1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeTypes method. It transforms
10 // an arbitrary well-formed SelectionDAG to only consist of legal types. This
11 // is common code shared among the LegalizeTypes*.cpp files.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "LegalizeTypes.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22
23 #define DEBUG_TYPE "legalize-types"
24
25 static cl::opt<bool>
26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
27
28 /// Do extensive, expensive, basic correctness checking.
PerformExpensiveChecks()29 void DAGTypeLegalizer::PerformExpensiveChecks() {
30 // If a node is not processed, then none of its values should be mapped by any
31 // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
32
33 // If a node is processed, then each value with an illegal type must be mapped
34 // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
35 // Values with a legal type may be mapped by ReplacedValues, but not by any of
36 // the other maps.
37
38 // Note that these invariants may not hold momentarily when processing a node:
39 // the node being processed may be put in a map before being marked Processed.
40
41 // Note that it is possible to have nodes marked NewNode in the DAG. This can
42 // occur in two ways. Firstly, a node may be created during legalization but
43 // never passed to the legalization core. This is usually due to the implicit
44 // folding that occurs when using the DAG.getNode operators. Secondly, a new
45 // node may be passed to the legalization core, but when analyzed may morph
46 // into a different node, leaving the original node as a NewNode in the DAG.
47 // A node may morph if one of its operands changes during analysis. Whether
48 // it actually morphs or not depends on whether, after updating its operands,
49 // it is equivalent to an existing node: if so, it morphs into that existing
50 // node (CSE). An operand can change during analysis if the operand is a new
51 // node that morphs, or it is a processed value that was mapped to some other
52 // value (as recorded in ReplacedValues) in which case the operand is turned
53 // into that other value. If a node morphs then the node it morphed into will
54 // be used instead of it for legalization, however the original node continues
55 // to live on in the DAG.
56 // The conclusion is that though there may be nodes marked NewNode in the DAG,
57 // all uses of such nodes are also marked NewNode: the result is a fungus of
58 // NewNodes growing on top of the useful nodes, and perhaps using them, but
59 // not used by them.
60
61 // If a value is mapped by ReplacedValues, then it must have no uses, except
62 // by nodes marked NewNode (see above).
63
64 // The final node obtained by mapping by ReplacedValues is not marked NewNode.
65 // Note that ReplacedValues should be applied iteratively.
66
67 // Note that the ReplacedValues map may also map deleted nodes (by iterating
68 // over the DAG we never dereference deleted nodes). This means that it may
69 // also map nodes marked NewNode if the deallocated memory was reallocated as
70 // another node, and that new node was not seen by the LegalizeTypes machinery
71 // (for example because it was created but not used). In general, we cannot
72 // distinguish between new nodes and deleted nodes.
73 SmallVector<SDNode*, 16> NewNodes;
74 for (SDNode &Node : DAG.allnodes()) {
75 // Remember nodes marked NewNode - they are subject to extra checking below.
76 if (Node.getNodeId() == NewNode)
77 NewNodes.push_back(&Node);
78
79 for (unsigned i = 0, e = Node.getNumValues(); i != e; ++i) {
80 SDValue Res(&Node, i);
81 bool Failed = false;
82 // Don't create a value in map.
83 auto ResId = ValueToIdMap.lookup(Res);
84
85 unsigned Mapped = 0;
86 if (ResId) {
87 auto I = ReplacedValues.find(ResId);
88 if (I != ReplacedValues.end()) {
89 Mapped |= 1;
90 // Check that remapped values are only used by nodes marked NewNode.
91 for (SDNode::use_iterator UI = Node.use_begin(), UE = Node.use_end();
92 UI != UE; ++UI)
93 if (UI.getUse().getResNo() == i)
94 assert(UI->getNodeId() == NewNode &&
95 "Remapped value has non-trivial use!");
96
97 // Check that the final result of applying ReplacedValues is not
98 // marked NewNode.
99 auto NewValId = I->second;
100 I = ReplacedValues.find(NewValId);
101 while (I != ReplacedValues.end()) {
102 NewValId = I->second;
103 I = ReplacedValues.find(NewValId);
104 }
105 SDValue NewVal = getSDValue(NewValId);
106 (void)NewVal;
107 assert(NewVal.getNode()->getNodeId() != NewNode &&
108 "ReplacedValues maps to a new node!");
109 }
110 if (PromotedIntegers.count(ResId))
111 Mapped |= 2;
112 if (SoftenedFloats.count(ResId))
113 Mapped |= 4;
114 if (ScalarizedVectors.count(ResId))
115 Mapped |= 8;
116 if (ExpandedIntegers.count(ResId))
117 Mapped |= 16;
118 if (ExpandedFloats.count(ResId))
119 Mapped |= 32;
120 if (SplitVectors.count(ResId))
121 Mapped |= 64;
122 if (WidenedVectors.count(ResId))
123 Mapped |= 128;
124 if (PromotedFloats.count(ResId))
125 Mapped |= 256;
126 if (SoftPromotedHalfs.count(ResId))
127 Mapped |= 512;
128 }
129
130 if (Node.getNodeId() != Processed) {
131 // Since we allow ReplacedValues to map deleted nodes, it may map nodes
132 // marked NewNode too, since a deleted node may have been reallocated as
133 // another node that has not been seen by the LegalizeTypes machinery.
134 if ((Node.getNodeId() == NewNode && Mapped > 1) ||
135 (Node.getNodeId() != NewNode && Mapped != 0)) {
136 dbgs() << "Unprocessed value in a map!";
137 Failed = true;
138 }
139 } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(&Node)) {
140 if (Mapped > 1) {
141 dbgs() << "Value with legal type was transformed!";
142 Failed = true;
143 }
144 } else {
145 if (Mapped == 0) {
146 SDValue NodeById = IdToValueMap.lookup(ResId);
147 // It is possible the node has been remapped to another node and had
148 // its Id updated in the Value to Id table. The node it remapped to
149 // may not have been processed yet. Look up the Id in the Id to Value
150 // table and re-check the Processed state. If the node hasn't been
151 // remapped we'll get the same state as we got earlier.
152 if (NodeById->getNodeId() == Processed) {
153 dbgs() << "Processed value not in any map!";
154 Failed = true;
155 }
156 } else if (Mapped & (Mapped - 1)) {
157 dbgs() << "Value in multiple maps!";
158 Failed = true;
159 }
160 }
161
162 if (Failed) {
163 if (Mapped & 1)
164 dbgs() << " ReplacedValues";
165 if (Mapped & 2)
166 dbgs() << " PromotedIntegers";
167 if (Mapped & 4)
168 dbgs() << " SoftenedFloats";
169 if (Mapped & 8)
170 dbgs() << " ScalarizedVectors";
171 if (Mapped & 16)
172 dbgs() << " ExpandedIntegers";
173 if (Mapped & 32)
174 dbgs() << " ExpandedFloats";
175 if (Mapped & 64)
176 dbgs() << " SplitVectors";
177 if (Mapped & 128)
178 dbgs() << " WidenedVectors";
179 if (Mapped & 256)
180 dbgs() << " PromotedFloats";
181 if (Mapped & 512)
182 dbgs() << " SoftPromoteHalfs";
183 dbgs() << "\n";
184 llvm_unreachable(nullptr);
185 }
186 }
187 }
188
189 #ifndef NDEBUG
190 // Checked that NewNodes are only used by other NewNodes.
191 for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
192 SDNode *N = NewNodes[i];
193 for (SDNode *U : N->uses())
194 assert(U->getNodeId() == NewNode && "NewNode used by non-NewNode!");
195 }
196 #endif
197 }
198
199 /// This is the main entry point for the type legalizer. This does a top-down
200 /// traversal of the dag, legalizing types as it goes. Returns "true" if it made
201 /// any changes.
run()202 bool DAGTypeLegalizer::run() {
203 bool Changed = false;
204
205 // Create a dummy node (which is not added to allnodes), that adds a reference
206 // to the root node, preventing it from being deleted, and tracking any
207 // changes of the root.
208 HandleSDNode Dummy(DAG.getRoot());
209 Dummy.setNodeId(Unanalyzed);
210
211 // The root of the dag may dangle to deleted nodes until the type legalizer is
212 // done. Set it to null to avoid confusion.
213 DAG.setRoot(SDValue());
214
215 // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
216 // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
217 // non-leaves.
218 for (SDNode &Node : DAG.allnodes()) {
219 if (Node.getNumOperands() == 0) {
220 Node.setNodeId(ReadyToProcess);
221 Worklist.push_back(&Node);
222 } else {
223 Node.setNodeId(Unanalyzed);
224 }
225 }
226
227 // Now that we have a set of nodes to process, handle them all.
228 while (!Worklist.empty()) {
229 #ifndef EXPENSIVE_CHECKS
230 if (EnableExpensiveChecks)
231 #endif
232 PerformExpensiveChecks();
233
234 SDNode *N = Worklist.pop_back_val();
235 assert(N->getNodeId() == ReadyToProcess &&
236 "Node should be ready if on worklist!");
237
238 LLVM_DEBUG(dbgs() << "Legalizing node: "; N->dump(&DAG));
239 if (IgnoreNodeResults(N)) {
240 LLVM_DEBUG(dbgs() << "Ignoring node results\n");
241 goto ScanOperands;
242 }
243
244 // Scan the values produced by the node, checking to see if any result
245 // types are illegal.
246 for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
247 EVT ResultVT = N->getValueType(i);
248 LLVM_DEBUG(dbgs() << "Analyzing result type: " << ResultVT.getEVTString()
249 << "\n");
250 switch (getTypeAction(ResultVT)) {
251 case TargetLowering::TypeLegal:
252 LLVM_DEBUG(dbgs() << "Legal result type\n");
253 break;
254 case TargetLowering::TypeScalarizeScalableVector:
255 report_fatal_error(
256 "Scalarization of scalable vectors is not supported.");
257 // The following calls must take care of *all* of the node's results,
258 // not just the illegal result they were passed (this includes results
259 // with a legal type). Results can be remapped using ReplaceValueWith,
260 // or their promoted/expanded/etc values registered in PromotedIntegers,
261 // ExpandedIntegers etc.
262 case TargetLowering::TypePromoteInteger:
263 PromoteIntegerResult(N, i);
264 Changed = true;
265 goto NodeDone;
266 case TargetLowering::TypeExpandInteger:
267 ExpandIntegerResult(N, i);
268 Changed = true;
269 goto NodeDone;
270 case TargetLowering::TypeSoftenFloat:
271 SoftenFloatResult(N, i);
272 Changed = true;
273 goto NodeDone;
274 case TargetLowering::TypeExpandFloat:
275 ExpandFloatResult(N, i);
276 Changed = true;
277 goto NodeDone;
278 case TargetLowering::TypeScalarizeVector:
279 ScalarizeVectorResult(N, i);
280 Changed = true;
281 goto NodeDone;
282 case TargetLowering::TypeSplitVector:
283 SplitVectorResult(N, i);
284 Changed = true;
285 goto NodeDone;
286 case TargetLowering::TypeWidenVector:
287 WidenVectorResult(N, i);
288 Changed = true;
289 goto NodeDone;
290 case TargetLowering::TypePromoteFloat:
291 PromoteFloatResult(N, i);
292 Changed = true;
293 goto NodeDone;
294 case TargetLowering::TypeSoftPromoteHalf:
295 SoftPromoteHalfResult(N, i);
296 Changed = true;
297 goto NodeDone;
298 }
299 }
300
301 ScanOperands:
302 // Scan the operand list for the node, handling any nodes with operands that
303 // are illegal.
304 {
305 unsigned NumOperands = N->getNumOperands();
306 bool NeedsReanalyzing = false;
307 unsigned i;
308 for (i = 0; i != NumOperands; ++i) {
309 if (IgnoreNodeResults(N->getOperand(i).getNode()))
310 continue;
311
312 const auto &Op = N->getOperand(i);
313 LLVM_DEBUG(dbgs() << "Analyzing operand: "; Op.dump(&DAG));
314 EVT OpVT = Op.getValueType();
315 switch (getTypeAction(OpVT)) {
316 case TargetLowering::TypeLegal:
317 LLVM_DEBUG(dbgs() << "Legal operand\n");
318 continue;
319 case TargetLowering::TypeScalarizeScalableVector:
320 report_fatal_error(
321 "Scalarization of scalable vectors is not supported.");
322 // The following calls must either replace all of the node's results
323 // using ReplaceValueWith, and return "false"; or update the node's
324 // operands in place, and return "true".
325 case TargetLowering::TypePromoteInteger:
326 NeedsReanalyzing = PromoteIntegerOperand(N, i);
327 Changed = true;
328 break;
329 case TargetLowering::TypeExpandInteger:
330 NeedsReanalyzing = ExpandIntegerOperand(N, i);
331 Changed = true;
332 break;
333 case TargetLowering::TypeSoftenFloat:
334 NeedsReanalyzing = SoftenFloatOperand(N, i);
335 Changed = true;
336 break;
337 case TargetLowering::TypeExpandFloat:
338 NeedsReanalyzing = ExpandFloatOperand(N, i);
339 Changed = true;
340 break;
341 case TargetLowering::TypeScalarizeVector:
342 NeedsReanalyzing = ScalarizeVectorOperand(N, i);
343 Changed = true;
344 break;
345 case TargetLowering::TypeSplitVector:
346 NeedsReanalyzing = SplitVectorOperand(N, i);
347 Changed = true;
348 break;
349 case TargetLowering::TypeWidenVector:
350 NeedsReanalyzing = WidenVectorOperand(N, i);
351 Changed = true;
352 break;
353 case TargetLowering::TypePromoteFloat:
354 NeedsReanalyzing = PromoteFloatOperand(N, i);
355 Changed = true;
356 break;
357 case TargetLowering::TypeSoftPromoteHalf:
358 NeedsReanalyzing = SoftPromoteHalfOperand(N, i);
359 Changed = true;
360 break;
361 }
362 break;
363 }
364
365 // The sub-method updated N in place. Check to see if any operands are new,
366 // and if so, mark them. If the node needs revisiting, don't add all users
367 // to the worklist etc.
368 if (NeedsReanalyzing) {
369 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
370
371 N->setNodeId(NewNode);
372 // Recompute the NodeId and correct processed operands, adding the node to
373 // the worklist if ready.
374 SDNode *M = AnalyzeNewNode(N);
375 if (M == N)
376 // The node didn't morph - nothing special to do, it will be revisited.
377 continue;
378
379 // The node morphed - this is equivalent to legalizing by replacing every
380 // value of N with the corresponding value of M. So do that now.
381 assert(N->getNumValues() == M->getNumValues() &&
382 "Node morphing changed the number of results!");
383 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
384 // Replacing the value takes care of remapping the new value.
385 ReplaceValueWith(SDValue(N, i), SDValue(M, i));
386 assert(N->getNodeId() == NewNode && "Unexpected node state!");
387 // The node continues to live on as part of the NewNode fungus that
388 // grows on top of the useful nodes. Nothing more needs to be done
389 // with it - move on to the next node.
390 continue;
391 }
392
393 if (i == NumOperands) {
394 LLVM_DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG);
395 dbgs() << "\n");
396 }
397 }
398 NodeDone:
399
400 // If we reach here, the node was processed, potentially creating new nodes.
401 // Mark it as processed and add its users to the worklist as appropriate.
402 assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
403 N->setNodeId(Processed);
404
405 for (SDNode *User : N->uses()) {
406 int NodeId = User->getNodeId();
407
408 // This node has two options: it can either be a new node or its Node ID
409 // may be a count of the number of operands it has that are not ready.
410 if (NodeId > 0) {
411 User->setNodeId(NodeId-1);
412
413 // If this was the last use it was waiting on, add it to the ready list.
414 if (NodeId-1 == ReadyToProcess)
415 Worklist.push_back(User);
416 continue;
417 }
418
419 // If this is an unreachable new node, then ignore it. If it ever becomes
420 // reachable by being used by a newly created node then it will be handled
421 // by AnalyzeNewNode.
422 if (NodeId == NewNode)
423 continue;
424
425 // Otherwise, this node is new: this is the first operand of it that
426 // became ready. Its new NodeId is the number of operands it has minus 1
427 // (as this node is now processed).
428 assert(NodeId == Unanalyzed && "Unknown node ID!");
429 User->setNodeId(User->getNumOperands() - 1);
430
431 // If the node only has a single operand, it is now ready.
432 if (User->getNumOperands() == 1)
433 Worklist.push_back(User);
434 }
435 }
436
437 #ifndef EXPENSIVE_CHECKS
438 if (EnableExpensiveChecks)
439 #endif
440 PerformExpensiveChecks();
441
442 // If the root changed (e.g. it was a dead load) update the root.
443 DAG.setRoot(Dummy.getValue());
444
445 // Remove dead nodes. This is important to do for cleanliness but also before
446 // the checking loop below. Implicit folding by the DAG.getNode operators and
447 // node morphing can cause unreachable nodes to be around with their flags set
448 // to new.
449 DAG.RemoveDeadNodes();
450
451 // In a debug build, scan all the nodes to make sure we found them all. This
452 // ensures that there are no cycles and that everything got processed.
453 #ifndef NDEBUG
454 for (SDNode &Node : DAG.allnodes()) {
455 bool Failed = false;
456
457 // Check that all result types are legal.
458 if (!IgnoreNodeResults(&Node))
459 for (unsigned i = 0, NumVals = Node.getNumValues(); i < NumVals; ++i)
460 if (!isTypeLegal(Node.getValueType(i))) {
461 dbgs() << "Result type " << i << " illegal: ";
462 Node.dump(&DAG);
463 Failed = true;
464 }
465
466 // Check that all operand types are legal.
467 for (unsigned i = 0, NumOps = Node.getNumOperands(); i < NumOps; ++i)
468 if (!IgnoreNodeResults(Node.getOperand(i).getNode()) &&
469 !isTypeLegal(Node.getOperand(i).getValueType())) {
470 dbgs() << "Operand type " << i << " illegal: ";
471 Node.getOperand(i).dump(&DAG);
472 Failed = true;
473 }
474
475 if (Node.getNodeId() != Processed) {
476 if (Node.getNodeId() == NewNode)
477 dbgs() << "New node not analyzed?\n";
478 else if (Node.getNodeId() == Unanalyzed)
479 dbgs() << "Unanalyzed node not noticed?\n";
480 else if (Node.getNodeId() > 0)
481 dbgs() << "Operand not processed?\n";
482 else if (Node.getNodeId() == ReadyToProcess)
483 dbgs() << "Not added to worklist?\n";
484 Failed = true;
485 }
486
487 if (Failed) {
488 Node.dump(&DAG); dbgs() << "\n";
489 llvm_unreachable(nullptr);
490 }
491 }
492 #endif
493
494 return Changed;
495 }
496
497 /// The specified node is the root of a subtree of potentially new nodes.
498 /// Correct any processed operands (this may change the node) and calculate the
499 /// NodeId. If the node itself changes to a processed node, it is not remapped -
500 /// the caller needs to take care of this. Returns the potentially changed node.
AnalyzeNewNode(SDNode * N)501 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
502 // If this was an existing node that is already done, we're done.
503 if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
504 return N;
505
506 // Okay, we know that this node is new. Recursively walk all of its operands
507 // to see if they are new also. The depth of this walk is bounded by the size
508 // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
509 // about revisiting of nodes.
510 //
511 // As we walk the operands, keep track of the number of nodes that are
512 // processed. If non-zero, this will become the new nodeid of this node.
513 // Operands may morph when they are analyzed. If so, the node will be
514 // updated after all operands have been analyzed. Since this is rare,
515 // the code tries to minimize overhead in the non-morphing case.
516
517 std::vector<SDValue> NewOps;
518 unsigned NumProcessed = 0;
519 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
520 SDValue OrigOp = N->getOperand(i);
521 SDValue Op = OrigOp;
522
523 AnalyzeNewValue(Op); // Op may morph.
524
525 if (Op.getNode()->getNodeId() == Processed)
526 ++NumProcessed;
527
528 if (!NewOps.empty()) {
529 // Some previous operand changed. Add this one to the list.
530 NewOps.push_back(Op);
531 } else if (Op != OrigOp) {
532 // This is the first operand to change - add all operands so far.
533 NewOps.insert(NewOps.end(), N->op_begin(), N->op_begin() + i);
534 NewOps.push_back(Op);
535 }
536 }
537
538 // Some operands changed - update the node.
539 if (!NewOps.empty()) {
540 SDNode *M = DAG.UpdateNodeOperands(N, NewOps);
541 if (M != N) {
542 // The node morphed into a different node. Normally for this to happen
543 // the original node would have to be marked NewNode. However this can
544 // in theory momentarily not be the case while ReplaceValueWith is doing
545 // its stuff. Mark the original node NewNode to help basic correctness
546 // checking.
547 N->setNodeId(NewNode);
548 if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
549 // It morphed into a previously analyzed node - nothing more to do.
550 return M;
551
552 // It morphed into a different new node. Do the equivalent of passing
553 // it to AnalyzeNewNode: expunge it and calculate the NodeId. No need
554 // to remap the operands, since they are the same as the operands we
555 // remapped above.
556 N = M;
557 }
558 }
559
560 // Calculate the NodeId.
561 N->setNodeId(N->getNumOperands() - NumProcessed);
562 if (N->getNodeId() == ReadyToProcess)
563 Worklist.push_back(N);
564
565 return N;
566 }
567
568 /// Call AnalyzeNewNode, updating the node in Val if needed.
569 /// If the node changes to a processed node, then remap it.
AnalyzeNewValue(SDValue & Val)570 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
571 Val.setNode(AnalyzeNewNode(Val.getNode()));
572 if (Val.getNode()->getNodeId() == Processed)
573 // We were passed a processed node, or it morphed into one - remap it.
574 RemapValue(Val);
575 }
576
577 /// If the specified value was already legalized to another value,
578 /// replace it by that value.
RemapValue(SDValue & V)579 void DAGTypeLegalizer::RemapValue(SDValue &V) {
580 auto Id = getTableId(V);
581 V = getSDValue(Id);
582 }
583
RemapId(TableId & Id)584 void DAGTypeLegalizer::RemapId(TableId &Id) {
585 auto I = ReplacedValues.find(Id);
586 if (I != ReplacedValues.end()) {
587 assert(Id != I->second && "Id is mapped to itself.");
588 // Use path compression to speed up future lookups if values get multiply
589 // replaced with other values.
590 RemapId(I->second);
591 Id = I->second;
592
593 // Note that N = IdToValueMap[Id] it is possible to have
594 // N.getNode()->getNodeId() == NewNode at this point because it is possible
595 // for a node to be put in the map before being processed.
596 }
597 }
598
599 namespace {
600 /// This class is a DAGUpdateListener that listens for updates to nodes and
601 /// recomputes their ready state.
602 class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
603 DAGTypeLegalizer &DTL;
604 SmallSetVector<SDNode*, 16> &NodesToAnalyze;
605 public:
NodeUpdateListener(DAGTypeLegalizer & dtl,SmallSetVector<SDNode *,16> & nta)606 explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
607 SmallSetVector<SDNode*, 16> &nta)
608 : SelectionDAG::DAGUpdateListener(dtl.getDAG()),
609 DTL(dtl), NodesToAnalyze(nta) {}
610
NodeDeleted(SDNode * N,SDNode * E)611 void NodeDeleted(SDNode *N, SDNode *E) override {
612 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
613 N->getNodeId() != DAGTypeLegalizer::Processed &&
614 "Invalid node ID for RAUW deletion!");
615 // It is possible, though rare, for the deleted node N to occur as a
616 // target in a map, so note the replacement N -> E in ReplacedValues.
617 assert(E && "Node not replaced?");
618 DTL.NoteDeletion(N, E);
619
620 // In theory the deleted node could also have been scheduled for analysis.
621 // So remove it from the set of nodes which will be analyzed.
622 NodesToAnalyze.remove(N);
623
624 // In general nothing needs to be done for E, since it didn't change but
625 // only gained new uses. However N -> E was just added to ReplacedValues,
626 // and the result of a ReplacedValues mapping is not allowed to be marked
627 // NewNode. So if E is marked NewNode, then it needs to be analyzed.
628 if (E->getNodeId() == DAGTypeLegalizer::NewNode)
629 NodesToAnalyze.insert(E);
630 }
631
NodeUpdated(SDNode * N)632 void NodeUpdated(SDNode *N) override {
633 // Node updates can mean pretty much anything. It is possible that an
634 // operand was set to something already processed (f.e.) in which case
635 // this node could become ready. Recompute its flags.
636 assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
637 N->getNodeId() != DAGTypeLegalizer::Processed &&
638 "Invalid node ID for RAUW deletion!");
639 N->setNodeId(DAGTypeLegalizer::NewNode);
640 NodesToAnalyze.insert(N);
641 }
642 };
643 }
644
645
646 /// The specified value was legalized to the specified other value.
647 /// Update the DAG and NodeIds replacing any uses of From to use To instead.
ReplaceValueWith(SDValue From,SDValue To)648 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
649 assert(From.getNode() != To.getNode() && "Potential legalization loop!");
650
651 // If expansion produced new nodes, make sure they are properly marked.
652 AnalyzeNewValue(To);
653
654 // Anything that used the old node should now use the new one. Note that this
655 // can potentially cause recursive merging.
656 SmallSetVector<SDNode*, 16> NodesToAnalyze;
657 NodeUpdateListener NUL(*this, NodesToAnalyze);
658 do {
659
660 // The old node may be present in a map like ExpandedIntegers or
661 // PromotedIntegers. Inform maps about the replacement.
662 auto FromId = getTableId(From);
663 auto ToId = getTableId(To);
664
665 if (FromId != ToId)
666 ReplacedValues[FromId] = ToId;
667 DAG.ReplaceAllUsesOfValueWith(From, To);
668
669 // Process the list of nodes that need to be reanalyzed.
670 while (!NodesToAnalyze.empty()) {
671 SDNode *N = NodesToAnalyze.pop_back_val();
672 if (N->getNodeId() != DAGTypeLegalizer::NewNode)
673 // The node was analyzed while reanalyzing an earlier node - it is safe
674 // to skip. Note that this is not a morphing node - otherwise it would
675 // still be marked NewNode.
676 continue;
677
678 // Analyze the node's operands and recalculate the node ID.
679 SDNode *M = AnalyzeNewNode(N);
680 if (M != N) {
681 // The node morphed into a different node. Make everyone use the new
682 // node instead.
683 assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
684 assert(N->getNumValues() == M->getNumValues() &&
685 "Node morphing changed the number of results!");
686 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
687 SDValue OldVal(N, i);
688 SDValue NewVal(M, i);
689 if (M->getNodeId() == Processed)
690 RemapValue(NewVal);
691 // OldVal may be a target of the ReplacedValues map which was marked
692 // NewNode to force reanalysis because it was updated. Ensure that
693 // anything that ReplacedValues mapped to OldVal will now be mapped
694 // all the way to NewVal.
695 auto OldValId = getTableId(OldVal);
696 auto NewValId = getTableId(NewVal);
697 DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal);
698 if (OldValId != NewValId)
699 ReplacedValues[OldValId] = NewValId;
700 }
701 // The original node continues to exist in the DAG, marked NewNode.
702 }
703 }
704 // When recursively update nodes with new nodes, it is possible to have
705 // new uses of From due to CSE. If this happens, replace the new uses of
706 // From with To.
707 } while (!From.use_empty());
708 }
709
SetPromotedInteger(SDValue Op,SDValue Result)710 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
711 assert(Result.getValueType() ==
712 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
713 "Invalid type for promoted integer");
714 AnalyzeNewValue(Result);
715
716 auto &OpIdEntry = PromotedIntegers[getTableId(Op)];
717 assert((OpIdEntry == 0) && "Node is already promoted!");
718 OpIdEntry = getTableId(Result);
719 Result->setFlags(Op->getFlags());
720
721 DAG.transferDbgValues(Op, Result);
722 }
723
SetSoftenedFloat(SDValue Op,SDValue Result)724 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
725 assert(Result.getValueType() ==
726 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
727 "Invalid type for softened float");
728 AnalyzeNewValue(Result);
729
730 auto &OpIdEntry = SoftenedFloats[getTableId(Op)];
731 assert((OpIdEntry == 0) && "Node is already converted to integer!");
732 OpIdEntry = getTableId(Result);
733 }
734
SetPromotedFloat(SDValue Op,SDValue Result)735 void DAGTypeLegalizer::SetPromotedFloat(SDValue Op, SDValue Result) {
736 assert(Result.getValueType() ==
737 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
738 "Invalid type for promoted float");
739 AnalyzeNewValue(Result);
740
741 auto &OpIdEntry = PromotedFloats[getTableId(Op)];
742 assert((OpIdEntry == 0) && "Node is already promoted!");
743 OpIdEntry = getTableId(Result);
744 }
745
SetSoftPromotedHalf(SDValue Op,SDValue Result)746 void DAGTypeLegalizer::SetSoftPromotedHalf(SDValue Op, SDValue Result) {
747 assert(Result.getValueType() == MVT::i16 &&
748 "Invalid type for soft-promoted half");
749 AnalyzeNewValue(Result);
750
751 auto &OpIdEntry = SoftPromotedHalfs[getTableId(Op)];
752 assert((OpIdEntry == 0) && "Node is already promoted!");
753 OpIdEntry = getTableId(Result);
754 }
755
SetScalarizedVector(SDValue Op,SDValue Result)756 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
757 // Note that in some cases vector operation operands may be greater than
758 // the vector element type. For example BUILD_VECTOR of type <1 x i1> with
759 // a constant i8 operand.
760
761 // We don't currently support the scalarization of scalable vector types.
762 assert(Result.getValueSizeInBits().getFixedSize() >=
763 Op.getScalarValueSizeInBits() &&
764 "Invalid type for scalarized vector");
765 AnalyzeNewValue(Result);
766
767 auto &OpIdEntry = ScalarizedVectors[getTableId(Op)];
768 assert((OpIdEntry == 0) && "Node is already scalarized!");
769 OpIdEntry = getTableId(Result);
770 }
771
GetExpandedInteger(SDValue Op,SDValue & Lo,SDValue & Hi)772 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
773 SDValue &Hi) {
774 std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
775 assert((Entry.first != 0) && "Operand isn't expanded");
776 Lo = getSDValue(Entry.first);
777 Hi = getSDValue(Entry.second);
778 }
779
SetExpandedInteger(SDValue Op,SDValue Lo,SDValue Hi)780 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
781 SDValue Hi) {
782 assert(Lo.getValueType() ==
783 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
784 Hi.getValueType() == Lo.getValueType() &&
785 "Invalid type for expanded integer");
786 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
787 AnalyzeNewValue(Lo);
788 AnalyzeNewValue(Hi);
789
790 // Transfer debug values. Don't invalidate the source debug value until it's
791 // been transferred to the high and low bits.
792 if (DAG.getDataLayout().isBigEndian()) {
793 DAG.transferDbgValues(Op, Hi, 0, Hi.getValueSizeInBits(), false);
794 DAG.transferDbgValues(Op, Lo, Hi.getValueSizeInBits(),
795 Lo.getValueSizeInBits());
796 } else {
797 DAG.transferDbgValues(Op, Lo, 0, Lo.getValueSizeInBits(), false);
798 DAG.transferDbgValues(Op, Hi, Lo.getValueSizeInBits(),
799 Hi.getValueSizeInBits());
800 }
801
802 // Remember that this is the result of the node.
803 std::pair<TableId, TableId> &Entry = ExpandedIntegers[getTableId(Op)];
804 assert((Entry.first == 0) && "Node already expanded");
805 Entry.first = getTableId(Lo);
806 Entry.second = getTableId(Hi);
807 }
808
GetExpandedFloat(SDValue Op,SDValue & Lo,SDValue & Hi)809 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
810 SDValue &Hi) {
811 std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
812 assert((Entry.first != 0) && "Operand isn't expanded");
813 Lo = getSDValue(Entry.first);
814 Hi = getSDValue(Entry.second);
815 }
816
SetExpandedFloat(SDValue Op,SDValue Lo,SDValue Hi)817 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
818 SDValue Hi) {
819 assert(Lo.getValueType() ==
820 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
821 Hi.getValueType() == Lo.getValueType() &&
822 "Invalid type for expanded float");
823 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
824 AnalyzeNewValue(Lo);
825 AnalyzeNewValue(Hi);
826
827 std::pair<TableId, TableId> &Entry = ExpandedFloats[getTableId(Op)];
828 assert((Entry.first == 0) && "Node already expanded");
829 Entry.first = getTableId(Lo);
830 Entry.second = getTableId(Hi);
831 }
832
GetSplitVector(SDValue Op,SDValue & Lo,SDValue & Hi)833 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
834 SDValue &Hi) {
835 std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
836 Lo = getSDValue(Entry.first);
837 Hi = getSDValue(Entry.second);
838 assert(Lo.getNode() && "Operand isn't split");
839 ;
840 }
841
SetSplitVector(SDValue Op,SDValue Lo,SDValue Hi)842 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
843 SDValue Hi) {
844 assert(Lo.getValueType().getVectorElementType() ==
845 Op.getValueType().getVectorElementType() &&
846 Lo.getValueType().getVectorElementCount() * 2 ==
847 Op.getValueType().getVectorElementCount() &&
848 Hi.getValueType() == Lo.getValueType() &&
849 "Invalid type for split vector");
850 // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
851 AnalyzeNewValue(Lo);
852 AnalyzeNewValue(Hi);
853
854 // Remember that this is the result of the node.
855 std::pair<TableId, TableId> &Entry = SplitVectors[getTableId(Op)];
856 assert((Entry.first == 0) && "Node already split");
857 Entry.first = getTableId(Lo);
858 Entry.second = getTableId(Hi);
859 }
860
SetWidenedVector(SDValue Op,SDValue Result)861 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
862 assert(Result.getValueType() ==
863 TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
864 "Invalid type for widened vector");
865 AnalyzeNewValue(Result);
866
867 auto &OpIdEntry = WidenedVectors[getTableId(Op)];
868 assert((OpIdEntry == 0) && "Node already widened!");
869 OpIdEntry = getTableId(Result);
870 }
871
872
873 //===----------------------------------------------------------------------===//
874 // Utilities.
875 //===----------------------------------------------------------------------===//
876
877 /// Convert to an integer of the same size.
BitConvertToInteger(SDValue Op)878 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
879 unsigned BitWidth = Op.getValueSizeInBits();
880 return DAG.getNode(ISD::BITCAST, SDLoc(Op),
881 EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
882 }
883
884 /// Convert to a vector of integers of the same size.
BitConvertVectorToIntegerVector(SDValue Op)885 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
886 assert(Op.getValueType().isVector() && "Only applies to vectors!");
887 unsigned EltWidth = Op.getScalarValueSizeInBits();
888 EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
889 auto EltCnt = Op.getValueType().getVectorElementCount();
890 return DAG.getNode(ISD::BITCAST, SDLoc(Op),
891 EVT::getVectorVT(*DAG.getContext(), EltNVT, EltCnt), Op);
892 }
893
CreateStackStoreLoad(SDValue Op,EVT DestVT)894 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
895 EVT DestVT) {
896 SDLoc dl(Op);
897 // Create the stack frame object. Make sure it is aligned for both
898 // the source and destination types.
899
900 // In cases where the vector is illegal it will be broken down into parts
901 // and stored in parts - we should use the alignment for the smallest part.
902 Align DestAlign = DAG.getReducedAlign(DestVT, /*UseABI=*/false);
903 Align OpAlign = DAG.getReducedAlign(Op.getValueType(), /*UseABI=*/false);
904 Align Align = std::max(DestAlign, OpAlign);
905 SDValue StackPtr =
906 DAG.CreateStackTemporary(Op.getValueType().getStoreSize(), Align);
907 // Emit a store to the stack slot.
908 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
909 MachinePointerInfo(), Align);
910 // Result is a load from the stack slot.
911 return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(), Align);
912 }
913
914 /// Replace the node's results with custom code provided by the target and
915 /// return "true", or do nothing and return "false".
916 /// The last parameter is FALSE if we are dealing with a node with legal
917 /// result types and illegal operand. The second parameter denotes the type of
918 /// illegal OperandNo in that case.
919 /// The last parameter being TRUE means we are dealing with a
920 /// node with illegal result types. The second parameter denotes the type of
921 /// illegal ResNo in that case.
CustomLowerNode(SDNode * N,EVT VT,bool LegalizeResult)922 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
923 // See if the target wants to custom lower this node.
924 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
925 return false;
926
927 SmallVector<SDValue, 8> Results;
928 if (LegalizeResult)
929 TLI.ReplaceNodeResults(N, Results, DAG);
930 else
931 TLI.LowerOperationWrapper(N, Results, DAG);
932
933 if (Results.empty())
934 // The target didn't want to custom lower it after all.
935 return false;
936
937 // Make everything that once used N's values now use those in Results instead.
938 assert(Results.size() == N->getNumValues() &&
939 "Custom lowering returned the wrong number of results!");
940 for (unsigned i = 0, e = Results.size(); i != e; ++i) {
941 ReplaceValueWith(SDValue(N, i), Results[i]);
942 }
943 return true;
944 }
945
946
947 /// Widen the node's results with custom code provided by the target and return
948 /// "true", or do nothing and return "false".
CustomWidenLowerNode(SDNode * N,EVT VT)949 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
950 // See if the target wants to custom lower this node.
951 if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
952 return false;
953
954 SmallVector<SDValue, 8> Results;
955 TLI.ReplaceNodeResults(N, Results, DAG);
956
957 if (Results.empty())
958 // The target didn't want to custom widen lower its result after all.
959 return false;
960
961 // Update the widening map.
962 assert(Results.size() == N->getNumValues() &&
963 "Custom lowering returned the wrong number of results!");
964 for (unsigned i = 0, e = Results.size(); i != e; ++i) {
965 // If this is a chain output or already widened just replace it.
966 bool WasWidened = SDValue(N, i).getValueType() != Results[i].getValueType();
967 if (WasWidened)
968 SetWidenedVector(SDValue(N, i), Results[i]);
969 else
970 ReplaceValueWith(SDValue(N, i), Results[i]);
971 }
972 return true;
973 }
974
DisintegrateMERGE_VALUES(SDNode * N,unsigned ResNo)975 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
976 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
977 if (i != ResNo)
978 ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
979 return SDValue(N->getOperand(ResNo));
980 }
981
982 /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
983 /// given value.
GetPairElements(SDValue Pair,SDValue & Lo,SDValue & Hi)984 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
985 SDValue &Lo, SDValue &Hi) {
986 SDLoc dl(Pair);
987 EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
988 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
989 DAG.getIntPtrConstant(0, dl));
990 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
991 DAG.getIntPtrConstant(1, dl));
992 }
993
994 /// Build an integer with low bits Lo and high bits Hi.
JoinIntegers(SDValue Lo,SDValue Hi)995 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
996 // Arbitrarily use dlHi for result SDLoc
997 SDLoc dlHi(Hi);
998 SDLoc dlLo(Lo);
999 EVT LVT = Lo.getValueType();
1000 EVT HVT = Hi.getValueType();
1001 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1002 LVT.getSizeInBits() + HVT.getSizeInBits());
1003
1004 EVT ShiftAmtVT = TLI.getShiftAmountTy(NVT, DAG.getDataLayout(), false);
1005 Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
1006 Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
1007 Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
1008 DAG.getConstant(LVT.getSizeInBits(), dlHi, ShiftAmtVT));
1009 return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
1010 }
1011
1012 /// Promote the given target boolean to a target boolean of the given type.
1013 /// A target boolean is an integer value, not necessarily of type i1, the bits
1014 /// of which conform to getBooleanContents.
1015 ///
1016 /// ValVT is the type of values that produced the boolean.
PromoteTargetBoolean(SDValue Bool,EVT ValVT)1017 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT ValVT) {
1018 return TLI.promoteTargetBoolean(DAG, Bool, ValVT);
1019 }
1020
1021 /// Return the lower LoVT bits of Op in Lo and the upper HiVT bits in Hi.
SplitInteger(SDValue Op,EVT LoVT,EVT HiVT,SDValue & Lo,SDValue & Hi)1022 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1023 EVT LoVT, EVT HiVT,
1024 SDValue &Lo, SDValue &Hi) {
1025 SDLoc dl(Op);
1026 assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
1027 Op.getValueSizeInBits() && "Invalid integer splitting!");
1028 Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
1029 unsigned ReqShiftAmountInBits =
1030 Log2_32_Ceil(Op.getValueType().getSizeInBits());
1031 MVT ShiftAmountTy =
1032 TLI.getScalarShiftAmountTy(DAG.getDataLayout(), Op.getValueType());
1033 if (ReqShiftAmountInBits > ShiftAmountTy.getSizeInBits())
1034 ShiftAmountTy = MVT::getIntegerVT(NextPowerOf2(ReqShiftAmountInBits));
1035 Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
1036 DAG.getConstant(LoVT.getSizeInBits(), dl, ShiftAmountTy));
1037 Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
1038 }
1039
1040 /// Return the lower and upper halves of Op's bits in a value type half the
1041 /// size of Op's.
SplitInteger(SDValue Op,SDValue & Lo,SDValue & Hi)1042 void DAGTypeLegalizer::SplitInteger(SDValue Op,
1043 SDValue &Lo, SDValue &Hi) {
1044 EVT HalfVT =
1045 EVT::getIntegerVT(*DAG.getContext(), Op.getValueSizeInBits() / 2);
1046 SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
1047 }
1048
1049
1050 //===----------------------------------------------------------------------===//
1051 // Entry Point
1052 //===----------------------------------------------------------------------===//
1053
1054 /// This transforms the SelectionDAG into a SelectionDAG that only uses types
1055 /// natively supported by the target. Returns "true" if it made any changes.
1056 ///
1057 /// Note that this is an involved process that may invalidate pointers into
1058 /// the graph.
LegalizeTypes()1059 bool SelectionDAG::LegalizeTypes() {
1060 return DAGTypeLegalizer(*this).run();
1061 }
1062