1 //===-- ClangExpressionParser.cpp -------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include <cctype>
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/ASTDiagnostic.h"
13 #include "clang/AST/ExternalASTSource.h"
14 #include "clang/AST/PrettyPrinter.h"
15 #include "clang/Basic/DiagnosticIDs.h"
16 #include "clang/Basic/FileManager.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Basic/Version.h"
20 #include "clang/CodeGen/CodeGenAction.h"
21 #include "clang/CodeGen/ModuleBuilder.h"
22 #include "clang/Edit/Commit.h"
23 #include "clang/Edit/EditedSource.h"
24 #include "clang/Edit/EditsReceiver.h"
25 #include "clang/Frontend/CompilerInstance.h"
26 #include "clang/Frontend/CompilerInvocation.h"
27 #include "clang/Frontend/FrontendActions.h"
28 #include "clang/Frontend/FrontendDiagnostic.h"
29 #include "clang/Frontend/FrontendPluginRegistry.h"
30 #include "clang/Frontend/TextDiagnosticBuffer.h"
31 #include "clang/Frontend/TextDiagnosticPrinter.h"
32 #include "clang/Lex/Preprocessor.h"
33 #include "clang/Parse/ParseAST.h"
34 #include "clang/Rewrite/Core/Rewriter.h"
35 #include "clang/Rewrite/Frontend/FrontendActions.h"
36 #include "clang/Sema/CodeCompleteConsumer.h"
37 #include "clang/Sema/Sema.h"
38 #include "clang/Sema/SemaConsumer.h"
39 
40 #include "llvm/ADT/StringRef.h"
41 #include "llvm/ExecutionEngine/ExecutionEngine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/FileSystem.h"
44 #include "llvm/Support/TargetSelect.h"
45 
46 #pragma clang diagnostic push
47 #pragma clang diagnostic ignored "-Wglobal-constructors"
48 #include "llvm/ExecutionEngine/MCJIT.h"
49 #pragma clang diagnostic pop
50 
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/Support/DynamicLibrary.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Host.h"
56 #include "llvm/Support/MemoryBuffer.h"
57 #include "llvm/Support/Signals.h"
58 
59 #include "ClangDiagnostic.h"
60 #include "ClangExpressionParser.h"
61 
62 #include "ClangASTSource.h"
63 #include "ClangExpressionDeclMap.h"
64 #include "ClangExpressionHelper.h"
65 #include "ClangModulesDeclVendor.h"
66 #include "ClangPersistentVariables.h"
67 #include "IRForTarget.h"
68 
69 #include "lldb/Core/Debugger.h"
70 #include "lldb/Core/Disassembler.h"
71 #include "lldb/Core/Module.h"
72 #include "lldb/Core/StreamFile.h"
73 #include "lldb/Expression/IRDynamicChecks.h"
74 #include "lldb/Expression/IRExecutionUnit.h"
75 #include "lldb/Expression/IRInterpreter.h"
76 #include "lldb/Host/File.h"
77 #include "lldb/Host/HostInfo.h"
78 #include "lldb/Symbol/ClangASTContext.h"
79 #include "lldb/Symbol/SymbolVendor.h"
80 #include "lldb/Target/ExecutionContext.h"
81 #include "lldb/Target/Language.h"
82 #include "lldb/Target/ObjCLanguageRuntime.h"
83 #include "lldb/Target/Process.h"
84 #include "lldb/Target/Target.h"
85 #include "lldb/Target/ThreadPlanCallFunction.h"
86 #include "lldb/Utility/DataBufferHeap.h"
87 #include "lldb/Utility/LLDBAssert.h"
88 #include "lldb/Utility/Log.h"
89 #include "lldb/Utility/Stream.h"
90 #include "lldb/Utility/StreamString.h"
91 #include "lldb/Utility/StringList.h"
92 
93 using namespace clang;
94 using namespace llvm;
95 using namespace lldb_private;
96 
97 //===----------------------------------------------------------------------===//
98 // Utility Methods for Clang
99 //===----------------------------------------------------------------------===//
100 
101 class ClangExpressionParser::LLDBPreprocessorCallbacks : public PPCallbacks {
102   ClangModulesDeclVendor &m_decl_vendor;
103   ClangPersistentVariables &m_persistent_vars;
104   StreamString m_error_stream;
105   bool m_has_errors = false;
106 
107 public:
LLDBPreprocessorCallbacks(ClangModulesDeclVendor & decl_vendor,ClangPersistentVariables & persistent_vars)108   LLDBPreprocessorCallbacks(ClangModulesDeclVendor &decl_vendor,
109                             ClangPersistentVariables &persistent_vars)
110       : m_decl_vendor(decl_vendor), m_persistent_vars(persistent_vars) {}
111 
moduleImport(SourceLocation import_location,clang::ModuleIdPath path,const clang::Module *)112   void moduleImport(SourceLocation import_location, clang::ModuleIdPath path,
113                     const clang::Module * /*null*/) override {
114     std::vector<ConstString> string_path;
115 
116     for (const std::pair<IdentifierInfo *, SourceLocation> &component : path) {
117       string_path.push_back(ConstString(component.first->getName()));
118     }
119 
120     StreamString error_stream;
121 
122     ClangModulesDeclVendor::ModuleVector exported_modules;
123 
124     if (!m_decl_vendor.AddModule(string_path, &exported_modules,
125                                  m_error_stream)) {
126       m_has_errors = true;
127     }
128 
129     for (ClangModulesDeclVendor::ModuleID module : exported_modules) {
130       m_persistent_vars.AddHandLoadedClangModule(module);
131     }
132   }
133 
hasErrors()134   bool hasErrors() { return m_has_errors; }
135 
getErrorString()136   llvm::StringRef getErrorString() { return m_error_stream.GetString(); }
137 };
138 
139 class ClangDiagnosticManagerAdapter : public clang::DiagnosticConsumer {
140 public:
ClangDiagnosticManagerAdapter()141   ClangDiagnosticManagerAdapter()
142       : m_passthrough(new clang::TextDiagnosticBuffer) {}
143 
ClangDiagnosticManagerAdapter(const std::shared_ptr<clang::TextDiagnosticBuffer> & passthrough)144   ClangDiagnosticManagerAdapter(
145       const std::shared_ptr<clang::TextDiagnosticBuffer> &passthrough)
146       : m_passthrough(passthrough) {}
147 
ResetManager(DiagnosticManager * manager=nullptr)148   void ResetManager(DiagnosticManager *manager = nullptr) {
149     m_manager = manager;
150   }
151 
HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,const clang::Diagnostic & Info)152   void HandleDiagnostic(DiagnosticsEngine::Level DiagLevel,
153                         const clang::Diagnostic &Info) {
154     if (m_manager) {
155       llvm::SmallVector<char, 32> diag_str;
156       Info.FormatDiagnostic(diag_str);
157       diag_str.push_back('\0');
158       const char *data = diag_str.data();
159 
160       lldb_private::DiagnosticSeverity severity;
161       bool make_new_diagnostic = true;
162 
163       switch (DiagLevel) {
164       case DiagnosticsEngine::Level::Fatal:
165       case DiagnosticsEngine::Level::Error:
166         severity = eDiagnosticSeverityError;
167         break;
168       case DiagnosticsEngine::Level::Warning:
169         severity = eDiagnosticSeverityWarning;
170         break;
171       case DiagnosticsEngine::Level::Remark:
172       case DiagnosticsEngine::Level::Ignored:
173         severity = eDiagnosticSeverityRemark;
174         break;
175       case DiagnosticsEngine::Level::Note:
176         m_manager->AppendMessageToDiagnostic(data);
177         make_new_diagnostic = false;
178       }
179       if (make_new_diagnostic) {
180         ClangDiagnostic *new_diagnostic =
181             new ClangDiagnostic(data, severity, Info.getID());
182         m_manager->AddDiagnostic(new_diagnostic);
183 
184         // Don't store away warning fixits, since the compiler doesn't have
185         // enough context in an expression for the warning to be useful.
186         // FIXME: Should we try to filter out FixIts that apply to our generated
187         // code, and not the user's expression?
188         if (severity == eDiagnosticSeverityError) {
189           size_t num_fixit_hints = Info.getNumFixItHints();
190           for (size_t i = 0; i < num_fixit_hints; i++) {
191             const clang::FixItHint &fixit = Info.getFixItHint(i);
192             if (!fixit.isNull())
193               new_diagnostic->AddFixitHint(fixit);
194           }
195         }
196       }
197     }
198 
199     m_passthrough->HandleDiagnostic(DiagLevel, Info);
200   }
201 
FlushDiagnostics(DiagnosticsEngine & Diags)202   void FlushDiagnostics(DiagnosticsEngine &Diags) {
203     m_passthrough->FlushDiagnostics(Diags);
204   }
205 
clone(DiagnosticsEngine & Diags) const206   DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
207     return new ClangDiagnosticManagerAdapter(m_passthrough);
208   }
209 
GetPassthrough()210   clang::TextDiagnosticBuffer *GetPassthrough() { return m_passthrough.get(); }
211 
212 private:
213   DiagnosticManager *m_manager = nullptr;
214   std::shared_ptr<clang::TextDiagnosticBuffer> m_passthrough;
215 };
216 
217 //===----------------------------------------------------------------------===//
218 // Implementation of ClangExpressionParser
219 //===----------------------------------------------------------------------===//
220 
ClangExpressionParser(ExecutionContextScope * exe_scope,Expression & expr,bool generate_debug_info)221 ClangExpressionParser::ClangExpressionParser(ExecutionContextScope *exe_scope,
222                                              Expression &expr,
223                                              bool generate_debug_info)
224     : ExpressionParser(exe_scope, expr, generate_debug_info), m_compiler(),
225       m_pp_callbacks(nullptr) {
226   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
227 
228   // We can't compile expressions without a target.  So if the exe_scope is
229   // null or doesn't have a target, then we just need to get out of here.  I'll
230   // lldb_assert and not make any of the compiler objects since
231   // I can't return errors directly from the constructor.  Further calls will
232   // check if the compiler was made and
233   // bag out if it wasn't.
234 
235   if (!exe_scope) {
236     lldb_assert(exe_scope, "Can't make an expression parser with a null scope.",
237                 __FUNCTION__, __FILE__, __LINE__);
238     return;
239   }
240 
241   lldb::TargetSP target_sp;
242   target_sp = exe_scope->CalculateTarget();
243   if (!target_sp) {
244     lldb_assert(target_sp.get(),
245                 "Can't make an expression parser with a null target.",
246                 __FUNCTION__, __FILE__, __LINE__);
247     return;
248   }
249 
250   // 1. Create a new compiler instance.
251   m_compiler.reset(new CompilerInstance());
252   lldb::LanguageType frame_lang =
253       expr.Language(); // defaults to lldb::eLanguageTypeUnknown
254   bool overridden_target_opts = false;
255   lldb_private::LanguageRuntime *lang_rt = nullptr;
256 
257   std::string abi;
258   ArchSpec target_arch;
259   target_arch = target_sp->GetArchitecture();
260 
261   const auto target_machine = target_arch.GetMachine();
262 
263   // If the expression is being evaluated in the context of an existing stack
264   // frame, we introspect to see if the language runtime is available.
265 
266   lldb::StackFrameSP frame_sp = exe_scope->CalculateStackFrame();
267   lldb::ProcessSP process_sp = exe_scope->CalculateProcess();
268 
269   // Make sure the user hasn't provided a preferred execution language with
270   // `expression --language X -- ...`
271   if (frame_sp && frame_lang == lldb::eLanguageTypeUnknown)
272     frame_lang = frame_sp->GetLanguage();
273 
274   if (process_sp && frame_lang != lldb::eLanguageTypeUnknown) {
275     lang_rt = process_sp->GetLanguageRuntime(frame_lang);
276     if (log)
277       log->Printf("Frame has language of type %s",
278                   Language::GetNameForLanguageType(frame_lang));
279   }
280 
281   // 2. Configure the compiler with a set of default options that are
282   // appropriate for most situations.
283   if (target_arch.IsValid()) {
284     std::string triple = target_arch.GetTriple().str();
285     m_compiler->getTargetOpts().Triple = triple;
286     if (log)
287       log->Printf("Using %s as the target triple",
288                   m_compiler->getTargetOpts().Triple.c_str());
289   } else {
290     // If we get here we don't have a valid target and just have to guess.
291     // Sometimes this will be ok to just use the host target triple (when we
292     // evaluate say "2+3", but other expressions like breakpoint conditions and
293     // other things that _are_ target specific really shouldn't just be using
294     // the host triple. In such a case the language runtime should expose an
295     // overridden options set (3), below.
296     m_compiler->getTargetOpts().Triple = llvm::sys::getDefaultTargetTriple();
297     if (log)
298       log->Printf("Using default target triple of %s",
299                   m_compiler->getTargetOpts().Triple.c_str());
300   }
301   // Now add some special fixes for known architectures: Any arm32 iOS
302   // environment, but not on arm64
303   if (m_compiler->getTargetOpts().Triple.find("arm64") == std::string::npos &&
304       m_compiler->getTargetOpts().Triple.find("arm") != std::string::npos &&
305       m_compiler->getTargetOpts().Triple.find("ios") != std::string::npos) {
306     m_compiler->getTargetOpts().ABI = "apcs-gnu";
307   }
308   // Supported subsets of x86
309   if (target_machine == llvm::Triple::x86 ||
310       target_machine == llvm::Triple::x86_64) {
311     m_compiler->getTargetOpts().Features.push_back("+sse");
312     m_compiler->getTargetOpts().Features.push_back("+sse2");
313   }
314 
315   // Set the target CPU to generate code for. This will be empty for any CPU
316   // that doesn't really need to make a special
317   // CPU string.
318   m_compiler->getTargetOpts().CPU = target_arch.GetClangTargetCPU();
319 
320   // Set the target ABI
321   abi = GetClangTargetABI(target_arch);
322   if (!abi.empty())
323     m_compiler->getTargetOpts().ABI = abi;
324 
325   // 3. Now allow the runtime to provide custom configuration options for the
326   // target. In this case, a specialized language runtime is available and we
327   // can query it for extra options. For 99% of use cases, this will not be
328   // needed and should be provided when basic platform detection is not enough.
329   if (lang_rt)
330     overridden_target_opts =
331         lang_rt->GetOverrideExprOptions(m_compiler->getTargetOpts());
332 
333   if (overridden_target_opts)
334     if (log && log->GetVerbose()) {
335       LLDB_LOGV(
336           log, "Using overridden target options for the expression evaluation");
337 
338       auto opts = m_compiler->getTargetOpts();
339       LLDB_LOGV(log, "Triple: '{0}'", opts.Triple);
340       LLDB_LOGV(log, "CPU: '{0}'", opts.CPU);
341       LLDB_LOGV(log, "FPMath: '{0}'", opts.FPMath);
342       LLDB_LOGV(log, "ABI: '{0}'", opts.ABI);
343       LLDB_LOGV(log, "LinkerVersion: '{0}'", opts.LinkerVersion);
344       StringList::LogDump(log, opts.FeaturesAsWritten, "FeaturesAsWritten");
345       StringList::LogDump(log, opts.Features, "Features");
346     }
347 
348   // 4. Create and install the target on the compiler.
349   m_compiler->createDiagnostics();
350   auto target_info = TargetInfo::CreateTargetInfo(
351       m_compiler->getDiagnostics(), m_compiler->getInvocation().TargetOpts);
352   if (log) {
353     log->Printf("Using SIMD alignment: %d", target_info->getSimdDefaultAlign());
354     log->Printf("Target datalayout string: '%s'",
355                 target_info->getDataLayout().getStringRepresentation().c_str());
356     log->Printf("Target ABI: '%s'", target_info->getABI().str().c_str());
357     log->Printf("Target vector alignment: %d",
358                 target_info->getMaxVectorAlign());
359   }
360   m_compiler->setTarget(target_info);
361 
362   assert(m_compiler->hasTarget());
363 
364   // 5. Set language options.
365   lldb::LanguageType language = expr.Language();
366 
367   switch (language) {
368   case lldb::eLanguageTypeC:
369   case lldb::eLanguageTypeC89:
370   case lldb::eLanguageTypeC99:
371   case lldb::eLanguageTypeC11:
372     // FIXME: the following language option is a temporary workaround,
373     // to "ask for C, get C++."
374     // For now, the expression parser must use C++ anytime the language is a C
375     // family language, because the expression parser uses features of C++ to
376     // capture values.
377     m_compiler->getLangOpts().CPlusPlus = true;
378     break;
379   case lldb::eLanguageTypeObjC:
380     m_compiler->getLangOpts().ObjC = true;
381     // FIXME: the following language option is a temporary workaround,
382     // to "ask for ObjC, get ObjC++" (see comment above).
383     m_compiler->getLangOpts().CPlusPlus = true;
384 
385     // Clang now sets as default C++14 as the default standard (with
386     // GNU extensions), so we do the same here to avoid mismatches that
387     // cause compiler error when evaluating expressions (e.g. nullptr not found
388     // as it's a C++11 feature). Currently lldb evaluates C++14 as C++11 (see
389     // two lines below) so we decide to be consistent with that, but this could
390     // be re-evaluated in the future.
391     m_compiler->getLangOpts().CPlusPlus11 = true;
392     break;
393   case lldb::eLanguageTypeC_plus_plus:
394   case lldb::eLanguageTypeC_plus_plus_11:
395   case lldb::eLanguageTypeC_plus_plus_14:
396     m_compiler->getLangOpts().CPlusPlus11 = true;
397     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
398     LLVM_FALLTHROUGH;
399   case lldb::eLanguageTypeC_plus_plus_03:
400     m_compiler->getLangOpts().CPlusPlus = true;
401     if (process_sp)
402       m_compiler->getLangOpts().ObjC =
403           process_sp->GetLanguageRuntime(lldb::eLanguageTypeObjC) != nullptr;
404     break;
405   case lldb::eLanguageTypeObjC_plus_plus:
406   case lldb::eLanguageTypeUnknown:
407   default:
408     m_compiler->getLangOpts().ObjC = true;
409     m_compiler->getLangOpts().CPlusPlus = true;
410     m_compiler->getLangOpts().CPlusPlus11 = true;
411     m_compiler->getHeaderSearchOpts().UseLibcxx = true;
412     break;
413   }
414 
415   m_compiler->getLangOpts().Bool = true;
416   m_compiler->getLangOpts().WChar = true;
417   m_compiler->getLangOpts().Blocks = true;
418   m_compiler->getLangOpts().DebuggerSupport =
419       true; // Features specifically for debugger clients
420   if (expr.DesiredResultType() == Expression::eResultTypeId)
421     m_compiler->getLangOpts().DebuggerCastResultToId = true;
422 
423   m_compiler->getLangOpts().CharIsSigned =
424       ArchSpec(m_compiler->getTargetOpts().Triple.c_str())
425           .CharIsSignedByDefault();
426 
427   // Spell checking is a nice feature, but it ends up completing a lot of types
428   // that we didn't strictly speaking need to complete. As a result, we spend a
429   // long time parsing and importing debug information.
430   m_compiler->getLangOpts().SpellChecking = false;
431 
432   if (process_sp && m_compiler->getLangOpts().ObjC) {
433     if (process_sp->GetObjCLanguageRuntime()) {
434       if (process_sp->GetObjCLanguageRuntime()->GetRuntimeVersion() ==
435           ObjCLanguageRuntime::ObjCRuntimeVersions::eAppleObjC_V2)
436         m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::MacOSX,
437                                                   VersionTuple(10, 7));
438       else
439         m_compiler->getLangOpts().ObjCRuntime.set(ObjCRuntime::FragileMacOSX,
440                                                   VersionTuple(10, 7));
441 
442       if (process_sp->GetObjCLanguageRuntime()->HasNewLiteralsAndIndexing())
443         m_compiler->getLangOpts().DebuggerObjCLiteral = true;
444     }
445   }
446 
447   m_compiler->getLangOpts().ThreadsafeStatics = false;
448   m_compiler->getLangOpts().AccessControl =
449       false; // Debuggers get universal access
450   m_compiler->getLangOpts().DollarIdents =
451       true; // $ indicates a persistent variable name
452   // We enable all builtin functions beside the builtins from libc/libm (e.g.
453   // 'fopen'). Those libc functions are already correctly handled by LLDB, and
454   // additionally enabling them as expandable builtins is breaking Clang.
455   m_compiler->getLangOpts().NoBuiltin = true;
456 
457   // Set CodeGen options
458   m_compiler->getCodeGenOpts().EmitDeclMetadata = true;
459   m_compiler->getCodeGenOpts().InstrumentFunctions = false;
460   m_compiler->getCodeGenOpts().DisableFPElim = true;
461   m_compiler->getCodeGenOpts().OmitLeafFramePointer = false;
462   if (generate_debug_info)
463     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::FullDebugInfo);
464   else
465     m_compiler->getCodeGenOpts().setDebugInfo(codegenoptions::NoDebugInfo);
466 
467   // Disable some warnings.
468   m_compiler->getDiagnostics().setSeverityForGroup(
469       clang::diag::Flavor::WarningOrError, "unused-value",
470       clang::diag::Severity::Ignored, SourceLocation());
471   m_compiler->getDiagnostics().setSeverityForGroup(
472       clang::diag::Flavor::WarningOrError, "odr",
473       clang::diag::Severity::Ignored, SourceLocation());
474 
475   // Inform the target of the language options
476   //
477   // FIXME: We shouldn't need to do this, the target should be immutable once
478   // created. This complexity should be lifted elsewhere.
479   m_compiler->getTarget().adjust(m_compiler->getLangOpts());
480 
481   // 6. Set up the diagnostic buffer for reporting errors
482 
483   m_compiler->getDiagnostics().setClient(new ClangDiagnosticManagerAdapter);
484 
485   // 7. Set up the source management objects inside the compiler
486 
487   clang::FileSystemOptions file_system_options;
488   m_file_manager.reset(new clang::FileManager(file_system_options));
489 
490   if (!m_compiler->hasSourceManager())
491     m_compiler->createSourceManager(*m_file_manager.get());
492 
493   m_compiler->createFileManager();
494   m_compiler->createPreprocessor(TU_Complete);
495 
496   if (ClangModulesDeclVendor *decl_vendor =
497           target_sp->GetClangModulesDeclVendor()) {
498     ClangPersistentVariables *clang_persistent_vars =
499         llvm::cast<ClangPersistentVariables>(
500             target_sp->GetPersistentExpressionStateForLanguage(
501                 lldb::eLanguageTypeC));
502     std::unique_ptr<PPCallbacks> pp_callbacks(
503         new LLDBPreprocessorCallbacks(*decl_vendor, *clang_persistent_vars));
504     m_pp_callbacks =
505         static_cast<LLDBPreprocessorCallbacks *>(pp_callbacks.get());
506     m_compiler->getPreprocessor().addPPCallbacks(std::move(pp_callbacks));
507   }
508 
509   // 8. Most of this we get from the CompilerInstance, but we also want to give
510   // the context an ExternalASTSource.
511 
512   auto &PP = m_compiler->getPreprocessor();
513   auto &builtin_context = PP.getBuiltinInfo();
514   builtin_context.initializeBuiltins(PP.getIdentifierTable(),
515                                      m_compiler->getLangOpts());
516 
517   m_compiler->createASTContext();
518   clang::ASTContext &ast_context = m_compiler->getASTContext();
519 
520   ClangExpressionHelper *type_system_helper =
521       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
522   ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap();
523 
524   if (decl_map) {
525     llvm::IntrusiveRefCntPtr<clang::ExternalASTSource> ast_source(
526         decl_map->CreateProxy());
527     decl_map->InstallASTContext(ast_context, m_compiler->getFileManager());
528     ast_context.setExternalSource(ast_source);
529   }
530 
531   m_ast_context.reset(
532       new ClangASTContext(m_compiler->getTargetOpts().Triple.c_str()));
533   m_ast_context->setASTContext(&ast_context);
534 
535   std::string module_name("$__lldb_module");
536 
537   m_llvm_context.reset(new LLVMContext());
538   m_code_generator.reset(CreateLLVMCodeGen(
539       m_compiler->getDiagnostics(), module_name,
540       m_compiler->getHeaderSearchOpts(), m_compiler->getPreprocessorOpts(),
541       m_compiler->getCodeGenOpts(), *m_llvm_context));
542 }
543 
~ClangExpressionParser()544 ClangExpressionParser::~ClangExpressionParser() {}
545 
546 namespace {
547 
548 //----------------------------------------------------------------------
549 /// @class CodeComplete
550 ///
551 /// A code completion consumer for the clang Sema that is responsible for
552 /// creating the completion suggestions when a user requests completion
553 /// of an incomplete `expr` invocation.
554 //----------------------------------------------------------------------
555 class CodeComplete : public CodeCompleteConsumer {
556   CodeCompletionTUInfo m_info;
557 
558   std::string m_expr;
559   unsigned m_position = 0;
560   CompletionRequest &m_request;
561   /// The printing policy we use when printing declarations for our completion
562   /// descriptions.
563   clang::PrintingPolicy m_desc_policy;
564 
565   /// Returns true if the given character can be used in an identifier.
566   /// This also returns true for numbers because for completion we usually
567   /// just iterate backwards over iterators.
568   ///
569   /// Note: lldb uses '$' in its internal identifiers, so we also allow this.
IsIdChar(char c)570   static bool IsIdChar(char c) {
571     return c == '_' || std::isalnum(c) || c == '$';
572   }
573 
574   /// Returns true if the given character is used to separate arguments
575   /// in the command line of lldb.
IsTokenSeparator(char c)576   static bool IsTokenSeparator(char c) { return c == ' ' || c == '\t'; }
577 
578   /// Drops all tokens in front of the expression that are unrelated for
579   /// the completion of the cmd line. 'unrelated' means here that the token
580   /// is not interested for the lldb completion API result.
dropUnrelatedFrontTokens(StringRef cmd)581   StringRef dropUnrelatedFrontTokens(StringRef cmd) {
582     if (cmd.empty())
583       return cmd;
584 
585     // If we are at the start of a word, then all tokens are unrelated to
586     // the current completion logic.
587     if (IsTokenSeparator(cmd.back()))
588       return StringRef();
589 
590     // Remove all previous tokens from the string as they are unrelated
591     // to completing the current token.
592     StringRef to_remove = cmd;
593     while (!to_remove.empty() && !IsTokenSeparator(to_remove.back())) {
594       to_remove = to_remove.drop_back();
595     }
596     cmd = cmd.drop_front(to_remove.size());
597 
598     return cmd;
599   }
600 
601   /// Removes the last identifier token from the given cmd line.
removeLastToken(StringRef cmd)602   StringRef removeLastToken(StringRef cmd) {
603     while (!cmd.empty() && IsIdChar(cmd.back())) {
604       cmd = cmd.drop_back();
605     }
606     return cmd;
607   }
608 
609   /// Attemps to merge the given completion from the given position into the
610   /// existing command. Returns the completion string that can be returned to
611   /// the lldb completion API.
mergeCompletion(StringRef existing,unsigned pos,StringRef completion)612   std::string mergeCompletion(StringRef existing, unsigned pos,
613                               StringRef completion) {
614     StringRef existing_command = existing.substr(0, pos);
615     // We rewrite the last token with the completion, so let's drop that
616     // token from the command.
617     existing_command = removeLastToken(existing_command);
618     // We also should remove all previous tokens from the command as they
619     // would otherwise be added to the completion that already has the
620     // completion.
621     existing_command = dropUnrelatedFrontTokens(existing_command);
622     return existing_command.str() + completion.str();
623   }
624 
625 public:
626   /// Constructs a CodeComplete consumer that can be attached to a Sema.
627   /// @param[out] matches
628   ///    The list of matches that the lldb completion API expects as a result.
629   ///    This may already contain matches, so it's only allowed to append
630   ///    to this variable.
631   /// @param[out] expr
632   ///    The whole expression string that we are currently parsing. This
633   ///    string needs to be equal to the input the user typed, and NOT the
634   ///    final code that Clang is parsing.
635   /// @param[out] position
636   ///    The character position of the user cursor in the `expr` parameter.
637   ///
CodeComplete(CompletionRequest & request,clang::LangOptions ops,std::string expr,unsigned position)638   CodeComplete(CompletionRequest &request, clang::LangOptions ops,
639                std::string expr, unsigned position)
640       : CodeCompleteConsumer(CodeCompleteOptions(), false),
641         m_info(std::make_shared<GlobalCodeCompletionAllocator>()), m_expr(expr),
642         m_position(position), m_request(request), m_desc_policy(ops) {
643 
644     // Ensure that the printing policy is producing a description that is as
645     // short as possible.
646     m_desc_policy.SuppressScope = true;
647     m_desc_policy.SuppressTagKeyword = true;
648     m_desc_policy.FullyQualifiedName = false;
649     m_desc_policy.TerseOutput = true;
650     m_desc_policy.IncludeNewlines = false;
651     m_desc_policy.UseVoidForZeroParams = false;
652     m_desc_policy.Bool = true;
653   }
654 
655   /// Deregisters and destroys this code-completion consumer.
~CodeComplete()656   virtual ~CodeComplete() {}
657 
658   /// \name Code-completion filtering
659   /// Check if the result should be filtered out.
isResultFilteredOut(StringRef Filter,CodeCompletionResult Result)660   bool isResultFilteredOut(StringRef Filter,
661                            CodeCompletionResult Result) override {
662     // This code is mostly copied from CodeCompleteConsumer.
663     switch (Result.Kind) {
664     case CodeCompletionResult::RK_Declaration:
665       return !(
666           Result.Declaration->getIdentifier() &&
667           Result.Declaration->getIdentifier()->getName().startswith(Filter));
668     case CodeCompletionResult::RK_Keyword:
669       return !StringRef(Result.Keyword).startswith(Filter);
670     case CodeCompletionResult::RK_Macro:
671       return !Result.Macro->getName().startswith(Filter);
672     case CodeCompletionResult::RK_Pattern:
673       return !StringRef(Result.Pattern->getAsString()).startswith(Filter);
674     }
675     // If we trigger this assert or the above switch yields a warning, then
676     // CodeCompletionResult has been enhanced with more kinds of completion
677     // results. Expand the switch above in this case.
678     assert(false && "Unknown completion result type?");
679     // If we reach this, then we should just ignore whatever kind of unknown
680     // result we got back. We probably can't turn it into any kind of useful
681     // completion suggestion with the existing code.
682     return true;
683   }
684 
685   /// \name Code-completion callbacks
686   /// Process the finalized code-completion results.
ProcessCodeCompleteResults(Sema & SemaRef,CodeCompletionContext Context,CodeCompletionResult * Results,unsigned NumResults)687   void ProcessCodeCompleteResults(Sema &SemaRef, CodeCompletionContext Context,
688                                   CodeCompletionResult *Results,
689                                   unsigned NumResults) override {
690 
691     // The Sema put the incomplete token we try to complete in here during
692     // lexing, so we need to retrieve it here to know what we are completing.
693     StringRef Filter = SemaRef.getPreprocessor().getCodeCompletionFilter();
694 
695     // Iterate over all the results. Filter out results we don't want and
696     // process the rest.
697     for (unsigned I = 0; I != NumResults; ++I) {
698       // Filter the results with the information from the Sema.
699       if (!Filter.empty() && isResultFilteredOut(Filter, Results[I]))
700         continue;
701 
702       CodeCompletionResult &R = Results[I];
703       std::string ToInsert;
704       std::string Description;
705       // Handle the different completion kinds that come from the Sema.
706       switch (R.Kind) {
707       case CodeCompletionResult::RK_Declaration: {
708         const NamedDecl *D = R.Declaration;
709         ToInsert = R.Declaration->getNameAsString();
710         // If we have a function decl that has no arguments we want to
711         // complete the empty parantheses for the user. If the function has
712         // arguments, we at least complete the opening bracket.
713         if (const FunctionDecl *F = dyn_cast<FunctionDecl>(D)) {
714           if (F->getNumParams() == 0)
715             ToInsert += "()";
716           else
717             ToInsert += "(";
718           raw_string_ostream OS(Description);
719           F->print(OS, m_desc_policy, false);
720           OS.flush();
721         } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
722           Description = V->getType().getAsString(m_desc_policy);
723         } else if (const FieldDecl *F = dyn_cast<FieldDecl>(D)) {
724           Description = F->getType().getAsString(m_desc_policy);
725         } else if (const NamespaceDecl *N = dyn_cast<NamespaceDecl>(D)) {
726           // If we try to complete a namespace, then we can directly append
727           // the '::'.
728           if (!N->isAnonymousNamespace())
729             ToInsert += "::";
730         }
731         break;
732       }
733       case CodeCompletionResult::RK_Keyword:
734         ToInsert = R.Keyword;
735         break;
736       case CodeCompletionResult::RK_Macro:
737         ToInsert = R.Macro->getName().str();
738         break;
739       case CodeCompletionResult::RK_Pattern:
740         ToInsert = R.Pattern->getTypedText();
741         break;
742       }
743       // At this point all information is in the ToInsert string.
744 
745       // We also filter some internal lldb identifiers here. The user
746       // shouldn't see these.
747       if (StringRef(ToInsert).startswith("$__lldb_"))
748         continue;
749       if (!ToInsert.empty()) {
750         // Merge the suggested Token into the existing command line to comply
751         // with the kind of result the lldb API expects.
752         std::string CompletionSuggestion =
753             mergeCompletion(m_expr, m_position, ToInsert);
754         m_request.AddCompletion(CompletionSuggestion, Description);
755       }
756     }
757   }
758 
759   /// \param S the semantic-analyzer object for which code-completion is being
760   /// done.
761   ///
762   /// \param CurrentArg the index of the current argument.
763   ///
764   /// \param Candidates an array of overload candidates.
765   ///
766   /// \param NumCandidates the number of overload candidates
ProcessOverloadCandidates(Sema & S,unsigned CurrentArg,OverloadCandidate * Candidates,unsigned NumCandidates,SourceLocation OpenParLoc)767   void ProcessOverloadCandidates(Sema &S, unsigned CurrentArg,
768                                  OverloadCandidate *Candidates,
769                                  unsigned NumCandidates,
770                                  SourceLocation OpenParLoc) override {
771     // At the moment we don't filter out any overloaded candidates.
772   }
773 
getAllocator()774   CodeCompletionAllocator &getAllocator() override {
775     return m_info.getAllocator();
776   }
777 
getCodeCompletionTUInfo()778   CodeCompletionTUInfo &getCodeCompletionTUInfo() override { return m_info; }
779 };
780 } // namespace
781 
Complete(CompletionRequest & request,unsigned line,unsigned pos,unsigned typed_pos)782 bool ClangExpressionParser::Complete(CompletionRequest &request, unsigned line,
783                                      unsigned pos, unsigned typed_pos) {
784   DiagnosticManager mgr;
785   // We need the raw user expression here because that's what the CodeComplete
786   // class uses to provide completion suggestions.
787   // However, the `Text` method only gives us the transformed expression here.
788   // To actually get the raw user input here, we have to cast our expression to
789   // the LLVMUserExpression which exposes the right API. This should never fail
790   // as we always have a ClangUserExpression whenever we call this.
791   LLVMUserExpression &llvm_expr = *static_cast<LLVMUserExpression *>(&m_expr);
792   CodeComplete CC(request, m_compiler->getLangOpts(), llvm_expr.GetUserText(),
793                   typed_pos);
794   // We don't need a code generator for parsing.
795   m_code_generator.reset();
796   // Start parsing the expression with our custom code completion consumer.
797   ParseInternal(mgr, &CC, line, pos);
798   return true;
799 }
800 
Parse(DiagnosticManager & diagnostic_manager)801 unsigned ClangExpressionParser::Parse(DiagnosticManager &diagnostic_manager) {
802   return ParseInternal(diagnostic_manager);
803 }
804 
805 unsigned
ParseInternal(DiagnosticManager & diagnostic_manager,CodeCompleteConsumer * completion_consumer,unsigned completion_line,unsigned completion_column)806 ClangExpressionParser::ParseInternal(DiagnosticManager &diagnostic_manager,
807                                      CodeCompleteConsumer *completion_consumer,
808                                      unsigned completion_line,
809                                      unsigned completion_column) {
810   ClangDiagnosticManagerAdapter *adapter =
811       static_cast<ClangDiagnosticManagerAdapter *>(
812           m_compiler->getDiagnostics().getClient());
813   clang::TextDiagnosticBuffer *diag_buf = adapter->GetPassthrough();
814   diag_buf->FlushDiagnostics(m_compiler->getDiagnostics());
815 
816   adapter->ResetManager(&diagnostic_manager);
817 
818   const char *expr_text = m_expr.Text();
819 
820   clang::SourceManager &source_mgr = m_compiler->getSourceManager();
821   bool created_main_file = false;
822 
823   // Clang wants to do completion on a real file known by Clang's file manager,
824   // so we have to create one to make this work.
825   // TODO: We probably could also simulate to Clang's file manager that there
826   // is a real file that contains our code.
827   bool should_create_file = completion_consumer != nullptr;
828 
829   // We also want a real file on disk if we generate full debug info.
830   should_create_file |= m_compiler->getCodeGenOpts().getDebugInfo() ==
831                         codegenoptions::FullDebugInfo;
832 
833   if (should_create_file) {
834     int temp_fd = -1;
835     llvm::SmallString<128> result_path;
836     if (FileSpec tmpdir_file_spec = HostInfo::GetProcessTempDir()) {
837       tmpdir_file_spec.AppendPathComponent("lldb-%%%%%%.expr");
838       std::string temp_source_path = tmpdir_file_spec.GetPath();
839       llvm::sys::fs::createUniqueFile(temp_source_path, temp_fd, result_path);
840     } else {
841       llvm::sys::fs::createTemporaryFile("lldb", "expr", temp_fd, result_path);
842     }
843 
844     if (temp_fd != -1) {
845       lldb_private::File file(temp_fd, true);
846       const size_t expr_text_len = strlen(expr_text);
847       size_t bytes_written = expr_text_len;
848       if (file.Write(expr_text, bytes_written).Success()) {
849         if (bytes_written == expr_text_len) {
850           file.Close();
851           source_mgr.setMainFileID(
852               source_mgr.createFileID(m_file_manager->getFile(result_path),
853                                       SourceLocation(), SrcMgr::C_User));
854           created_main_file = true;
855         }
856       }
857     }
858   }
859 
860   if (!created_main_file) {
861     std::unique_ptr<MemoryBuffer> memory_buffer =
862         MemoryBuffer::getMemBufferCopy(expr_text, __FUNCTION__);
863     source_mgr.setMainFileID(source_mgr.createFileID(std::move(memory_buffer)));
864   }
865 
866   diag_buf->BeginSourceFile(m_compiler->getLangOpts(),
867                             &m_compiler->getPreprocessor());
868 
869   ClangExpressionHelper *type_system_helper =
870       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
871 
872   ASTConsumer *ast_transformer =
873       type_system_helper->ASTTransformer(m_code_generator.get());
874 
875   if (ClangExpressionDeclMap *decl_map = type_system_helper->DeclMap())
876     decl_map->InstallCodeGenerator(m_code_generator.get());
877 
878   // If we want to parse for code completion, we need to attach our code
879   // completion consumer to the Sema and specify a completion position.
880   // While parsing the Sema will call this consumer with the provided
881   // completion suggestions.
882   if (completion_consumer) {
883     auto main_file = source_mgr.getFileEntryForID(source_mgr.getMainFileID());
884     auto &PP = m_compiler->getPreprocessor();
885     // Lines and columns start at 1 in Clang, but code completion positions are
886     // indexed from 0, so we need to add 1 to the line and column here.
887     ++completion_line;
888     ++completion_column;
889     PP.SetCodeCompletionPoint(main_file, completion_line, completion_column);
890   }
891 
892   if (ast_transformer) {
893     ast_transformer->Initialize(m_compiler->getASTContext());
894     ParseAST(m_compiler->getPreprocessor(), ast_transformer,
895              m_compiler->getASTContext(), false, TU_Complete,
896              completion_consumer);
897   } else {
898     m_code_generator->Initialize(m_compiler->getASTContext());
899     ParseAST(m_compiler->getPreprocessor(), m_code_generator.get(),
900              m_compiler->getASTContext(), false, TU_Complete,
901              completion_consumer);
902   }
903 
904   diag_buf->EndSourceFile();
905 
906   unsigned num_errors = diag_buf->getNumErrors();
907 
908   if (m_pp_callbacks && m_pp_callbacks->hasErrors()) {
909     num_errors++;
910     diagnostic_manager.PutString(eDiagnosticSeverityError,
911                                  "while importing modules:");
912     diagnostic_manager.AppendMessageToDiagnostic(
913         m_pp_callbacks->getErrorString());
914   }
915 
916   if (!num_errors) {
917     if (type_system_helper->DeclMap() &&
918         !type_system_helper->DeclMap()->ResolveUnknownTypes()) {
919       diagnostic_manager.Printf(eDiagnosticSeverityError,
920                                 "Couldn't infer the type of a variable");
921       num_errors++;
922     }
923   }
924 
925   if (!num_errors) {
926     type_system_helper->CommitPersistentDecls();
927   }
928 
929   adapter->ResetManager();
930 
931   return num_errors;
932 }
933 
934 std::string
GetClangTargetABI(const ArchSpec & target_arch)935 ClangExpressionParser::GetClangTargetABI(const ArchSpec &target_arch) {
936   std::string abi;
937 
938   if (target_arch.IsMIPS()) {
939     switch (target_arch.GetFlags() & ArchSpec::eMIPSABI_mask) {
940     case ArchSpec::eMIPSABI_N64:
941       abi = "n64";
942       break;
943     case ArchSpec::eMIPSABI_N32:
944       abi = "n32";
945       break;
946     case ArchSpec::eMIPSABI_O32:
947       abi = "o32";
948       break;
949     default:
950       break;
951     }
952   }
953   return abi;
954 }
955 
RewriteExpression(DiagnosticManager & diagnostic_manager)956 bool ClangExpressionParser::RewriteExpression(
957     DiagnosticManager &diagnostic_manager) {
958   clang::SourceManager &source_manager = m_compiler->getSourceManager();
959   clang::edit::EditedSource editor(source_manager, m_compiler->getLangOpts(),
960                                    nullptr);
961   clang::edit::Commit commit(editor);
962   clang::Rewriter rewriter(source_manager, m_compiler->getLangOpts());
963 
964   class RewritesReceiver : public edit::EditsReceiver {
965     Rewriter &rewrite;
966 
967   public:
968     RewritesReceiver(Rewriter &in_rewrite) : rewrite(in_rewrite) {}
969 
970     void insert(SourceLocation loc, StringRef text) override {
971       rewrite.InsertText(loc, text);
972     }
973     void replace(CharSourceRange range, StringRef text) override {
974       rewrite.ReplaceText(range.getBegin(), rewrite.getRangeSize(range), text);
975     }
976   };
977 
978   RewritesReceiver rewrites_receiver(rewriter);
979 
980   const DiagnosticList &diagnostics = diagnostic_manager.Diagnostics();
981   size_t num_diags = diagnostics.size();
982   if (num_diags == 0)
983     return false;
984 
985   for (const Diagnostic *diag : diagnostic_manager.Diagnostics()) {
986     const ClangDiagnostic *diagnostic = llvm::dyn_cast<ClangDiagnostic>(diag);
987     if (diagnostic && diagnostic->HasFixIts()) {
988       for (const FixItHint &fixit : diagnostic->FixIts()) {
989         // This is cobbed from clang::Rewrite::FixItRewriter.
990         if (fixit.CodeToInsert.empty()) {
991           if (fixit.InsertFromRange.isValid()) {
992             commit.insertFromRange(fixit.RemoveRange.getBegin(),
993                                    fixit.InsertFromRange, /*afterToken=*/false,
994                                    fixit.BeforePreviousInsertions);
995           } else
996             commit.remove(fixit.RemoveRange);
997         } else {
998           if (fixit.RemoveRange.isTokenRange() ||
999               fixit.RemoveRange.getBegin() != fixit.RemoveRange.getEnd())
1000             commit.replace(fixit.RemoveRange, fixit.CodeToInsert);
1001           else
1002             commit.insert(fixit.RemoveRange.getBegin(), fixit.CodeToInsert,
1003                           /*afterToken=*/false, fixit.BeforePreviousInsertions);
1004         }
1005       }
1006     }
1007   }
1008 
1009   // FIXME - do we want to try to propagate specific errors here?
1010   if (!commit.isCommitable())
1011     return false;
1012   else if (!editor.commit(commit))
1013     return false;
1014 
1015   // Now play all the edits, and stash the result in the diagnostic manager.
1016   editor.applyRewrites(rewrites_receiver);
1017   RewriteBuffer &main_file_buffer =
1018       rewriter.getEditBuffer(source_manager.getMainFileID());
1019 
1020   std::string fixed_expression;
1021   llvm::raw_string_ostream out_stream(fixed_expression);
1022 
1023   main_file_buffer.write(out_stream);
1024   out_stream.flush();
1025   diagnostic_manager.SetFixedExpression(fixed_expression);
1026 
1027   return true;
1028 }
1029 
FindFunctionInModule(ConstString & mangled_name,llvm::Module * module,const char * orig_name)1030 static bool FindFunctionInModule(ConstString &mangled_name,
1031                                  llvm::Module *module, const char *orig_name) {
1032   for (const auto &func : module->getFunctionList()) {
1033     const StringRef &name = func.getName();
1034     if (name.find(orig_name) != StringRef::npos) {
1035       mangled_name.SetString(name);
1036       return true;
1037     }
1038   }
1039 
1040   return false;
1041 }
1042 
PrepareForExecution(lldb::addr_t & func_addr,lldb::addr_t & func_end,lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx,bool & can_interpret,ExecutionPolicy execution_policy)1043 lldb_private::Status ClangExpressionParser::PrepareForExecution(
1044     lldb::addr_t &func_addr, lldb::addr_t &func_end,
1045     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx,
1046     bool &can_interpret, ExecutionPolicy execution_policy) {
1047   func_addr = LLDB_INVALID_ADDRESS;
1048   func_end = LLDB_INVALID_ADDRESS;
1049   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EXPRESSIONS));
1050 
1051   lldb_private::Status err;
1052 
1053   std::unique_ptr<llvm::Module> llvm_module_ap(
1054       m_code_generator->ReleaseModule());
1055 
1056   if (!llvm_module_ap.get()) {
1057     err.SetErrorToGenericError();
1058     err.SetErrorString("IR doesn't contain a module");
1059     return err;
1060   }
1061 
1062   ConstString function_name;
1063 
1064   if (execution_policy != eExecutionPolicyTopLevel) {
1065     // Find the actual name of the function (it's often mangled somehow)
1066 
1067     if (!FindFunctionInModule(function_name, llvm_module_ap.get(),
1068                               m_expr.FunctionName())) {
1069       err.SetErrorToGenericError();
1070       err.SetErrorStringWithFormat("Couldn't find %s() in the module",
1071                                    m_expr.FunctionName());
1072       return err;
1073     } else {
1074       if (log)
1075         log->Printf("Found function %s for %s", function_name.AsCString(),
1076                     m_expr.FunctionName());
1077     }
1078   }
1079 
1080   SymbolContext sc;
1081 
1082   if (lldb::StackFrameSP frame_sp = exe_ctx.GetFrameSP()) {
1083     sc = frame_sp->GetSymbolContext(lldb::eSymbolContextEverything);
1084   } else if (lldb::TargetSP target_sp = exe_ctx.GetTargetSP()) {
1085     sc.target_sp = target_sp;
1086   }
1087 
1088   LLVMUserExpression::IRPasses custom_passes;
1089   {
1090     auto lang = m_expr.Language();
1091     if (log)
1092       log->Printf("%s - Current expression language is %s\n", __FUNCTION__,
1093                   Language::GetNameForLanguageType(lang));
1094     lldb::ProcessSP process_sp = exe_ctx.GetProcessSP();
1095     if (process_sp && lang != lldb::eLanguageTypeUnknown) {
1096       auto runtime = process_sp->GetLanguageRuntime(lang);
1097       if (runtime)
1098         runtime->GetIRPasses(custom_passes);
1099     }
1100   }
1101 
1102   if (custom_passes.EarlyPasses) {
1103     if (log)
1104       log->Printf("%s - Running Early IR Passes from LanguageRuntime on "
1105                   "expression module '%s'",
1106                   __FUNCTION__, m_expr.FunctionName());
1107 
1108     custom_passes.EarlyPasses->run(*llvm_module_ap);
1109   }
1110 
1111   execution_unit_sp.reset(
1112       new IRExecutionUnit(m_llvm_context, // handed off here
1113                           llvm_module_ap, // handed off here
1114                           function_name, exe_ctx.GetTargetSP(), sc,
1115                           m_compiler->getTargetOpts().Features));
1116 
1117   ClangExpressionHelper *type_system_helper =
1118       dyn_cast<ClangExpressionHelper>(m_expr.GetTypeSystemHelper());
1119   ClangExpressionDeclMap *decl_map =
1120       type_system_helper->DeclMap(); // result can be NULL
1121 
1122   if (decl_map) {
1123     Stream *error_stream = NULL;
1124     Target *target = exe_ctx.GetTargetPtr();
1125     error_stream = target->GetDebugger().GetErrorFile().get();
1126 
1127     IRForTarget ir_for_target(decl_map, m_expr.NeedsVariableResolution(),
1128                               *execution_unit_sp, *error_stream,
1129                               function_name.AsCString());
1130 
1131     bool ir_can_run =
1132         ir_for_target.runOnModule(*execution_unit_sp->GetModule());
1133 
1134     if (!ir_can_run) {
1135       err.SetErrorString(
1136           "The expression could not be prepared to run in the target");
1137       return err;
1138     }
1139 
1140     Process *process = exe_ctx.GetProcessPtr();
1141 
1142     if (execution_policy != eExecutionPolicyAlways &&
1143         execution_policy != eExecutionPolicyTopLevel) {
1144       lldb_private::Status interpret_error;
1145 
1146       bool interpret_function_calls =
1147           !process ? false : process->CanInterpretFunctionCalls();
1148       can_interpret = IRInterpreter::CanInterpret(
1149           *execution_unit_sp->GetModule(), *execution_unit_sp->GetFunction(),
1150           interpret_error, interpret_function_calls);
1151 
1152       if (!can_interpret && execution_policy == eExecutionPolicyNever) {
1153         err.SetErrorStringWithFormat("Can't run the expression locally: %s",
1154                                      interpret_error.AsCString());
1155         return err;
1156       }
1157     }
1158 
1159     if (!process && execution_policy == eExecutionPolicyAlways) {
1160       err.SetErrorString("Expression needed to run in the target, but the "
1161                          "target can't be run");
1162       return err;
1163     }
1164 
1165     if (!process && execution_policy == eExecutionPolicyTopLevel) {
1166       err.SetErrorString("Top-level code needs to be inserted into a runnable "
1167                          "target, but the target can't be run");
1168       return err;
1169     }
1170 
1171     if (execution_policy == eExecutionPolicyAlways ||
1172         (execution_policy != eExecutionPolicyTopLevel && !can_interpret)) {
1173       if (m_expr.NeedsValidation() && process) {
1174         if (!process->GetDynamicCheckers()) {
1175           DynamicCheckerFunctions *dynamic_checkers =
1176               new DynamicCheckerFunctions();
1177 
1178           DiagnosticManager install_diagnostics;
1179 
1180           if (!dynamic_checkers->Install(install_diagnostics, exe_ctx)) {
1181             if (install_diagnostics.Diagnostics().size())
1182               err.SetErrorString(install_diagnostics.GetString().c_str());
1183             else
1184               err.SetErrorString("couldn't install checkers, unknown error");
1185 
1186             return err;
1187           }
1188 
1189           process->SetDynamicCheckers(dynamic_checkers);
1190 
1191           if (log)
1192             log->Printf("== [ClangUserExpression::Evaluate] Finished "
1193                         "installing dynamic checkers ==");
1194         }
1195 
1196         IRDynamicChecks ir_dynamic_checks(*process->GetDynamicCheckers(),
1197                                           function_name.AsCString());
1198 
1199         llvm::Module *module = execution_unit_sp->GetModule();
1200         if (!module || !ir_dynamic_checks.runOnModule(*module)) {
1201           err.SetErrorToGenericError();
1202           err.SetErrorString("Couldn't add dynamic checks to the expression");
1203           return err;
1204         }
1205 
1206         if (custom_passes.LatePasses) {
1207           if (log)
1208             log->Printf("%s - Running Late IR Passes from LanguageRuntime on "
1209                         "expression module '%s'",
1210                         __FUNCTION__, m_expr.FunctionName());
1211 
1212           custom_passes.LatePasses->run(*module);
1213         }
1214       }
1215     }
1216 
1217     if (execution_policy == eExecutionPolicyAlways ||
1218         execution_policy == eExecutionPolicyTopLevel || !can_interpret) {
1219       execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1220     }
1221   } else {
1222     execution_unit_sp->GetRunnableInfo(err, func_addr, func_end);
1223   }
1224 
1225   return err;
1226 }
1227 
RunStaticInitializers(lldb::IRExecutionUnitSP & execution_unit_sp,ExecutionContext & exe_ctx)1228 lldb_private::Status ClangExpressionParser::RunStaticInitializers(
1229     lldb::IRExecutionUnitSP &execution_unit_sp, ExecutionContext &exe_ctx) {
1230   lldb_private::Status err;
1231 
1232   lldbassert(execution_unit_sp.get());
1233   lldbassert(exe_ctx.HasThreadScope());
1234 
1235   if (!execution_unit_sp.get()) {
1236     err.SetErrorString(
1237         "can't run static initializers for a NULL execution unit");
1238     return err;
1239   }
1240 
1241   if (!exe_ctx.HasThreadScope()) {
1242     err.SetErrorString("can't run static initializers without a thread");
1243     return err;
1244   }
1245 
1246   std::vector<lldb::addr_t> static_initializers;
1247 
1248   execution_unit_sp->GetStaticInitializers(static_initializers);
1249 
1250   for (lldb::addr_t static_initializer : static_initializers) {
1251     EvaluateExpressionOptions options;
1252 
1253     lldb::ThreadPlanSP call_static_initializer(new ThreadPlanCallFunction(
1254         exe_ctx.GetThreadRef(), Address(static_initializer), CompilerType(),
1255         llvm::ArrayRef<lldb::addr_t>(), options));
1256 
1257     DiagnosticManager execution_errors;
1258     lldb::ExpressionResults results =
1259         exe_ctx.GetThreadRef().GetProcess()->RunThreadPlan(
1260             exe_ctx, call_static_initializer, options, execution_errors);
1261 
1262     if (results != lldb::eExpressionCompleted) {
1263       err.SetErrorStringWithFormat("couldn't run static initializer: %s",
1264                                    execution_errors.GetString().c_str());
1265       return err;
1266     }
1267   }
1268 
1269   return err;
1270 }
1271