1 //===-- APInt.cpp - Implement APInt class ---------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a class to represent arbitrary precision integer
10 // constant values and provide a variety of arithmetic operations on them.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/FoldingSet.h"
17 #include "llvm/ADT/Hashing.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/bit.h"
22 #include "llvm/Config/llvm-config.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include <cmath>
28 #include <cstring>
29 using namespace llvm;
30
31 #define DEBUG_TYPE "apint"
32
33 /// A utility function for allocating memory, checking for allocation failures,
34 /// and ensuring the contents are zeroed.
getClearedMemory(unsigned numWords)35 inline static uint64_t* getClearedMemory(unsigned numWords) {
36 uint64_t *result = new uint64_t[numWords];
37 memset(result, 0, numWords * sizeof(uint64_t));
38 return result;
39 }
40
41 /// A utility function for allocating memory and checking for allocation
42 /// failure. The content is not zeroed.
getMemory(unsigned numWords)43 inline static uint64_t* getMemory(unsigned numWords) {
44 return new uint64_t[numWords];
45 }
46
47 /// A utility function that converts a character to a digit.
getDigit(char cdigit,uint8_t radix)48 inline static unsigned getDigit(char cdigit, uint8_t radix) {
49 unsigned r;
50
51 if (radix == 16 || radix == 36) {
52 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= radix - 11U)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= radix - 11U)
62 return r + 10;
63
64 radix = 10;
65 }
66
67 r = cdigit - '0';
68 if (r < radix)
69 return r;
70
71 return -1U;
72 }
73
74
initSlowCase(uint64_t val,bool isSigned)75 void APInt::initSlowCase(uint64_t val, bool isSigned) {
76 U.pVal = getClearedMemory(getNumWords());
77 U.pVal[0] = val;
78 if (isSigned && int64_t(val) < 0)
79 for (unsigned i = 1; i < getNumWords(); ++i)
80 U.pVal[i] = WORDTYPE_MAX;
81 clearUnusedBits();
82 }
83
initSlowCase(const APInt & that)84 void APInt::initSlowCase(const APInt& that) {
85 U.pVal = getMemory(getNumWords());
86 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
87 }
88
initFromArray(ArrayRef<uint64_t> bigVal)89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
90 assert(bigVal.data() && "Null pointer detected!");
91 if (isSingleWord())
92 U.VAL = bigVal[0];
93 else {
94 // Get memory, cleared to 0
95 U.pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
97 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
98 // Copy the words from bigVal to pVal
99 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
100 }
101 // Make sure unused high bits are cleared
102 clearUnusedBits();
103 }
104
APInt(unsigned numBits,ArrayRef<uint64_t> bigVal)105 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) {
106 initFromArray(bigVal);
107 }
108
APInt(unsigned numBits,unsigned numWords,const uint64_t bigVal[])109 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
110 : BitWidth(numBits) {
111 initFromArray(makeArrayRef(bigVal, numWords));
112 }
113
APInt(unsigned numbits,StringRef Str,uint8_t radix)114 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
115 : BitWidth(numbits) {
116 fromString(numbits, Str, radix);
117 }
118
reallocate(unsigned NewBitWidth)119 void APInt::reallocate(unsigned NewBitWidth) {
120 // If the number of words is the same we can just change the width and stop.
121 if (getNumWords() == getNumWords(NewBitWidth)) {
122 BitWidth = NewBitWidth;
123 return;
124 }
125
126 // If we have an allocation, delete it.
127 if (!isSingleWord())
128 delete [] U.pVal;
129
130 // Update BitWidth.
131 BitWidth = NewBitWidth;
132
133 // If we are supposed to have an allocation, create it.
134 if (!isSingleWord())
135 U.pVal = getMemory(getNumWords());
136 }
137
assignSlowCase(const APInt & RHS)138 void APInt::assignSlowCase(const APInt &RHS) {
139 // Don't do anything for X = X
140 if (this == &RHS)
141 return;
142
143 // Adjust the bit width and handle allocations as necessary.
144 reallocate(RHS.getBitWidth());
145
146 // Copy the data.
147 if (isSingleWord())
148 U.VAL = RHS.U.VAL;
149 else
150 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
151 }
152
153 /// This method 'profiles' an APInt for use with FoldingSet.
Profile(FoldingSetNodeID & ID) const154 void APInt::Profile(FoldingSetNodeID& ID) const {
155 ID.AddInteger(BitWidth);
156
157 if (isSingleWord()) {
158 ID.AddInteger(U.VAL);
159 return;
160 }
161
162 unsigned NumWords = getNumWords();
163 for (unsigned i = 0; i < NumWords; ++i)
164 ID.AddInteger(U.pVal[i]);
165 }
166
167 /// Prefix increment operator. Increments the APInt by one.
operator ++()168 APInt& APInt::operator++() {
169 if (isSingleWord())
170 ++U.VAL;
171 else
172 tcIncrement(U.pVal, getNumWords());
173 return clearUnusedBits();
174 }
175
176 /// Prefix decrement operator. Decrements the APInt by one.
operator --()177 APInt& APInt::operator--() {
178 if (isSingleWord())
179 --U.VAL;
180 else
181 tcDecrement(U.pVal, getNumWords());
182 return clearUnusedBits();
183 }
184
185 /// Adds the RHS APInt to this APInt.
186 /// @returns this, after addition of RHS.
187 /// Addition assignment operator.
operator +=(const APInt & RHS)188 APInt& APInt::operator+=(const APInt& RHS) {
189 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
190 if (isSingleWord())
191 U.VAL += RHS.U.VAL;
192 else
193 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
194 return clearUnusedBits();
195 }
196
operator +=(uint64_t RHS)197 APInt& APInt::operator+=(uint64_t RHS) {
198 if (isSingleWord())
199 U.VAL += RHS;
200 else
201 tcAddPart(U.pVal, RHS, getNumWords());
202 return clearUnusedBits();
203 }
204
205 /// Subtracts the RHS APInt from this APInt
206 /// @returns this, after subtraction
207 /// Subtraction assignment operator.
operator -=(const APInt & RHS)208 APInt& APInt::operator-=(const APInt& RHS) {
209 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
210 if (isSingleWord())
211 U.VAL -= RHS.U.VAL;
212 else
213 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
214 return clearUnusedBits();
215 }
216
operator -=(uint64_t RHS)217 APInt& APInt::operator-=(uint64_t RHS) {
218 if (isSingleWord())
219 U.VAL -= RHS;
220 else
221 tcSubtractPart(U.pVal, RHS, getNumWords());
222 return clearUnusedBits();
223 }
224
operator *(const APInt & RHS) const225 APInt APInt::operator*(const APInt& RHS) const {
226 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
227 if (isSingleWord())
228 return APInt(BitWidth, U.VAL * RHS.U.VAL);
229
230 APInt Result(getMemory(getNumWords()), getBitWidth());
231 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
232 Result.clearUnusedBits();
233 return Result;
234 }
235
andAssignSlowCase(const APInt & RHS)236 void APInt::andAssignSlowCase(const APInt &RHS) {
237 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
238 for (size_t i = 0, e = getNumWords(); i != e; ++i)
239 dst[i] &= rhs[i];
240 }
241
orAssignSlowCase(const APInt & RHS)242 void APInt::orAssignSlowCase(const APInt &RHS) {
243 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
244 for (size_t i = 0, e = getNumWords(); i != e; ++i)
245 dst[i] |= rhs[i];
246 }
247
xorAssignSlowCase(const APInt & RHS)248 void APInt::xorAssignSlowCase(const APInt &RHS) {
249 WordType *dst = U.pVal, *rhs = RHS.U.pVal;
250 for (size_t i = 0, e = getNumWords(); i != e; ++i)
251 dst[i] ^= rhs[i];
252 }
253
operator *=(const APInt & RHS)254 APInt &APInt::operator*=(const APInt &RHS) {
255 *this = *this * RHS;
256 return *this;
257 }
258
operator *=(uint64_t RHS)259 APInt& APInt::operator*=(uint64_t RHS) {
260 if (isSingleWord()) {
261 U.VAL *= RHS;
262 } else {
263 unsigned NumWords = getNumWords();
264 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265 }
266 return clearUnusedBits();
267 }
268
equalSlowCase(const APInt & RHS) const269 bool APInt::equalSlowCase(const APInt &RHS) const {
270 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
271 }
272
compare(const APInt & RHS) const273 int APInt::compare(const APInt& RHS) const {
274 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
275 if (isSingleWord())
276 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
277
278 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
279 }
280
compareSigned(const APInt & RHS) const281 int APInt::compareSigned(const APInt& RHS) const {
282 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
283 if (isSingleWord()) {
284 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
286 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
287 }
288
289 bool lhsNeg = isNegative();
290 bool rhsNeg = RHS.isNegative();
291
292 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293 if (lhsNeg != rhsNeg)
294 return lhsNeg ? -1 : 1;
295
296 // Otherwise we can just use an unsigned comparison, because even negative
297 // numbers compare correctly this way if both have the same signed-ness.
298 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
299 }
300
setBitsSlowCase(unsigned loBit,unsigned hiBit)301 void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302 unsigned loWord = whichWord(loBit);
303 unsigned hiWord = whichWord(hiBit);
304
305 // Create an initial mask for the low word with zeros below loBit.
306 uint64_t loMask = WORDTYPE_MAX << whichBit(loBit);
307
308 // If hiBit is not aligned, we need a high mask.
309 unsigned hiShiftAmt = whichBit(hiBit);
310 if (hiShiftAmt != 0) {
311 // Create a high mask with zeros above hiBit.
312 uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
313 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314 // set the bits in hiWord.
315 if (hiWord == loWord)
316 loMask &= hiMask;
317 else
318 U.pVal[hiWord] |= hiMask;
319 }
320 // Apply the mask to the low word.
321 U.pVal[loWord] |= loMask;
322
323 // Fill any words between loWord and hiWord with all ones.
324 for (unsigned word = loWord + 1; word < hiWord; ++word)
325 U.pVal[word] = WORDTYPE_MAX;
326 }
327
328 // Complement a bignum in-place.
tcComplement(APInt::WordType * dst,unsigned parts)329 static void tcComplement(APInt::WordType *dst, unsigned parts) {
330 for (unsigned i = 0; i < parts; i++)
331 dst[i] = ~dst[i];
332 }
333
334 /// Toggle every bit to its opposite value.
flipAllBitsSlowCase()335 void APInt::flipAllBitsSlowCase() {
336 tcComplement(U.pVal, getNumWords());
337 clearUnusedBits();
338 }
339
340 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
341 /// equivalent to:
342 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
343 /// In the slow case, we know the result is large.
concatSlowCase(const APInt & NewLSB) const344 APInt APInt::concatSlowCase(const APInt &NewLSB) const {
345 unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth();
346 APInt Result = NewLSB.zext(NewWidth);
347 Result.insertBits(*this, NewLSB.getBitWidth());
348 return Result;
349 }
350
351 /// Toggle a given bit to its opposite value whose position is given
352 /// as "bitPosition".
353 /// Toggles a given bit to its opposite value.
flipBit(unsigned bitPosition)354 void APInt::flipBit(unsigned bitPosition) {
355 assert(bitPosition < BitWidth && "Out of the bit-width range!");
356 setBitVal(bitPosition, !(*this)[bitPosition]);
357 }
358
insertBits(const APInt & subBits,unsigned bitPosition)359 void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
360 unsigned subBitWidth = subBits.getBitWidth();
361 assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion");
362
363 // inserting no bits is a noop.
364 if (subBitWidth == 0)
365 return;
366
367 // Insertion is a direct copy.
368 if (subBitWidth == BitWidth) {
369 *this = subBits;
370 return;
371 }
372
373 // Single word result can be done as a direct bitmask.
374 if (isSingleWord()) {
375 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
376 U.VAL &= ~(mask << bitPosition);
377 U.VAL |= (subBits.U.VAL << bitPosition);
378 return;
379 }
380
381 unsigned loBit = whichBit(bitPosition);
382 unsigned loWord = whichWord(bitPosition);
383 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
384
385 // Insertion within a single word can be done as a direct bitmask.
386 if (loWord == hi1Word) {
387 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
388 U.pVal[loWord] &= ~(mask << loBit);
389 U.pVal[loWord] |= (subBits.U.VAL << loBit);
390 return;
391 }
392
393 // Insert on word boundaries.
394 if (loBit == 0) {
395 // Direct copy whole words.
396 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
397 memcpy(U.pVal + loWord, subBits.getRawData(),
398 numWholeSubWords * APINT_WORD_SIZE);
399
400 // Mask+insert remaining bits.
401 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
402 if (remainingBits != 0) {
403 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits);
404 U.pVal[hi1Word] &= ~mask;
405 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
406 }
407 return;
408 }
409
410 // General case - set/clear individual bits in dst based on src.
411 // TODO - there is scope for optimization here, but at the moment this code
412 // path is barely used so prefer readability over performance.
413 for (unsigned i = 0; i != subBitWidth; ++i)
414 setBitVal(bitPosition + i, subBits[i]);
415 }
416
insertBits(uint64_t subBits,unsigned bitPosition,unsigned numBits)417 void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) {
418 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
419 subBits &= maskBits;
420 if (isSingleWord()) {
421 U.VAL &= ~(maskBits << bitPosition);
422 U.VAL |= subBits << bitPosition;
423 return;
424 }
425
426 unsigned loBit = whichBit(bitPosition);
427 unsigned loWord = whichWord(bitPosition);
428 unsigned hiWord = whichWord(bitPosition + numBits - 1);
429 if (loWord == hiWord) {
430 U.pVal[loWord] &= ~(maskBits << loBit);
431 U.pVal[loWord] |= subBits << loBit;
432 return;
433 }
434
435 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
436 unsigned wordBits = 8 * sizeof(WordType);
437 U.pVal[loWord] &= ~(maskBits << loBit);
438 U.pVal[loWord] |= subBits << loBit;
439
440 U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit));
441 U.pVal[hiWord] |= subBits >> (wordBits - loBit);
442 }
443
extractBits(unsigned numBits,unsigned bitPosition) const444 APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
445 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
446 "Illegal bit extraction");
447
448 if (isSingleWord())
449 return APInt(numBits, U.VAL >> bitPosition);
450
451 unsigned loBit = whichBit(bitPosition);
452 unsigned loWord = whichWord(bitPosition);
453 unsigned hiWord = whichWord(bitPosition + numBits - 1);
454
455 // Single word result extracting bits from a single word source.
456 if (loWord == hiWord)
457 return APInt(numBits, U.pVal[loWord] >> loBit);
458
459 // Extracting bits that start on a source word boundary can be done
460 // as a fast memory copy.
461 if (loBit == 0)
462 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
463
464 // General case - shift + copy source words directly into place.
465 APInt Result(numBits, 0);
466 unsigned NumSrcWords = getNumWords();
467 unsigned NumDstWords = Result.getNumWords();
468
469 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
470 for (unsigned word = 0; word < NumDstWords; ++word) {
471 uint64_t w0 = U.pVal[loWord + word];
472 uint64_t w1 =
473 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
474 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
475 }
476
477 return Result.clearUnusedBits();
478 }
479
extractBitsAsZExtValue(unsigned numBits,unsigned bitPosition) const480 uint64_t APInt::extractBitsAsZExtValue(unsigned numBits,
481 unsigned bitPosition) const {
482 assert(numBits > 0 && "Can't extract zero bits");
483 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&
484 "Illegal bit extraction");
485 assert(numBits <= 64 && "Illegal bit extraction");
486
487 uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits);
488 if (isSingleWord())
489 return (U.VAL >> bitPosition) & maskBits;
490
491 unsigned loBit = whichBit(bitPosition);
492 unsigned loWord = whichWord(bitPosition);
493 unsigned hiWord = whichWord(bitPosition + numBits - 1);
494 if (loWord == hiWord)
495 return (U.pVal[loWord] >> loBit) & maskBits;
496
497 static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected");
498 unsigned wordBits = 8 * sizeof(WordType);
499 uint64_t retBits = U.pVal[loWord] >> loBit;
500 retBits |= U.pVal[hiWord] << (wordBits - loBit);
501 retBits &= maskBits;
502 return retBits;
503 }
504
getSufficientBitsNeeded(StringRef Str,uint8_t Radix)505 unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) {
506 assert(!Str.empty() && "Invalid string length");
507 size_t StrLen = Str.size();
508
509 // Each computation below needs to know if it's negative.
510 unsigned IsNegative = false;
511 if (Str[0] == '-' || Str[0] == '+') {
512 IsNegative = Str[0] == '-';
513 StrLen--;
514 assert(StrLen && "String is only a sign, needs a value.");
515 }
516
517 // For radixes of power-of-two values, the bits required is accurately and
518 // easily computed.
519 if (Radix == 2)
520 return StrLen + IsNegative;
521 if (Radix == 8)
522 return StrLen * 3 + IsNegative;
523 if (Radix == 16)
524 return StrLen * 4 + IsNegative;
525
526 // Compute a sufficient number of bits that is always large enough but might
527 // be too large. This avoids the assertion in the constructor. This
528 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
529 // bits in that case.
530 if (Radix == 10)
531 return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative;
532
533 assert(Radix == 36);
534 return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative;
535 }
536
getBitsNeeded(StringRef str,uint8_t radix)537 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
538 // Compute a sufficient number of bits that is always large enough but might
539 // be too large.
540 unsigned sufficient = getSufficientBitsNeeded(str, radix);
541
542 // For bases 2, 8, and 16, the sufficient number of bits is exact and we can
543 // return the value directly. For bases 10 and 36, we need to do extra work.
544 if (radix == 2 || radix == 8 || radix == 16)
545 return sufficient;
546
547 // This is grossly inefficient but accurate. We could probably do something
548 // with a computation of roughly slen*64/20 and then adjust by the value of
549 // the first few digits. But, I'm not sure how accurate that could be.
550 size_t slen = str.size();
551
552 // Each computation below needs to know if it's negative.
553 StringRef::iterator p = str.begin();
554 unsigned isNegative = *p == '-';
555 if (*p == '-' || *p == '+') {
556 p++;
557 slen--;
558 assert(slen && "String is only a sign, needs a value.");
559 }
560
561
562 // Convert to the actual binary value.
563 APInt tmp(sufficient, StringRef(p, slen), radix);
564
565 // Compute how many bits are required. If the log is infinite, assume we need
566 // just bit. If the log is exact and value is negative, then the value is
567 // MinSignedValue with (log + 1) bits.
568 unsigned log = tmp.logBase2();
569 if (log == (unsigned)-1) {
570 return isNegative + 1;
571 } else if (isNegative && tmp.isPowerOf2()) {
572 return isNegative + log;
573 } else {
574 return isNegative + log + 1;
575 }
576 }
577
hash_value(const APInt & Arg)578 hash_code llvm::hash_value(const APInt &Arg) {
579 if (Arg.isSingleWord())
580 return hash_combine(Arg.BitWidth, Arg.U.VAL);
581
582 return hash_combine(
583 Arg.BitWidth,
584 hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords()));
585 }
586
getHashValue(const APInt & Key)587 unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) {
588 return static_cast<unsigned>(hash_value(Key));
589 }
590
isSplat(unsigned SplatSizeInBits) const591 bool APInt::isSplat(unsigned SplatSizeInBits) const {
592 assert(getBitWidth() % SplatSizeInBits == 0 &&
593 "SplatSizeInBits must divide width!");
594 // We can check that all parts of an integer are equal by making use of a
595 // little trick: rotate and check if it's still the same value.
596 return *this == rotl(SplatSizeInBits);
597 }
598
599 /// This function returns the high "numBits" bits of this APInt.
getHiBits(unsigned numBits) const600 APInt APInt::getHiBits(unsigned numBits) const {
601 return this->lshr(BitWidth - numBits);
602 }
603
604 /// This function returns the low "numBits" bits of this APInt.
getLoBits(unsigned numBits) const605 APInt APInt::getLoBits(unsigned numBits) const {
606 APInt Result(getLowBitsSet(BitWidth, numBits));
607 Result &= *this;
608 return Result;
609 }
610
611 /// Return a value containing V broadcasted over NewLen bits.
getSplat(unsigned NewLen,const APInt & V)612 APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
613 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
614
615 APInt Val = V.zext(NewLen);
616 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
617 Val |= Val << I;
618
619 return Val;
620 }
621
countLeadingZerosSlowCase() const622 unsigned APInt::countLeadingZerosSlowCase() const {
623 unsigned Count = 0;
624 for (int i = getNumWords()-1; i >= 0; --i) {
625 uint64_t V = U.pVal[i];
626 if (V == 0)
627 Count += APINT_BITS_PER_WORD;
628 else {
629 Count += llvm::countLeadingZeros(V);
630 break;
631 }
632 }
633 // Adjust for unused bits in the most significant word (they are zero).
634 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
635 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
636 return Count;
637 }
638
countLeadingOnesSlowCase() const639 unsigned APInt::countLeadingOnesSlowCase() const {
640 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
641 unsigned shift;
642 if (!highWordBits) {
643 highWordBits = APINT_BITS_PER_WORD;
644 shift = 0;
645 } else {
646 shift = APINT_BITS_PER_WORD - highWordBits;
647 }
648 int i = getNumWords() - 1;
649 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
650 if (Count == highWordBits) {
651 for (i--; i >= 0; --i) {
652 if (U.pVal[i] == WORDTYPE_MAX)
653 Count += APINT_BITS_PER_WORD;
654 else {
655 Count += llvm::countLeadingOnes(U.pVal[i]);
656 break;
657 }
658 }
659 }
660 return Count;
661 }
662
countTrailingZerosSlowCase() const663 unsigned APInt::countTrailingZerosSlowCase() const {
664 unsigned Count = 0;
665 unsigned i = 0;
666 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
667 Count += APINT_BITS_PER_WORD;
668 if (i < getNumWords())
669 Count += llvm::countTrailingZeros(U.pVal[i]);
670 return std::min(Count, BitWidth);
671 }
672
countTrailingOnesSlowCase() const673 unsigned APInt::countTrailingOnesSlowCase() const {
674 unsigned Count = 0;
675 unsigned i = 0;
676 for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i)
677 Count += APINT_BITS_PER_WORD;
678 if (i < getNumWords())
679 Count += llvm::countTrailingOnes(U.pVal[i]);
680 assert(Count <= BitWidth);
681 return Count;
682 }
683
countPopulationSlowCase() const684 unsigned APInt::countPopulationSlowCase() const {
685 unsigned Count = 0;
686 for (unsigned i = 0; i < getNumWords(); ++i)
687 Count += llvm::countPopulation(U.pVal[i]);
688 return Count;
689 }
690
intersectsSlowCase(const APInt & RHS) const691 bool APInt::intersectsSlowCase(const APInt &RHS) const {
692 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
693 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
694 return true;
695
696 return false;
697 }
698
isSubsetOfSlowCase(const APInt & RHS) const699 bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
700 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
701 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
702 return false;
703
704 return true;
705 }
706
byteSwap() const707 APInt APInt::byteSwap() const {
708 assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!");
709 if (BitWidth == 16)
710 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
711 if (BitWidth == 32)
712 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
713 if (BitWidth <= 64) {
714 uint64_t Tmp1 = ByteSwap_64(U.VAL);
715 Tmp1 >>= (64 - BitWidth);
716 return APInt(BitWidth, Tmp1);
717 }
718
719 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
720 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
721 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
722 if (Result.BitWidth != BitWidth) {
723 Result.lshrInPlace(Result.BitWidth - BitWidth);
724 Result.BitWidth = BitWidth;
725 }
726 return Result;
727 }
728
reverseBits() const729 APInt APInt::reverseBits() const {
730 switch (BitWidth) {
731 case 64:
732 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
733 case 32:
734 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
735 case 16:
736 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
737 case 8:
738 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
739 case 0:
740 return *this;
741 default:
742 break;
743 }
744
745 APInt Val(*this);
746 APInt Reversed(BitWidth, 0);
747 unsigned S = BitWidth;
748
749 for (; Val != 0; Val.lshrInPlace(1)) {
750 Reversed <<= 1;
751 Reversed |= Val[0];
752 --S;
753 }
754
755 Reversed <<= S;
756 return Reversed;
757 }
758
GreatestCommonDivisor(APInt A,APInt B)759 APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
760 // Fast-path a common case.
761 if (A == B) return A;
762
763 // Corner cases: if either operand is zero, the other is the gcd.
764 if (!A) return B;
765 if (!B) return A;
766
767 // Count common powers of 2 and remove all other powers of 2.
768 unsigned Pow2;
769 {
770 unsigned Pow2_A = A.countTrailingZeros();
771 unsigned Pow2_B = B.countTrailingZeros();
772 if (Pow2_A > Pow2_B) {
773 A.lshrInPlace(Pow2_A - Pow2_B);
774 Pow2 = Pow2_B;
775 } else if (Pow2_B > Pow2_A) {
776 B.lshrInPlace(Pow2_B - Pow2_A);
777 Pow2 = Pow2_A;
778 } else {
779 Pow2 = Pow2_A;
780 }
781 }
782
783 // Both operands are odd multiples of 2^Pow_2:
784 //
785 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
786 //
787 // This is a modified version of Stein's algorithm, taking advantage of
788 // efficient countTrailingZeros().
789 while (A != B) {
790 if (A.ugt(B)) {
791 A -= B;
792 A.lshrInPlace(A.countTrailingZeros() - Pow2);
793 } else {
794 B -= A;
795 B.lshrInPlace(B.countTrailingZeros() - Pow2);
796 }
797 }
798
799 return A;
800 }
801
RoundDoubleToAPInt(double Double,unsigned width)802 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
803 uint64_t I = bit_cast<uint64_t>(Double);
804
805 // Get the sign bit from the highest order bit
806 bool isNeg = I >> 63;
807
808 // Get the 11-bit exponent and adjust for the 1023 bit bias
809 int64_t exp = ((I >> 52) & 0x7ff) - 1023;
810
811 // If the exponent is negative, the value is < 0 so just return 0.
812 if (exp < 0)
813 return APInt(width, 0u);
814
815 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
816 uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52;
817
818 // If the exponent doesn't shift all bits out of the mantissa
819 if (exp < 52)
820 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
821 APInt(width, mantissa >> (52 - exp));
822
823 // If the client didn't provide enough bits for us to shift the mantissa into
824 // then the result is undefined, just return 0
825 if (width <= exp - 52)
826 return APInt(width, 0);
827
828 // Otherwise, we have to shift the mantissa bits up to the right location
829 APInt Tmp(width, mantissa);
830 Tmp <<= (unsigned)exp - 52;
831 return isNeg ? -Tmp : Tmp;
832 }
833
834 /// This function converts this APInt to a double.
835 /// The layout for double is as following (IEEE Standard 754):
836 /// --------------------------------------
837 /// | Sign Exponent Fraction Bias |
838 /// |-------------------------------------- |
839 /// | 1[63] 11[62-52] 52[51-00] 1023 |
840 /// --------------------------------------
roundToDouble(bool isSigned) const841 double APInt::roundToDouble(bool isSigned) const {
842
843 // Handle the simple case where the value is contained in one uint64_t.
844 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
845 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
846 if (isSigned) {
847 int64_t sext = SignExtend64(getWord(0), BitWidth);
848 return double(sext);
849 } else
850 return double(getWord(0));
851 }
852
853 // Determine if the value is negative.
854 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
855
856 // Construct the absolute value if we're negative.
857 APInt Tmp(isNeg ? -(*this) : (*this));
858
859 // Figure out how many bits we're using.
860 unsigned n = Tmp.getActiveBits();
861
862 // The exponent (without bias normalization) is just the number of bits
863 // we are using. Note that the sign bit is gone since we constructed the
864 // absolute value.
865 uint64_t exp = n;
866
867 // Return infinity for exponent overflow
868 if (exp > 1023) {
869 if (!isSigned || !isNeg)
870 return std::numeric_limits<double>::infinity();
871 else
872 return -std::numeric_limits<double>::infinity();
873 }
874 exp += 1023; // Increment for 1023 bias
875
876 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
877 // extract the high 52 bits from the correct words in pVal.
878 uint64_t mantissa;
879 unsigned hiWord = whichWord(n-1);
880 if (hiWord == 0) {
881 mantissa = Tmp.U.pVal[0];
882 if (n > 52)
883 mantissa >>= n - 52; // shift down, we want the top 52 bits.
884 } else {
885 assert(hiWord > 0 && "huh?");
886 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
887 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
888 mantissa = hibits | lobits;
889 }
890
891 // The leading bit of mantissa is implicit, so get rid of it.
892 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
893 uint64_t I = sign | (exp << 52) | mantissa;
894 return bit_cast<double>(I);
895 }
896
897 // Truncate to new width.
trunc(unsigned width) const898 APInt APInt::trunc(unsigned width) const {
899 assert(width <= BitWidth && "Invalid APInt Truncate request");
900
901 if (width <= APINT_BITS_PER_WORD)
902 return APInt(width, getRawData()[0]);
903
904 if (width == BitWidth)
905 return *this;
906
907 APInt Result(getMemory(getNumWords(width)), width);
908
909 // Copy full words.
910 unsigned i;
911 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
912 Result.U.pVal[i] = U.pVal[i];
913
914 // Truncate and copy any partial word.
915 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
916 if (bits != 0)
917 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
918
919 return Result;
920 }
921
922 // Truncate to new width with unsigned saturation.
truncUSat(unsigned width) const923 APInt APInt::truncUSat(unsigned width) const {
924 assert(width <= BitWidth && "Invalid APInt Truncate request");
925
926 // Can we just losslessly truncate it?
927 if (isIntN(width))
928 return trunc(width);
929 // If not, then just return the new limit.
930 return APInt::getMaxValue(width);
931 }
932
933 // Truncate to new width with signed saturation.
truncSSat(unsigned width) const934 APInt APInt::truncSSat(unsigned width) const {
935 assert(width <= BitWidth && "Invalid APInt Truncate request");
936
937 // Can we just losslessly truncate it?
938 if (isSignedIntN(width))
939 return trunc(width);
940 // If not, then just return the new limits.
941 return isNegative() ? APInt::getSignedMinValue(width)
942 : APInt::getSignedMaxValue(width);
943 }
944
945 // Sign extend to a new width.
sext(unsigned Width) const946 APInt APInt::sext(unsigned Width) const {
947 assert(Width >= BitWidth && "Invalid APInt SignExtend request");
948
949 if (Width <= APINT_BITS_PER_WORD)
950 return APInt(Width, SignExtend64(U.VAL, BitWidth));
951
952 if (Width == BitWidth)
953 return *this;
954
955 APInt Result(getMemory(getNumWords(Width)), Width);
956
957 // Copy words.
958 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
959
960 // Sign extend the last word since there may be unused bits in the input.
961 Result.U.pVal[getNumWords() - 1] =
962 SignExtend64(Result.U.pVal[getNumWords() - 1],
963 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
964
965 // Fill with sign bits.
966 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
967 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
968 Result.clearUnusedBits();
969 return Result;
970 }
971
972 // Zero extend to a new width.
zext(unsigned width) const973 APInt APInt::zext(unsigned width) const {
974 assert(width >= BitWidth && "Invalid APInt ZeroExtend request");
975
976 if (width <= APINT_BITS_PER_WORD)
977 return APInt(width, U.VAL);
978
979 if (width == BitWidth)
980 return *this;
981
982 APInt Result(getMemory(getNumWords(width)), width);
983
984 // Copy words.
985 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
986
987 // Zero remaining words.
988 std::memset(Result.U.pVal + getNumWords(), 0,
989 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
990
991 return Result;
992 }
993
zextOrTrunc(unsigned width) const994 APInt APInt::zextOrTrunc(unsigned width) const {
995 if (BitWidth < width)
996 return zext(width);
997 if (BitWidth > width)
998 return trunc(width);
999 return *this;
1000 }
1001
sextOrTrunc(unsigned width) const1002 APInt APInt::sextOrTrunc(unsigned width) const {
1003 if (BitWidth < width)
1004 return sext(width);
1005 if (BitWidth > width)
1006 return trunc(width);
1007 return *this;
1008 }
1009
1010 /// Arithmetic right-shift this APInt by shiftAmt.
1011 /// Arithmetic right-shift function.
ashrInPlace(const APInt & shiftAmt)1012 void APInt::ashrInPlace(const APInt &shiftAmt) {
1013 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1014 }
1015
1016 /// Arithmetic right-shift this APInt by shiftAmt.
1017 /// Arithmetic right-shift function.
ashrSlowCase(unsigned ShiftAmt)1018 void APInt::ashrSlowCase(unsigned ShiftAmt) {
1019 // Don't bother performing a no-op shift.
1020 if (!ShiftAmt)
1021 return;
1022
1023 // Save the original sign bit for later.
1024 bool Negative = isNegative();
1025
1026 // WordShift is the inter-part shift; BitShift is intra-part shift.
1027 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
1028 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
1029
1030 unsigned WordsToMove = getNumWords() - WordShift;
1031 if (WordsToMove != 0) {
1032 // Sign extend the last word to fill in the unused bits.
1033 U.pVal[getNumWords() - 1] = SignExtend64(
1034 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
1035
1036 // Fastpath for moving by whole words.
1037 if (BitShift == 0) {
1038 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
1039 } else {
1040 // Move the words containing significant bits.
1041 for (unsigned i = 0; i != WordsToMove - 1; ++i)
1042 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
1043 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
1044
1045 // Handle the last word which has no high bits to copy.
1046 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
1047 // Sign extend one more time.
1048 U.pVal[WordsToMove - 1] =
1049 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
1050 }
1051 }
1052
1053 // Fill in the remainder based on the original sign.
1054 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
1055 WordShift * APINT_WORD_SIZE);
1056 clearUnusedBits();
1057 }
1058
1059 /// Logical right-shift this APInt by shiftAmt.
1060 /// Logical right-shift function.
lshrInPlace(const APInt & shiftAmt)1061 void APInt::lshrInPlace(const APInt &shiftAmt) {
1062 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
1063 }
1064
1065 /// Logical right-shift this APInt by shiftAmt.
1066 /// Logical right-shift function.
lshrSlowCase(unsigned ShiftAmt)1067 void APInt::lshrSlowCase(unsigned ShiftAmt) {
1068 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
1069 }
1070
1071 /// Left-shift this APInt by shiftAmt.
1072 /// Left-shift function.
operator <<=(const APInt & shiftAmt)1073 APInt &APInt::operator<<=(const APInt &shiftAmt) {
1074 // It's undefined behavior in C to shift by BitWidth or greater.
1075 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
1076 return *this;
1077 }
1078
shlSlowCase(unsigned ShiftAmt)1079 void APInt::shlSlowCase(unsigned ShiftAmt) {
1080 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
1081 clearUnusedBits();
1082 }
1083
1084 // Calculate the rotate amount modulo the bit width.
rotateModulo(unsigned BitWidth,const APInt & rotateAmt)1085 static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
1086 if (LLVM_UNLIKELY(BitWidth == 0))
1087 return 0;
1088 unsigned rotBitWidth = rotateAmt.getBitWidth();
1089 APInt rot = rotateAmt;
1090 if (rotBitWidth < BitWidth) {
1091 // Extend the rotate APInt, so that the urem doesn't divide by 0.
1092 // e.g. APInt(1, 32) would give APInt(1, 0).
1093 rot = rotateAmt.zext(BitWidth);
1094 }
1095 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
1096 return rot.getLimitedValue(BitWidth);
1097 }
1098
rotl(const APInt & rotateAmt) const1099 APInt APInt::rotl(const APInt &rotateAmt) const {
1100 return rotl(rotateModulo(BitWidth, rotateAmt));
1101 }
1102
rotl(unsigned rotateAmt) const1103 APInt APInt::rotl(unsigned rotateAmt) const {
1104 if (LLVM_UNLIKELY(BitWidth == 0))
1105 return *this;
1106 rotateAmt %= BitWidth;
1107 if (rotateAmt == 0)
1108 return *this;
1109 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1110 }
1111
rotr(const APInt & rotateAmt) const1112 APInt APInt::rotr(const APInt &rotateAmt) const {
1113 return rotr(rotateModulo(BitWidth, rotateAmt));
1114 }
1115
rotr(unsigned rotateAmt) const1116 APInt APInt::rotr(unsigned rotateAmt) const {
1117 if (BitWidth == 0)
1118 return *this;
1119 rotateAmt %= BitWidth;
1120 if (rotateAmt == 0)
1121 return *this;
1122 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1123 }
1124
1125 /// \returns the nearest log base 2 of this APInt. Ties round up.
1126 ///
1127 /// NOTE: When we have a BitWidth of 1, we define:
1128 ///
1129 /// log2(0) = UINT32_MAX
1130 /// log2(1) = 0
1131 ///
1132 /// to get around any mathematical concerns resulting from
1133 /// referencing 2 in a space where 2 does no exist.
nearestLogBase2() const1134 unsigned APInt::nearestLogBase2() const {
1135 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1136 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1137 // UINT32_MAX.
1138 if (BitWidth == 1)
1139 return U.VAL - 1;
1140
1141 // Handle the zero case.
1142 if (isZero())
1143 return UINT32_MAX;
1144
1145 // The non-zero case is handled by computing:
1146 //
1147 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1148 //
1149 // where x[i] is referring to the value of the ith bit of x.
1150 unsigned lg = logBase2();
1151 return lg + unsigned((*this)[lg - 1]);
1152 }
1153
1154 // Square Root - this method computes and returns the square root of "this".
1155 // Three mechanisms are used for computation. For small values (<= 5 bits),
1156 // a table lookup is done. This gets some performance for common cases. For
1157 // values using less than 52 bits, the value is converted to double and then
1158 // the libc sqrt function is called. The result is rounded and then converted
1159 // back to a uint64_t which is then used to construct the result. Finally,
1160 // the Babylonian method for computing square roots is used.
sqrt() const1161 APInt APInt::sqrt() const {
1162
1163 // Determine the magnitude of the value.
1164 unsigned magnitude = getActiveBits();
1165
1166 // Use a fast table for some small values. This also gets rid of some
1167 // rounding errors in libc sqrt for small values.
1168 if (magnitude <= 5) {
1169 static const uint8_t results[32] = {
1170 /* 0 */ 0,
1171 /* 1- 2 */ 1, 1,
1172 /* 3- 6 */ 2, 2, 2, 2,
1173 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1174 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1175 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1176 /* 31 */ 6
1177 };
1178 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1179 }
1180
1181 // If the magnitude of the value fits in less than 52 bits (the precision of
1182 // an IEEE double precision floating point value), then we can use the
1183 // libc sqrt function which will probably use a hardware sqrt computation.
1184 // This should be faster than the algorithm below.
1185 if (magnitude < 52) {
1186 return APInt(BitWidth,
1187 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1188 : U.pVal[0])))));
1189 }
1190
1191 // Okay, all the short cuts are exhausted. We must compute it. The following
1192 // is a classical Babylonian method for computing the square root. This code
1193 // was adapted to APInt from a wikipedia article on such computations.
1194 // See http://www.wikipedia.org/ and go to the page named
1195 // Calculate_an_integer_square_root.
1196 unsigned nbits = BitWidth, i = 4;
1197 APInt testy(BitWidth, 16);
1198 APInt x_old(BitWidth, 1);
1199 APInt x_new(BitWidth, 0);
1200 APInt two(BitWidth, 2);
1201
1202 // Select a good starting value using binary logarithms.
1203 for (;; i += 2, testy = testy.shl(2))
1204 if (i >= nbits || this->ule(testy)) {
1205 x_old = x_old.shl(i / 2);
1206 break;
1207 }
1208
1209 // Use the Babylonian method to arrive at the integer square root:
1210 for (;;) {
1211 x_new = (this->udiv(x_old) + x_old).udiv(two);
1212 if (x_old.ule(x_new))
1213 break;
1214 x_old = x_new;
1215 }
1216
1217 // Make sure we return the closest approximation
1218 // NOTE: The rounding calculation below is correct. It will produce an
1219 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1220 // determined to be a rounding issue with pari/gp as it begins to use a
1221 // floating point representation after 192 bits. There are no discrepancies
1222 // between this algorithm and pari/gp for bit widths < 192 bits.
1223 APInt square(x_old * x_old);
1224 APInt nextSquare((x_old + 1) * (x_old +1));
1225 if (this->ult(square))
1226 return x_old;
1227 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1228 APInt midpoint((nextSquare - square).udiv(two));
1229 APInt offset(*this - square);
1230 if (offset.ult(midpoint))
1231 return x_old;
1232 return x_old + 1;
1233 }
1234
1235 /// Computes the multiplicative inverse of this APInt for a given modulo. The
1236 /// iterative extended Euclidean algorithm is used to solve for this value,
1237 /// however we simplify it to speed up calculating only the inverse, and take
1238 /// advantage of div+rem calculations. We also use some tricks to avoid copying
1239 /// (potentially large) APInts around.
1240 /// WARNING: a value of '0' may be returned,
1241 /// signifying that no multiplicative inverse exists!
multiplicativeInverse(const APInt & modulo) const1242 APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1243 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1244
1245 // Using the properties listed at the following web page (accessed 06/21/08):
1246 // http://www.numbertheory.org/php/euclid.html
1247 // (especially the properties numbered 3, 4 and 9) it can be proved that
1248 // BitWidth bits suffice for all the computations in the algorithm implemented
1249 // below. More precisely, this number of bits suffice if the multiplicative
1250 // inverse exists, but may not suffice for the general extended Euclidean
1251 // algorithm.
1252
1253 APInt r[2] = { modulo, *this };
1254 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1255 APInt q(BitWidth, 0);
1256
1257 unsigned i;
1258 for (i = 0; r[i^1] != 0; i ^= 1) {
1259 // An overview of the math without the confusing bit-flipping:
1260 // q = r[i-2] / r[i-1]
1261 // r[i] = r[i-2] % r[i-1]
1262 // t[i] = t[i-2] - t[i-1] * q
1263 udivrem(r[i], r[i^1], q, r[i]);
1264 t[i] -= t[i^1] * q;
1265 }
1266
1267 // If this APInt and the modulo are not coprime, there is no multiplicative
1268 // inverse, so return 0. We check this by looking at the next-to-last
1269 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1270 // algorithm.
1271 if (r[i] != 1)
1272 return APInt(BitWidth, 0);
1273
1274 // The next-to-last t is the multiplicative inverse. However, we are
1275 // interested in a positive inverse. Calculate a positive one from a negative
1276 // one if necessary. A simple addition of the modulo suffices because
1277 // abs(t[i]) is known to be less than *this/2 (see the link above).
1278 if (t[i].isNegative())
1279 t[i] += modulo;
1280
1281 return std::move(t[i]);
1282 }
1283
1284 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1285 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1286 /// variables here have the same names as in the algorithm. Comments explain
1287 /// the algorithm and any deviation from it.
KnuthDiv(uint32_t * u,uint32_t * v,uint32_t * q,uint32_t * r,unsigned m,unsigned n)1288 static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1289 unsigned m, unsigned n) {
1290 assert(u && "Must provide dividend");
1291 assert(v && "Must provide divisor");
1292 assert(q && "Must provide quotient");
1293 assert(u != v && u != q && v != q && "Must use different memory");
1294 assert(n>1 && "n must be > 1");
1295
1296 // b denotes the base of the number system. In our case b is 2^32.
1297 const uint64_t b = uint64_t(1) << 32;
1298
1299 // The DEBUG macros here tend to be spam in the debug output if you're not
1300 // debugging this code. Disable them unless KNUTH_DEBUG is defined.
1301 #ifdef KNUTH_DEBUG
1302 #define DEBUG_KNUTH(X) LLVM_DEBUG(X)
1303 #else
1304 #define DEBUG_KNUTH(X) do {} while(false)
1305 #endif
1306
1307 DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1308 DEBUG_KNUTH(dbgs() << "KnuthDiv: original:");
1309 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1310 DEBUG_KNUTH(dbgs() << " by");
1311 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1312 DEBUG_KNUTH(dbgs() << '\n');
1313 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1314 // u and v by d. Note that we have taken Knuth's advice here to use a power
1315 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1316 // 2 allows us to shift instead of multiply and it is easy to determine the
1317 // shift amount from the leading zeros. We are basically normalizing the u
1318 // and v so that its high bits are shifted to the top of v's range without
1319 // overflow. Note that this can require an extra word in u so that u must
1320 // be of length m+n+1.
1321 unsigned shift = countLeadingZeros(v[n-1]);
1322 uint32_t v_carry = 0;
1323 uint32_t u_carry = 0;
1324 if (shift) {
1325 for (unsigned i = 0; i < m+n; ++i) {
1326 uint32_t u_tmp = u[i] >> (32 - shift);
1327 u[i] = (u[i] << shift) | u_carry;
1328 u_carry = u_tmp;
1329 }
1330 for (unsigned i = 0; i < n; ++i) {
1331 uint32_t v_tmp = v[i] >> (32 - shift);
1332 v[i] = (v[i] << shift) | v_carry;
1333 v_carry = v_tmp;
1334 }
1335 }
1336 u[m+n] = u_carry;
1337
1338 DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:");
1339 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1340 DEBUG_KNUTH(dbgs() << " by");
1341 DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1]);
1342 DEBUG_KNUTH(dbgs() << '\n');
1343
1344 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1345 int j = m;
1346 do {
1347 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
1348 // D3. [Calculate q'.].
1349 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1350 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1351 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1352 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1353 // on v[n-2] determines at high speed most of the cases in which the trial
1354 // value qp is one too large, and it eliminates all cases where qp is two
1355 // too large.
1356 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1357 DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
1358 uint64_t qp = dividend / v[n-1];
1359 uint64_t rp = dividend % v[n-1];
1360 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1361 qp--;
1362 rp += v[n-1];
1363 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1364 qp--;
1365 }
1366 DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
1367
1368 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1369 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1370 // consists of a simple multiplication by a one-place number, combined with
1371 // a subtraction.
1372 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1373 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1374 // true value plus b**(n+1), namely as the b's complement of
1375 // the true value, and a "borrow" to the left should be remembered.
1376 int64_t borrow = 0;
1377 for (unsigned i = 0; i < n; ++i) {
1378 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1379 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1380 u[j+i] = Lo_32(subres);
1381 borrow = Hi_32(p) - Hi_32(subres);
1382 DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]
1383 << ", borrow = " << borrow << '\n');
1384 }
1385 bool isNeg = u[j+n] < borrow;
1386 u[j+n] -= Lo_32(borrow);
1387
1388 DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:");
1389 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1390 DEBUG_KNUTH(dbgs() << '\n');
1391
1392 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1393 // negative, go to step D6; otherwise go on to step D7.
1394 q[j] = Lo_32(qp);
1395 if (isNeg) {
1396 // D6. [Add back]. The probability that this step is necessary is very
1397 // small, on the order of only 2/b. Make sure that test data accounts for
1398 // this possibility. Decrease q[j] by 1
1399 q[j]--;
1400 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1401 // A carry will occur to the left of u[j+n], and it should be ignored
1402 // since it cancels with the borrow that occurred in D4.
1403 bool carry = false;
1404 for (unsigned i = 0; i < n; i++) {
1405 uint32_t limit = std::min(u[j+i],v[i]);
1406 u[j+i] += v[i] + carry;
1407 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1408 }
1409 u[j+n] += carry;
1410 }
1411 DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:");
1412 DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i]);
1413 DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
1414
1415 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1416 } while (--j >= 0);
1417
1418 DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:");
1419 DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i]);
1420 DEBUG_KNUTH(dbgs() << '\n');
1421
1422 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1423 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1424 // compute the remainder (urem uses this).
1425 if (r) {
1426 // The value d is expressed by the "shift" value above since we avoided
1427 // multiplication by d by using a shift left. So, all we have to do is
1428 // shift right here.
1429 if (shift) {
1430 uint32_t carry = 0;
1431 DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:");
1432 for (int i = n-1; i >= 0; i--) {
1433 r[i] = (u[i] >> shift) | carry;
1434 carry = u[i] << (32 - shift);
1435 DEBUG_KNUTH(dbgs() << " " << r[i]);
1436 }
1437 } else {
1438 for (int i = n-1; i >= 0; i--) {
1439 r[i] = u[i];
1440 DEBUG_KNUTH(dbgs() << " " << r[i]);
1441 }
1442 }
1443 DEBUG_KNUTH(dbgs() << '\n');
1444 }
1445 DEBUG_KNUTH(dbgs() << '\n');
1446 }
1447
divide(const WordType * LHS,unsigned lhsWords,const WordType * RHS,unsigned rhsWords,WordType * Quotient,WordType * Remainder)1448 void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1449 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1450 assert(lhsWords >= rhsWords && "Fractional result");
1451
1452 // First, compose the values into an array of 32-bit words instead of
1453 // 64-bit words. This is a necessity of both the "short division" algorithm
1454 // and the Knuth "classical algorithm" which requires there to be native
1455 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1456 // can't use 64-bit operands here because we don't have native results of
1457 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1458 // work on large-endian machines.
1459 unsigned n = rhsWords * 2;
1460 unsigned m = (lhsWords * 2) - n;
1461
1462 // Allocate space for the temporary values we need either on the stack, if
1463 // it will fit, or on the heap if it won't.
1464 uint32_t SPACE[128];
1465 uint32_t *U = nullptr;
1466 uint32_t *V = nullptr;
1467 uint32_t *Q = nullptr;
1468 uint32_t *R = nullptr;
1469 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1470 U = &SPACE[0];
1471 V = &SPACE[m+n+1];
1472 Q = &SPACE[(m+n+1) + n];
1473 if (Remainder)
1474 R = &SPACE[(m+n+1) + n + (m+n)];
1475 } else {
1476 U = new uint32_t[m + n + 1];
1477 V = new uint32_t[n];
1478 Q = new uint32_t[m+n];
1479 if (Remainder)
1480 R = new uint32_t[n];
1481 }
1482
1483 // Initialize the dividend
1484 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1485 for (unsigned i = 0; i < lhsWords; ++i) {
1486 uint64_t tmp = LHS[i];
1487 U[i * 2] = Lo_32(tmp);
1488 U[i * 2 + 1] = Hi_32(tmp);
1489 }
1490 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1491
1492 // Initialize the divisor
1493 memset(V, 0, (n)*sizeof(uint32_t));
1494 for (unsigned i = 0; i < rhsWords; ++i) {
1495 uint64_t tmp = RHS[i];
1496 V[i * 2] = Lo_32(tmp);
1497 V[i * 2 + 1] = Hi_32(tmp);
1498 }
1499
1500 // initialize the quotient and remainder
1501 memset(Q, 0, (m+n) * sizeof(uint32_t));
1502 if (Remainder)
1503 memset(R, 0, n * sizeof(uint32_t));
1504
1505 // Now, adjust m and n for the Knuth division. n is the number of words in
1506 // the divisor. m is the number of words by which the dividend exceeds the
1507 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1508 // contain any zero words or the Knuth algorithm fails.
1509 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1510 n--;
1511 m++;
1512 }
1513 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1514 m--;
1515
1516 // If we're left with only a single word for the divisor, Knuth doesn't work
1517 // so we implement the short division algorithm here. This is much simpler
1518 // and faster because we are certain that we can divide a 64-bit quantity
1519 // by a 32-bit quantity at hardware speed and short division is simply a
1520 // series of such operations. This is just like doing short division but we
1521 // are using base 2^32 instead of base 10.
1522 assert(n != 0 && "Divide by zero?");
1523 if (n == 1) {
1524 uint32_t divisor = V[0];
1525 uint32_t remainder = 0;
1526 for (int i = m; i >= 0; i--) {
1527 uint64_t partial_dividend = Make_64(remainder, U[i]);
1528 if (partial_dividend == 0) {
1529 Q[i] = 0;
1530 remainder = 0;
1531 } else if (partial_dividend < divisor) {
1532 Q[i] = 0;
1533 remainder = Lo_32(partial_dividend);
1534 } else if (partial_dividend == divisor) {
1535 Q[i] = 1;
1536 remainder = 0;
1537 } else {
1538 Q[i] = Lo_32(partial_dividend / divisor);
1539 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1540 }
1541 }
1542 if (R)
1543 R[0] = remainder;
1544 } else {
1545 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1546 // case n > 1.
1547 KnuthDiv(U, V, Q, R, m, n);
1548 }
1549
1550 // If the caller wants the quotient
1551 if (Quotient) {
1552 for (unsigned i = 0; i < lhsWords; ++i)
1553 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1554 }
1555
1556 // If the caller wants the remainder
1557 if (Remainder) {
1558 for (unsigned i = 0; i < rhsWords; ++i)
1559 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1560 }
1561
1562 // Clean up the memory we allocated.
1563 if (U != &SPACE[0]) {
1564 delete [] U;
1565 delete [] V;
1566 delete [] Q;
1567 delete [] R;
1568 }
1569 }
1570
udiv(const APInt & RHS) const1571 APInt APInt::udiv(const APInt &RHS) const {
1572 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1573
1574 // First, deal with the easy case
1575 if (isSingleWord()) {
1576 assert(RHS.U.VAL != 0 && "Divide by zero?");
1577 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1578 }
1579
1580 // Get some facts about the LHS and RHS number of bits and words
1581 unsigned lhsWords = getNumWords(getActiveBits());
1582 unsigned rhsBits = RHS.getActiveBits();
1583 unsigned rhsWords = getNumWords(rhsBits);
1584 assert(rhsWords && "Divided by zero???");
1585
1586 // Deal with some degenerate cases
1587 if (!lhsWords)
1588 // 0 / X ===> 0
1589 return APInt(BitWidth, 0);
1590 if (rhsBits == 1)
1591 // X / 1 ===> X
1592 return *this;
1593 if (lhsWords < rhsWords || this->ult(RHS))
1594 // X / Y ===> 0, iff X < Y
1595 return APInt(BitWidth, 0);
1596 if (*this == RHS)
1597 // X / X ===> 1
1598 return APInt(BitWidth, 1);
1599 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1600 // All high words are zero, just use native divide
1601 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1602
1603 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1604 APInt Quotient(BitWidth, 0); // to hold result.
1605 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1606 return Quotient;
1607 }
1608
udiv(uint64_t RHS) const1609 APInt APInt::udiv(uint64_t RHS) const {
1610 assert(RHS != 0 && "Divide by zero?");
1611
1612 // First, deal with the easy case
1613 if (isSingleWord())
1614 return APInt(BitWidth, U.VAL / RHS);
1615
1616 // Get some facts about the LHS words.
1617 unsigned lhsWords = getNumWords(getActiveBits());
1618
1619 // Deal with some degenerate cases
1620 if (!lhsWords)
1621 // 0 / X ===> 0
1622 return APInt(BitWidth, 0);
1623 if (RHS == 1)
1624 // X / 1 ===> X
1625 return *this;
1626 if (this->ult(RHS))
1627 // X / Y ===> 0, iff X < Y
1628 return APInt(BitWidth, 0);
1629 if (*this == RHS)
1630 // X / X ===> 1
1631 return APInt(BitWidth, 1);
1632 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1633 // All high words are zero, just use native divide
1634 return APInt(BitWidth, this->U.pVal[0] / RHS);
1635
1636 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1637 APInt Quotient(BitWidth, 0); // to hold result.
1638 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1639 return Quotient;
1640 }
1641
sdiv(const APInt & RHS) const1642 APInt APInt::sdiv(const APInt &RHS) const {
1643 if (isNegative()) {
1644 if (RHS.isNegative())
1645 return (-(*this)).udiv(-RHS);
1646 return -((-(*this)).udiv(RHS));
1647 }
1648 if (RHS.isNegative())
1649 return -(this->udiv(-RHS));
1650 return this->udiv(RHS);
1651 }
1652
sdiv(int64_t RHS) const1653 APInt APInt::sdiv(int64_t RHS) const {
1654 if (isNegative()) {
1655 if (RHS < 0)
1656 return (-(*this)).udiv(-RHS);
1657 return -((-(*this)).udiv(RHS));
1658 }
1659 if (RHS < 0)
1660 return -(this->udiv(-RHS));
1661 return this->udiv(RHS);
1662 }
1663
urem(const APInt & RHS) const1664 APInt APInt::urem(const APInt &RHS) const {
1665 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1666 if (isSingleWord()) {
1667 assert(RHS.U.VAL != 0 && "Remainder by zero?");
1668 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1669 }
1670
1671 // Get some facts about the LHS
1672 unsigned lhsWords = getNumWords(getActiveBits());
1673
1674 // Get some facts about the RHS
1675 unsigned rhsBits = RHS.getActiveBits();
1676 unsigned rhsWords = getNumWords(rhsBits);
1677 assert(rhsWords && "Performing remainder operation by zero ???");
1678
1679 // Check the degenerate cases
1680 if (lhsWords == 0)
1681 // 0 % Y ===> 0
1682 return APInt(BitWidth, 0);
1683 if (rhsBits == 1)
1684 // X % 1 ===> 0
1685 return APInt(BitWidth, 0);
1686 if (lhsWords < rhsWords || this->ult(RHS))
1687 // X % Y ===> X, iff X < Y
1688 return *this;
1689 if (*this == RHS)
1690 // X % X == 0;
1691 return APInt(BitWidth, 0);
1692 if (lhsWords == 1)
1693 // All high words are zero, just use native remainder
1694 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1695
1696 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1697 APInt Remainder(BitWidth, 0);
1698 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1699 return Remainder;
1700 }
1701
urem(uint64_t RHS) const1702 uint64_t APInt::urem(uint64_t RHS) const {
1703 assert(RHS != 0 && "Remainder by zero?");
1704
1705 if (isSingleWord())
1706 return U.VAL % RHS;
1707
1708 // Get some facts about the LHS
1709 unsigned lhsWords = getNumWords(getActiveBits());
1710
1711 // Check the degenerate cases
1712 if (lhsWords == 0)
1713 // 0 % Y ===> 0
1714 return 0;
1715 if (RHS == 1)
1716 // X % 1 ===> 0
1717 return 0;
1718 if (this->ult(RHS))
1719 // X % Y ===> X, iff X < Y
1720 return getZExtValue();
1721 if (*this == RHS)
1722 // X % X == 0;
1723 return 0;
1724 if (lhsWords == 1)
1725 // All high words are zero, just use native remainder
1726 return U.pVal[0] % RHS;
1727
1728 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1729 uint64_t Remainder;
1730 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1731 return Remainder;
1732 }
1733
srem(const APInt & RHS) const1734 APInt APInt::srem(const APInt &RHS) const {
1735 if (isNegative()) {
1736 if (RHS.isNegative())
1737 return -((-(*this)).urem(-RHS));
1738 return -((-(*this)).urem(RHS));
1739 }
1740 if (RHS.isNegative())
1741 return this->urem(-RHS);
1742 return this->urem(RHS);
1743 }
1744
srem(int64_t RHS) const1745 int64_t APInt::srem(int64_t RHS) const {
1746 if (isNegative()) {
1747 if (RHS < 0)
1748 return -((-(*this)).urem(-RHS));
1749 return -((-(*this)).urem(RHS));
1750 }
1751 if (RHS < 0)
1752 return this->urem(-RHS);
1753 return this->urem(RHS);
1754 }
1755
udivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1756 void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1757 APInt &Quotient, APInt &Remainder) {
1758 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same");
1759 unsigned BitWidth = LHS.BitWidth;
1760
1761 // First, deal with the easy case
1762 if (LHS.isSingleWord()) {
1763 assert(RHS.U.VAL != 0 && "Divide by zero?");
1764 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1765 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1766 Quotient = APInt(BitWidth, QuotVal);
1767 Remainder = APInt(BitWidth, RemVal);
1768 return;
1769 }
1770
1771 // Get some size facts about the dividend and divisor
1772 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1773 unsigned rhsBits = RHS.getActiveBits();
1774 unsigned rhsWords = getNumWords(rhsBits);
1775 assert(rhsWords && "Performing divrem operation by zero ???");
1776
1777 // Check the degenerate cases
1778 if (lhsWords == 0) {
1779 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1780 Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0
1781 return;
1782 }
1783
1784 if (rhsBits == 1) {
1785 Quotient = LHS; // X / 1 ===> X
1786 Remainder = APInt(BitWidth, 0); // X % 1 ===> 0
1787 }
1788
1789 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1790 Remainder = LHS; // X % Y ===> X, iff X < Y
1791 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1792 return;
1793 }
1794
1795 if (LHS == RHS) {
1796 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1797 Remainder = APInt(BitWidth, 0); // X % X ===> 0;
1798 return;
1799 }
1800
1801 // Make sure there is enough space to hold the results.
1802 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1803 // change the size. This is necessary if Quotient or Remainder is aliased
1804 // with LHS or RHS.
1805 Quotient.reallocate(BitWidth);
1806 Remainder.reallocate(BitWidth);
1807
1808 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1809 // There is only one word to consider so use the native versions.
1810 uint64_t lhsValue = LHS.U.pVal[0];
1811 uint64_t rhsValue = RHS.U.pVal[0];
1812 Quotient = lhsValue / rhsValue;
1813 Remainder = lhsValue % rhsValue;
1814 return;
1815 }
1816
1817 // Okay, lets do it the long way
1818 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1819 Remainder.U.pVal);
1820 // Clear the rest of the Quotient and Remainder.
1821 std::memset(Quotient.U.pVal + lhsWords, 0,
1822 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1823 std::memset(Remainder.U.pVal + rhsWords, 0,
1824 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1825 }
1826
udivrem(const APInt & LHS,uint64_t RHS,APInt & Quotient,uint64_t & Remainder)1827 void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1828 uint64_t &Remainder) {
1829 assert(RHS != 0 && "Divide by zero?");
1830 unsigned BitWidth = LHS.BitWidth;
1831
1832 // First, deal with the easy case
1833 if (LHS.isSingleWord()) {
1834 uint64_t QuotVal = LHS.U.VAL / RHS;
1835 Remainder = LHS.U.VAL % RHS;
1836 Quotient = APInt(BitWidth, QuotVal);
1837 return;
1838 }
1839
1840 // Get some size facts about the dividend and divisor
1841 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1842
1843 // Check the degenerate cases
1844 if (lhsWords == 0) {
1845 Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0
1846 Remainder = 0; // 0 % Y ===> 0
1847 return;
1848 }
1849
1850 if (RHS == 1) {
1851 Quotient = LHS; // X / 1 ===> X
1852 Remainder = 0; // X % 1 ===> 0
1853 return;
1854 }
1855
1856 if (LHS.ult(RHS)) {
1857 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1858 Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y
1859 return;
1860 }
1861
1862 if (LHS == RHS) {
1863 Quotient = APInt(BitWidth, 1); // X / X ===> 1
1864 Remainder = 0; // X % X ===> 0;
1865 return;
1866 }
1867
1868 // Make sure there is enough space to hold the results.
1869 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1870 // change the size. This is necessary if Quotient is aliased with LHS.
1871 Quotient.reallocate(BitWidth);
1872
1873 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1874 // There is only one word to consider so use the native versions.
1875 uint64_t lhsValue = LHS.U.pVal[0];
1876 Quotient = lhsValue / RHS;
1877 Remainder = lhsValue % RHS;
1878 return;
1879 }
1880
1881 // Okay, lets do it the long way
1882 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1883 // Clear the rest of the Quotient.
1884 std::memset(Quotient.U.pVal + lhsWords, 0,
1885 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1886 }
1887
sdivrem(const APInt & LHS,const APInt & RHS,APInt & Quotient,APInt & Remainder)1888 void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1889 APInt &Quotient, APInt &Remainder) {
1890 if (LHS.isNegative()) {
1891 if (RHS.isNegative())
1892 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1893 else {
1894 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1895 Quotient.negate();
1896 }
1897 Remainder.negate();
1898 } else if (RHS.isNegative()) {
1899 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1900 Quotient.negate();
1901 } else {
1902 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1903 }
1904 }
1905
sdivrem(const APInt & LHS,int64_t RHS,APInt & Quotient,int64_t & Remainder)1906 void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1907 APInt &Quotient, int64_t &Remainder) {
1908 uint64_t R = Remainder;
1909 if (LHS.isNegative()) {
1910 if (RHS < 0)
1911 APInt::udivrem(-LHS, -RHS, Quotient, R);
1912 else {
1913 APInt::udivrem(-LHS, RHS, Quotient, R);
1914 Quotient.negate();
1915 }
1916 R = -R;
1917 } else if (RHS < 0) {
1918 APInt::udivrem(LHS, -RHS, Quotient, R);
1919 Quotient.negate();
1920 } else {
1921 APInt::udivrem(LHS, RHS, Quotient, R);
1922 }
1923 Remainder = R;
1924 }
1925
sadd_ov(const APInt & RHS,bool & Overflow) const1926 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1927 APInt Res = *this+RHS;
1928 Overflow = isNonNegative() == RHS.isNonNegative() &&
1929 Res.isNonNegative() != isNonNegative();
1930 return Res;
1931 }
1932
uadd_ov(const APInt & RHS,bool & Overflow) const1933 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1934 APInt Res = *this+RHS;
1935 Overflow = Res.ult(RHS);
1936 return Res;
1937 }
1938
ssub_ov(const APInt & RHS,bool & Overflow) const1939 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1940 APInt Res = *this - RHS;
1941 Overflow = isNonNegative() != RHS.isNonNegative() &&
1942 Res.isNonNegative() != isNonNegative();
1943 return Res;
1944 }
1945
usub_ov(const APInt & RHS,bool & Overflow) const1946 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1947 APInt Res = *this-RHS;
1948 Overflow = Res.ugt(*this);
1949 return Res;
1950 }
1951
sdiv_ov(const APInt & RHS,bool & Overflow) const1952 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1953 // MININT/-1 --> overflow.
1954 Overflow = isMinSignedValue() && RHS.isAllOnes();
1955 return sdiv(RHS);
1956 }
1957
smul_ov(const APInt & RHS,bool & Overflow) const1958 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1959 APInt Res = *this * RHS;
1960
1961 if (RHS != 0)
1962 Overflow = Res.sdiv(RHS) != *this ||
1963 (isMinSignedValue() && RHS.isAllOnes());
1964 else
1965 Overflow = false;
1966 return Res;
1967 }
1968
umul_ov(const APInt & RHS,bool & Overflow) const1969 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1970 if (countLeadingZeros() + RHS.countLeadingZeros() + 2 <= BitWidth) {
1971 Overflow = true;
1972 return *this * RHS;
1973 }
1974
1975 APInt Res = lshr(1) * RHS;
1976 Overflow = Res.isNegative();
1977 Res <<= 1;
1978 if ((*this)[0]) {
1979 Res += RHS;
1980 if (Res.ult(RHS))
1981 Overflow = true;
1982 }
1983 return Res;
1984 }
1985
sshl_ov(const APInt & ShAmt,bool & Overflow) const1986 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1987 Overflow = ShAmt.uge(getBitWidth());
1988 if (Overflow)
1989 return APInt(BitWidth, 0);
1990
1991 if (isNonNegative()) // Don't allow sign change.
1992 Overflow = ShAmt.uge(countLeadingZeros());
1993 else
1994 Overflow = ShAmt.uge(countLeadingOnes());
1995
1996 return *this << ShAmt;
1997 }
1998
ushl_ov(const APInt & ShAmt,bool & Overflow) const1999 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
2000 Overflow = ShAmt.uge(getBitWidth());
2001 if (Overflow)
2002 return APInt(BitWidth, 0);
2003
2004 Overflow = ShAmt.ugt(countLeadingZeros());
2005
2006 return *this << ShAmt;
2007 }
2008
sadd_sat(const APInt & RHS) const2009 APInt APInt::sadd_sat(const APInt &RHS) const {
2010 bool Overflow;
2011 APInt Res = sadd_ov(RHS, Overflow);
2012 if (!Overflow)
2013 return Res;
2014
2015 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2016 : APInt::getSignedMaxValue(BitWidth);
2017 }
2018
uadd_sat(const APInt & RHS) const2019 APInt APInt::uadd_sat(const APInt &RHS) const {
2020 bool Overflow;
2021 APInt Res = uadd_ov(RHS, Overflow);
2022 if (!Overflow)
2023 return Res;
2024
2025 return APInt::getMaxValue(BitWidth);
2026 }
2027
ssub_sat(const APInt & RHS) const2028 APInt APInt::ssub_sat(const APInt &RHS) const {
2029 bool Overflow;
2030 APInt Res = ssub_ov(RHS, Overflow);
2031 if (!Overflow)
2032 return Res;
2033
2034 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2035 : APInt::getSignedMaxValue(BitWidth);
2036 }
2037
usub_sat(const APInt & RHS) const2038 APInt APInt::usub_sat(const APInt &RHS) const {
2039 bool Overflow;
2040 APInt Res = usub_ov(RHS, Overflow);
2041 if (!Overflow)
2042 return Res;
2043
2044 return APInt(BitWidth, 0);
2045 }
2046
smul_sat(const APInt & RHS) const2047 APInt APInt::smul_sat(const APInt &RHS) const {
2048 bool Overflow;
2049 APInt Res = smul_ov(RHS, Overflow);
2050 if (!Overflow)
2051 return Res;
2052
2053 // The result is negative if one and only one of inputs is negative.
2054 bool ResIsNegative = isNegative() ^ RHS.isNegative();
2055
2056 return ResIsNegative ? APInt::getSignedMinValue(BitWidth)
2057 : APInt::getSignedMaxValue(BitWidth);
2058 }
2059
umul_sat(const APInt & RHS) const2060 APInt APInt::umul_sat(const APInt &RHS) const {
2061 bool Overflow;
2062 APInt Res = umul_ov(RHS, Overflow);
2063 if (!Overflow)
2064 return Res;
2065
2066 return APInt::getMaxValue(BitWidth);
2067 }
2068
sshl_sat(const APInt & RHS) const2069 APInt APInt::sshl_sat(const APInt &RHS) const {
2070 bool Overflow;
2071 APInt Res = sshl_ov(RHS, Overflow);
2072 if (!Overflow)
2073 return Res;
2074
2075 return isNegative() ? APInt::getSignedMinValue(BitWidth)
2076 : APInt::getSignedMaxValue(BitWidth);
2077 }
2078
ushl_sat(const APInt & RHS) const2079 APInt APInt::ushl_sat(const APInt &RHS) const {
2080 bool Overflow;
2081 APInt Res = ushl_ov(RHS, Overflow);
2082 if (!Overflow)
2083 return Res;
2084
2085 return APInt::getMaxValue(BitWidth);
2086 }
2087
fromString(unsigned numbits,StringRef str,uint8_t radix)2088 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
2089 // Check our assumptions here
2090 assert(!str.empty() && "Invalid string length");
2091 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2092 radix == 36) &&
2093 "Radix should be 2, 8, 10, 16, or 36!");
2094
2095 StringRef::iterator p = str.begin();
2096 size_t slen = str.size();
2097 bool isNeg = *p == '-';
2098 if (*p == '-' || *p == '+') {
2099 p++;
2100 slen--;
2101 assert(slen && "String is only a sign, needs a value.");
2102 }
2103 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
2104 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2105 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2106 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2107 "Insufficient bit width");
2108
2109 // Allocate memory if needed
2110 if (isSingleWord())
2111 U.VAL = 0;
2112 else
2113 U.pVal = getClearedMemory(getNumWords());
2114
2115 // Figure out if we can shift instead of multiply
2116 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
2117
2118 // Enter digit traversal loop
2119 for (StringRef::iterator e = str.end(); p != e; ++p) {
2120 unsigned digit = getDigit(*p, radix);
2121 assert(digit < radix && "Invalid character in digit string");
2122
2123 // Shift or multiply the value by the radix
2124 if (slen > 1) {
2125 if (shift)
2126 *this <<= shift;
2127 else
2128 *this *= radix;
2129 }
2130
2131 // Add in the digit we just interpreted
2132 *this += digit;
2133 }
2134 // If its negative, put it in two's complement form
2135 if (isNeg)
2136 this->negate();
2137 }
2138
toString(SmallVectorImpl<char> & Str,unsigned Radix,bool Signed,bool formatAsCLiteral) const2139 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2140 bool Signed, bool formatAsCLiteral) const {
2141 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2142 Radix == 36) &&
2143 "Radix should be 2, 8, 10, 16, or 36!");
2144
2145 const char *Prefix = "";
2146 if (formatAsCLiteral) {
2147 switch (Radix) {
2148 case 2:
2149 // Binary literals are a non-standard extension added in gcc 4.3:
2150 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2151 Prefix = "0b";
2152 break;
2153 case 8:
2154 Prefix = "0";
2155 break;
2156 case 10:
2157 break; // No prefix
2158 case 16:
2159 Prefix = "0x";
2160 break;
2161 default:
2162 llvm_unreachable("Invalid radix!");
2163 }
2164 }
2165
2166 // First, check for a zero value and just short circuit the logic below.
2167 if (isZero()) {
2168 while (*Prefix) {
2169 Str.push_back(*Prefix);
2170 ++Prefix;
2171 };
2172 Str.push_back('0');
2173 return;
2174 }
2175
2176 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2177
2178 if (isSingleWord()) {
2179 char Buffer[65];
2180 char *BufPtr = std::end(Buffer);
2181
2182 uint64_t N;
2183 if (!Signed) {
2184 N = getZExtValue();
2185 } else {
2186 int64_t I = getSExtValue();
2187 if (I >= 0) {
2188 N = I;
2189 } else {
2190 Str.push_back('-');
2191 N = -(uint64_t)I;
2192 }
2193 }
2194
2195 while (*Prefix) {
2196 Str.push_back(*Prefix);
2197 ++Prefix;
2198 };
2199
2200 while (N) {
2201 *--BufPtr = Digits[N % Radix];
2202 N /= Radix;
2203 }
2204 Str.append(BufPtr, std::end(Buffer));
2205 return;
2206 }
2207
2208 APInt Tmp(*this);
2209
2210 if (Signed && isNegative()) {
2211 // They want to print the signed version and it is a negative value
2212 // Flip the bits and add one to turn it into the equivalent positive
2213 // value and put a '-' in the result.
2214 Tmp.negate();
2215 Str.push_back('-');
2216 }
2217
2218 while (*Prefix) {
2219 Str.push_back(*Prefix);
2220 ++Prefix;
2221 };
2222
2223 // We insert the digits backward, then reverse them to get the right order.
2224 unsigned StartDig = Str.size();
2225
2226 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2227 // because the number of bits per digit (1, 3 and 4 respectively) divides
2228 // equally. We just shift until the value is zero.
2229 if (Radix == 2 || Radix == 8 || Radix == 16) {
2230 // Just shift tmp right for each digit width until it becomes zero
2231 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2232 unsigned MaskAmt = Radix - 1;
2233
2234 while (Tmp.getBoolValue()) {
2235 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2236 Str.push_back(Digits[Digit]);
2237 Tmp.lshrInPlace(ShiftAmt);
2238 }
2239 } else {
2240 while (Tmp.getBoolValue()) {
2241 uint64_t Digit;
2242 udivrem(Tmp, Radix, Tmp, Digit);
2243 assert(Digit < Radix && "divide failed");
2244 Str.push_back(Digits[Digit]);
2245 }
2246 }
2247
2248 // Reverse the digits before returning.
2249 std::reverse(Str.begin()+StartDig, Str.end());
2250 }
2251
2252 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const2253 LLVM_DUMP_METHOD void APInt::dump() const {
2254 SmallString<40> S, U;
2255 this->toStringUnsigned(U);
2256 this->toStringSigned(S);
2257 dbgs() << "APInt(" << BitWidth << "b, "
2258 << U << "u " << S << "s)\n";
2259 }
2260 #endif
2261
print(raw_ostream & OS,bool isSigned) const2262 void APInt::print(raw_ostream &OS, bool isSigned) const {
2263 SmallString<40> S;
2264 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2265 OS << S;
2266 }
2267
2268 // This implements a variety of operations on a representation of
2269 // arbitrary precision, two's-complement, bignum integer values.
2270
2271 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2272 // and unrestricting assumption.
2273 static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2274 "Part width must be divisible by 2!");
2275
2276 // Returns the integer part with the least significant BITS set.
2277 // BITS cannot be zero.
lowBitMask(unsigned bits)2278 static inline APInt::WordType lowBitMask(unsigned bits) {
2279 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD);
2280 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2281 }
2282
2283 /// Returns the value of the lower half of PART.
lowHalf(APInt::WordType part)2284 static inline APInt::WordType lowHalf(APInt::WordType part) {
2285 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2286 }
2287
2288 /// Returns the value of the upper half of PART.
highHalf(APInt::WordType part)2289 static inline APInt::WordType highHalf(APInt::WordType part) {
2290 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2291 }
2292
2293 /// Returns the bit number of the most significant set bit of a part.
2294 /// If the input number has no bits set -1U is returned.
partMSB(APInt::WordType value)2295 static unsigned partMSB(APInt::WordType value) {
2296 return findLastSet(value, ZB_Max);
2297 }
2298
2299 /// Returns the bit number of the least significant set bit of a part. If the
2300 /// input number has no bits set -1U is returned.
partLSB(APInt::WordType value)2301 static unsigned partLSB(APInt::WordType value) {
2302 return findFirstSet(value, ZB_Max);
2303 }
2304
2305 /// Sets the least significant part of a bignum to the input value, and zeroes
2306 /// out higher parts.
tcSet(WordType * dst,WordType part,unsigned parts)2307 void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2308 assert(parts > 0);
2309 dst[0] = part;
2310 for (unsigned i = 1; i < parts; i++)
2311 dst[i] = 0;
2312 }
2313
2314 /// Assign one bignum to another.
tcAssign(WordType * dst,const WordType * src,unsigned parts)2315 void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2316 for (unsigned i = 0; i < parts; i++)
2317 dst[i] = src[i];
2318 }
2319
2320 /// Returns true if a bignum is zero, false otherwise.
tcIsZero(const WordType * src,unsigned parts)2321 bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2322 for (unsigned i = 0; i < parts; i++)
2323 if (src[i])
2324 return false;
2325
2326 return true;
2327 }
2328
2329 /// Extract the given bit of a bignum; returns 0 or 1.
tcExtractBit(const WordType * parts,unsigned bit)2330 int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2331 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2332 }
2333
2334 /// Set the given bit of a bignum.
tcSetBit(WordType * parts,unsigned bit)2335 void APInt::tcSetBit(WordType *parts, unsigned bit) {
2336 parts[whichWord(bit)] |= maskBit(bit);
2337 }
2338
2339 /// Clears the given bit of a bignum.
tcClearBit(WordType * parts,unsigned bit)2340 void APInt::tcClearBit(WordType *parts, unsigned bit) {
2341 parts[whichWord(bit)] &= ~maskBit(bit);
2342 }
2343
2344 /// Returns the bit number of the least significant set bit of a number. If the
2345 /// input number has no bits set -1U is returned.
tcLSB(const WordType * parts,unsigned n)2346 unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2347 for (unsigned i = 0; i < n; i++) {
2348 if (parts[i] != 0) {
2349 unsigned lsb = partLSB(parts[i]);
2350 return lsb + i * APINT_BITS_PER_WORD;
2351 }
2352 }
2353
2354 return -1U;
2355 }
2356
2357 /// Returns the bit number of the most significant set bit of a number.
2358 /// If the input number has no bits set -1U is returned.
tcMSB(const WordType * parts,unsigned n)2359 unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2360 do {
2361 --n;
2362
2363 if (parts[n] != 0) {
2364 unsigned msb = partMSB(parts[n]);
2365
2366 return msb + n * APINT_BITS_PER_WORD;
2367 }
2368 } while (n);
2369
2370 return -1U;
2371 }
2372
2373 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
2374 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
2375 /// significant bit of DST. All high bits above srcBITS in DST are zero-filled.
2376 /// */
2377 void
tcExtract(WordType * dst,unsigned dstCount,const WordType * src,unsigned srcBits,unsigned srcLSB)2378 APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2379 unsigned srcBits, unsigned srcLSB) {
2380 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2381 assert(dstParts <= dstCount);
2382
2383 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2384 tcAssign(dst, src + firstSrcPart, dstParts);
2385
2386 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2387 tcShiftRight(dst, dstParts, shift);
2388
2389 // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2390 // in DST. If this is less that srcBits, append the rest, else
2391 // clear the high bits.
2392 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2393 if (n < srcBits) {
2394 WordType mask = lowBitMask (srcBits - n);
2395 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2396 << n % APINT_BITS_PER_WORD);
2397 } else if (n > srcBits) {
2398 if (srcBits % APINT_BITS_PER_WORD)
2399 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2400 }
2401
2402 // Clear high parts.
2403 while (dstParts < dstCount)
2404 dst[dstParts++] = 0;
2405 }
2406
2407 //// DST += RHS + C where C is zero or one. Returns the carry flag.
tcAdd(WordType * dst,const WordType * rhs,WordType c,unsigned parts)2408 APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2409 WordType c, unsigned parts) {
2410 assert(c <= 1);
2411
2412 for (unsigned i = 0; i < parts; i++) {
2413 WordType l = dst[i];
2414 if (c) {
2415 dst[i] += rhs[i] + 1;
2416 c = (dst[i] <= l);
2417 } else {
2418 dst[i] += rhs[i];
2419 c = (dst[i] < l);
2420 }
2421 }
2422
2423 return c;
2424 }
2425
2426 /// This function adds a single "word" integer, src, to the multiple
2427 /// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2428 /// 1 is returned if there is a carry out, otherwise 0 is returned.
2429 /// @returns the carry of the addition.
tcAddPart(WordType * dst,WordType src,unsigned parts)2430 APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2431 unsigned parts) {
2432 for (unsigned i = 0; i < parts; ++i) {
2433 dst[i] += src;
2434 if (dst[i] >= src)
2435 return 0; // No need to carry so exit early.
2436 src = 1; // Carry one to next digit.
2437 }
2438
2439 return 1;
2440 }
2441
2442 /// DST -= RHS + C where C is zero or one. Returns the carry flag.
tcSubtract(WordType * dst,const WordType * rhs,WordType c,unsigned parts)2443 APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2444 WordType c, unsigned parts) {
2445 assert(c <= 1);
2446
2447 for (unsigned i = 0; i < parts; i++) {
2448 WordType l = dst[i];
2449 if (c) {
2450 dst[i] -= rhs[i] + 1;
2451 c = (dst[i] >= l);
2452 } else {
2453 dst[i] -= rhs[i];
2454 c = (dst[i] > l);
2455 }
2456 }
2457
2458 return c;
2459 }
2460
2461 /// This function subtracts a single "word" (64-bit word), src, from
2462 /// the multi-word integer array, dst[], propagating the borrowed 1 value until
2463 /// no further borrowing is needed or it runs out of "words" in dst. The result
2464 /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2465 /// exhausted. In other words, if src > dst then this function returns 1,
2466 /// otherwise 0.
2467 /// @returns the borrow out of the subtraction
tcSubtractPart(WordType * dst,WordType src,unsigned parts)2468 APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2469 unsigned parts) {
2470 for (unsigned i = 0; i < parts; ++i) {
2471 WordType Dst = dst[i];
2472 dst[i] -= src;
2473 if (src <= Dst)
2474 return 0; // No need to borrow so exit early.
2475 src = 1; // We have to "borrow 1" from next "word"
2476 }
2477
2478 return 1;
2479 }
2480
2481 /// Negate a bignum in-place.
tcNegate(WordType * dst,unsigned parts)2482 void APInt::tcNegate(WordType *dst, unsigned parts) {
2483 tcComplement(dst, parts);
2484 tcIncrement(dst, parts);
2485 }
2486
2487 /// DST += SRC * MULTIPLIER + CARRY if add is true
2488 /// DST = SRC * MULTIPLIER + CARRY if add is false
2489 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2490 /// they must start at the same point, i.e. DST == SRC.
2491 /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2492 /// returned. Otherwise DST is filled with the least significant
2493 /// DSTPARTS parts of the result, and if all of the omitted higher
2494 /// parts were zero return zero, otherwise overflow occurred and
2495 /// return one.
tcMultiplyPart(WordType * dst,const WordType * src,WordType multiplier,WordType carry,unsigned srcParts,unsigned dstParts,bool add)2496 int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2497 WordType multiplier, WordType carry,
2498 unsigned srcParts, unsigned dstParts,
2499 bool add) {
2500 // Otherwise our writes of DST kill our later reads of SRC.
2501 assert(dst <= src || dst >= src + srcParts);
2502 assert(dstParts <= srcParts + 1);
2503
2504 // N loops; minimum of dstParts and srcParts.
2505 unsigned n = std::min(dstParts, srcParts);
2506
2507 for (unsigned i = 0; i < n; i++) {
2508 // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2509 // This cannot overflow, because:
2510 // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2511 // which is less than n^2.
2512 WordType srcPart = src[i];
2513 WordType low, mid, high;
2514 if (multiplier == 0 || srcPart == 0) {
2515 low = carry;
2516 high = 0;
2517 } else {
2518 low = lowHalf(srcPart) * lowHalf(multiplier);
2519 high = highHalf(srcPart) * highHalf(multiplier);
2520
2521 mid = lowHalf(srcPart) * highHalf(multiplier);
2522 high += highHalf(mid);
2523 mid <<= APINT_BITS_PER_WORD / 2;
2524 if (low + mid < low)
2525 high++;
2526 low += mid;
2527
2528 mid = highHalf(srcPart) * lowHalf(multiplier);
2529 high += highHalf(mid);
2530 mid <<= APINT_BITS_PER_WORD / 2;
2531 if (low + mid < low)
2532 high++;
2533 low += mid;
2534
2535 // Now add carry.
2536 if (low + carry < low)
2537 high++;
2538 low += carry;
2539 }
2540
2541 if (add) {
2542 // And now DST[i], and store the new low part there.
2543 if (low + dst[i] < low)
2544 high++;
2545 dst[i] += low;
2546 } else
2547 dst[i] = low;
2548
2549 carry = high;
2550 }
2551
2552 if (srcParts < dstParts) {
2553 // Full multiplication, there is no overflow.
2554 assert(srcParts + 1 == dstParts);
2555 dst[srcParts] = carry;
2556 return 0;
2557 }
2558
2559 // We overflowed if there is carry.
2560 if (carry)
2561 return 1;
2562
2563 // We would overflow if any significant unwritten parts would be
2564 // non-zero. This is true if any remaining src parts are non-zero
2565 // and the multiplier is non-zero.
2566 if (multiplier)
2567 for (unsigned i = dstParts; i < srcParts; i++)
2568 if (src[i])
2569 return 1;
2570
2571 // We fitted in the narrow destination.
2572 return 0;
2573 }
2574
2575 /// DST = LHS * RHS, where DST has the same width as the operands and
2576 /// is filled with the least significant parts of the result. Returns
2577 /// one if overflow occurred, otherwise zero. DST must be disjoint
2578 /// from both operands.
tcMultiply(WordType * dst,const WordType * lhs,const WordType * rhs,unsigned parts)2579 int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2580 const WordType *rhs, unsigned parts) {
2581 assert(dst != lhs && dst != rhs);
2582
2583 int overflow = 0;
2584 tcSet(dst, 0, parts);
2585
2586 for (unsigned i = 0; i < parts; i++)
2587 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2588 parts - i, true);
2589
2590 return overflow;
2591 }
2592
2593 /// DST = LHS * RHS, where DST has width the sum of the widths of the
2594 /// operands. No overflow occurs. DST must be disjoint from both operands.
tcFullMultiply(WordType * dst,const WordType * lhs,const WordType * rhs,unsigned lhsParts,unsigned rhsParts)2595 void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2596 const WordType *rhs, unsigned lhsParts,
2597 unsigned rhsParts) {
2598 // Put the narrower number on the LHS for less loops below.
2599 if (lhsParts > rhsParts)
2600 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2601
2602 assert(dst != lhs && dst != rhs);
2603
2604 tcSet(dst, 0, rhsParts);
2605
2606 for (unsigned i = 0; i < lhsParts; i++)
2607 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2608 }
2609
2610 // If RHS is zero LHS and REMAINDER are left unchanged, return one.
2611 // Otherwise set LHS to LHS / RHS with the fractional part discarded,
2612 // set REMAINDER to the remainder, return zero. i.e.
2613 //
2614 // OLD_LHS = RHS * LHS + REMAINDER
2615 //
2616 // SCRATCH is a bignum of the same size as the operands and result for
2617 // use by the routine; its contents need not be initialized and are
2618 // destroyed. LHS, REMAINDER and SCRATCH must be distinct.
tcDivide(WordType * lhs,const WordType * rhs,WordType * remainder,WordType * srhs,unsigned parts)2619 int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2620 WordType *remainder, WordType *srhs,
2621 unsigned parts) {
2622 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2623
2624 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2625 if (shiftCount == 0)
2626 return true;
2627
2628 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2629 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2630 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2631
2632 tcAssign(srhs, rhs, parts);
2633 tcShiftLeft(srhs, parts, shiftCount);
2634 tcAssign(remainder, lhs, parts);
2635 tcSet(lhs, 0, parts);
2636
2637 // Loop, subtracting SRHS if REMAINDER is greater and adding that to the
2638 // total.
2639 for (;;) {
2640 int compare = tcCompare(remainder, srhs, parts);
2641 if (compare >= 0) {
2642 tcSubtract(remainder, srhs, 0, parts);
2643 lhs[n] |= mask;
2644 }
2645
2646 if (shiftCount == 0)
2647 break;
2648 shiftCount--;
2649 tcShiftRight(srhs, parts, 1);
2650 if ((mask >>= 1) == 0) {
2651 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2652 n--;
2653 }
2654 }
2655
2656 return false;
2657 }
2658
2659 /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2660 /// no restrictions on Count.
tcShiftLeft(WordType * Dst,unsigned Words,unsigned Count)2661 void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2662 // Don't bother performing a no-op shift.
2663 if (!Count)
2664 return;
2665
2666 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2667 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2668 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2669
2670 // Fastpath for moving by whole words.
2671 if (BitShift == 0) {
2672 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2673 } else {
2674 while (Words-- > WordShift) {
2675 Dst[Words] = Dst[Words - WordShift] << BitShift;
2676 if (Words > WordShift)
2677 Dst[Words] |=
2678 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2679 }
2680 }
2681
2682 // Fill in the remainder with 0s.
2683 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2684 }
2685
2686 /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2687 /// are no restrictions on Count.
tcShiftRight(WordType * Dst,unsigned Words,unsigned Count)2688 void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2689 // Don't bother performing a no-op shift.
2690 if (!Count)
2691 return;
2692
2693 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2694 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2695 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2696
2697 unsigned WordsToMove = Words - WordShift;
2698 // Fastpath for moving by whole words.
2699 if (BitShift == 0) {
2700 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2701 } else {
2702 for (unsigned i = 0; i != WordsToMove; ++i) {
2703 Dst[i] = Dst[i + WordShift] >> BitShift;
2704 if (i + 1 != WordsToMove)
2705 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2706 }
2707 }
2708
2709 // Fill in the remainder with 0s.
2710 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2711 }
2712
2713 // Comparison (unsigned) of two bignums.
tcCompare(const WordType * lhs,const WordType * rhs,unsigned parts)2714 int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2715 unsigned parts) {
2716 while (parts) {
2717 parts--;
2718 if (lhs[parts] != rhs[parts])
2719 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2720 }
2721
2722 return 0;
2723 }
2724
RoundingUDiv(const APInt & A,const APInt & B,APInt::Rounding RM)2725 APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B,
2726 APInt::Rounding RM) {
2727 // Currently udivrem always rounds down.
2728 switch (RM) {
2729 case APInt::Rounding::DOWN:
2730 case APInt::Rounding::TOWARD_ZERO:
2731 return A.udiv(B);
2732 case APInt::Rounding::UP: {
2733 APInt Quo, Rem;
2734 APInt::udivrem(A, B, Quo, Rem);
2735 if (Rem.isZero())
2736 return Quo;
2737 return Quo + 1;
2738 }
2739 }
2740 llvm_unreachable("Unknown APInt::Rounding enum");
2741 }
2742
RoundingSDiv(const APInt & A,const APInt & B,APInt::Rounding RM)2743 APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B,
2744 APInt::Rounding RM) {
2745 switch (RM) {
2746 case APInt::Rounding::DOWN:
2747 case APInt::Rounding::UP: {
2748 APInt Quo, Rem;
2749 APInt::sdivrem(A, B, Quo, Rem);
2750 if (Rem.isZero())
2751 return Quo;
2752 // This algorithm deals with arbitrary rounding mode used by sdivrem.
2753 // We want to check whether the non-integer part of the mathematical value
2754 // is negative or not. If the non-integer part is negative, we need to round
2755 // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's
2756 // already rounded down.
2757 if (RM == APInt::Rounding::DOWN) {
2758 if (Rem.isNegative() != B.isNegative())
2759 return Quo - 1;
2760 return Quo;
2761 }
2762 if (Rem.isNegative() != B.isNegative())
2763 return Quo;
2764 return Quo + 1;
2765 }
2766 // Currently sdiv rounds towards zero.
2767 case APInt::Rounding::TOWARD_ZERO:
2768 return A.sdiv(B);
2769 }
2770 llvm_unreachable("Unknown APInt::Rounding enum");
2771 }
2772
2773 Optional<APInt>
SolveQuadraticEquationWrap(APInt A,APInt B,APInt C,unsigned RangeWidth)2774 llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2775 unsigned RangeWidth) {
2776 unsigned CoeffWidth = A.getBitWidth();
2777 assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth());
2778 assert(RangeWidth <= CoeffWidth &&
2779 "Value range width should be less than coefficient width");
2780 assert(RangeWidth > 1 && "Value range bit width should be > 1");
2781
2782 LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << B
2783 << "x + " << C << ", rw:" << RangeWidth << '\n');
2784
2785 // Identify 0 as a (non)solution immediately.
2786 if (C.sextOrTrunc(RangeWidth).isZero()) {
2787 LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n");
2788 return APInt(CoeffWidth, 0);
2789 }
2790
2791 // The result of APInt arithmetic has the same bit width as the operands,
2792 // so it can actually lose high bits. A product of two n-bit integers needs
2793 // 2n-1 bits to represent the full value.
2794 // The operation done below (on quadratic coefficients) that can produce
2795 // the largest value is the evaluation of the equation during bisection,
2796 // which needs 3 times the bitwidth of the coefficient, so the total number
2797 // of required bits is 3n.
2798 //
2799 // The purpose of this extension is to simulate the set Z of all integers,
2800 // where n+1 > n for all n in Z. In Z it makes sense to talk about positive
2801 // and negative numbers (not so much in a modulo arithmetic). The method
2802 // used to solve the equation is based on the standard formula for real
2803 // numbers, and uses the concepts of "positive" and "negative" with their
2804 // usual meanings.
2805 CoeffWidth *= 3;
2806 A = A.sext(CoeffWidth);
2807 B = B.sext(CoeffWidth);
2808 C = C.sext(CoeffWidth);
2809
2810 // Make A > 0 for simplicity. Negate cannot overflow at this point because
2811 // the bit width has increased.
2812 if (A.isNegative()) {
2813 A.negate();
2814 B.negate();
2815 C.negate();
2816 }
2817
2818 // Solving an equation q(x) = 0 with coefficients in modular arithmetic
2819 // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ...,
2820 // and R = 2^BitWidth.
2821 // Since we're trying not only to find exact solutions, but also values
2822 // that "wrap around", such a set will always have a solution, i.e. an x
2823 // that satisfies at least one of the equations, or such that |q(x)|
2824 // exceeds kR, while |q(x-1)| for the same k does not.
2825 //
2826 // We need to find a value k, such that Ax^2 + Bx + C = kR will have a
2827 // positive solution n (in the above sense), and also such that the n
2828 // will be the least among all solutions corresponding to k = 0, 1, ...
2829 // (more precisely, the least element in the set
2830 // { n(k) | k is such that a solution n(k) exists }).
2831 //
2832 // Consider the parabola (over real numbers) that corresponds to the
2833 // quadratic equation. Since A > 0, the arms of the parabola will point
2834 // up. Picking different values of k will shift it up and down by R.
2835 //
2836 // We want to shift the parabola in such a way as to reduce the problem
2837 // of solving q(x) = kR to solving shifted_q(x) = 0.
2838 // (The interesting solutions are the ceilings of the real number
2839 // solutions.)
2840 APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth);
2841 APInt TwoA = 2 * A;
2842 APInt SqrB = B * B;
2843 bool PickLow;
2844
2845 auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt {
2846 assert(A.isStrictlyPositive());
2847 APInt T = V.abs().urem(A);
2848 if (T.isZero())
2849 return V;
2850 return V.isNegative() ? V+T : V+(A-T);
2851 };
2852
2853 // The vertex of the parabola is at -B/2A, but since A > 0, it's negative
2854 // iff B is positive.
2855 if (B.isNonNegative()) {
2856 // If B >= 0, the vertex it at a negative location (or at 0), so in
2857 // order to have a non-negative solution we need to pick k that makes
2858 // C-kR negative. To satisfy all the requirements for the solution
2859 // that we are looking for, it needs to be closest to 0 of all k.
2860 C = C.srem(R);
2861 if (C.isStrictlyPositive())
2862 C -= R;
2863 // Pick the greater solution.
2864 PickLow = false;
2865 } else {
2866 // If B < 0, the vertex is at a positive location. For any solution
2867 // to exist, the discriminant must be non-negative. This means that
2868 // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a
2869 // lower bound on values of k: kR >= C - B^2/4A.
2870 APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0.
2871 // Round LowkR up (towards +inf) to the nearest kR.
2872 LowkR = RoundUp(LowkR, R);
2873
2874 // If there exists k meeting the condition above, and such that
2875 // C-kR > 0, there will be two positive real number solutions of
2876 // q(x) = kR. Out of all such values of k, pick the one that makes
2877 // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0).
2878 // In other words, find maximum k such that LowkR <= kR < C.
2879 if (C.sgt(LowkR)) {
2880 // If LowkR < C, then such a k is guaranteed to exist because
2881 // LowkR itself is a multiple of R.
2882 C -= -RoundUp(-C, R); // C = C - RoundDown(C, R)
2883 // Pick the smaller solution.
2884 PickLow = true;
2885 } else {
2886 // If C-kR < 0 for all potential k's, it means that one solution
2887 // will be negative, while the other will be positive. The positive
2888 // solution will shift towards 0 if the parabola is moved up.
2889 // Pick the kR closest to the lower bound (i.e. make C-kR closest
2890 // to 0, or in other words, out of all parabolas that have solutions,
2891 // pick the one that is the farthest "up").
2892 // Since LowkR is itself a multiple of R, simply take C-LowkR.
2893 C -= LowkR;
2894 // Pick the greater solution.
2895 PickLow = false;
2896 }
2897 }
2898
2899 LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "
2900 << B << "x + " << C << ", rw:" << RangeWidth << '\n');
2901
2902 APInt D = SqrB - 4*A*C;
2903 assert(D.isNonNegative() && "Negative discriminant");
2904 APInt SQ = D.sqrt();
2905
2906 APInt Q = SQ * SQ;
2907 bool InexactSQ = Q != D;
2908 // The calculated SQ may actually be greater than the exact (non-integer)
2909 // value. If that's the case, decrement SQ to get a value that is lower.
2910 if (Q.sgt(D))
2911 SQ -= 1;
2912
2913 APInt X;
2914 APInt Rem;
2915
2916 // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact.
2917 // When using the quadratic formula directly, the calculated low root
2918 // may be greater than the exact one, since we would be subtracting SQ.
2919 // To make sure that the calculated root is not greater than the exact
2920 // one, subtract SQ+1 when calculating the low root (for inexact value
2921 // of SQ).
2922 if (PickLow)
2923 APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem);
2924 else
2925 APInt::sdivrem(-B + SQ, TwoA, X, Rem);
2926
2927 // The updated coefficients should be such that the (exact) solution is
2928 // positive. Since APInt division rounds towards 0, the calculated one
2929 // can be 0, but cannot be negative.
2930 assert(X.isNonNegative() && "Solution should be non-negative");
2931
2932 if (!InexactSQ && Rem.isZero()) {
2933 LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n');
2934 return X;
2935 }
2936
2937 assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D");
2938 // The exact value of the square root of D should be between SQ and SQ+1.
2939 // This implies that the solution should be between that corresponding to
2940 // SQ (i.e. X) and that corresponding to SQ+1.
2941 //
2942 // The calculated X cannot be greater than the exact (real) solution.
2943 // Actually it must be strictly less than the exact solution, while
2944 // X+1 will be greater than or equal to it.
2945
2946 APInt VX = (A*X + B)*X + C;
2947 APInt VY = VX + TwoA*X + A + B;
2948 bool SignChange =
2949 VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero();
2950 // If the sign did not change between X and X+1, X is not a valid solution.
2951 // This could happen when the actual (exact) roots don't have an integer
2952 // between them, so they would both be contained between X and X+1.
2953 if (!SignChange) {
2954 LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n");
2955 return None;
2956 }
2957
2958 X += 1;
2959 LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n');
2960 return X;
2961 }
2962
2963 Optional<unsigned>
GetMostSignificantDifferentBit(const APInt & A,const APInt & B)2964 llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) {
2965 assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth");
2966 if (A == B)
2967 return llvm::None;
2968 return A.getBitWidth() - ((A ^ B).countLeadingZeros() + 1);
2969 }
2970
ScaleBitMask(const APInt & A,unsigned NewBitWidth,bool MatchAllBits)2971 APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth,
2972 bool MatchAllBits) {
2973 unsigned OldBitWidth = A.getBitWidth();
2974 assert((((OldBitWidth % NewBitWidth) == 0) ||
2975 ((NewBitWidth % OldBitWidth) == 0)) &&
2976 "One size should be a multiple of the other one. "
2977 "Can't do fractional scaling.");
2978
2979 // Check for matching bitwidths.
2980 if (OldBitWidth == NewBitWidth)
2981 return A;
2982
2983 APInt NewA = APInt::getZero(NewBitWidth);
2984
2985 // Check for null input.
2986 if (A.isZero())
2987 return NewA;
2988
2989 if (NewBitWidth > OldBitWidth) {
2990 // Repeat bits.
2991 unsigned Scale = NewBitWidth / OldBitWidth;
2992 for (unsigned i = 0; i != OldBitWidth; ++i)
2993 if (A[i])
2994 NewA.setBits(i * Scale, (i + 1) * Scale);
2995 } else {
2996 unsigned Scale = OldBitWidth / NewBitWidth;
2997 for (unsigned i = 0; i != NewBitWidth; ++i) {
2998 if (MatchAllBits) {
2999 if (A.extractBits(Scale, i * Scale).isAllOnes())
3000 NewA.setBit(i);
3001 } else {
3002 if (!A.extractBits(Scale, i * Scale).isZero())
3003 NewA.setBit(i);
3004 }
3005 }
3006 }
3007
3008 return NewA;
3009 }
3010
3011 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
3012 /// with the integer held in IntVal.
StoreIntToMemory(const APInt & IntVal,uint8_t * Dst,unsigned StoreBytes)3013 void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
3014 unsigned StoreBytes) {
3015 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
3016 const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
3017
3018 if (sys::IsLittleEndianHost) {
3019 // Little-endian host - the source is ordered from LSB to MSB. Order the
3020 // destination from LSB to MSB: Do a straight copy.
3021 memcpy(Dst, Src, StoreBytes);
3022 } else {
3023 // Big-endian host - the source is an array of 64 bit words ordered from
3024 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
3025 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
3026 while (StoreBytes > sizeof(uint64_t)) {
3027 StoreBytes -= sizeof(uint64_t);
3028 // May not be aligned so use memcpy.
3029 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
3030 Src += sizeof(uint64_t);
3031 }
3032
3033 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
3034 }
3035 }
3036
3037 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
3038 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
LoadIntFromMemory(APInt & IntVal,const uint8_t * Src,unsigned LoadBytes)3039 void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src,
3040 unsigned LoadBytes) {
3041 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
3042 uint8_t *Dst = reinterpret_cast<uint8_t *>(
3043 const_cast<uint64_t *>(IntVal.getRawData()));
3044
3045 if (sys::IsLittleEndianHost)
3046 // Little-endian host - the destination must be ordered from LSB to MSB.
3047 // The source is ordered from LSB to MSB: Do a straight copy.
3048 memcpy(Dst, Src, LoadBytes);
3049 else {
3050 // Big-endian - the destination is an array of 64 bit words ordered from
3051 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
3052 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
3053 // a word.
3054 while (LoadBytes > sizeof(uint64_t)) {
3055 LoadBytes -= sizeof(uint64_t);
3056 // May not be aligned so use memcpy.
3057 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
3058 Dst += sizeof(uint64_t);
3059 }
3060
3061 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
3062 }
3063 }
3064