|
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1 |
|
| #
7d6e8f2a |
| 29-Mar-2022 |
Philip Reames <[email protected]> |
[slp] Delete dead scalar instructions feeding vectorized instructions
If we vectorize a e.g. store, we leave around a bunch of getelementptrs for the individual scalar stores which we removed. We ca
[slp] Delete dead scalar instructions feeding vectorized instructions
If we vectorize a e.g. store, we leave around a bunch of getelementptrs for the individual scalar stores which we removed. We can go ahead and delete them as well.
This is purely for test output quality and readability. It should have no effect in any sane pipeline.
Differential Revision: https://reviews.llvm.org/D122493
show more ...
|
| #
48cc9287 |
| 18-Mar-2022 |
Philip Reames <[email protected]> |
Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"" (try 3)
The original commit exposed several missing dependencies (e.g. latent bugs in SLP scheduling). Most of these were fixed
Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"" (try 3)
The original commit exposed several missing dependencies (e.g. latent bugs in SLP scheduling). Most of these were fixed over the weekend and have had several days to bake. The last was fixed this morning after being noticed in manual review of test changes yesterday. See the review thread for links to each change.
Original commit message follows:
SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.
This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:
Before this patch:
704357 SLP - Number of calcDeps actions 699021 SLP - Number of schedule calls 5598 SLP - Number of ReSchedule actions 59 SLP - Number of ReScheduleOnFail actions 10084 SLP - Number of schedule resets 8523 SLP - Number of vector instructions generated
After this patch:
102895 SLP - Number of calcDeps actions 161916 SLP - Number of schedule calls 5637 SLP - Number of ReSchedule actions 55 SLP - Number of ReScheduleOnFail actions 10083 SLP - Number of schedule resets 8403 SLP - Number of vector instructions generated
I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.
The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.
For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.
Differential Revision: https://reviews.llvm.org/D118538
show more ...
|
|
Revision tags: llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3 |
|
| #
deae979a |
| 03-Mar-2022 |
Philip Reames <[email protected]> |
Revert "Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"""
This reverts commit 738042711bc08cde9135873200b1d088e6cf11c3. A second, apparently separate, issue has been reported on
Revert "Reapply "[SLP] Schedule only sub-graph of vectorizable instructions"""
This reverts commit 738042711bc08cde9135873200b1d088e6cf11c3. A second, apparently separate, issue has been reported on the original review.
show more ...
|
| #
73804271 |
| 02-Mar-2022 |
Philip Reames <[email protected]> |
Reapply "[SLP] Schedule only sub-graph of vectorizable instructions""
Root issue which triggered the revert was fixed in 689bab. No changes in the reapplied patch.
Original commit message follows:
Reapply "[SLP] Schedule only sub-graph of vectorizable instructions""
Root issue which triggered the revert was fixed in 689bab. No changes in the reapplied patch.
Original commit message follows:
SLP currently schedules all instructions within a scheduling window which stretches from the first instr uction potentially vectorized to the last. This window can include a very large number of unrelated instruct ions which are not being considered for vectorization. This change switches the code to only schedule the su b-graph consisting of the instructions being vectorized and their transitive users.
This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:
Before this patch:
704357 SLP - Number of calcDeps actions 699021 SLP - Number of schedule calls 5598 SLP - Number of ReSchedule actions 59 SLP - Number of ReScheduleOnFail actions 10084 SLP - Number of schedule resets 8523 SLP - Number of vector instructions generated
After this patch:
102895 SLP - Number of calcDeps actions 161916 SLP - Number of schedule calls 5637 SLP - Number of ReSchedule actions 55 SLP - Number of ReScheduleOnFail actions 10083 SLP - Number of schedule resets 8403 SLP - Number of vector instructions generated
I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.
The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.
For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.
Differential Revision: https://reviews.llvm.org/D118538
show more ...
|
|
Revision tags: llvmorg-14.0.0-rc2 |
|
| #
9c6250ee |
| 01-Mar-2022 |
Arthur Eubanks <[email protected]> |
Revert "[SLP] Schedule only sub-graph of vectorizable instructions"
This reverts commit 0539a26d91a1b7c74022fa9cf33bd7faca87544d.
Causes a miscompile, see comments on D118538.
Required updating bo
Revert "[SLP] Schedule only sub-graph of vectorizable instructions"
This reverts commit 0539a26d91a1b7c74022fa9cf33bd7faca87544d.
Causes a miscompile, see comments on D118538.
Required updating bottom-to-top-reorder.ll.
show more ...
|
| #
0539a26d |
| 22-Feb-2022 |
Philip Reames <[email protected]> |
[SLP] Schedule only sub-graph of vectorizable instructions
SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to th
[SLP] Schedule only sub-graph of vectorizable instructions
SLP currently schedules all instructions within a scheduling window which stretches from the first instruction potentially vectorized to the last. This window can include a very large number of unrelated instructions which are not being considered for vectorization. This change switches the code to only schedule the sub-graph consisting of the instructions being vectorized and their transitive users.
This has the effect of greatly reducing the amount of work performed in large basic blocks, and thus greatly improves compile time on degenerate examples. To understand the effects, I added some statistics (not planned for upstream contribution). Here's an illustration from my motivating example:
Before this patch:
704357 SLP - Number of calcDeps actions 699021 SLP - Number of schedule calls 5598 SLP - Number of ReSchedule actions 59 SLP - Number of ReScheduleOnFail actions 10084 SLP - Number of schedule resets 8523 SLP - Number of vector instructions generated
After this patch:
102895 SLP - Number of calcDeps actions 161916 SLP - Number of schedule calls 5637 SLP - Number of ReSchedule actions 55 SLP - Number of ReScheduleOnFail actions 10083 SLP - Number of schedule resets 8403 SLP - Number of vector instructions generated
I do want to highlight that there is a small difference in number of generated vector instructions. This example is hitting the bailout due to maximum window size, and the change in scheduling is slightly perturbing when and how we hit it. This can be seen in the RescheduleOnFail counter change. Given that, I think we can safely ignore.
The downside of this change can be seen in the large test diff. We group all vectorizable instructions together at the bottom of the scheduling region. This means that vector instructions can move quite far from their original point in code. While maybe undesirable, I don't see this as being a major problem as this pass is not intended to be a general scheduling pass.
For context, it's worth noting that the pre-scheduling that SLP does while building the vector tree is exactly the sub-graph scheduling implemented by this patch.
Differential Revision: https://reviews.llvm.org/D118538
show more ...
|
|
Revision tags: llvmorg-14.0.0-rc1, llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3 |
|
| #
48ebe427 |
| 31-Aug-2021 |
Nikita Popov <[email protected]> |
[SLPVectorizer] Make aliasing check more precise
SLPVectorizer currently uses AA::isNoAlias() to determine whether two locations alias. This does not work if one of the instructions is a call. Inste
[SLPVectorizer] Make aliasing check more precise
SLPVectorizer currently uses AA::isNoAlias() to determine whether two locations alias. This does not work if one of the instructions is a call. Instead, we should check getModRefInfo(), which determines whether an arbitrary instruction modifies or references a given location.
Among other things, this prevents @llvm.experimental.noalias.scope.decl() and other inaccessiblmemonly intrinsics from interfering with SLP vectorization.
Differential Revision: https://reviews.llvm.org/D109012
show more ...
|
| #
bf8b69bb |
| 31-Aug-2021 |
Nikita Popov <[email protected]> |
[SLPVectorizer] Add test for inaccessiblememonly call (NFC)
|
|
Revision tags: llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4, llvmorg-12.0.0-rc3, llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1 |
|
| #
cee313d2 |
| 17-Apr-2019 |
Eric Christopher <[email protected]> |
Revert "Temporarily Revert "Add basic loop fusion pass.""
The reversion apparently deleted the test/Transforms directory.
Will be re-reverting again.
llvm-svn: 358552
|
|
Revision tags: llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1 |
|
| #
ce2c8b33 |
| 11-Jan-2019 |
Alexey Bataev <[email protected]> |
[SLP]Update test checks for the SPL vectorizer, NFC.
llvm-svn: 350967
|
|
Revision tags: llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1, llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2 |
|
| #
2c74fe97 |
| 08-Nov-2017 |
Dan Gohman <[email protected]> |
Add an @llvm.sideeffect intrinsic
This patch implements Chandler's idea [0] for supporting languages that require support for infinite loops with side effects, such as Rust, providing part of a solu
Add an @llvm.sideeffect intrinsic
This patch implements Chandler's idea [0] for supporting languages that require support for infinite loops with side effects, such as Rust, providing part of a solution to bug 965 [1].
Specifically, it adds an `llvm.sideeffect()` intrinsic, which has no actual effect, but which appears to optimization passes to have obscure side effects, such that they don't optimize away loops containing it. It also teaches several optimization passes to ignore this intrinsic, so that it doesn't significantly impact optimization in most cases.
As discussed on llvm-dev [2], this patch is the first of two major parts. The second part, to change LLVM's semantics to have defined behavior on infinite loops by default, with a function attribute for opting into potential-undefined-behavior, will be implemented and posted for review in a separate patch.
[0] http://lists.llvm.org/pipermail/llvm-dev/2015-July/088103.html [1] https://bugs.llvm.org/show_bug.cgi?id=965 [2] http://lists.llvm.org/pipermail/llvm-dev/2017-October/118632.html
Differential Revision: https://reviews.llvm.org/D38336
llvm-svn: 317729
show more ...
|