Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: llvmorg-20.1.0, llvmorg-20.1.0-rc3, llvmorg-20.1.0-rc2, llvmorg-20.1.0-rc1, llvmorg-21-init, llvmorg-19.1.7, llvmorg-19.1.6, llvmorg-19.1.5, llvmorg-19.1.4, llvmorg-19.1.3, llvmorg-19.1.2, llvmorg-19.1.1, llvmorg-19.1.0, llvmorg-19.1.0-rc4, llvmorg-19.1.0-rc3, llvmorg-19.1.0-rc2, llvmorg-19.1.0-rc1, llvmorg-20-init, llvmorg-18.1.8, llvmorg-18.1.7, llvmorg-18.1.6, llvmorg-18.1.5, llvmorg-18.1.4, llvmorg-18.1.3, llvmorg-18.1.2, llvmorg-18.1.1, llvmorg-18.1.0, llvmorg-18.1.0-rc4, llvmorg-18.1.0-rc3, llvmorg-18.1.0-rc2, llvmorg-18.1.0-rc1, llvmorg-19-init, llvmorg-17.0.6, llvmorg-17.0.5, llvmorg-17.0.4, llvmorg-17.0.3, llvmorg-17.0.2, llvmorg-17.0.1, llvmorg-17.0.0, llvmorg-17.0.0-rc4, llvmorg-17.0.0-rc3, llvmorg-17.0.0-rc2, llvmorg-17.0.0-rc1, llvmorg-18-init, llvmorg-16.0.6, llvmorg-16.0.5, llvmorg-16.0.4, llvmorg-16.0.3, llvmorg-16.0.2, llvmorg-16.0.1, llvmorg-16.0.0, llvmorg-16.0.0-rc4, llvmorg-16.0.0-rc3, llvmorg-16.0.0-rc2, llvmorg-16.0.0-rc1, llvmorg-17-init, llvmorg-15.0.7, llvmorg-15.0.6, llvmorg-15.0.5, llvmorg-15.0.4, llvmorg-15.0.3, llvmorg-15.0.2, llvmorg-15.0.1, llvmorg-15.0.0, llvmorg-15.0.0-rc3, llvmorg-15.0.0-rc2, llvmorg-15.0.0-rc1, llvmorg-16-init, llvmorg-14.0.6, llvmorg-14.0.5, llvmorg-14.0.4, llvmorg-14.0.3, llvmorg-14.0.2, llvmorg-14.0.1, llvmorg-14.0.0, llvmorg-14.0.0-rc4, llvmorg-14.0.0-rc3, llvmorg-14.0.0-rc2, llvmorg-14.0.0-rc1
# c680eeab 03-Feb-2022 Nikita Popov <[email protected]>

[IRBuilder][RS4GC] Require FunctionCallee when creating statepoint

This makes the statepoint methods in IRBuilder accept a
FunctionCallee, which carries both the callee and function type.
This is us

[IRBuilder][RS4GC] Require FunctionCallee when creating statepoint

This makes the statepoint methods in IRBuilder accept a
FunctionCallee, which carries both the callee and function type.
This is used to add the elementtype attribute to the statepoint call.

RS4GC requires an additional tweak to actually preserve that attribute
-- previously the attributes on the call were completely overwritten.

Differential Revision: https://reviews.llvm.org/D118886

show more ...


Revision tags: llvmorg-15-init, llvmorg-13.0.1, llvmorg-13.0.1-rc3, llvmorg-13.0.1-rc2, llvmorg-13.0.1-rc1, llvmorg-13.0.0, llvmorg-13.0.0-rc4, llvmorg-13.0.0-rc3, llvmorg-13.0.0-rc2, llvmorg-13.0.0-rc1, llvmorg-14-init, llvmorg-12.0.1, llvmorg-12.0.1-rc4, llvmorg-12.0.1-rc3, llvmorg-12.0.1-rc2, llvmorg-12.0.1-rc1, llvmorg-12.0.0, llvmorg-12.0.0-rc5, llvmorg-12.0.0-rc4
# 5cabf472 16-Mar-2021 Philip Reames <[email protected]>

[rs4gc] don't duplicate existing values which are provably base pointers

RS4GC needs to rewrite the IR to ensure that every relocated pointer has an associated base pointer. The existing code isn't

[rs4gc] don't duplicate existing values which are provably base pointers

RS4GC needs to rewrite the IR to ensure that every relocated pointer has an associated base pointer. The existing code isn't particularly smart about avoiding duplication of existing IR when it turns out the original pointer we were asked to materialize a base pointer for is itself a base pointer.

This patch adds a stage to the algorithm which prunes nodes proven (with a simple forward dataflow fixed point) to be base pointers from the list of nodes considered for duplication. This does require changing some of the later invariants slightly, that's probably the riskiest part of the change.

Differential Revision: D98122

show more ...


Revision tags: llvmorg-12.0.0-rc3
# c6ec563f 06-Mar-2021 Philip Reames <[email protected]>

[rs4gc] autogen a bunch of tests for ease of update


# 99f93dd3 05-Mar-2021 Philip Reames <[email protected]>

[rs4gc] avoid insert base computation instructions for deopt uses

If we have a value live over a call which is used for deopt at the call, we know that the value must be a base pointer. We can avoid

[rs4gc] avoid insert base computation instructions for deopt uses

If we have a value live over a call which is used for deopt at the call, we know that the value must be a base pointer. We can avoid potentially inserting IR to materialize a base for this value.

In it's current form, this is mostly a compile time optimization. Building the base pointer graph (and then optimizing it away again) is a relatively expensive operation. We also sometimes end up with better codegen in practice - due to failures in optimizing away the inserted base pointer propogation - but those are optimization bugs we're fixing concurrently.

The alternative to this would be to extend the base pointer inference with the ability to generally reuse multiple-base input instructions (phis and selects). That's somewhat invasive and complicated, so we're defering it a bit longer.

Differential Revision: https://reviews.llvm.org/D97885

show more ...


Revision tags: llvmorg-12.0.0-rc2, llvmorg-11.1.0, llvmorg-11.1.0-rc3, llvmorg-12.0.0-rc1, llvmorg-13-init, llvmorg-11.1.0-rc2, llvmorg-11.1.0-rc1, llvmorg-11.0.1, llvmorg-11.0.1-rc2, llvmorg-11.0.1-rc1, llvmorg-11.0.0, llvmorg-11.0.0-rc6, llvmorg-11.0.0-rc5, llvmorg-11.0.0-rc4, llvmorg-11.0.0-rc3, llvmorg-11.0.0-rc2, llvmorg-11.0.0-rc1, llvmorg-12-init, llvmorg-10.0.1, llvmorg-10.0.1-rc4, llvmorg-10.0.1-rc3, llvmorg-10.0.1-rc2, llvmorg-10.0.1-rc1, llvmorg-10.0.0, llvmorg-10.0.0-rc6, llvmorg-10.0.0-rc5, llvmorg-10.0.0-rc4, llvmorg-10.0.0-rc3, llvmorg-10.0.0-rc2, llvmorg-10.0.0-rc1, llvmorg-11-init, llvmorg-9.0.1, llvmorg-9.0.1-rc3, llvmorg-9.0.1-rc2, llvmorg-9.0.1-rc1, llvmorg-9.0.0, llvmorg-9.0.0-rc6, llvmorg-9.0.0-rc5, llvmorg-9.0.0-rc4, llvmorg-9.0.0-rc3, llvmorg-9.0.0-rc2, llvmorg-9.0.0-rc1, llvmorg-10-init, llvmorg-8.0.1, llvmorg-8.0.1-rc4, llvmorg-8.0.1-rc3, llvmorg-8.0.1-rc2, llvmorg-8.0.1-rc1
# cee313d2 17-Apr-2019 Eric Christopher <[email protected]>

Revert "Temporarily Revert "Add basic loop fusion pass.""

The reversion apparently deleted the test/Transforms directory.

Will be re-reverting again.

llvm-svn: 358552


Revision tags: llvmorg-8.0.0, llvmorg-8.0.0-rc5, llvmorg-8.0.0-rc4, llvmorg-8.0.0-rc3, llvmorg-7.1.0, llvmorg-7.1.0-rc1, llvmorg-8.0.0-rc2, llvmorg-8.0.0-rc1, llvmorg-7.0.1, llvmorg-7.0.1-rc3, llvmorg-7.0.1-rc2, llvmorg-7.0.1-rc1, llvmorg-7.0.0, llvmorg-7.0.0-rc3, llvmorg-7.0.0-rc2, llvmorg-7.0.0-rc1, llvmorg-6.0.1, llvmorg-6.0.1-rc3, llvmorg-6.0.1-rc2, llvmorg-6.0.1-rc1, llvmorg-5.0.2, llvmorg-5.0.2-rc2, llvmorg-5.0.2-rc1, llvmorg-6.0.0, llvmorg-6.0.0-rc3, llvmorg-6.0.0-rc2, llvmorg-6.0.0-rc1
# 4b86d790 15-Dec-2017 Fedor Sergeev <[email protected]>

[PM] port Rewrite Statepoints For GC to the new pass manager.

Summary:
The port is nearly straightforward.
The only complication is related to the analyses handling,
since one of the analyses used i

[PM] port Rewrite Statepoints For GC to the new pass manager.

Summary:
The port is nearly straightforward.
The only complication is related to the analyses handling,
since one of the analyses used in this module pass is domtree,
which is a function analysis. That requires asking for the results
of each function and disallows a single interface for run-on-module
pass action.

Decided to copy-paste the main body of this pass.
Most of its code is requesting analyses anyway, so not that much
of a copy-paste.

The rest of the code movement is to transform all the implementation
helper functions like stripNonValidData into non-member statics.

Extended all the related LLVM tests with new-pass-manager use.
No failures.

Reviewers: sanjoy, anna, reames

Reviewed By: anna

Subscribers: skatkov, llvm-commits

Differential Revision: https://reviews.llvm.org/D41162

llvm-svn: 320796

show more ...


Revision tags: llvmorg-5.0.1, llvmorg-5.0.1-rc3, llvmorg-5.0.1-rc2, llvmorg-5.0.1-rc1, llvmorg-5.0.0, llvmorg-5.0.0-rc5, llvmorg-5.0.0-rc4, llvmorg-5.0.0-rc3, llvmorg-5.0.0-rc2, llvmorg-5.0.0-rc1, llvmorg-4.0.1, llvmorg-4.0.1-rc3, llvmorg-4.0.1-rc2, llvmorg-4.0.1-rc1, llvmorg-4.0.0, llvmorg-4.0.0-rc4, llvmorg-4.0.0-rc3, llvmorg-4.0.0-rc2, llvmorg-4.0.0-rc1, llvmorg-3.9.1, llvmorg-3.9.1-rc3, llvmorg-3.9.1-rc2, llvmorg-3.9.1-rc1, llvmorg-3.9.0, llvmorg-3.9.0-rc3, llvmorg-3.9.0-rc2, llvmorg-3.9.0-rc1, llvmorg-3.8.1, llvmorg-3.8.1-rc1, llvmorg-3.8.0, llvmorg-3.8.0-rc3
# 79fa9b75 22-Feb-2016 Philip Reames <[email protected]>

[RS4GC] Revert optimization attempt due to memory corruption

This change reverts "246133 [RewriteStatepointsForGC] Reduce the number of new instructions for base pointers" and a follow on bugfix 125

[RS4GC] Revert optimization attempt due to memory corruption

This change reverts "246133 [RewriteStatepointsForGC] Reduce the number of new instructions for base pointers" and a follow on bugfix 12575.

As pointed out in pr25846, this code suffers from a memory corruption bug. Since I'm (empirically) not going to get back to this any time soon, simply reverting the problematic change is the right answer.

llvm-svn: 261565

show more ...


Revision tags: llvmorg-3.8.0-rc2
# 04071080 29-Jan-2016 Sanjoy Das <[email protected]>

[RS4GC] Clamp UseDeoptBundles to true and update tests

The full diff for the test directory may be hard to read because of the
filename clash; so here's all that happened as far as the tests are
con

[RS4GC] Clamp UseDeoptBundles to true and update tests

The full diff for the test directory may be hard to read because of the
filename clash; so here's all that happened as far as the tests are
concerned:

```
cd test/Transforms/RewriteStatepointsForGC
git rm *ll
git mv deopt-bundles/* ./
rmdir deopt-bundles
find . -name '*.ll' | xargs gsed -i 's/-rs4gc-use-deopt-bundles //g'
```

llvm-svn: 259129

show more ...


Revision tags: llvmorg-3.8.0-rc1
# d71999ef 26-Dec-2015 Chen Li <[email protected]>

[gc.statepoint] Change gc.statepoint intrinsic's return type to token type instead of i32 type

Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Us

[gc.statepoint] Change gc.statepoint intrinsic's return type to token type instead of i32 type

Summary: This patch changes gc.statepoint intrinsic's return type to token type instead of i32 type. Using token types could prevent LLVM to merge different gc.statepoint nodes into PHI nodes and cause further problems with gc relocations. The patch also changes the way on how gc.relocate and gc.result look for their corresponding gc.statepoint on unwind path. The current implementation uses the selector value extracted from a { i8*, i32 } landingpad as a hook to find the gc.statepoint, while the patch directly uses a token type landingpad (http://reviews.llvm.org/D15405) to find the gc.statepoint.

Reviewers: sanjoy, JosephTremoulet, pgavlin, igor-laevsky, mjacob

Subscribers: reames, mjacob, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D15662

llvm-svn: 256443

show more ...


Revision tags: llvmorg-3.7.1, llvmorg-3.7.1-rc2, llvmorg-3.7.1-rc1
# dab35f31 02-Sep-2015 Philip Reames <[email protected]>

[RewriteStatepointsForGC] Improve debug output [NFC]

llvm-svn: 246713


Revision tags: llvmorg-3.7.0
# abcdc5e3 27-Aug-2015 Philip Reames <[email protected]>

[RewriteStatepointsForGC] Reduce the number of new instructions for base pointers

When computing base pointers, we introduce new instructions to propagate the base of existing instructions which mig

[RewriteStatepointsForGC] Reduce the number of new instructions for base pointers

When computing base pointers, we introduce new instructions to propagate the base of existing instructions which might not be bases. However, the algorithm doesn't make any effort to recognize when the new instruction to be inserted is the same as an existing one already in the IR. Since this is happening immediately before rewriting, we don't really have a chance to fix it after the pass runs without teaching loop passes about statepoints.

I'm really not thrilled with this patch. I've rewritten it 4 different ways now, but this is the best I've come up with. The case where the new instruction is just the original base defining value could be merged into the existing algorithm with some complexity. The problem is that we might have something like an extractelement from a phi of two vectors. It may be trivially obvious that the base of the 0th element is an existing instruction, but I can't see how to make the algorithm itself figure that out. Thus, I resort to the call to SimplifyInstruction instead.

Note that we can only adjust the instructions we've inserted ourselves. The live sets are still being tracked in side structures at this point in the code. We can't easily muck with instructions which might be in them. Long term, I'm really thinking we need to materialize the live pointer sets explicitly in the IR somehow rather than using side structures to track them.

Differential Revision: http://reviews.llvm.org/D12004

llvm-svn: 246133

show more ...


Revision tags: llvmorg-3.7.0-rc4, llvmorg-3.7.0-rc3, llvmorg-3.7.0-rc2
# fa2c630f 24-Jul-2015 Philip Reames <[email protected]>

[RewriteStatepointsForGC] Adjust naming scheme to be more stable

The names for instructions inserted were previous dependent on iteration order. By deriving the names from the original instructions

[RewriteStatepointsForGC] Adjust naming scheme to be more stable

The names for instructions inserted were previous dependent on iteration order. By deriving the names from the original instructions, we can avoid instability in tests without resorting to ordered traversals. It also makes the IR mildly easier to read at large scale.

llvm-svn: 243140

show more ...


Revision tags: llvmorg-3.7.0-rc1, llvmorg-3.6.2, llvmorg-3.6.2-rc1, llvmorg-3.6.1
# a1d39ba9 12-May-2015 Sanjoy Das <[email protected]>

[Statepoints] Support for "patchable" statepoints.

Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field

[Statepoints] Support for "patchable" statepoints.

Summary:
This change adds two new parameters to the statepoint intrinsic, `i64 id`
and `i32 num_patch_bytes`. `id` gets propagated to the ID field
in the generated StackMap section. If the `num_patch_bytes` is
non-zero then the statepoint is lowered to `num_patch_bytes` bytes of
nops instead of a call (the spill and reload code remains unchanged).
A non-zero `num_patch_bytes` is useful in situations where a language
runtime requires complete control over how a call is lowered.

This change brings statepoints one step closer to patchpoints. With
some additional work (that is not part of this patch) it should be
possible to get rid of `TargetOpcode::STATEPOINT` altogether.

PlaceSafepoints generates `statepoint` wrappers with `id` set to
`0xABCDEF00` (the old default value for the ID reported in the stackmap)
and `num_patch_bytes` set to `0`. This can be made more sophisticated
later.

Reviewers: reames, pgavlin, swaroop.sridhar, AndyAyers

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9546

llvm-svn: 237214

show more ...


Revision tags: llvmorg-3.6.1-rc1
# 89c5491a 11-May-2015 Sanjoy Das <[email protected]>

[RewriteStatepointsForGC] Fix a bug on creating gc_relocate for pointer to vector of pointers

Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer,

[RewriteStatepointsForGC] Fix a bug on creating gc_relocate for pointer to vector of pointers

Summary:
In RewriteStatepointsForGC pass, we create a gc_relocate intrinsic for
each relocated pointer, and the gc_relocate has the same type with the
pointer. During the creation of gc_relocate intrinsic, llvm requires to
mangle its type. However, llvm does not support mangling of all possible
types. RewriteStatepointsForGC will hit an assertion failure when it
tries to create a gc_relocate for pointer to vector of pointers because
mangling for vector of pointers is not supported.

This patch changes the way RewriteStatepointsForGC pass creates
gc_relocate. For each relocated pointer, we erase the type of pointers
and create an unified gc_relocate of type i8 addrspace(1)*. Then a
bitcast is inserted to convert the gc_relocate to the correct type. In
this way, gc_relocate does not need to deal with different types of
pointers and the unsupported type mangling is no longer a problem. This
change would also ease further merge when LLVM erases types of pointers
and introduces an unified pointer type.

Some minor changes are also introduced to gc_relocate related part in
InstCombineCalls, CodeGenPrepare, and Verifier accordingly.

Patch by Chen Li!

Reviewers: reames, AndyAyers, sanjoy

Reviewed By: sanjoy

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9592

llvm-svn: 237009

show more ...


# cc0431d1 08-May-2015 Pat Gavlin <[email protected]>

Extend the statepoint intrinsic to allow statepoints to be marked as transitions from GC-aware code to code that is not GC-aware.

This changes the shape of the statepoint intrinsic from:

@llvm.ex

Extend the statepoint intrinsic to allow statepoints to be marked as transitions from GC-aware code to code that is not GC-aware.

This changes the shape of the statepoint intrinsic from:

@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 unused, ...call args, i32 # deopt args, ...deopt args, ...gc args)

to:

@llvm.experimental.gc.statepoint(anyptr target, i32 # call args, i32 flags, ...call args, i32 # transition args, ...transition args, i32 # deopt args, ...deopt args, ...gc args)

This extension offers the backend the opportunity to insert (somewhat) arbitrary code to manage the transition from GC-aware code to code that is not GC-aware and back.

In order to support the injection of transition code, this extension wraps the STATEPOINT ISD node generated by the usual lowering lowering with two additional nodes: GC_TRANSITION_START and GC_TRANSITION_END. The transition arguments that were passed passed to the intrinsic (if any) are lowered and provided as operands to these nodes and may be used by the backend during code generation.

Eventually, the lowering of the GC_TRANSITION_{START,END} nodes should be informed by the GC strategy in use for the function containing the intrinsic call; for now, these nodes are instead replaced with no-ops.

Differential Revision: http://reviews.llvm.org/D9501

llvm-svn: 236888

show more ...


# 23af6484 16-Apr-2015 David Blaikie <[email protected]>

[opaque pointer type] Add textual IR support for explicit type parameter to the call instruction

See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different be

[opaque pointer type] Add textual IR support for explicit type parameter to the call instruction

See r230786 and r230794 for similar changes to gep and load
respectively.

Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.

When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.

This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.

This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).

No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.

This leaves /only/ the varargs case where the explicit type is required.

Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.

About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.

import fileinput
import sys
import re

pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")

def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]

for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))

llvm-svn: 235145

show more ...


# df1ef08c 10-Apr-2015 Philip Reames <[email protected]>

[RewriteStatepointsForGC] Use an actual liveness algorithm

When rewriting statepoints to make relocations explicit, we need to have a conservative but consistent notion of where a particular pointer

[RewriteStatepointsForGC] Use an actual liveness algorithm

When rewriting statepoints to make relocations explicit, we need to have a conservative but consistent notion of where a particular pointer is live at a particular site. The old code just used dominance, which is correct, but decidedly more conservative then it needed to be. This patch implements a simple dataflow algorithm that's run one per function (well, twice counting fixup after base pointer insertion). There's still lots of room to make this faster, but it's fast enough for all practical purposes today.

Differential Revision: http://reviews.llvm.org/D8674

llvm-svn: 234657

show more ...


Revision tags: llvmorg-3.5.2, llvmorg-3.5.2-rc1
# 2e5bcbe8 28-Feb-2015 Philip Reames <[email protected]>

[RewriteStatepointsForGC] Fix another order of iteration bug

It turns out the naming of inserted phis and selects is sensative to the order in which two sets are iterated. We need to nail this down

[RewriteStatepointsForGC] Fix another order of iteration bug

It turns out the naming of inserted phis and selects is sensative to the order in which two sets are iterated. We need to nail this down to avoid non-deterministic output and possible test failures.

The modified test is the one I first noticed something odd in. The change is making it more strict to report the error. With the test change, but without the code change, the test fails roughly 1 in 5. With the code change, I've run ~30 runs without error.

Long term, the right fix here is to adjust the naming scheme. I'm checking in this hack to avoid any possible non-determinism in the tests over the weekend. HJust because I only noticed one case doesn't mean it's actually the only case. I hope to get to the right change Monday.

std->llvm data structure changes bugfix change #3

llvm-svn: 230835

show more ...


# a5aeaf4b 28-Feb-2015 Philip Reames <[email protected]>

[RewriteStatepointsForGC] Add tests for the base pointer identification algorithm

These tests cover the 'base object' identification and rewritting portion of RewriteStatepointsForGC. These aren't

[RewriteStatepointsForGC] Add tests for the base pointer identification algorithm

These tests cover the 'base object' identification and rewritting portion of RewriteStatepointsForGC. These aren't completely exhaustive, but they've proven to be reasonable effective over time at finding regressions.

In the process of porting these tests over, I found my first "cleanup per llvm code style standards" bug. We were relying on the order of iteration when testing the base pointers found for a derived pointer. When we switched from std::set to DenseSet, this stopped being a safe assumption. I'm suspecting I'm going to find more of those. In particular, I'm now really wondering about the main iteration loop for this algorithm. I need to go take a closer look at the assumptions there.

I'm not really happy with the fact these are testing what is essentially debug output (i.e. enabled via command line flags). Suggestions for how to structure this better are very welcome.

llvm-svn: 230818

show more ...