History log of /llvm-project-15.0.7/mlir/test/python/dialects/linalg/ops.py (Results 1 – 14 of 14)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3
# 36550692 08-Mar-2022 River Riddle <[email protected]>

[mlir] Move the Builtin FuncOp to the Func dialect

This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made

[mlir] Move the Builtin FuncOp to the Func dialect

This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.

Differential Revision: https://reviews.llvm.org/D121266

show more ...


# 7294be2b 14-Mar-2022 gysit <[email protected]>

[mlir][linalg] Replace linalg.fill by OpDSL variant.

The revision removes the linalg.fill operation and renames the OpDSL generated linalg.fill_tensor operation to replace it. After the change, all

[mlir][linalg] Replace linalg.fill by OpDSL variant.

The revision removes the linalg.fill operation and renames the OpDSL generated linalg.fill_tensor operation to replace it. After the change, all named structured operations are defined via OpDSL and there are no handwritten operations left.

A side-effect of the change is that the pretty printed form changes from:
```
%1 = linalg.fill(%cst, %0) : f32, tensor<?x?xf32> -> tensor<?x?xf32>
```
changes to
```
%1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<?x?xf32>) -> tensor<?x?xf32>
```
Additionally, the builder signature now takes input and output value ranges as it is the case for all other OpDSL operations:
```
rewriter.create<linalg::FillOp>(loc, val, output)
```
changes to
```
rewriter.create<linalg::FillOp>(loc, ValueRange{val}, ValueRange{output})
```
All other changes remain minimal. In particular, the canonicalization patterns are the same and the `value()`, `output()`, and `result()` methods are now implemented by the FillOpInterface.

Depends On D120726

Reviewed By: nicolasvasilache

Differential Revision: https://reviews.llvm.org/D120728

show more ...


Revision tags: llvmorg-14.0.0-rc2
# 23aa5a74 26-Feb-2022 River Riddle <[email protected]>

[mlir] Rename the Standard dialect to the Func dialect

The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the init

[mlir] Rename the Standard dialect to the Func dialect

The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:

* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect

See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061

Differential Revision: https://reviews.llvm.org/D120624

show more ...


# e9085d0d 01-Mar-2022 gysit <[email protected]>

[mlir][OpDSL] Rename function to make signedness explicit (NFC).

The revision renames the following OpDSL functions:
```
TypeFn.cast -> TypeFn.cast_signed
BinaryFn.min -> BinaryFn.min_signed
BinaryF

[mlir][OpDSL] Rename function to make signedness explicit (NFC).

The revision renames the following OpDSL functions:
```
TypeFn.cast -> TypeFn.cast_signed
BinaryFn.min -> BinaryFn.min_signed
BinaryFn.max -> BinaryFn.max_signed
```
The corresponding enum values on the C++ side are renamed accordingly:
```
#linalg.type_fn<cast> -> #linalg.type_fn<cast_signed>
#linalg.binary_fn<min> -> #linalg.binary_fn<min_signed>
#linalg.binary_fn<max> -> #linalg.binary_fn<max_signed>
```

Depends On D120110

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D120562

show more ...


# 24357fec 01-Mar-2022 gysit <[email protected]>

[mlir][OpDSL] Add arithmetic function attributes.

The revision extends OpDSL with unary and binary function attributes. A function attribute, makes the operations used in the body of a structured op

[mlir][OpDSL] Add arithmetic function attributes.

The revision extends OpDSL with unary and binary function attributes. A function attribute, makes the operations used in the body of a structured operation configurable. For example, a pooling operation may take an aggregation function attribute that specifies if the op shall implement a min or a max pooling. The goal of this revision is to define less and more flexible operations.

We may thus for example define an element wise op:
```
linalg.elem(lhs, rhs, outs=[out], op=BinaryFn.mul)
```
If the op argument is not set the default operation is used.

Depends On D120109

Reviewed By: nicolasvasilache, aartbik

Differential Revision: https://reviews.llvm.org/D120110

show more ...


# 51fdd802 25-Feb-2022 gysit <[email protected]>

[mlir][OpDSL] Add type function attributes.

Previously, OpDSL operation used hardcoded type conversion operations (cast or cast_unsigned). Supporting signed and unsigned casts thus meant implementin

[mlir][OpDSL] Add type function attributes.

Previously, OpDSL operation used hardcoded type conversion operations (cast or cast_unsigned). Supporting signed and unsigned casts thus meant implementing two different operations. Type function attributes allow us to define a single operation that has a cast type function attribute which at operation instantiation time may be set to cast or cast_unsigned. We may for example, defina a matmul operation with a cast argument:

```
@linalg_structured_op
def matmul(A=TensorDef(T1, S.M, S.K), B=TensorDef(T2, S.K, S.N), C=TensorDef(U, S.M, S.N, output=True),
cast=TypeFnAttrDef(default=TypeFn.cast)):
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
```

When instantiating the operation the attribute may be set to the desired cast function:

```
linalg.matmul(lhs, rhs, outs=[out], cast=TypeFn.cast_unsigned)
```

The revsion introduces a enum in the Linalg dialect that maps one-by-one to the type functions defined by OpDSL.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D119718

show more ...


# a3655de2 11-Feb-2022 gysit <[email protected]>

[mlir][OpDSL] Add support for basic rank polymorphism.

Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to su

[mlir][OpDSL] Add support for basic rank polymorphism.

Previously, OpDSL did not support rank polymorphism, which required a separate implementation of linalg.fill. This revision extends OpDSL to support rank polymorphism for a limited class of operations that access only scalars and tensors of rank zero. At operation instantiation time, it scales these scalar computations to multi-dimensional pointwise computations by replacing the empty indexing maps with identity index maps. The revision does not change the DSL itself, instead it adapts the Python emitter and the YAML generator to generate different indexing maps and and iterators depending on the rank of the first output.

Additionally, the revision introduces a `linalg.fill_tensor` operation that in a future revision shall replace the current handwritten `linalg.fill` operation. `linalg.fill_tensor` is thus only temporarily available and will be renamed to `linalg.fill`.

Reviewed By: nicolasvasilache, stellaraccident

Differential Revision: https://reviews.llvm.org/D119003

show more ...


Revision tags: llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2
# ace1d0ad 28-Nov-2021 Stella Laurenzo <[email protected]>

[mlir][python] Normalize asm-printing IR behavior.

While working on an integration, I found a lot of inconsistencies on IR printing and verification. It turns out that we were:
* Only doing "soft

[mlir][python] Normalize asm-printing IR behavior.

While working on an integration, I found a lot of inconsistencies on IR printing and verification. It turns out that we were:
* Only doing "soft fail" verification on IR printing of Operation, not of a Module.
* Failed verification was interacting badly with binary=True IR printing (causing a TypeError trying to pass an `str` to a `bytes` based handle).
* For systematic integrations, it is often desirable to control verification yourself so that you can explicitly handle errors.

This patch:
* Trues up the "soft fail" semantics by having `Module.__str__` delegate to `Operation.__str__` vs having a shortcut implementation.
* Fixes soft fail in the presence of binary=True (and adds an additional happy path test case to make sure the binary functionality works).
* Adds an `assume_verified` boolean flag to the `print`/`get_asm` methods which disables internal verification, presupposing that the caller has taken care of it.

It turns out that we had a number of tests which were generating illegal IR but it wasn't being caught because they were doing a print on the `Module` vs operation. All except two were trivially fixed:
* linalg/ops.py : Had two tests for direct constructing a Matmul incorrectly. Fixing them made them just like the next two tests so just deleted (no need to test the verifier only at this level).
* linalg/opdsl/emit_structured_generic.py : Hand coded conv and pooling tests appear to be using illegal shaped inputs/outputs, causing a verification failure. I just used the `assume_verified=` flag to restore the original behavior and left a TODO. Will get someone who owns that to fix it properly in a followup (would also be nice to break this file up into multiple test modules as it is hard to tell exactly what is failing).

Notes to downstreams:
* If, like some of our tests, you get verification failures after this patch, it is likely that your IR was always invalid and you will need to fix the root cause. To temporarily revert to prior (broken) behavior, replace calls like `print(module)` with `print(module.operation.get_asm(assume_verified=True))`.

Differential Revision: https://reviews.llvm.org/D114680

show more ...


Revision tags: llvmorg-13.0.1-rc1
# 54c99842 18-Nov-2021 Michal Terepeta <[email protected]>

[mlir][Python] Fix generation of accessors for Optional

Previously, in case there was only one `Optional` operand/result within
the list, we would always return `None` from the accessor, e.g., for a

[mlir][Python] Fix generation of accessors for Optional

Previously, in case there was only one `Optional` operand/result within
the list, we would always return `None` from the accessor, e.g., for a
single optional result we would generate:

```
return self.operation.results[0] if len(self.operation.results) > 1 else None
```

But what we really want is to return `None` only if the length of
`results` is smaller than the total number of element groups (i.e.,
the optional operand/result is in fact missing).

This commit also renames a few local variables in the generator to make
the distinction between `isVariadic()` and `isVariableLength()` a bit
more clear.

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D113855

show more ...


# a54f4eae 12-Oct-2021 Mogball <[email protected]>

[MLIR] Replace std ops with arith dialect ops

Precursor: https://reviews.llvm.org/D110200

Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.

Renamed

[MLIR] Replace std ops with arith dialect ops

Precursor: https://reviews.llvm.org/D110200

Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.

Renamed all instances of operations in the codebase and in tests.

Reviewed By: rriddle, jpienaar

Differential Revision: https://reviews.llvm.org/D110797

show more ...


# b164f23c 07-Oct-2021 Alex Zinenko <[email protected]>

[mlir][python] support taking ops instead of values in op constructors

Introduce support for accepting ops instead of values when constructing ops. A
single-result op can be used instead of a value,

[mlir][python] support taking ops instead of values in op constructors

Introduce support for accepting ops instead of values when constructing ops. A
single-result op can be used instead of a value, including in lists of values,
and any op can be used instead of a list of values. This is similar to, but
more powerful, than the C++ API that allows for implicitly casting an OpType to
Value if it is statically known to have a single result - the cast in Python is
based on the op dynamically having a single result, and also handles the
multi-result case. This allows to build IR in a more concise way:

op = dialect.produce_multiple_results()
other = dialect.produce_single_result()
dialect.consume_multiple_results(other, op)

instead of having to access the results manually

op = dialect.produce.multiple_results()
other = dialect.produce_single_result()
dialect.consume_multiple_results(other.result, op.operation.results)

The dispatch is implemented directly in Python and is triggered automatically
for autogenerated OpView subclasses. Extension OpView classes should use the
functions provided in ods_common.py if they want to implement this behavior.
An alternative could be to implement the dispatch in the C++ bindings code, but
it would require to forward opaque types through all Python functions down to a
binding call, which makes it hard to inspect them in Python, e.g., to obtain
the types of values.

Reviewed By: gysit

Differential Revision: https://reviews.llvm.org/D111306

show more ...


Revision tags: llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3
# a21a6f51 23-Jun-2021 Tobias Gysi <[email protected]>

[mlir][linalg] Change the pretty printed FillOp operand order.

The patch changes the pretty printed FillOp operand order from output, value to value, output. The change is a follow up to https://rev

[mlir][linalg] Change the pretty printed FillOp operand order.

The patch changes the pretty printed FillOp operand order from output, value to value, output. The change is a follow up to https://reviews.llvm.org/D104121 that passes the fill value using a scalar input instead of the former capture semantics.

Differential Revision: https://reviews.llvm.org/D104356

show more ...


Revision tags: llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1
# 1f109f9d 06-May-2021 Denys Shabalin <[email protected]>

Fix array attribute in bindings for linalg.init_tensor

Reviewed By: ftynse

Differential Revision: https://reviews.llvm.org/D101998


# 9f3f6d7b 28-Apr-2021 Stella Laurenzo <[email protected]>

Move MLIR python sources to mlir/python.

* NFC but has some fixes for CMake glitches discovered along the way (things not cleaning properly, co-mingled depends).
* Includes previously unsubmitted fi

Move MLIR python sources to mlir/python.

* NFC but has some fixes for CMake glitches discovered along the way (things not cleaning properly, co-mingled depends).
* Includes previously unsubmitted fix in D98681 and a TODO to fix it more appropriately in a smaller followup.

Differential Revision: https://reviews.llvm.org/D101493

show more ...