1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs a simple dominator tree walk that eliminates trivially
11 // redundant instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/ScopedHashTable.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/GuardUtils.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instruction.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Intrinsics.h"
43 #include "llvm/IR/LLVMContext.h"
44 #include "llvm/IR/PassManager.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Use.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Allocator.h"
51 #include "llvm/Support/AtomicOrdering.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/DebugCounter.h"
55 #include "llvm/Support/RecyclingAllocator.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/GuardUtils.h"
59 #include <cassert>
60 #include <deque>
61 #include <memory>
62 #include <utility>
63
64 using namespace llvm;
65 using namespace llvm::PatternMatch;
66
67 #define DEBUG_TYPE "early-cse"
68
69 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
70 STATISTIC(NumCSE, "Number of instructions CSE'd");
71 STATISTIC(NumCSECVP, "Number of compare instructions CVP'd");
72 STATISTIC(NumCSELoad, "Number of load instructions CSE'd");
73 STATISTIC(NumCSECall, "Number of call instructions CSE'd");
74 STATISTIC(NumDSE, "Number of trivial dead stores removed");
75
76 DEBUG_COUNTER(CSECounter, "early-cse",
77 "Controls which instructions are removed");
78
79 //===----------------------------------------------------------------------===//
80 // SimpleValue
81 //===----------------------------------------------------------------------===//
82
83 namespace {
84
85 /// Struct representing the available values in the scoped hash table.
86 struct SimpleValue {
87 Instruction *Inst;
88
SimpleValue__anonb85134700111::SimpleValue89 SimpleValue(Instruction *I) : Inst(I) {
90 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
91 }
92
isSentinel__anonb85134700111::SimpleValue93 bool isSentinel() const {
94 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
95 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
96 }
97
canHandle__anonb85134700111::SimpleValue98 static bool canHandle(Instruction *Inst) {
99 // This can only handle non-void readnone functions.
100 if (CallInst *CI = dyn_cast<CallInst>(Inst))
101 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
102 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
103 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
104 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
105 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
106 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
107 }
108 };
109
110 } // end anonymous namespace
111
112 namespace llvm {
113
114 template <> struct DenseMapInfo<SimpleValue> {
getEmptyKeyllvm::DenseMapInfo115 static inline SimpleValue getEmptyKey() {
116 return DenseMapInfo<Instruction *>::getEmptyKey();
117 }
118
getTombstoneKeyllvm::DenseMapInfo119 static inline SimpleValue getTombstoneKey() {
120 return DenseMapInfo<Instruction *>::getTombstoneKey();
121 }
122
123 static unsigned getHashValue(SimpleValue Val);
124 static bool isEqual(SimpleValue LHS, SimpleValue RHS);
125 };
126
127 } // end namespace llvm
128
getHashValue(SimpleValue Val)129 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
130 Instruction *Inst = Val.Inst;
131 // Hash in all of the operands as pointers.
132 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
133 Value *LHS = BinOp->getOperand(0);
134 Value *RHS = BinOp->getOperand(1);
135 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
136 std::swap(LHS, RHS);
137
138 return hash_combine(BinOp->getOpcode(), LHS, RHS);
139 }
140
141 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
142 Value *LHS = CI->getOperand(0);
143 Value *RHS = CI->getOperand(1);
144 CmpInst::Predicate Pred = CI->getPredicate();
145 if (Inst->getOperand(0) > Inst->getOperand(1)) {
146 std::swap(LHS, RHS);
147 Pred = CI->getSwappedPredicate();
148 }
149 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
150 }
151
152 // Hash min/max/abs (cmp + select) to allow for commuted operands.
153 // Min/max may also have non-canonical compare predicate (eg, the compare for
154 // smin may use 'sgt' rather than 'slt'), and non-canonical operands in the
155 // compare.
156 Value *A, *B;
157 SelectPatternFlavor SPF = matchSelectPattern(Inst, A, B).Flavor;
158 // TODO: We should also detect FP min/max.
159 if (SPF == SPF_SMIN || SPF == SPF_SMAX ||
160 SPF == SPF_UMIN || SPF == SPF_UMAX) {
161 if (A > B)
162 std::swap(A, B);
163 return hash_combine(Inst->getOpcode(), SPF, A, B);
164 }
165 if (SPF == SPF_ABS || SPF == SPF_NABS) {
166 // ABS/NABS always puts the input in A and its negation in B.
167 return hash_combine(Inst->getOpcode(), SPF, A, B);
168 }
169
170 if (CastInst *CI = dyn_cast<CastInst>(Inst))
171 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
172
173 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
174 return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
175 hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
176
177 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
178 return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
179 IVI->getOperand(1),
180 hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
181
182 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
183 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
184 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
185 isa<ShuffleVectorInst>(Inst)) &&
186 "Invalid/unknown instruction");
187
188 // Mix in the opcode.
189 return hash_combine(
190 Inst->getOpcode(),
191 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
192 }
193
isEqual(SimpleValue LHS,SimpleValue RHS)194 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
195 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
196
197 if (LHS.isSentinel() || RHS.isSentinel())
198 return LHSI == RHSI;
199
200 if (LHSI->getOpcode() != RHSI->getOpcode())
201 return false;
202 if (LHSI->isIdenticalToWhenDefined(RHSI))
203 return true;
204
205 // If we're not strictly identical, we still might be a commutable instruction
206 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
207 if (!LHSBinOp->isCommutative())
208 return false;
209
210 assert(isa<BinaryOperator>(RHSI) &&
211 "same opcode, but different instruction type?");
212 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
213
214 // Commuted equality
215 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
216 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
217 }
218 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
219 assert(isa<CmpInst>(RHSI) &&
220 "same opcode, but different instruction type?");
221 CmpInst *RHSCmp = cast<CmpInst>(RHSI);
222 // Commuted equality
223 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
224 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
225 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
226 }
227
228 // Min/max/abs can occur with commuted operands, non-canonical predicates,
229 // and/or non-canonical operands.
230 Value *LHSA, *LHSB;
231 SelectPatternFlavor LSPF = matchSelectPattern(LHSI, LHSA, LHSB).Flavor;
232 // TODO: We should also detect FP min/max.
233 if (LSPF == SPF_SMIN || LSPF == SPF_SMAX ||
234 LSPF == SPF_UMIN || LSPF == SPF_UMAX ||
235 LSPF == SPF_ABS || LSPF == SPF_NABS) {
236 Value *RHSA, *RHSB;
237 SelectPatternFlavor RSPF = matchSelectPattern(RHSI, RHSA, RHSB).Flavor;
238 if (LSPF == RSPF) {
239 // Abs results are placed in a defined order by matchSelectPattern.
240 if (LSPF == SPF_ABS || LSPF == SPF_NABS)
241 return LHSA == RHSA && LHSB == RHSB;
242 return ((LHSA == RHSA && LHSB == RHSB) ||
243 (LHSA == RHSB && LHSB == RHSA));
244 }
245 }
246
247 return false;
248 }
249
250 //===----------------------------------------------------------------------===//
251 // CallValue
252 //===----------------------------------------------------------------------===//
253
254 namespace {
255
256 /// Struct representing the available call values in the scoped hash
257 /// table.
258 struct CallValue {
259 Instruction *Inst;
260
CallValue__anonb85134700211::CallValue261 CallValue(Instruction *I) : Inst(I) {
262 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
263 }
264
isSentinel__anonb85134700211::CallValue265 bool isSentinel() const {
266 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
267 Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
268 }
269
canHandle__anonb85134700211::CallValue270 static bool canHandle(Instruction *Inst) {
271 // Don't value number anything that returns void.
272 if (Inst->getType()->isVoidTy())
273 return false;
274
275 CallInst *CI = dyn_cast<CallInst>(Inst);
276 if (!CI || !CI->onlyReadsMemory())
277 return false;
278 return true;
279 }
280 };
281
282 } // end anonymous namespace
283
284 namespace llvm {
285
286 template <> struct DenseMapInfo<CallValue> {
getEmptyKeyllvm::DenseMapInfo287 static inline CallValue getEmptyKey() {
288 return DenseMapInfo<Instruction *>::getEmptyKey();
289 }
290
getTombstoneKeyllvm::DenseMapInfo291 static inline CallValue getTombstoneKey() {
292 return DenseMapInfo<Instruction *>::getTombstoneKey();
293 }
294
295 static unsigned getHashValue(CallValue Val);
296 static bool isEqual(CallValue LHS, CallValue RHS);
297 };
298
299 } // end namespace llvm
300
getHashValue(CallValue Val)301 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
302 Instruction *Inst = Val.Inst;
303 // Hash all of the operands as pointers and mix in the opcode.
304 return hash_combine(
305 Inst->getOpcode(),
306 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
307 }
308
isEqual(CallValue LHS,CallValue RHS)309 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
310 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
311 if (LHS.isSentinel() || RHS.isSentinel())
312 return LHSI == RHSI;
313 return LHSI->isIdenticalTo(RHSI);
314 }
315
316 //===----------------------------------------------------------------------===//
317 // EarlyCSE implementation
318 //===----------------------------------------------------------------------===//
319
320 namespace {
321
322 /// A simple and fast domtree-based CSE pass.
323 ///
324 /// This pass does a simple depth-first walk over the dominator tree,
325 /// eliminating trivially redundant instructions and using instsimplify to
326 /// canonicalize things as it goes. It is intended to be fast and catch obvious
327 /// cases so that instcombine and other passes are more effective. It is
328 /// expected that a later pass of GVN will catch the interesting/hard cases.
329 class EarlyCSE {
330 public:
331 const TargetLibraryInfo &TLI;
332 const TargetTransformInfo &TTI;
333 DominatorTree &DT;
334 AssumptionCache &AC;
335 const SimplifyQuery SQ;
336 MemorySSA *MSSA;
337 std::unique_ptr<MemorySSAUpdater> MSSAUpdater;
338
339 using AllocatorTy =
340 RecyclingAllocator<BumpPtrAllocator,
341 ScopedHashTableVal<SimpleValue, Value *>>;
342 using ScopedHTType =
343 ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
344 AllocatorTy>;
345
346 /// A scoped hash table of the current values of all of our simple
347 /// scalar expressions.
348 ///
349 /// As we walk down the domtree, we look to see if instructions are in this:
350 /// if so, we replace them with what we find, otherwise we insert them so
351 /// that dominated values can succeed in their lookup.
352 ScopedHTType AvailableValues;
353
354 /// A scoped hash table of the current values of previously encountered
355 /// memory locations.
356 ///
357 /// This allows us to get efficient access to dominating loads or stores when
358 /// we have a fully redundant load. In addition to the most recent load, we
359 /// keep track of a generation count of the read, which is compared against
360 /// the current generation count. The current generation count is incremented
361 /// after every possibly writing memory operation, which ensures that we only
362 /// CSE loads with other loads that have no intervening store. Ordering
363 /// events (such as fences or atomic instructions) increment the generation
364 /// count as well; essentially, we model these as writes to all possible
365 /// locations. Note that atomic and/or volatile loads and stores can be
366 /// present the table; it is the responsibility of the consumer to inspect
367 /// the atomicity/volatility if needed.
368 struct LoadValue {
369 Instruction *DefInst = nullptr;
370 unsigned Generation = 0;
371 int MatchingId = -1;
372 bool IsAtomic = false;
373
374 LoadValue() = default;
LoadValue__anonb85134700311::EarlyCSE::LoadValue375 LoadValue(Instruction *Inst, unsigned Generation, unsigned MatchingId,
376 bool IsAtomic)
377 : DefInst(Inst), Generation(Generation), MatchingId(MatchingId),
378 IsAtomic(IsAtomic) {}
379 };
380
381 using LoadMapAllocator =
382 RecyclingAllocator<BumpPtrAllocator,
383 ScopedHashTableVal<Value *, LoadValue>>;
384 using LoadHTType =
385 ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
386 LoadMapAllocator>;
387
388 LoadHTType AvailableLoads;
389
390 // A scoped hash table mapping memory locations (represented as typed
391 // addresses) to generation numbers at which that memory location became
392 // (henceforth indefinitely) invariant.
393 using InvariantMapAllocator =
394 RecyclingAllocator<BumpPtrAllocator,
395 ScopedHashTableVal<MemoryLocation, unsigned>>;
396 using InvariantHTType =
397 ScopedHashTable<MemoryLocation, unsigned, DenseMapInfo<MemoryLocation>,
398 InvariantMapAllocator>;
399 InvariantHTType AvailableInvariants;
400
401 /// A scoped hash table of the current values of read-only call
402 /// values.
403 ///
404 /// It uses the same generation count as loads.
405 using CallHTType =
406 ScopedHashTable<CallValue, std::pair<Instruction *, unsigned>>;
407 CallHTType AvailableCalls;
408
409 /// This is the current generation of the memory value.
410 unsigned CurrentGeneration = 0;
411
412 /// Set up the EarlyCSE runner for a particular function.
EarlyCSE(const DataLayout & DL,const TargetLibraryInfo & TLI,const TargetTransformInfo & TTI,DominatorTree & DT,AssumptionCache & AC,MemorySSA * MSSA)413 EarlyCSE(const DataLayout &DL, const TargetLibraryInfo &TLI,
414 const TargetTransformInfo &TTI, DominatorTree &DT,
415 AssumptionCache &AC, MemorySSA *MSSA)
416 : TLI(TLI), TTI(TTI), DT(DT), AC(AC), SQ(DL, &TLI, &DT, &AC), MSSA(MSSA),
417 MSSAUpdater(llvm::make_unique<MemorySSAUpdater>(MSSA)) {}
418
419 bool run();
420
421 private:
422 // Almost a POD, but needs to call the constructors for the scoped hash
423 // tables so that a new scope gets pushed on. These are RAII so that the
424 // scope gets popped when the NodeScope is destroyed.
425 class NodeScope {
426 public:
NodeScope(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls)427 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
428 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls)
429 : Scope(AvailableValues), LoadScope(AvailableLoads),
430 InvariantScope(AvailableInvariants), CallScope(AvailableCalls) {}
431 NodeScope(const NodeScope &) = delete;
432 NodeScope &operator=(const NodeScope &) = delete;
433
434 private:
435 ScopedHTType::ScopeTy Scope;
436 LoadHTType::ScopeTy LoadScope;
437 InvariantHTType::ScopeTy InvariantScope;
438 CallHTType::ScopeTy CallScope;
439 };
440
441 // Contains all the needed information to create a stack for doing a depth
442 // first traversal of the tree. This includes scopes for values, loads, and
443 // calls as well as the generation. There is a child iterator so that the
444 // children do not need to be store separately.
445 class StackNode {
446 public:
StackNode(ScopedHTType & AvailableValues,LoadHTType & AvailableLoads,InvariantHTType & AvailableInvariants,CallHTType & AvailableCalls,unsigned cg,DomTreeNode * n,DomTreeNode::iterator child,DomTreeNode::iterator end)447 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
448 InvariantHTType &AvailableInvariants, CallHTType &AvailableCalls,
449 unsigned cg, DomTreeNode *n, DomTreeNode::iterator child,
450 DomTreeNode::iterator end)
451 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
452 EndIter(end),
453 Scopes(AvailableValues, AvailableLoads, AvailableInvariants,
454 AvailableCalls)
455 {}
456 StackNode(const StackNode &) = delete;
457 StackNode &operator=(const StackNode &) = delete;
458
459 // Accessors.
currentGeneration()460 unsigned currentGeneration() { return CurrentGeneration; }
childGeneration()461 unsigned childGeneration() { return ChildGeneration; }
childGeneration(unsigned generation)462 void childGeneration(unsigned generation) { ChildGeneration = generation; }
node()463 DomTreeNode *node() { return Node; }
childIter()464 DomTreeNode::iterator childIter() { return ChildIter; }
465
nextChild()466 DomTreeNode *nextChild() {
467 DomTreeNode *child = *ChildIter;
468 ++ChildIter;
469 return child;
470 }
471
end()472 DomTreeNode::iterator end() { return EndIter; }
isProcessed()473 bool isProcessed() { return Processed; }
process()474 void process() { Processed = true; }
475
476 private:
477 unsigned CurrentGeneration;
478 unsigned ChildGeneration;
479 DomTreeNode *Node;
480 DomTreeNode::iterator ChildIter;
481 DomTreeNode::iterator EndIter;
482 NodeScope Scopes;
483 bool Processed = false;
484 };
485
486 /// Wrapper class to handle memory instructions, including loads,
487 /// stores and intrinsic loads and stores defined by the target.
488 class ParseMemoryInst {
489 public:
ParseMemoryInst(Instruction * Inst,const TargetTransformInfo & TTI)490 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
491 : Inst(Inst) {
492 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
493 if (TTI.getTgtMemIntrinsic(II, Info))
494 IsTargetMemInst = true;
495 }
496
isLoad() const497 bool isLoad() const {
498 if (IsTargetMemInst) return Info.ReadMem;
499 return isa<LoadInst>(Inst);
500 }
501
isStore() const502 bool isStore() const {
503 if (IsTargetMemInst) return Info.WriteMem;
504 return isa<StoreInst>(Inst);
505 }
506
isAtomic() const507 bool isAtomic() const {
508 if (IsTargetMemInst)
509 return Info.Ordering != AtomicOrdering::NotAtomic;
510 return Inst->isAtomic();
511 }
512
isUnordered() const513 bool isUnordered() const {
514 if (IsTargetMemInst)
515 return Info.isUnordered();
516
517 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
518 return LI->isUnordered();
519 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
520 return SI->isUnordered();
521 }
522 // Conservative answer
523 return !Inst->isAtomic();
524 }
525
isVolatile() const526 bool isVolatile() const {
527 if (IsTargetMemInst)
528 return Info.IsVolatile;
529
530 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
531 return LI->isVolatile();
532 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
533 return SI->isVolatile();
534 }
535 // Conservative answer
536 return true;
537 }
538
isInvariantLoad() const539 bool isInvariantLoad() const {
540 if (auto *LI = dyn_cast<LoadInst>(Inst))
541 return LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr;
542 return false;
543 }
544
isMatchingMemLoc(const ParseMemoryInst & Inst) const545 bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
546 return (getPointerOperand() == Inst.getPointerOperand() &&
547 getMatchingId() == Inst.getMatchingId());
548 }
549
isValid() const550 bool isValid() const { return getPointerOperand() != nullptr; }
551
552 // For regular (non-intrinsic) loads/stores, this is set to -1. For
553 // intrinsic loads/stores, the id is retrieved from the corresponding
554 // field in the MemIntrinsicInfo structure. That field contains
555 // non-negative values only.
getMatchingId() const556 int getMatchingId() const {
557 if (IsTargetMemInst) return Info.MatchingId;
558 return -1;
559 }
560
getPointerOperand() const561 Value *getPointerOperand() const {
562 if (IsTargetMemInst) return Info.PtrVal;
563 return getLoadStorePointerOperand(Inst);
564 }
565
mayReadFromMemory() const566 bool mayReadFromMemory() const {
567 if (IsTargetMemInst) return Info.ReadMem;
568 return Inst->mayReadFromMemory();
569 }
570
mayWriteToMemory() const571 bool mayWriteToMemory() const {
572 if (IsTargetMemInst) return Info.WriteMem;
573 return Inst->mayWriteToMemory();
574 }
575
576 private:
577 bool IsTargetMemInst = false;
578 MemIntrinsicInfo Info;
579 Instruction *Inst;
580 };
581
582 bool processNode(DomTreeNode *Node);
583
584 bool handleBranchCondition(Instruction *CondInst, const BranchInst *BI,
585 const BasicBlock *BB, const BasicBlock *Pred);
586
getOrCreateResult(Value * Inst,Type * ExpectedType) const587 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
588 if (auto *LI = dyn_cast<LoadInst>(Inst))
589 return LI;
590 if (auto *SI = dyn_cast<StoreInst>(Inst))
591 return SI->getValueOperand();
592 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
593 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
594 ExpectedType);
595 }
596
597 /// Return true if the instruction is known to only operate on memory
598 /// provably invariant in the given "generation".
599 bool isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt);
600
601 bool isSameMemGeneration(unsigned EarlierGeneration, unsigned LaterGeneration,
602 Instruction *EarlierInst, Instruction *LaterInst);
603
removeMSSA(Instruction * Inst)604 void removeMSSA(Instruction *Inst) {
605 if (!MSSA)
606 return;
607 if (VerifyMemorySSA)
608 MSSA->verifyMemorySSA();
609 // Removing a store here can leave MemorySSA in an unoptimized state by
610 // creating MemoryPhis that have identical arguments and by creating
611 // MemoryUses whose defining access is not an actual clobber. We handle the
612 // phi case eagerly here. The non-optimized MemoryUse case is lazily
613 // updated by MemorySSA getClobberingMemoryAccess.
614 if (MemoryAccess *MA = MSSA->getMemoryAccess(Inst)) {
615 // Optimize MemoryPhi nodes that may become redundant by having all the
616 // same input values once MA is removed.
617 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
618 SmallVector<MemoryAccess *, 8> WorkQueue;
619 WorkQueue.push_back(MA);
620 // Process MemoryPhi nodes in FIFO order using a ever-growing vector since
621 // we shouldn't be processing that many phis and this will avoid an
622 // allocation in almost all cases.
623 for (unsigned I = 0; I < WorkQueue.size(); ++I) {
624 MemoryAccess *WI = WorkQueue[I];
625
626 for (auto *U : WI->users())
627 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U))
628 PhisToCheck.insert(MP);
629
630 MSSAUpdater->removeMemoryAccess(WI);
631
632 for (MemoryPhi *MP : PhisToCheck) {
633 MemoryAccess *FirstIn = MP->getIncomingValue(0);
634 if (llvm::all_of(MP->incoming_values(),
635 [=](Use &In) { return In == FirstIn; }))
636 WorkQueue.push_back(MP);
637 }
638 PhisToCheck.clear();
639 }
640 }
641 }
642 };
643
644 } // end anonymous namespace
645
646 /// Determine if the memory referenced by LaterInst is from the same heap
647 /// version as EarlierInst.
648 /// This is currently called in two scenarios:
649 ///
650 /// load p
651 /// ...
652 /// load p
653 ///
654 /// and
655 ///
656 /// x = load p
657 /// ...
658 /// store x, p
659 ///
660 /// in both cases we want to verify that there are no possible writes to the
661 /// memory referenced by p between the earlier and later instruction.
isSameMemGeneration(unsigned EarlierGeneration,unsigned LaterGeneration,Instruction * EarlierInst,Instruction * LaterInst)662 bool EarlyCSE::isSameMemGeneration(unsigned EarlierGeneration,
663 unsigned LaterGeneration,
664 Instruction *EarlierInst,
665 Instruction *LaterInst) {
666 // Check the simple memory generation tracking first.
667 if (EarlierGeneration == LaterGeneration)
668 return true;
669
670 if (!MSSA)
671 return false;
672
673 // If MemorySSA has determined that one of EarlierInst or LaterInst does not
674 // read/write memory, then we can safely return true here.
675 // FIXME: We could be more aggressive when checking doesNotAccessMemory(),
676 // onlyReadsMemory(), mayReadFromMemory(), and mayWriteToMemory() in this pass
677 // by also checking the MemorySSA MemoryAccess on the instruction. Initial
678 // experiments suggest this isn't worthwhile, at least for C/C++ code compiled
679 // with the default optimization pipeline.
680 auto *EarlierMA = MSSA->getMemoryAccess(EarlierInst);
681 if (!EarlierMA)
682 return true;
683 auto *LaterMA = MSSA->getMemoryAccess(LaterInst);
684 if (!LaterMA)
685 return true;
686
687 // Since we know LaterDef dominates LaterInst and EarlierInst dominates
688 // LaterInst, if LaterDef dominates EarlierInst then it can't occur between
689 // EarlierInst and LaterInst and neither can any other write that potentially
690 // clobbers LaterInst.
691 MemoryAccess *LaterDef =
692 MSSA->getWalker()->getClobberingMemoryAccess(LaterInst);
693 return MSSA->dominates(LaterDef, EarlierMA);
694 }
695
isOperatingOnInvariantMemAt(Instruction * I,unsigned GenAt)696 bool EarlyCSE::isOperatingOnInvariantMemAt(Instruction *I, unsigned GenAt) {
697 // A location loaded from with an invariant_load is assumed to *never* change
698 // within the visible scope of the compilation.
699 if (auto *LI = dyn_cast<LoadInst>(I))
700 if (LI->getMetadata(LLVMContext::MD_invariant_load))
701 return true;
702
703 auto MemLocOpt = MemoryLocation::getOrNone(I);
704 if (!MemLocOpt)
705 // "target" intrinsic forms of loads aren't currently known to
706 // MemoryLocation::get. TODO
707 return false;
708 MemoryLocation MemLoc = *MemLocOpt;
709 if (!AvailableInvariants.count(MemLoc))
710 return false;
711
712 // Is the generation at which this became invariant older than the
713 // current one?
714 return AvailableInvariants.lookup(MemLoc) <= GenAt;
715 }
716
handleBranchCondition(Instruction * CondInst,const BranchInst * BI,const BasicBlock * BB,const BasicBlock * Pred)717 bool EarlyCSE::handleBranchCondition(Instruction *CondInst,
718 const BranchInst *BI, const BasicBlock *BB,
719 const BasicBlock *Pred) {
720 assert(BI->isConditional() && "Should be a conditional branch!");
721 assert(BI->getCondition() == CondInst && "Wrong condition?");
722 assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
723 auto *TorF = (BI->getSuccessor(0) == BB)
724 ? ConstantInt::getTrue(BB->getContext())
725 : ConstantInt::getFalse(BB->getContext());
726 auto MatchBinOp = [](Instruction *I, unsigned Opcode) {
727 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(I))
728 return BOp->getOpcode() == Opcode;
729 return false;
730 };
731 // If the condition is AND operation, we can propagate its operands into the
732 // true branch. If it is OR operation, we can propagate them into the false
733 // branch.
734 unsigned PropagateOpcode =
735 (BI->getSuccessor(0) == BB) ? Instruction::And : Instruction::Or;
736
737 bool MadeChanges = false;
738 SmallVector<Instruction *, 4> WorkList;
739 SmallPtrSet<Instruction *, 4> Visited;
740 WorkList.push_back(CondInst);
741 while (!WorkList.empty()) {
742 Instruction *Curr = WorkList.pop_back_val();
743
744 AvailableValues.insert(Curr, TorF);
745 LLVM_DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
746 << Curr->getName() << "' as " << *TorF << " in "
747 << BB->getName() << "\n");
748 if (!DebugCounter::shouldExecute(CSECounter)) {
749 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
750 } else {
751 // Replace all dominated uses with the known value.
752 if (unsigned Count = replaceDominatedUsesWith(Curr, TorF, DT,
753 BasicBlockEdge(Pred, BB))) {
754 NumCSECVP += Count;
755 MadeChanges = true;
756 }
757 }
758
759 if (MatchBinOp(Curr, PropagateOpcode))
760 for (auto &Op : cast<BinaryOperator>(Curr)->operands())
761 if (Instruction *OPI = dyn_cast<Instruction>(Op))
762 if (SimpleValue::canHandle(OPI) && Visited.insert(OPI).second)
763 WorkList.push_back(OPI);
764 }
765
766 return MadeChanges;
767 }
768
processNode(DomTreeNode * Node)769 bool EarlyCSE::processNode(DomTreeNode *Node) {
770 bool Changed = false;
771 BasicBlock *BB = Node->getBlock();
772
773 // If this block has a single predecessor, then the predecessor is the parent
774 // of the domtree node and all of the live out memory values are still current
775 // in this block. If this block has multiple predecessors, then they could
776 // have invalidated the live-out memory values of our parent value. For now,
777 // just be conservative and invalidate memory if this block has multiple
778 // predecessors.
779 if (!BB->getSinglePredecessor())
780 ++CurrentGeneration;
781
782 // If this node has a single predecessor which ends in a conditional branch,
783 // we can infer the value of the branch condition given that we took this
784 // path. We need the single predecessor to ensure there's not another path
785 // which reaches this block where the condition might hold a different
786 // value. Since we're adding this to the scoped hash table (like any other
787 // def), it will have been popped if we encounter a future merge block.
788 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
789 auto *BI = dyn_cast<BranchInst>(Pred->getTerminator());
790 if (BI && BI->isConditional()) {
791 auto *CondInst = dyn_cast<Instruction>(BI->getCondition());
792 if (CondInst && SimpleValue::canHandle(CondInst))
793 Changed |= handleBranchCondition(CondInst, BI, BB, Pred);
794 }
795 }
796
797 /// LastStore - Keep track of the last non-volatile store that we saw... for
798 /// as long as there in no instruction that reads memory. If we see a store
799 /// to the same location, we delete the dead store. This zaps trivial dead
800 /// stores which can occur in bitfield code among other things.
801 Instruction *LastStore = nullptr;
802
803 // See if any instructions in the block can be eliminated. If so, do it. If
804 // not, add them to AvailableValues.
805 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
806 Instruction *Inst = &*I++;
807
808 // Dead instructions should just be removed.
809 if (isInstructionTriviallyDead(Inst, &TLI)) {
810 LLVM_DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
811 if (!DebugCounter::shouldExecute(CSECounter)) {
812 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
813 continue;
814 }
815 if (!salvageDebugInfo(*Inst))
816 replaceDbgUsesWithUndef(Inst);
817 removeMSSA(Inst);
818 Inst->eraseFromParent();
819 Changed = true;
820 ++NumSimplify;
821 continue;
822 }
823
824 // Skip assume intrinsics, they don't really have side effects (although
825 // they're marked as such to ensure preservation of control dependencies),
826 // and this pass will not bother with its removal. However, we should mark
827 // its condition as true for all dominated blocks.
828 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
829 auto *CondI =
830 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0));
831 if (CondI && SimpleValue::canHandle(CondI)) {
832 LLVM_DEBUG(dbgs() << "EarlyCSE considering assumption: " << *Inst
833 << '\n');
834 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
835 } else
836 LLVM_DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
837 continue;
838 }
839
840 // Skip sideeffect intrinsics, for the same reason as assume intrinsics.
841 if (match(Inst, m_Intrinsic<Intrinsic::sideeffect>())) {
842 LLVM_DEBUG(dbgs() << "EarlyCSE skipping sideeffect: " << *Inst << '\n');
843 continue;
844 }
845
846 // We can skip all invariant.start intrinsics since they only read memory,
847 // and we can forward values across it. For invariant starts without
848 // invariant ends, we can use the fact that the invariantness never ends to
849 // start a scope in the current generaton which is true for all future
850 // generations. Also, we dont need to consume the last store since the
851 // semantics of invariant.start allow us to perform DSE of the last
852 // store, if there was a store following invariant.start. Consider:
853 //
854 // store 30, i8* p
855 // invariant.start(p)
856 // store 40, i8* p
857 // We can DSE the store to 30, since the store 40 to invariant location p
858 // causes undefined behaviour.
859 if (match(Inst, m_Intrinsic<Intrinsic::invariant_start>())) {
860 // If there are any uses, the scope might end.
861 if (!Inst->use_empty())
862 continue;
863 auto *CI = cast<CallInst>(Inst);
864 MemoryLocation MemLoc = MemoryLocation::getForArgument(CI, 1, TLI);
865 // Don't start a scope if we already have a better one pushed
866 if (!AvailableInvariants.count(MemLoc))
867 AvailableInvariants.insert(MemLoc, CurrentGeneration);
868 continue;
869 }
870
871 if (isGuard(Inst)) {
872 if (auto *CondI =
873 dyn_cast<Instruction>(cast<CallInst>(Inst)->getArgOperand(0))) {
874 if (SimpleValue::canHandle(CondI)) {
875 // Do we already know the actual value of this condition?
876 if (auto *KnownCond = AvailableValues.lookup(CondI)) {
877 // Is the condition known to be true?
878 if (isa<ConstantInt>(KnownCond) &&
879 cast<ConstantInt>(KnownCond)->isOne()) {
880 LLVM_DEBUG(dbgs()
881 << "EarlyCSE removing guard: " << *Inst << '\n');
882 removeMSSA(Inst);
883 Inst->eraseFromParent();
884 Changed = true;
885 continue;
886 } else
887 // Use the known value if it wasn't true.
888 cast<CallInst>(Inst)->setArgOperand(0, KnownCond);
889 }
890 // The condition we're on guarding here is true for all dominated
891 // locations.
892 AvailableValues.insert(CondI, ConstantInt::getTrue(BB->getContext()));
893 }
894 }
895
896 // Guard intrinsics read all memory, but don't write any memory.
897 // Accordingly, don't update the generation but consume the last store (to
898 // avoid an incorrect DSE).
899 LastStore = nullptr;
900 continue;
901 }
902
903 // If the instruction can be simplified (e.g. X+0 = X) then replace it with
904 // its simpler value.
905 if (Value *V = SimplifyInstruction(Inst, SQ)) {
906 LLVM_DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V
907 << '\n');
908 if (!DebugCounter::shouldExecute(CSECounter)) {
909 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
910 } else {
911 bool Killed = false;
912 if (!Inst->use_empty()) {
913 Inst->replaceAllUsesWith(V);
914 Changed = true;
915 }
916 if (isInstructionTriviallyDead(Inst, &TLI)) {
917 removeMSSA(Inst);
918 Inst->eraseFromParent();
919 Changed = true;
920 Killed = true;
921 }
922 if (Changed)
923 ++NumSimplify;
924 if (Killed)
925 continue;
926 }
927 }
928
929 // If this is a simple instruction that we can value number, process it.
930 if (SimpleValue::canHandle(Inst)) {
931 // See if the instruction has an available value. If so, use it.
932 if (Value *V = AvailableValues.lookup(Inst)) {
933 LLVM_DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V
934 << '\n');
935 if (!DebugCounter::shouldExecute(CSECounter)) {
936 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
937 continue;
938 }
939 if (auto *I = dyn_cast<Instruction>(V))
940 I->andIRFlags(Inst);
941 Inst->replaceAllUsesWith(V);
942 removeMSSA(Inst);
943 Inst->eraseFromParent();
944 Changed = true;
945 ++NumCSE;
946 continue;
947 }
948
949 // Otherwise, just remember that this value is available.
950 AvailableValues.insert(Inst, Inst);
951 continue;
952 }
953
954 ParseMemoryInst MemInst(Inst, TTI);
955 // If this is a non-volatile load, process it.
956 if (MemInst.isValid() && MemInst.isLoad()) {
957 // (conservatively) we can't peak past the ordering implied by this
958 // operation, but we can add this load to our set of available values
959 if (MemInst.isVolatile() || !MemInst.isUnordered()) {
960 LastStore = nullptr;
961 ++CurrentGeneration;
962 }
963
964 if (MemInst.isInvariantLoad()) {
965 // If we pass an invariant load, we know that memory location is
966 // indefinitely constant from the moment of first dereferenceability.
967 // We conservatively treat the invariant_load as that moment. If we
968 // pass a invariant load after already establishing a scope, don't
969 // restart it since we want to preserve the earliest point seen.
970 auto MemLoc = MemoryLocation::get(Inst);
971 if (!AvailableInvariants.count(MemLoc))
972 AvailableInvariants.insert(MemLoc, CurrentGeneration);
973 }
974
975 // If we have an available version of this load, and if it is the right
976 // generation or the load is known to be from an invariant location,
977 // replace this instruction.
978 //
979 // If either the dominating load or the current load are invariant, then
980 // we can assume the current load loads the same value as the dominating
981 // load.
982 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
983 if (InVal.DefInst != nullptr &&
984 InVal.MatchingId == MemInst.getMatchingId() &&
985 // We don't yet handle removing loads with ordering of any kind.
986 !MemInst.isVolatile() && MemInst.isUnordered() &&
987 // We can't replace an atomic load with one which isn't also atomic.
988 InVal.IsAtomic >= MemInst.isAtomic() &&
989 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
990 isSameMemGeneration(InVal.Generation, CurrentGeneration,
991 InVal.DefInst, Inst))) {
992 Value *Op = getOrCreateResult(InVal.DefInst, Inst->getType());
993 if (Op != nullptr) {
994 LLVM_DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
995 << " to: " << *InVal.DefInst << '\n');
996 if (!DebugCounter::shouldExecute(CSECounter)) {
997 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
998 continue;
999 }
1000 if (!Inst->use_empty())
1001 Inst->replaceAllUsesWith(Op);
1002 removeMSSA(Inst);
1003 Inst->eraseFromParent();
1004 Changed = true;
1005 ++NumCSELoad;
1006 continue;
1007 }
1008 }
1009
1010 // Otherwise, remember that we have this instruction.
1011 AvailableLoads.insert(
1012 MemInst.getPointerOperand(),
1013 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
1014 MemInst.isAtomic()));
1015 LastStore = nullptr;
1016 continue;
1017 }
1018
1019 // If this instruction may read from memory or throw (and potentially read
1020 // from memory in the exception handler), forget LastStore. Load/store
1021 // intrinsics will indicate both a read and a write to memory. The target
1022 // may override this (e.g. so that a store intrinsic does not read from
1023 // memory, and thus will be treated the same as a regular store for
1024 // commoning purposes).
1025 if ((Inst->mayReadFromMemory() || Inst->mayThrow()) &&
1026 !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
1027 LastStore = nullptr;
1028
1029 // If this is a read-only call, process it.
1030 if (CallValue::canHandle(Inst)) {
1031 // If we have an available version of this call, and if it is the right
1032 // generation, replace this instruction.
1033 std::pair<Instruction *, unsigned> InVal = AvailableCalls.lookup(Inst);
1034 if (InVal.first != nullptr &&
1035 isSameMemGeneration(InVal.second, CurrentGeneration, InVal.first,
1036 Inst)) {
1037 LLVM_DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
1038 << " to: " << *InVal.first << '\n');
1039 if (!DebugCounter::shouldExecute(CSECounter)) {
1040 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1041 continue;
1042 }
1043 if (!Inst->use_empty())
1044 Inst->replaceAllUsesWith(InVal.first);
1045 removeMSSA(Inst);
1046 Inst->eraseFromParent();
1047 Changed = true;
1048 ++NumCSECall;
1049 continue;
1050 }
1051
1052 // Otherwise, remember that we have this instruction.
1053 AvailableCalls.insert(
1054 Inst, std::pair<Instruction *, unsigned>(Inst, CurrentGeneration));
1055 continue;
1056 }
1057
1058 // A release fence requires that all stores complete before it, but does
1059 // not prevent the reordering of following loads 'before' the fence. As a
1060 // result, we don't need to consider it as writing to memory and don't need
1061 // to advance the generation. We do need to prevent DSE across the fence,
1062 // but that's handled above.
1063 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
1064 if (FI->getOrdering() == AtomicOrdering::Release) {
1065 assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
1066 continue;
1067 }
1068
1069 // write back DSE - If we write back the same value we just loaded from
1070 // the same location and haven't passed any intervening writes or ordering
1071 // operations, we can remove the write. The primary benefit is in allowing
1072 // the available load table to remain valid and value forward past where
1073 // the store originally was.
1074 if (MemInst.isValid() && MemInst.isStore()) {
1075 LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
1076 if (InVal.DefInst &&
1077 InVal.DefInst == getOrCreateResult(Inst, InVal.DefInst->getType()) &&
1078 InVal.MatchingId == MemInst.getMatchingId() &&
1079 // We don't yet handle removing stores with ordering of any kind.
1080 !MemInst.isVolatile() && MemInst.isUnordered() &&
1081 (isOperatingOnInvariantMemAt(Inst, InVal.Generation) ||
1082 isSameMemGeneration(InVal.Generation, CurrentGeneration,
1083 InVal.DefInst, Inst))) {
1084 // It is okay to have a LastStore to a different pointer here if MemorySSA
1085 // tells us that the load and store are from the same memory generation.
1086 // In that case, LastStore should keep its present value since we're
1087 // removing the current store.
1088 assert((!LastStore ||
1089 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
1090 MemInst.getPointerOperand() ||
1091 MSSA) &&
1092 "can't have an intervening store if not using MemorySSA!");
1093 LLVM_DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
1094 if (!DebugCounter::shouldExecute(CSECounter)) {
1095 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1096 continue;
1097 }
1098 removeMSSA(Inst);
1099 Inst->eraseFromParent();
1100 Changed = true;
1101 ++NumDSE;
1102 // We can avoid incrementing the generation count since we were able
1103 // to eliminate this store.
1104 continue;
1105 }
1106 }
1107
1108 // Okay, this isn't something we can CSE at all. Check to see if it is
1109 // something that could modify memory. If so, our available memory values
1110 // cannot be used so bump the generation count.
1111 if (Inst->mayWriteToMemory()) {
1112 ++CurrentGeneration;
1113
1114 if (MemInst.isValid() && MemInst.isStore()) {
1115 // We do a trivial form of DSE if there are two stores to the same
1116 // location with no intervening loads. Delete the earlier store.
1117 // At the moment, we don't remove ordered stores, but do remove
1118 // unordered atomic stores. There's no special requirement (for
1119 // unordered atomics) about removing atomic stores only in favor of
1120 // other atomic stores since we we're going to execute the non-atomic
1121 // one anyway and the atomic one might never have become visible.
1122 if (LastStore) {
1123 ParseMemoryInst LastStoreMemInst(LastStore, TTI);
1124 assert(LastStoreMemInst.isUnordered() &&
1125 !LastStoreMemInst.isVolatile() &&
1126 "Violated invariant");
1127 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
1128 LLVM_DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
1129 << " due to: " << *Inst << '\n');
1130 if (!DebugCounter::shouldExecute(CSECounter)) {
1131 LLVM_DEBUG(dbgs() << "Skipping due to debug counter\n");
1132 } else {
1133 removeMSSA(LastStore);
1134 LastStore->eraseFromParent();
1135 Changed = true;
1136 ++NumDSE;
1137 LastStore = nullptr;
1138 }
1139 }
1140 // fallthrough - we can exploit information about this store
1141 }
1142
1143 // Okay, we just invalidated anything we knew about loaded values. Try
1144 // to salvage *something* by remembering that the stored value is a live
1145 // version of the pointer. It is safe to forward from volatile stores
1146 // to non-volatile loads, so we don't have to check for volatility of
1147 // the store.
1148 AvailableLoads.insert(
1149 MemInst.getPointerOperand(),
1150 LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
1151 MemInst.isAtomic()));
1152
1153 // Remember that this was the last unordered store we saw for DSE. We
1154 // don't yet handle DSE on ordered or volatile stores since we don't
1155 // have a good way to model the ordering requirement for following
1156 // passes once the store is removed. We could insert a fence, but
1157 // since fences are slightly stronger than stores in their ordering,
1158 // it's not clear this is a profitable transform. Another option would
1159 // be to merge the ordering with that of the post dominating store.
1160 if (MemInst.isUnordered() && !MemInst.isVolatile())
1161 LastStore = Inst;
1162 else
1163 LastStore = nullptr;
1164 }
1165 }
1166 }
1167
1168 return Changed;
1169 }
1170
run()1171 bool EarlyCSE::run() {
1172 // Note, deque is being used here because there is significant performance
1173 // gains over vector when the container becomes very large due to the
1174 // specific access patterns. For more information see the mailing list
1175 // discussion on this:
1176 // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
1177 std::deque<StackNode *> nodesToProcess;
1178
1179 bool Changed = false;
1180
1181 // Process the root node.
1182 nodesToProcess.push_back(new StackNode(
1183 AvailableValues, AvailableLoads, AvailableInvariants, AvailableCalls,
1184 CurrentGeneration, DT.getRootNode(),
1185 DT.getRootNode()->begin(), DT.getRootNode()->end()));
1186
1187 // Save the current generation.
1188 unsigned LiveOutGeneration = CurrentGeneration;
1189
1190 // Process the stack.
1191 while (!nodesToProcess.empty()) {
1192 // Grab the first item off the stack. Set the current generation, remove
1193 // the node from the stack, and process it.
1194 StackNode *NodeToProcess = nodesToProcess.back();
1195
1196 // Initialize class members.
1197 CurrentGeneration = NodeToProcess->currentGeneration();
1198
1199 // Check if the node needs to be processed.
1200 if (!NodeToProcess->isProcessed()) {
1201 // Process the node.
1202 Changed |= processNode(NodeToProcess->node());
1203 NodeToProcess->childGeneration(CurrentGeneration);
1204 NodeToProcess->process();
1205 } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
1206 // Push the next child onto the stack.
1207 DomTreeNode *child = NodeToProcess->nextChild();
1208 nodesToProcess.push_back(
1209 new StackNode(AvailableValues, AvailableLoads, AvailableInvariants,
1210 AvailableCalls, NodeToProcess->childGeneration(),
1211 child, child->begin(), child->end()));
1212 } else {
1213 // It has been processed, and there are no more children to process,
1214 // so delete it and pop it off the stack.
1215 delete NodeToProcess;
1216 nodesToProcess.pop_back();
1217 }
1218 } // while (!nodes...)
1219
1220 // Reset the current generation.
1221 CurrentGeneration = LiveOutGeneration;
1222
1223 return Changed;
1224 }
1225
run(Function & F,FunctionAnalysisManager & AM)1226 PreservedAnalyses EarlyCSEPass::run(Function &F,
1227 FunctionAnalysisManager &AM) {
1228 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1229 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1230 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1231 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1232 auto *MSSA =
1233 UseMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() : nullptr;
1234
1235 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1236
1237 if (!CSE.run())
1238 return PreservedAnalyses::all();
1239
1240 PreservedAnalyses PA;
1241 PA.preserveSet<CFGAnalyses>();
1242 PA.preserve<GlobalsAA>();
1243 if (UseMemorySSA)
1244 PA.preserve<MemorySSAAnalysis>();
1245 return PA;
1246 }
1247
1248 namespace {
1249
1250 /// A simple and fast domtree-based CSE pass.
1251 ///
1252 /// This pass does a simple depth-first walk over the dominator tree,
1253 /// eliminating trivially redundant instructions and using instsimplify to
1254 /// canonicalize things as it goes. It is intended to be fast and catch obvious
1255 /// cases so that instcombine and other passes are more effective. It is
1256 /// expected that a later pass of GVN will catch the interesting/hard cases.
1257 template<bool UseMemorySSA>
1258 class EarlyCSELegacyCommonPass : public FunctionPass {
1259 public:
1260 static char ID;
1261
EarlyCSELegacyCommonPass()1262 EarlyCSELegacyCommonPass() : FunctionPass(ID) {
1263 if (UseMemorySSA)
1264 initializeEarlyCSEMemSSALegacyPassPass(*PassRegistry::getPassRegistry());
1265 else
1266 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
1267 }
1268
runOnFunction(Function & F)1269 bool runOnFunction(Function &F) override {
1270 if (skipFunction(F))
1271 return false;
1272
1273 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1274 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1275 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1276 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1277 auto *MSSA =
1278 UseMemorySSA ? &getAnalysis<MemorySSAWrapperPass>().getMSSA() : nullptr;
1279
1280 EarlyCSE CSE(F.getParent()->getDataLayout(), TLI, TTI, DT, AC, MSSA);
1281
1282 return CSE.run();
1283 }
1284
getAnalysisUsage(AnalysisUsage & AU) const1285 void getAnalysisUsage(AnalysisUsage &AU) const override {
1286 AU.addRequired<AssumptionCacheTracker>();
1287 AU.addRequired<DominatorTreeWrapperPass>();
1288 AU.addRequired<TargetLibraryInfoWrapperPass>();
1289 AU.addRequired<TargetTransformInfoWrapperPass>();
1290 if (UseMemorySSA) {
1291 AU.addRequired<MemorySSAWrapperPass>();
1292 AU.addPreserved<MemorySSAWrapperPass>();
1293 }
1294 AU.addPreserved<GlobalsAAWrapperPass>();
1295 AU.setPreservesCFG();
1296 }
1297 };
1298
1299 } // end anonymous namespace
1300
1301 using EarlyCSELegacyPass = EarlyCSELegacyCommonPass</*UseMemorySSA=*/false>;
1302
1303 template<>
1304 char EarlyCSELegacyPass::ID = 0;
1305
1306 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
1307 false)
1308 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1309 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1311 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1312 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
1313
1314 using EarlyCSEMemSSALegacyPass =
1315 EarlyCSELegacyCommonPass</*UseMemorySSA=*/true>;
1316
1317 template<>
1318 char EarlyCSEMemSSALegacyPass::ID = 0;
1319
createEarlyCSEPass(bool UseMemorySSA)1320 FunctionPass *llvm::createEarlyCSEPass(bool UseMemorySSA) {
1321 if (UseMemorySSA)
1322 return new EarlyCSEMemSSALegacyPass();
1323 else
1324 return new EarlyCSELegacyPass();
1325 }
1326
1327 INITIALIZE_PASS_BEGIN(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1328 "Early CSE w/ MemorySSA", false, false)
1329 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1330 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1331 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1332 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1333 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1334 INITIALIZE_PASS_END(EarlyCSEMemSSALegacyPass, "early-cse-memssa",
1335 "Early CSE w/ MemorySSA", false, false)
1336