr, Name);
347 }
348 
349 // Simple function name mangler.
350 // This function simply takes LLVM's string representation of parameter types
351 // and concatenate them with '_'. There are non-alphanumeric characters but llc
352 // is ok with it, and we need to postprocess these names after the lowering
353 // phase anyway.
getSignature(FunctionType * FTy)354 static std::string getSignature(FunctionType *FTy) {
355   std::string Sig;
356   raw_string_ostream OS(Sig);
357   OS << *FTy->getReturnType();
358   for (Type *ParamTy : FTy->params())
359     OS << "_" << *ParamTy;
360   if (FTy->isVarArg())
361     OS << "_...";
362   Sig = OS.str();
363   Sig.erase(remove_if(Sig, isspace), Sig.end());
364   // When s2wasm parses .s file, a comma means the end of an argument. So a
365   // mangled function name can contain any character but a comma.
366   std::replace(Sig.begin(), Sig.end(), ',', '.');
367   return Sig;
368 }
369 
370 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
371 // This is because a landingpad instruction contains two more arguments, a
372 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
373 // functions are named after the number of arguments in the original landingpad
374 // instruction.
375 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)376 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
377                                                        unsigned NumClauses) {
378   if (FindMatchingCatches.count(NumClauses))
379     return FindMatchingCatches[NumClauses];
380   PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
381   SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
382   FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
383   Function *F =
384       Function::Create(FTy, GlobalValue::ExternalLinkage,
385                        FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
386   FindMatchingCatches[NumClauses] = F;
387   return F;
388 }
389 
390 // Generate invoke wrapper seqence with preamble and postamble
391 // Preamble:
392 // __THREW__ = 0;
393 // Postamble:
394 // %__THREW__.val = __THREW__; __THREW__ = 0;
395 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
396 // whether longjmp occurred), for future use.
397 template <typename CallOrInvoke>
wrapInvoke(CallOrInvoke * CI)398 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
399   LLVMContext &C = CI->getModule()->getContext();
400 
401   // If we are calling a function that is noreturn, we must remove that
402   // attribute. The code we insert here does expect it to return, after we
403   // catch the exception.
404   if (CI->doesNotReturn()) {
405     if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
406       F->removeFnAttr(Attribute::NoReturn);
407     CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
408   }
409 
410   IRBuilder<> IRB(C);
411   IRB.SetInsertPoint(CI);
412 
413   // Pre-invoke
414   // __THREW__ = 0;
415   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
416 
417   // Invoke function wrapper in JavaScript
418   SmallVector<Value *, 16> Args;
419   // Put the pointer to the callee as first argument, so it can be called
420   // within the invoke wrapper later
421   Args.push_back(CI->getCalledValue());
422   Args.append(CI->arg_begin(), CI->arg_end());
423   CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
424   NewCall->takeName(CI);
425   NewCall->setCallingConv(CI->getCallingConv());
426   NewCall->setDebugLoc(CI->getDebugLoc());
427 
428   // Because we added the pointer to the callee as first argument, all
429   // argument attribute indices have to be incremented by one.
430   SmallVector<AttributeSet, 8> ArgAttributes;
431   const AttributeList &InvokeAL = CI->getAttributes();
432 
433   // No attributes for the callee pointer.
434   ArgAttributes.push_back(AttributeSet());
435   // Copy the argument attributes from the original
436   for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i)
437     ArgAttributes.push_back(InvokeAL.getParamAttributes(i));
438 
439   // Reconstruct the AttributesList based on the vector we constructed.
440   AttributeList NewCallAL =
441       AttributeList::get(C, InvokeAL.getFnAttributes(),
442                          InvokeAL.getRetAttributes(), ArgAttributes);
443   NewCall->setAttributes(NewCallAL);
444 
445   CI->replaceAllUsesWith(NewCall);
446 
447   // Post-invoke
448   // %__THREW__.val = __THREW__; __THREW__ = 0;
449   Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
450   IRB.CreateStore(IRB.getInt32(0), ThrewGV);
451   return Threw;
452 }
453 
454 // Get matching invoke wrapper based on callee signature
455 template <typename CallOrInvoke>
getInvokeWrapper(CallOrInvoke * CI)456 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
457   Module *M = CI->getModule();
458   SmallVector<Type *, 16> ArgTys;
459   Value *Callee = CI->getCalledValue();
460   FunctionType *CalleeFTy;
461   if (auto *F = dyn_cast<Function>(Callee))
462     CalleeFTy = F->getFunctionType();
463   else {
464     auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
465     CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
466   }
467 
468   std::string Sig = getSignature(CalleeFTy);
469   if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
470     return InvokeWrappers[Sig];
471 
472   // Put the pointer to the callee as first argument
473   ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
474   // Add argument types
475   ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
476 
477   FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
478                                         CalleeFTy->isVarArg());
479   Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
480                                  InvokePrefix + Sig, M);
481   InvokeWrappers[Sig] = F;
482   return F;
483 }
484 
canLongjmp(Module & M,const Value * Callee) const485 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
486                                                   const Value *Callee) const {
487   if (auto *CalleeF = dyn_cast<Function>(Callee))
488     if (CalleeF->isIntrinsic())
489       return false;
490 
491   // The reason we include malloc/free here is to exclude the malloc/free
492   // calls generated in setjmp prep / cleanup routines.
493   Function *SetjmpF = M.getFunction("setjmp");
494   Function *MallocF = M.getFunction("malloc");
495   Function *FreeF = M.getFunction("free");
496   if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
497     return false;
498 
499   // There are functions in JS glue code
500   if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
501       Callee == TestSetjmpF)
502     return false;
503 
504   // __cxa_find_matching_catch_N functions cannot longjmp
505   if (Callee->getName().startswith(FindMatchingCatchPrefix))
506     return false;
507 
508   // Exception-catching related functions
509   Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
510   Function *EndCatchF = M.getFunction("__cxa_end_catch");
511   Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
512   Function *ThrowF = M.getFunction("__cxa_throw");
513   Function *TerminateF = M.getFunction("__clang_call_terminate");
514   if (Callee == BeginCatchF || Callee == EndCatchF ||
515       Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF ||
516       Callee == GetTempRet0Func || Callee == SetTempRet0Func)
517     return false;
518 
519   // Otherwise we don't know
520   return true;
521 }
522 
523 // Generate testSetjmp function call seqence with preamble and postamble.
524 // The code this generates is equivalent to the following JavaScript code:
525 // if (%__THREW__.val != 0 & threwValue != 0) {
526 //   %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
527 //   if (%label == 0)
528 //     emscripten_longjmp(%__THREW__.val, threwValue);
529 //   setTempRet0(threwValue);
530 // } else {
531 //   %label = -1;
532 // }
533 // %longjmp_result = getTempRet0();
534 //
535 // As output parameters. returns %label, %longjmp_result, and the BB the last
536 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,Instruction * InsertPt,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)537 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
538     BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
539     Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
540     BasicBlock *&EndBB) {
541   Function *F = BB->getParent();
542   LLVMContext &C = BB->getModule()->getContext();
543   IRBuilder<> IRB(C);
544   IRB.SetInsertPoint(InsertPt);
545 
546   // if (%__THREW__.val != 0 & threwValue != 0)
547   IRB.SetInsertPoint(BB);
548   BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
549   BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
550   BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
551   Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
552   Value *ThrewValue =
553       IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val");
554   Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
555   Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
556   IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
557 
558   // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
559   // if (%label == 0)
560   IRB.SetInsertPoint(ThenBB1);
561   BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
562   BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
563   Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
564                                        Threw->getName() + ".i32p");
565   Value *LoadedThrew =
566       IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded");
567   Value *ThenLabel = IRB.CreateCall(
568       TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
569   Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
570   IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
571 
572   // emscripten_longjmp(%__THREW__.val, threwValue);
573   IRB.SetInsertPoint(ThenBB2);
574   IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
575   IRB.CreateUnreachable();
576 
577   // setTempRet0(threwValue);
578   IRB.SetInsertPoint(EndBB2);
579   IRB.CreateCall(SetTempRet0Func, ThrewValue);
580   IRB.CreateBr(EndBB1);
581 
582   IRB.SetInsertPoint(ElseBB1);
583   IRB.CreateBr(EndBB1);
584 
585   // longjmp_result = getTempRet0();
586   IRB.SetInsertPoint(EndBB1);
587   PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
588   LabelPHI->addIncoming(ThenLabel, EndBB2);
589 
590   LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
591 
592   // Output parameter assignment
593   Label = LabelPHI;
594   EndBB = EndBB1;
595   LongjmpResult = IRB.CreateCall(GetTempRet0Func, None, "longjmp_result");
596 }
597 
rebuildSSA(Function & F)598 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
599   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
600   DT.recalculate(F); // CFG has been changed
601   SSAUpdater SSA;
602   for (BasicBlock &BB : F) {
603     for (Instruction &I : BB) {
604       for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
605         Use &U = *UI;
606         ++UI;
607         SSA.Initialize(I.getType(), I.getName());
608         SSA.AddAvailableValue(&BB, &I);
609         Instruction *User = cast<Instruction>(U.getUser());
610         if (User->getParent() == &BB)
611           continue;
612 
613         if (PHINode *UserPN = dyn_cast<PHINode>(User))
614           if (UserPN->getIncomingBlock(U) == &BB)
615             continue;
616 
617         if (DT.dominates(&I, User))
618           continue;
619         SSA.RewriteUseAfterInsertions(U);
620       }
621     }
622   }
623 }
624 
runOnModule(Module & M)625 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
626   LLVM_DEBUG(dbgs() << "********** Lower Emscripten EH & SjLj **********\n");
627 
628   LLVMContext &C = M.getContext();
629   IRBuilder<> IRB(C);
630 
631   Function *SetjmpF = M.getFunction("setjmp");
632   Function *LongjmpF = M.getFunction("longjmp");
633   bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
634   bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
635   bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
636 
637   // Declare (or get) global variables __THREW__, __threwValue, and
638   // getTempRet0/setTempRet0 function which are used in common for both
639   // exception handling and setjmp/longjmp handling
640   ThrewGV = getGlobalVariableI32(M, IRB, "__THREW__");
641   ThrewValueGV = getGlobalVariableI32(M, IRB, "__threwValue");
642   GetTempRet0Func =
643       Function::Create(FunctionType::get(IRB.getInt32Ty(), false),
644                        GlobalValue::ExternalLinkage, "getTempRet0", &M);
645   SetTempRet0Func = Function::Create(
646       FunctionType::get(IRB.getVoidTy(), IRB.getInt32Ty(), false),
647       GlobalValue::ExternalLinkage, "setTempRet0", &M);
648   GetTempRet0Func->setDoesNotThrow();
649   SetTempRet0Func->setDoesNotThrow();
650 
651   bool Changed = false;
652 
653   // Exception handling
654   if (EnableEH) {
655     // Register __resumeException function
656     FunctionType *ResumeFTy =
657         FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
658     ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
659                                ResumeFName, &M);
660 
661     // Register llvm_eh_typeid_for function
662     FunctionType *EHTypeIDTy =
663         FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
664     EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
665                                  EHTypeIDFName, &M);
666 
667     for (Function &F : M) {
668       if (F.isDeclaration())
669         continue;
670       Changed |= runEHOnFunction(F);
671     }
672   }
673 
674   // Setjmp/longjmp handling
675   if (DoSjLj) {
676     Changed = true; // We have setjmp or longjmp somewhere
677 
678     if (LongjmpF) {
679       // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
680       // defined in JS code
681       EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
682                                           GlobalValue::ExternalLinkage,
683                                           EmLongjmpJmpbufFName, &M);
684 
685       LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
686     }
687 
688     if (SetjmpF) {
689       // Register saveSetjmp function
690       FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
691       SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
692                                        IRB.getInt32Ty(), Type::getInt32PtrTy(C),
693                                        IRB.getInt32Ty()};
694       FunctionType *FTy =
695           FunctionType::get(Type::getInt32PtrTy(C), Params, false);
696       SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
697                                      SaveSetjmpFName, &M);
698 
699       // Register testSetjmp function
700       Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
701       FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
702       TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
703                                      TestSetjmpFName, &M);
704 
705       FTy = FunctionType::get(IRB.getVoidTy(),
706                               {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
707       EmLongjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
708                                     EmLongjmpFName, &M);
709 
710       // Only traverse functions that uses setjmp in order not to insert
711       // unnecessary prep / cleanup code in every function
712       SmallPtrSet<Function *, 8> SetjmpUsers;
713       for (User *U : SetjmpF->users()) {
714         auto *UI = cast<Instruction>(U);
715         SetjmpUsers.insert(UI->getFunction());
716       }
717       for (Function *F : SetjmpUsers)
718         runSjLjOnFunction(*F);
719     }
720   }
721 
722   if (!Changed) {
723     // Delete unused global variables and functions
724     if (ResumeF)
725       ResumeF->eraseFromParent();
726     if (EHTypeIDF)
727       EHTypeIDF->eraseFromParent();
728     if (EmLongjmpF)
729       EmLongjmpF->eraseFromParent();
730     if (SaveSetjmpF)
731       SaveSetjmpF->eraseFromParent();
732     if (TestSetjmpF)
733       TestSetjmpF->eraseFromParent();
734     return false;
735   }
736 
737   return true;
738 }
739 
runEHOnFunction(Function & F)740 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
741   Module &M = *F.getParent();
742   LLVMContext &C = F.getContext();
743   IRBuilder<> IRB(C);
744   bool Changed = false;
745   SmallVector<Instruction *, 64> ToErase;
746   SmallPtrSet<LandingPadInst *, 32> LandingPads;
747   bool AllowExceptions =
748       areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
749 
750   for (BasicBlock &BB : F) {
751     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
752     if (!II)
753       continue;
754     Changed = true;
755     LandingPads.insert(II->getLandingPadInst());
756     IRB.SetInsertPoint(II);
757 
758     bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
759     if (NeedInvoke) {
760       // Wrap invoke with invoke wrapper and generate preamble/postamble
761       Value *Threw = wrapInvoke(II);
762       ToErase.push_back(II);
763 
764       // Insert a branch based on __THREW__ variable
765       Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
766       IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
767 
768     } else {
769       // This can't throw, and we don't need this invoke, just replace it with a
770       // call+branch
771       SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
772       CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args);
773       NewCall->takeName(II);
774       NewCall->setCallingConv(II->getCallingConv());
775       NewCall->setDebugLoc(II->getDebugLoc());
776       NewCall->setAttributes(II->getAttributes());
777       II->replaceAllUsesWith(NewCall);
778       ToErase.push_back(II);
779 
780       IRB.CreateBr(II->getNormalDest());
781 
782       // Remove any PHI node entries from the exception destination
783       II->getUnwindDest()->removePredecessor(&BB);
784     }
785   }
786 
787   // Process resume instructions
788   for (BasicBlock &BB : F) {
789     // Scan the body of the basic block for resumes
790     for (Instruction &I : BB) {
791       auto *RI = dyn_cast<ResumeInst>(&I);
792       if (!RI)
793         continue;
794 
795       // Split the input into legal values
796       Value *Input = RI->getValue();
797       IRB.SetInsertPoint(RI);
798       Value *Low = IRB.CreateExtractValue(Input, 0, "low");
799       // Create a call to __resumeException function
800       IRB.CreateCall(ResumeF, {Low});
801       // Add a terminator to the block
802       IRB.CreateUnreachable();
803       ToErase.push_back(RI);
804     }
805   }
806 
807   // Process llvm.eh.typeid.for intrinsics
808   for (BasicBlock &BB : F) {
809     for (Instruction &I : BB) {
810       auto *CI = dyn_cast<CallInst>(&I);
811       if (!CI)
812         continue;
813       const Function *Callee = CI->getCalledFunction();
814       if (!Callee)
815         continue;
816       if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
817         continue;
818 
819       IRB.SetInsertPoint(CI);
820       CallInst *NewCI =
821           IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
822       CI->replaceAllUsesWith(NewCI);
823       ToErase.push_back(CI);
824     }
825   }
826 
827   // Look for orphan landingpads, can occur in blocks with no predecessors
828   for (BasicBlock &BB : F) {
829     Instruction *I = BB.getFirstNonPHI();
830     if (auto *LPI = dyn_cast<LandingPadInst>(I))
831       LandingPads.insert(LPI);
832   }
833 
834   // Handle all the landingpad for this function together, as multiple invokes
835   // may share a single lp
836   for (LandingPadInst *LPI : LandingPads) {
837     IRB.SetInsertPoint(LPI);
838     SmallVector<Value *, 16> FMCArgs;
839     for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) {
840       Constant *Clause = LPI->getClause(i);
841       // As a temporary workaround for the lack of aggregate varargs support
842       // in the interface between JS and wasm, break out filter operands into
843       // their component elements.
844       if (LPI->isFilter(i)) {
845         auto *ATy = cast<ArrayType>(Clause->getType());
846         for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) {
847           Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter");
848           FMCArgs.push_back(EV);
849         }
850       } else
851         FMCArgs.push_back(Clause);
852     }
853 
854     // Create a call to __cxa_find_matching_catch_N function
855     Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
856     CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
857     Value *Undef = UndefValue::get(LPI->getType());
858     Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
859     Value *TempRet0 = IRB.CreateCall(GetTempRet0Func, None, "tempret0");
860     Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
861 
862     LPI->replaceAllUsesWith(Pair1);
863     ToErase.push_back(LPI);
864   }
865 
866   // Erase everything we no longer need in this function
867   for (Instruction *I : ToErase)
868     I->eraseFromParent();
869 
870   return Changed;
871 }
872 
runSjLjOnFunction(Function & F)873 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
874   Module &M = *F.getParent();
875   LLVMContext &C = F.getContext();
876   IRBuilder<> IRB(C);
877   SmallVector<Instruction *, 64> ToErase;
878   // Vector of %setjmpTable values
879   std::vector<Instruction *> SetjmpTableInsts;
880   // Vector of %setjmpTableSize values
881   std::vector<Instruction *> SetjmpTableSizeInsts;
882 
883   // Setjmp preparation
884 
885   // This instruction effectively means %setjmpTableSize = 4.
886   // We create this as an instruction intentionally, and we don't want to fold
887   // this instruction to a constant 4, because this value will be used in
888   // SSAUpdater.AddAvailableValue(...) later.
889   BasicBlock &EntryBB = F.getEntryBlock();
890   BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
891       Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
892       &*EntryBB.getFirstInsertionPt());
893   // setjmpTable = (int *) malloc(40);
894   Instruction *SetjmpTable = CallInst::CreateMalloc(
895       SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
896       nullptr, nullptr, "setjmpTable");
897   // setjmpTable[0] = 0;
898   IRB.SetInsertPoint(SetjmpTableSize);
899   IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
900   SetjmpTableInsts.push_back(SetjmpTable);
901   SetjmpTableSizeInsts.push_back(SetjmpTableSize);
902 
903   // Setjmp transformation
904   std::vector<PHINode *> SetjmpRetPHIs;
905   Function *SetjmpF = M.getFunction("setjmp");
906   for (User *U : SetjmpF->users()) {
907     auto *CI = dyn_cast<CallInst>(U);
908     if (!CI)
909       report_fatal_error("Does not support indirect calls to setjmp");
910 
911     BasicBlock *BB = CI->getParent();
912     if (BB->getParent() != &F) // in other function
913       continue;
914 
915     // The tail is everything right after the call, and will be reached once
916     // when setjmp is called, and later when longjmp returns to the setjmp
917     BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
918     // Add a phi to the tail, which will be the output of setjmp, which
919     // indicates if this is the first call or a longjmp back. The phi directly
920     // uses the right value based on where we arrive from
921     IRB.SetInsertPoint(Tail->getFirstNonPHI());
922     PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
923 
924     // setjmp initial call returns 0
925     SetjmpRet->addIncoming(IRB.getInt32(0), BB);
926     // The proper output is now this, not the setjmp call itself
927     CI->replaceAllUsesWith(SetjmpRet);
928     // longjmp returns to the setjmp will add themselves to this phi
929     SetjmpRetPHIs.push_back(SetjmpRet);
930 
931     // Fix call target
932     // Our index in the function is our place in the array + 1 to avoid index
933     // 0, because index 0 means the longjmp is not ours to handle.
934     IRB.SetInsertPoint(CI);
935     Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
936                      SetjmpTable, SetjmpTableSize};
937     Instruction *NewSetjmpTable =
938         IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
939     Instruction *NewSetjmpTableSize =
940         IRB.CreateCall(GetTempRet0Func, None, "setjmpTableSize");
941     SetjmpTableInsts.push_back(NewSetjmpTable);
942     SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
943     ToErase.push_back(CI);
944   }
945 
946   // Update each call that can longjmp so it can return to a setjmp where
947   // relevant.
948 
949   // Because we are creating new BBs while processing and don't want to make
950   // all these newly created BBs candidates again for longjmp processing, we
951   // first make the vector of candidate BBs.
952   std::vector<BasicBlock *> BBs;
953   for (BasicBlock &BB : F)
954     BBs.push_back(&BB);
955 
956   // BBs.size() will change within the loop, so we query it every time
957   for (unsigned i = 0; i < BBs.size(); i++) {
958     BasicBlock *BB = BBs[i];
959     for (Instruction &I : *BB) {
960       assert(!isa<InvokeInst>(&I));
961       auto *CI = dyn_cast<CallInst>(&I);
962       if (!CI)
963         continue;
964 
965       const Value *Callee = CI->getCalledValue();
966       if (!canLongjmp(M, Callee))
967         continue;
968 
969       Value *Threw = nullptr;
970       BasicBlock *Tail;
971       if (Callee->getName().startswith(InvokePrefix)) {
972         // If invoke wrapper has already been generated for this call in
973         // previous EH phase, search for the load instruction
974         // %__THREW__.val = __THREW__;
975         // in postamble after the invoke wrapper call
976         LoadInst *ThrewLI = nullptr;
977         StoreInst *ThrewResetSI = nullptr;
978         for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
979              I != IE; ++I) {
980           if (auto *LI = dyn_cast<LoadInst>(I))
981             if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
982               if (GV == ThrewGV) {
983                 Threw = ThrewLI = LI;
984                 break;
985               }
986         }
987         // Search for the store instruction after the load above
988         // __THREW__ = 0;
989         for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
990              I != IE; ++I) {
991           if (auto *SI = dyn_cast<StoreInst>(I))
992             if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
993               if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
994                 ThrewResetSI = SI;
995                 break;
996               }
997         }
998         assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
999         assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1000         Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1001 
1002       } else {
1003         // Wrap call with invoke wrapper and generate preamble/postamble
1004         Threw = wrapInvoke(CI);
1005         ToErase.push_back(CI);
1006         Tail = SplitBlock(BB, CI->getNextNode());
1007       }
1008 
1009       // We need to replace the terminator in Tail - SplitBlock makes BB go
1010       // straight to Tail, we need to check if a longjmp occurred, and go to the
1011       // right setjmp-tail if so
1012       ToErase.push_back(BB->getTerminator());
1013 
1014       // Generate a function call to testSetjmp function and preamble/postamble
1015       // code to figure out (1) whether longjmp occurred (2) if longjmp
1016       // occurred, which setjmp it corresponds to
1017       Value *Label = nullptr;
1018       Value *LongjmpResult = nullptr;
1019       BasicBlock *EndBB = nullptr;
1020       wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1021                      LongjmpResult, EndBB);
1022       assert(Label && LongjmpResult && EndBB);
1023 
1024       // Create switch instruction
1025       IRB.SetInsertPoint(EndBB);
1026       SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1027       // -1 means no longjmp happened, continue normally (will hit the default
1028       // switch case). 0 means a longjmp that is not ours to handle, needs a
1029       // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1030       // 0).
1031       for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) {
1032         SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent());
1033         SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB);
1034       }
1035 
1036       // We are splitting the block here, and must continue to find other calls
1037       // in the block - which is now split. so continue to traverse in the Tail
1038       BBs.push_back(Tail);
1039     }
1040   }
1041 
1042   // Erase everything we no longer need in this function
1043   for (Instruction *I : ToErase)
1044     I->eraseFromParent();
1045 
1046   // Free setjmpTable buffer before each return instruction
1047   for (BasicBlock &BB : F) {
1048     Instruction *TI = BB.getTerminator();
1049     if (isa<ReturnInst>(TI))
1050       CallInst::CreateFree(SetjmpTable, TI);
1051   }
1052 
1053   // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1054   // (when buffer reallocation occurs)
1055   // entry:
1056   //   setjmpTableSize = 4;
1057   //   setjmpTable = (int *) malloc(40);
1058   //   setjmpTable[0] = 0;
1059   // ...
1060   // somebb:
1061   //   setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1062   //   setjmpTableSize = getTempRet0();
1063   // So we need to make sure the SSA for these variables is valid so that every
1064   // saveSetjmp and testSetjmp calls have the correct arguments.
1065   SSAUpdater SetjmpTableSSA;
1066   SSAUpdater SetjmpTableSizeSSA;
1067   SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1068   SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1069   for (Instruction *I : SetjmpTableInsts)
1070     SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1071   for (Instruction *I : SetjmpTableSizeInsts)
1072     SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1073 
1074   for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1075        UI != UE;) {
1076     // Grab the use before incrementing the iterator.
1077     Use &U = *UI;
1078     // Increment the iterator before removing the use from the list.
1079     ++UI;
1080     if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1081       if (I->getParent() != &EntryBB)
1082         SetjmpTableSSA.RewriteUse(U);
1083   }
1084   for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1085        UI != UE;) {
1086     Use &U = *UI;
1087     ++UI;
1088     if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1089       if (I->getParent() != &EntryBB)
1090         SetjmpTableSizeSSA.RewriteUse(U);
1091   }
1092 
1093   // Finally, our modifications to the cfg can break dominance of SSA variables.
1094   // For example, in this code,
1095   // if (x()) { .. setjmp() .. }
1096   // if (y()) { .. longjmp() .. }
1097   // We must split the longjmp block, and it can jump into the block splitted
1098   // from setjmp one. But that means that when we split the setjmp block, it's
1099   // first part no longer dominates its second part - there is a theoretically
1100   // possible control flow path where x() is false, then y() is true and we
1101   // reach the second part of the setjmp block, without ever reaching the first
1102   // part. So, we rebuild SSA form here.
1103   rebuildSSA(F);
1104   return true;
1105 }
1106